1
|
Chen TT, Yang JC, Chen GY, Dai YH, Zhang X, Chan HL, Lin TC, Wu YC. Silibinin, a PLC-β3 inhibitor, inhibits mast cell activation and alleviates OVA-induced asthma. Mol Immunol 2025; 178:76-86. [PMID: 39870013 DOI: 10.1016/j.molimm.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/07/2025] [Accepted: 01/19/2025] [Indexed: 01/29/2025]
Abstract
The immunoglobulin E (IgE) receptor FcεRI (Fc epsilon RI) plays a crucial role in allergic reactions. Recent studies have indicated that the interaction between FcεRIβ and the downstream protein phospholipase C beta 3 (PLCβ3) leads to the production of inflammatory cytokines. The aim of this study was to develop small molecules that inhibit the protein-protein interactions between FcεRIβ and PLCβ3 to treat allergic inflammation. Additionally, PLCβ3 has emerged as a potential target protein for treating allergic inflammation. In this study, we employed a virtual screening technique to search the Taiwan Traditional Chinese Medicine Database, followed by a second screening using absorption, distribution, metabolism, excretion, and toxicity (ADMET). Among the compounds screened, silibinin exhibited the best performance, forming strong hydrogen bond interactions with residues of PLCβ3, with a binding free energy of -119.277 kcal/mol. Therefore, silibinin effectively blocked the interaction between FcεRIβ and PLCβ3. Silibinin reduced the production of allergic inflammatory cytokines, including cytokine-induced neutrophil chemoattractant 2a (CINC-2a), interleukin-2 (IL-2), cytokine-induced neutrophil chemoattractant 1 (CINC-1), interleukin 1α (IL-1α), macrophage inflammatory protein 3 alpha (MIP3α), interferon γ (IFN-γ), activin A, granulocyte macrophage colony stimulating factor (GM-CSF), intercellular adhesion molecule-1 (ICAM-1), interleukin 4 (IL-4), interleukin 13 (IL-13), Fas ligand (FasL) and tumor necrosis factor alpha (TNF-α), without inducing cytotoxicity. Furthermore, in studies of IgE-mediated allergic responses, silibinin also decreased the expression of surface IgE receptors (FcεRIs). Moreover, silibinin effectively alleviated allergen-induced asthma responses and reduced the infiltration of inflammatory immune cells into the lungs of an OVA-induced allergic airway inflammation mouse model. Taken together, these results demonstrate the potential antiallergic mechanism of silibinin both in vitro and in vivo, making it a promising candidate for the development of asthma therapeutics.
Collapse
Affiliation(s)
- Tzu-Ting Chen
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Juan-Cheng Yang
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.
| | - Guan-Yu Chen
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.
| | - Yun-Hao Dai
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.
| | - Xiang Zhang
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm SE-17177, Sweden.
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Tim Cc Lin
- Institute of Biomedical Science, National Chung-Hsing University, Taichung 402, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan; Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan; Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yang-Chang Wu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Master Program of Pharmaceutical Manufacture, College of Pharmacy, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
2
|
Bugter JM, van Kerkhof P, Jordens I, Janssen E, Tran Ngoc Minh T, Iglesias van Montfort D, Jamieson C, Maurice MM. E3 ligases RNF43 and ZNRF3 display differential specificity for endocytosis of Frizzled receptors. Life Sci Alliance 2024; 7:e202402575. [PMID: 38969364 PMCID: PMC11231576 DOI: 10.26508/lsa.202402575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024] Open
Abstract
The transmembrane E3 ligases RNF43 and ZNRF3 perform key tumour suppressor roles by inducing endocytosis of members of the Frizzled (FZD) family, the primary receptors for WNT. Loss-of-function mutations in RNF43 and ZNRF3 mediate FZD stabilisation and a WNT-hypersensitive growth state in various cancer types. Strikingly, RNF43 and ZNRF3 mutations are differentially distributed across cancer types, raising questions about their functional redundancy. Here, we compare the efficacy of RNF43 and ZNRF3 of targeting different FZDs for endocytosis. We find that RNF43 preferentially down-regulates FZD1/FZD5/FZD7, whereas ZNRF3 displays a preference towards FZD6. We show that the RNF43 transmembrane domain (TMD) is a key molecular determinant for inducing FZD5 endocytosis. Furthermore, a TMD swap between RNF43 and ZNRF3 re-directs their preference for FZD5 down-regulation. We conclude that RNF43 and ZNRF3 preferentially down-regulate specific FZDs, in part by a TMD-dependent mechanism. In accordance, tissue-specific expression patterns of FZD homologues correlate with the incidence of RNF43 or ZNRF3 cancer mutations in those tissues. Consequently, our data point to druggable vulnerabilities of specific FZD receptors in RNF43- or ZNRF3-mutant human cancers.
Collapse
Affiliation(s)
- Jeroen M Bugter
- Oncode Institute and Centre for Molecular Medicine, UMC Utrecht, Utrecht, Netherlands
| | - Peter van Kerkhof
- Oncode Institute and Centre for Molecular Medicine, UMC Utrecht, Utrecht, Netherlands
| | - Ingrid Jordens
- Oncode Institute and Centre for Molecular Medicine, UMC Utrecht, Utrecht, Netherlands
| | - Eline Janssen
- Oncode Institute and Centre for Molecular Medicine, UMC Utrecht, Utrecht, Netherlands
| | - Thi Tran Ngoc Minh
- Oncode Institute and Centre for Molecular Medicine, UMC Utrecht, Utrecht, Netherlands
| | | | - Cara Jamieson
- Oncode Institute and Centre for Molecular Medicine, UMC Utrecht, Utrecht, Netherlands
| | - Madelon M Maurice
- Oncode Institute and Centre for Molecular Medicine, UMC Utrecht, Utrecht, Netherlands
| |
Collapse
|
3
|
Abstract
Mast cells originate from the CD34+/CD117+ hematopoietic progenitors in the bone marrow, migrate into circulation, and ultimately mature and reside in peripheral tissues. Microbiota/metabolites and certain immune cells (e.g., Treg cells) play a key role in maintaining immune tolerance. Cross-linking of allergen-specific IgE on mast cells activates the high-affinity membrane-bound receptor FcεRI, thereby initiating an intracellular signal cascade, leading to degranulation and release of pro-inflammatory mediators. The intracellular signal transduction is intricately regulated by various kinases, transcription factors, and cytokines. Importantly, multiple signal components in the FcεRI-mast cell–mediated allergic cascade can be targeted for therapeutic purposes. Pharmacological interventions that include therapeutic antibodies against IgE, FcεRI, and cytokines as well as inhibitors/activators of several key intracellular signaling molecues have been used to inhibit allergic reactions. Other factors that are not part of the signal pathway but can enhance an individual’s susceptibility to allergen stimulation are referred to as cofactors. Herein, we provide a mechanistic overview of the FcεRI-mast cell–mediated allergic signaling. This will broaden our scope and visions on specific preventive and therapeutic strategies for the clinical management of mast cell–associated hypersensitivity reactions.
Collapse
|
4
|
Koubek J, Schmitt J, Galmozzi CV, Kramer G. Mechanisms of Cotranslational Protein Maturation in Bacteria. Front Mol Biosci 2021; 8:689755. [PMID: 34113653 PMCID: PMC8185961 DOI: 10.3389/fmolb.2021.689755] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/10/2021] [Indexed: 01/05/2023] Open
Abstract
Growing cells invest a significant part of their biosynthetic capacity into the production of proteins. To become functional, newly-synthesized proteins must be N-terminally processed, folded and often translocated to other cellular compartments. A general strategy is to integrate these protein maturation processes with translation, by cotranslationally engaging processing enzymes, chaperones and targeting factors with the nascent polypeptide. Precise coordination of all factors involved is critical for the efficiency and accuracy of protein synthesis and cellular homeostasis. This review provides an overview of the current knowledge on cotranslational protein maturation, with a focus on the production of cytosolic proteins in bacteria. We describe the role of the ribosome and the chaperone network in protein folding and how the dynamic interplay of all cotranslationally acting factors guides the sequence of cotranslational events. Finally, we discuss recent data demonstrating the coupling of protein synthesis with the assembly of protein complexes and end with a brief discussion of outstanding questions and emerging concepts in the field of cotranslational protein maturation.
Collapse
Affiliation(s)
- Jiří Koubek
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Jaro Schmitt
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Carla Veronica Galmozzi
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Günter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
5
|
The Benefits of Cotranslational Assembly: A Structural Perspective. Trends Cell Biol 2019; 29:791-803. [DOI: 10.1016/j.tcb.2019.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022]
|
6
|
Bera M, Kalyana Sundaram RV. Chromosome Territorial Organization Drives Efficient Protein Complex Formation: A Hypothesis. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:541-548. [PMID: 31543715 PMCID: PMC6747946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In eukaryotes, chromosomes often form a transcriptional kissing loop during interphase. We propose that these kissing loops facilitate the formation of protein complexes. mRNA transcripts from these loops could cluster together into phase-separated nuclear granules. Their export into the ER could be ensured by guided diffusion through the inter-chromatin space followed by association with nuclear baskets and export factors. Inside the ER, these mRNAs would form a translation hub. Juxtaposed translation of these mRNAs would increase the cis/trans protein complex assembly among the nascent protein chains. Eukaryotes might employ this pathway to increase complex formation efficiency.
Collapse
Affiliation(s)
- Manindra Bera
- To whom all correspondence should be addressed: Manindra Bera, Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT USA, 06520; Tel: 203-737-3269,
| | | |
Collapse
|
7
|
Travers T, Kanagy WK, Mansbach RA, Jhamba E, Cleyrat C, Goldstein B, Lidke DS, Wilson BS, Gnanakaran S. Combinatorial diversity of Syk recruitment driven by its multivalent engagement with FcεRIγ. Mol Biol Cell 2019; 30:2331-2347. [PMID: 31216232 PMCID: PMC6743456 DOI: 10.1091/mbc.e18-11-0722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/17/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
Syk/Zap70 family kinases are essential for signaling via multichain immune-recognition receptors such as tetrameric (αβγ2) FcεRI. Syk activation is generally attributed to cis binding of its tandem SH2 domains to dual phosphotyrosines within FcεRIγ-ITAMs (immunoreceptor tyrosine-based activation motifs). However, the mechanistic details of Syk docking on γ homodimers are unresolved. Here, we estimate that multivalent interactions for WT Syk improve cis-oriented binding by three orders of magnitude. We applied molecular dynamics (MD), hybrid MD/worm-like chain polymer modeling, and live cell imaging to evaluate relative binding and signaling output for all possible cis and trans Syk-FcεRIγ configurations. Syk binding is likely modulated during signaling by autophosphorylation on Y130 in interdomain A, since a Y130E phosphomimetic form of Syk is predicted to lead to reduced helicity of interdomain A and alter Syk's bias for cis binding. Experiments in reconstituted γ-KO cells, whose γ subunits are linked by disulfide bonds, as well as in cells expressing monomeric ITAM or hemITAM γ-chimeras, support model predictions that short distances between γ ITAM pairs are required for trans docking. We propose that the full range of docking configurations improves signaling efficiency by expanding the combinatorial possibilities for Syk recruitment, particularly under conditions of incomplete ITAM phosphorylation.
Collapse
Affiliation(s)
- Timothy Travers
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - William K. Kanagy
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Rachael A. Mansbach
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Elton Jhamba
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Cedric Cleyrat
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Byron Goldstein
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Diane S. Lidke
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Bridget S. Wilson
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - S. Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| |
Collapse
|
8
|
Moñino-Romero S, Erkert L, Schmidthaler K, Diesner SC, Sallis BF, Pennington L, Jardetzky T, Oettgen HC, Bohle B, Fiebiger E, Szépfalusi Z. The soluble isoform of human FcɛRI is an endogenous inhibitor of IgE-mediated mast cell responses. Allergy 2019; 74:236-245. [PMID: 30030936 DOI: 10.1111/all.13567] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/01/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND The soluble isoform of FcɛRI, the high-affinity IgE receptor (sFcεRI), is a protein of the IgE network with poorly defined functions. OBJECTIVE To define cellular sources and signals that result in the production of human sFcεRI and study its in vivo functions. METHODS FcεRI-transfected human cell lines (MelJuso), human monocyte-derived dendritic cells (moDCs), and murine bone marrow-derived mast cells (MC) were stimulated by FcεRI cross-linking and release of sFcεRI was analyzed (ELISA, Western Blot). Lysosomal-associated membrane protein 1 degranulation assays and human basophil activation tests (BATs) were used to study IgE-dependent activation. Recombinant sFcεRI (rsFcεRI) was used to assess its role in murine models of anaphylaxis with WT (wild-type) and IgE-/- (IgE-deficient) mice. RESULTS Antigen-specific cross-linking of IgE-loaded FcɛRI on MelJuso cells that express the trimeric or tetrameric receptor isoform induced the production of sFcεRI. Using MCs and moDCs, we confirmed that IgE/FcɛRI activation induces sFcɛRI release. We demonstrated that generation of sFcɛRI requires Src phosphorylation and endo/lysosomal acidification. In experimental mouse models, sFcɛRI diminishes the severity of IgE-mediated anaphylaxis. BATs confirmed that, comparable to the anti-IgE monoclonal antibody omalizumab, sFcɛRI is an inhibitor of the human innate IgE effector axis, implying that sFcɛRI and omalizumab potentially inhibit each other in vivo. CONCLUSION sFcɛRI is produced after antigen-specific IgE/FcɛRI-mediated activation signals and functions as an endogenous inhibitor of IgE loading to FcɛRI and IgE-mediated activation. Our results imply, therefore, that sFcɛRI contributes to a negative regulatory feedback loop that aims at preventing overshooting responses after IgE-mediated immune activation.
Collapse
Affiliation(s)
- S. Moñino-Romero
- Department of Pediatrics and Adolescent Medicine; Medical University Vienna; Vienna Austria
- Division of Gastroenterology, Hepatology and Nutrition; Department of Medicine; Boston Children's Hospital; Boston Massachusetts
| | - L. Erkert
- Division of Gastroenterology, Hepatology and Nutrition; Department of Medicine; Boston Children's Hospital; Boston Massachusetts
| | - K. Schmidthaler
- Department of Pediatrics and Adolescent Medicine; Medical University Vienna; Vienna Austria
| | - S. C. Diesner
- Department of Pediatrics and Adolescent Medicine; Medical University Vienna; Vienna Austria
| | - B. F. Sallis
- Division of Gastroenterology, Hepatology and Nutrition; Department of Medicine; Boston Children's Hospital; Boston Massachusetts
- Department of Pediatrics; Harvard Medical School; Boston Massachusetts
| | - L. Pennington
- Department of Structural Biology; School of Medicine; Stanford University; Stanford California
| | - T. Jardetzky
- Department of Structural Biology; School of Medicine; Stanford University; Stanford California
| | - H. C. Oettgen
- Department of Pediatrics; Harvard Medical School; Boston Massachusetts
- Division of Immunology; Department of Medicine; Boston Children's Hospital; Boston Massachusetts
| | - B. Bohle
- Department of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| | - E. Fiebiger
- Division of Gastroenterology, Hepatology and Nutrition; Department of Medicine; Boston Children's Hospital; Boston Massachusetts
- Department of Pediatrics; Harvard Medical School; Boston Massachusetts
| | - Z. Szépfalusi
- Department of Pediatrics and Adolescent Medicine; Medical University Vienna; Vienna Austria
| |
Collapse
|
9
|
Co-translational control of protein complex formation: a fundamental pathway of cellular organization? Biochem Soc Trans 2018; 46:197-206. [PMID: 29432142 DOI: 10.1042/bst20170451] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/10/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022]
Abstract
Analyses of proteomes from a large number of organisms throughout the domains of life highlight the key role played by multiprotein complexes for the implementation of cellular function. While the occurrence of multiprotein assemblies is ubiquitous, the understanding of pathways that dictate the formation of quaternary structure remains enigmatic. Interestingly, there are now well-established examples of protein complexes that are assembled co-translationally in both prokaryotes and eukaryotes, and indications are that the phenomenon is widespread in cells. Here, we review complex assembly with an emphasis on co-translational pathways, which involve interactions of nascent chains with other nascent or mature partner proteins, respectively. In prokaryotes, such interactions are promoted by the polycistronic arrangement of mRNA and the associated co-translation of functionally related cell constituents in order to enhance otherwise diffusion-dependent processes. Beyond merely stochastic events, however, co-translational complex formation may be sensitive to subunit availability and allow for overall regulation of the assembly process. We speculate how co-translational pathways may constitute integral components of quality control systems to ensure the correct and complete formation of hundreds of heterogeneous assemblies in a single cell. Coupling of folding of intrinsically disordered domains with co-translational interaction of binding partners may furthermore enhance the efficiency and fidelity with which correct conformation is attained. Co-translational complex formation may constitute a fundamental pathway of cellular organization, with profound importance for health and disease.
Collapse
|
10
|
Platzer B, Stout M, Fiebiger E. Functions of dendritic-cell-bound IgE in allergy. Mol Immunol 2015; 68:116-9. [PMID: 26052071 DOI: 10.1016/j.molimm.2015.05.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 04/27/2015] [Accepted: 05/17/2015] [Indexed: 12/20/2022]
Abstract
Immunoglobulin E (IgE) functions as an Fc-receptor-bound antigen sensor for mast cells and basophils, the classical effector cells of allergy. A cell-bound IgE pool is formed when monomeric IgE binds to FcɛRI, the high affinity IgE Fc receptor on these cells, and minor amounts of antigen are sufficient to trigger the pro-allergic innate IgE effector axis. Additionally, FcɛRI is constitutively expressed on human dendritic cells (DCs), and thus the latter cell type also receives signals via cell-bound IgE. Notably, steady-state expression of FcɛRI on DCs is absent in SPF-housed mice. How DCs integrate IgE/FcɛRI-derived signals into their sentinel functions as gatekeepers of immunity was therefore only recently studied with transgenic mice that phenocopy human FcɛRI expression. In this review, we summarize advances in our understanding of the functions of DC-bound IgE which demonstrate that IgE-mediated activation of DCs in allergic Th2-type inflammation appears to be immune regulatory rather than pro-inflammatory.
Collapse
Affiliation(s)
- Barbara Platzer
- Division of Gastroenterology and Nutrition, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - Madeleine Stout
- Division of Gastroenterology and Nutrition, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Edda Fiebiger
- Division of Gastroenterology and Nutrition, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Zhou J, Amran FS, Kramski M, Angelovich TA, Elliott J, Hearps AC, Price P, Jaworowski A. An NK Cell Population Lacking FcRγ Is Expanded in Chronically Infected HIV Patients. THE JOURNAL OF IMMUNOLOGY 2015; 194:4688-97. [PMID: 25855354 DOI: 10.4049/jimmunol.1402448] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 03/06/2015] [Indexed: 01/17/2023]
Abstract
We previously demonstrated that NK cells from HIV-infected individuals have elevated expression of activation markers, spontaneously degranulate ex vivo, and decrease expression of a signal-transducing protein for NK-activating receptors, FcRγ. Importantly, these changes were maintained in virologically suppressed (VS) individuals receiving combination antiretroviral therapy (cART). In this study, we show that loss of FcRγ is caused by the expansion of a novel subset of FcRγ(-)CD56(dim) NK cells with an altered activation receptor repertoire and biological properties. In a cross-sectional study, FcRγ(-) NK cells as a proportion of total CD56(dim) NK cells increased in cART-naive viremic HIV-infected individuals (median [interquartile range] = 25.9 [12.6-56.1] compared with 3.80 [1.15-11.5] for HIV(-) controls, p < 0.0001) and in VS HIV-infected individuals (22.7 [13.1-56.2] compared with 3.80 [1.15-11.5], p = 0.0004), with no difference between cART-naive and VS patients (p = 0.93). FcRγ(-) NK cells expressed no NKp30 or NKp46. They showed greater Ab-dependent cellular cytotoxicity activity against rituximab-opsonized Raji cells and in a whole-blood assay measuring NK responses to overlapping HIV peptides, despite having reduced CD16 expression compared with conventional NK cells. Their prevalence correlated with CMV Ab titers in HIV(-) subjects but not in HIV(+) individuals, and with the inflammatory marker CXCL10 in both groups. The expansion of a subset of NK cells that lacks NKp30 and NKp46 to ∼90% of CD56(dim) NK cells in some VS HIV(+) individuals may influence NK-mediated immunosurveillance in patients receiving cART.
Collapse
Affiliation(s)
- Jingling Zhou
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Fathiah S Amran
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Marit Kramski
- Department of Immunology and Microbiology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Tom A Angelovich
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia; School of Applied Sciences, Royal Melbourne Institute of Technology University, Melbourne, Victoria 3000, Australia
| | - Julian Elliott
- Department of Infectious Diseases, Monash University, Melbourne, Victoria 3004, Australia; and
| | - Anna C Hearps
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia; Department of Infectious Diseases, Monash University, Melbourne, Victoria 3004, Australia; and
| | - Patricia Price
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Anthony Jaworowski
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia; Department of Infectious Diseases, Monash University, Melbourne, Victoria 3004, Australia; and Department of Immunology, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
12
|
The role of FcεRI expressed in dendritic cells and monocytes. Cell Mol Life Sci 2015; 72:2349-60. [PMID: 25715742 DOI: 10.1007/s00018-015-1870-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 01/23/2023]
Abstract
Early studies regarding the function of FcεRI in dendritic cells (DCs) and monocytes have focused on its role in mediating inflammatory signaling and enhancing T cell immunity. It has been the case in part because FcεRI is the major receptor that mediates allergic inflammatory signaling in mast cells and basophils and because DCs and monocytes are antigen presenting cells capable of activating naïve and/or effector T cells. These studies have led to the general belief that FcεRI-mediated DC signaling and antigen presentation promote development and activation of Th2 cells and contribute to allergic inflammatory diseases. However, this belief has long suffered from a lack of evidence. Recently, studies have emerged that provide evidence supporting an opposing role: that FcεRI on DCs instead promotes immune homeostasis and regulation. In this review, we will update the current status of our understanding of FcεRI biology and function, with a specific focus on DCs and monocytes.
Collapse
|
13
|
Hatada Y, Kashiwakura JI, Hayama K, Fujisawa D, Sasaki-Sakamoto T, Terui T, Ra C, Okayama Y. Significantly high levels of anti-dsDNA immunoglobulin E in sera and the ability of dsDNA to induce the degranulation of basophils from chronic urticaria patients. Int Arch Allergy Immunol 2013; 161 Suppl 2:154-8. [PMID: 23711867 DOI: 10.1159/000350388] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chronic urticaria (CU) appears to be of autoimmune origin in about half of all patients, since several autoreactive immunoglobulin Gs (IgGs), such as anti-FcεRIα and anti-IgE, are detected in the sera of such patients. However, whether autoreactive IgE is associated with CU remains unclear. In this study, we attempted to identify autoreactive IgE antibodies in sera from patients with CU. METHODS Sera were collected from 67 normal subjects, 85 patients with CU and 28 patients with atopic dermatitis (AD). An autologous serum skin test (ASST) was performed on 27 of the CU patients. Autoreactive IgE and IgG levels against self-antigens were measured using enzyme-linked immunosorbent assays. The basophils were activated with dsDNA, and the CD63 expression level was examined using a fluorescence-activated cell sorter. RESULTS The anti-dsDNA IgE levels were significantly higher in patients with CU and AD than in normal subjects, but no differences in the anti-dsDNA IgG levels were seen. The levels of thioredoxin-, peroxiredoxin- and thyroglobulin-reactive IgE and IgG were not significantly higher in the CU patients than in the other 2 groups. There was no significant difference in the levels of anti-dsDNA IgE between ASST-positive and ASST-negative patients. The basophils from 2 out of 9 CU patients exhibited degranulation in response to dsDNA. CONCLUSIONS Our data suggest that anti-dsDNA IgE is involved in the pathogenesis of some cases of CU.
Collapse
Affiliation(s)
- Yuko Hatada
- Department of Molecular Cell Immunology and Allergology, Nihon University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Rashid A, Housden JEM, Helm BA, Draber P. Fc receptor-γ subunits with both polar or non-polar amino acids at position of T22 are capable of restoring surface expression of the high-affinity IgE receptor and degranulation in γ subunit-deficient rat basophilic leukemia cells. Mol Immunol 2012; 53:270-3. [PMID: 22964482 DOI: 10.1016/j.molimm.2012.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/07/2012] [Indexed: 11/30/2022]
Abstract
The high-affinity IgE receptor (FcɛRI) is formed by the IgE-binding α subunit, β subunit and γ subunits homodimer. All three subunits are required for proper expression of the receptor on the plasma membrane of mast cells and basophils. However, the exact molecular mechanism of inter-subunit interactions required for correct expression and function of the FcɛRI complex remains to be identified. A recent study suggested that polar aspartate at position 194 within the transmembrane domain of the α subunit could interact by hydrogen bonding with polar threonine at position 22 in the transmembrane domains of the γ subunits. To verify this, we used previously isolated rat basophilic leukemia (RBL)-2H3 variant cells deficient in the expression of the FcɛRI-γ subunit (FcR-γ), and transfected them with DNA vectors coding for FcR-γ of the wild-type or mutants in which T22 was substituted for nonpolar alanine (T22A mutant) or polar serine (T22S mutant). Analysis of the transfectants showed that both T22A and T22S mutants were capable to restore surface expression of the FcɛRI similar to wild-type FcR-γ. Furthermore, cells transfected with wild-type, T22A or T22S FcR-γ showed comparably enhanced FcɛRI-mediated degranulation. Our data indicate that substitution of FcR-γ T22 with non-polar amino acid does not interfere with surface expression of the FcɛRI and its signaling capacity.
Collapse
Affiliation(s)
- Amir Rashid
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | | | | | | |
Collapse
|
15
|
Ra C, Nunomura S, Okayama Y. Fine-Tuning of Mast Cell Activation by FcεRIβ Chain. Front Immunol 2012; 3:112. [PMID: 22623922 PMCID: PMC3353146 DOI: 10.3389/fimmu.2012.00112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/20/2012] [Indexed: 12/23/2022] Open
Abstract
Mast cells play a key role in allergic reaction and disorders through the high affinity receptor for IgE (FcεRI) which is primarily activated by IgE and antigen complex. In humans, mast cells express two types of FcεRI on the cell surface, tetrameric αβγ2 and trimeric αγ2, whereas in mice, the tetrameric αβγ2 type is exclusively expressed. In human allergic inflammation lesions, mast cells increase in number and preferentially express the αβγ2 type FcεRI. By contrast, in the lesion of non-allergic inflammation, mast cells mainly express the αγ2type. Since the β chain amplifies the expression and signaling of FcεRI, mast cell effector functions and allergic reaction in vivo are enhanced in the presence of the β chain. In contrast, a truncated β chain-isoform (βT) inhibits FcεRI surface expression. The human FcεRIβ gene contains seven exons and a repressor element located in the forth intron, through which FcεRIβ transcription is repressed in the presence of GM-CSF. Regarding the additional signal regulatory function of the β chain, the β chain ITAM has dual (positive and negative) functions in the regulation of the mast cell activation. Namely, the FcεRIβ chain ITAM enhances the mast cell activation signal triggered by a low-intensity (weak) stimulation whereas it suppresses the signal triggered by high-intensity (strong) stimulation. In an oxazolone-induced mouse CHS model, IgE-mediated mast cell activation is required and the β chain ITAM is crucially involved. Adenosine receptor, one of the GPCRs, triggers a synergistic degranulation response with FcεRI in mast cells, for which the β chain ITAM critically plays positive role, possibly reflecting the in vivo allergic response. These regulatory functions of the FcεRIβ ITAM finely tune FcεRI-induced mast cell activation depending on the stimulation strength, enabling the FcεRIβ chain to become a potential molecular target for the development of new strategies for therapeutic interventions for allergies.
Collapse
Affiliation(s)
- Chisei Ra
- Division of Molecular Cell Immunology and Allergology, Advanced Medical Research Center, Nihon University Graduate School of Medical Science Tokyo, Japan
| | | | | |
Collapse
|
16
|
Platzer B, Ruiter F, van der Mee J, Fiebiger E. Soluble IgE receptors--elements of the IgE network. Immunol Lett 2011; 141:36-44. [PMID: 21920387 DOI: 10.1016/j.imlet.2011.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/15/2011] [Accepted: 08/27/2011] [Indexed: 12/22/2022]
Abstract
Soluble isoforms of three human IgE Fc receptors, namely FcεRI, FcεRII, and galectin-3, can be found in serum. These soluble IgE receptors are a diverse family of proteins unified by the characteristic of interacting with IgE in the extracellular matrix. A truncated form of the alpha-chain of FcεRI, the high affinity IgE receptor, has recently been described as a soluble isoform (sFcεRI). Multiple soluble isoforms of CD23 (sCD23), the low affinity IgE receptor also known as FcεRII, are generated via different mechanisms of extracellular and intracellular proteolysis. The second low affinity IgE receptor, galectin-3, only exists as a secretory protein. We here discuss the physiological roles of these three soluble IgE receptors as elements of the human IgE network. Additionally, we review the potential and current use of sFcεRI, sCD23, and galectin-3 as biomarkers in human disease.
Collapse
Affiliation(s)
- Barbara Platzer
- Division of Gastroenterology and Nutrition, Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, United States
| | | | | | | |
Collapse
|
17
|
Abstract
Elevated IgE levels and increased IgE sensitization to allergens are central features of allergic asthma. IgE binds to the high-affinity Fcε receptor I (FcεRI) on mast cells, basophils, and dendritic cells and mediates the activation of these cells upon antigen-induced cross-linking of IgE-bound FcεRI. FcεRI activation proceeds through a network of signaling molecules and adaptor proteins and is negatively regulated by a number of cell surface and intracellular proteins. Therapeutic neutralization of serum IgE in moderate-to-severe allergic asthmatics reduces the frequency of asthma exacerbations through a reduction in cell surface FcεRI expression that results in decreased FcεRI activation, leading to improved asthma control. Our increasing understanding of IgE receptor signaling may lead to the development of novel therapeutics for the treatment of asthma.
Collapse
Affiliation(s)
- Lawren C Wu
- Department of Immunology, Genentech, Incorporated, South San Francisco, California 94080, USA.
| |
Collapse
|
18
|
Dehlink E, Platzer B, Baker AH, LaRosa J, Pardo M, Dwyer P, Yen EH, Szépfalusi Z, Nurko S, Fiebiger E. A soluble form of the high affinity IgE receptor, Fc-epsilon-RI, circulates in human serum. PLoS One 2011; 6:e19098. [PMID: 21544204 PMCID: PMC3081330 DOI: 10.1371/journal.pone.0019098] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/16/2011] [Indexed: 01/03/2023] Open
Abstract
Soluble IgE receptors are potential in vivo modulators of
IgE-mediated immune responses and are thus important for our basic understanding
of allergic responses. We here characterize a novel soluble version of the
IgE-binding alpha-chain of Fc-epsilon-RI (sFcεRI), the high affinity
receptor for IgE. sFcεRI immunoprecipitates as a protein of ∼40 kDa and
contains an intact IgE-binding site. In human serum, sFcεRI is found as a
soluble free IgE receptor as well as a complex with IgE. Using a newly
established ELISA, we show that serum sFcεRI levels correlate with serum IgE
in patients with elevated IgE. We also show that serum of individuals with
normal IgE levels can be found to contain high levels of sFcεRI. After
IgE-antigen-mediated crosslinking of surface FcεRI, we detect sFcεRI in
the exosome-depleted, soluble fraction of cell culture supernatants. We further
show that sFcεRI can block binding of IgE to FcεRI expressed at the cell
surface. In summary, we here describe the alpha-chain of FcεRI as a
circulating soluble IgE receptor isoform in human serum.
Collapse
Affiliation(s)
- Eleonora Dehlink
- Division of Gastroenterology and Nutrition, Department of Pediatrics,
Harvard Medical School, Children's Hospital Boston, Boston, Massachusetts,
United States of America
- Department of Pediatrics and Adolescent Medicine, Medical University of
Vienna, Vienna, Austria
| | - Barbara Platzer
- Division of Gastroenterology and Nutrition, Department of Pediatrics,
Harvard Medical School, Children's Hospital Boston, Boston, Massachusetts,
United States of America
| | - Alexandra H. Baker
- Division of Gastroenterology and Nutrition, Department of Pediatrics,
Harvard Medical School, Children's Hospital Boston, Boston, Massachusetts,
United States of America
| | - Jessica LaRosa
- Division of Gastroenterology and Nutrition, Department of Pediatrics,
Harvard Medical School, Children's Hospital Boston, Boston, Massachusetts,
United States of America
| | - Michael Pardo
- Division of Gastroenterology and Nutrition, Department of Pediatrics,
Harvard Medical School, Children's Hospital Boston, Boston, Massachusetts,
United States of America
| | - Peter Dwyer
- Division of Gastroenterology and Nutrition, Department of Pediatrics,
Harvard Medical School, Children's Hospital Boston, Boston, Massachusetts,
United States of America
| | - Elizabeth H. Yen
- Division of Gastroenterology and Nutrition, Department of Pediatrics,
Harvard Medical School, Children's Hospital Boston, Boston, Massachusetts,
United States of America
| | - Zsolt Szépfalusi
- Department of Pediatrics and Adolescent Medicine, Medical University of
Vienna, Vienna, Austria
| | - Samuel Nurko
- Division of Gastroenterology and Nutrition, Department of Pediatrics,
Harvard Medical School, Children's Hospital Boston, Boston, Massachusetts,
United States of America
| | - Edda Fiebiger
- Division of Gastroenterology and Nutrition, Department of Pediatrics,
Harvard Medical School, Children's Hospital Boston, Boston, Massachusetts,
United States of America
- * E-mail:
| |
Collapse
|
19
|
Platzer B, Fiebiger E. The signal peptide of the IgE receptor alpha-chain prevents surface expression of an immunoreceptor tyrosine-based activation motif-free receptor pool. J Biol Chem 2010; 285:15314-15323. [PMID: 20304923 PMCID: PMC2865261 DOI: 10.1074/jbc.m110.104281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 02/22/2010] [Indexed: 01/02/2023] Open
Abstract
The high affinity receptor for IgE, Fc epsilon receptor I (FcepsilonRI), is an activating immune receptor and key regulator of allergy. Antigen-mediated cross-linking of IgE-loaded FcepsilonRI alpha-chains induces cell activation via immunoreceptor tyrosine-based activation motifs in associated signaling subunits, such as FcepsilonRI gamma-chains. Here we show that the human FcepsilonRI alpha-chain can efficiently reach the cell surface by itself as an IgE-binding receptor in the absence of associated signaling subunits when the endogenous signal peptide is swapped for that of murine major histocompatibility complex class-I H2-K(b). This single-chain isoform of FcepsilonRI exited the endoplasmic reticulum (ER), trafficked to the Golgi and, subsequently, trafficked to the cell surface. Mutational analysis showed that the signal peptide regulates surface expression in concert with other described ER retention signals of FcepsilonRI-alpha. Once the FcepsilonRI alpha-chain reached the cell surface by itself, it formed a ligand-binding receptor that stabilized upon IgE contact. Independently of the FcepsilonRI gamma-chain, this single-chain FcepsilonRI was internalized after receptor cross-linking and trafficked into a LAMP-1-positive lysosomal compartment like multimeric FcepsilonRI. These data suggest that the single-chain isoform is capable of shuttling IgE-antigen complexes into antigen loading compartments, which plays an important physiologic role in the initiation of immune responses toward allergens. We propose that, in addition to cytosolic and transmembrane ER retention signals, the FcepsilonRI alpha-chain signal peptide contains a negative regulatory signal that prevents expression of an immunoreceptor tyrosine-based activation motif-free IgE receptor pool, which would fail to induce cell activation.
Collapse
Affiliation(s)
- Barbara Platzer
- Department of Medicine, Division of Gastroenterology and Nutrition, Children's Hospital Boston, Boston, Massachusetts 02115
| | - Edda Fiebiger
- Department of Medicine, Division of Gastroenterology and Nutrition, Children's Hospital Boston, Boston, Massachusetts 02115.
| |
Collapse
|
20
|
Oxysterol represses high-affinity IgE receptor-stimulated mast cell activation in Liver X receptor-dependent and -independent manners. FEBS Lett 2010; 584:1143-8. [PMID: 20138879 DOI: 10.1016/j.febslet.2010.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 01/08/2010] [Accepted: 02/01/2010] [Indexed: 02/04/2023]
Abstract
Oxysterols activating liver X receptors (LXRs) repress expression of pro-inflammatory genes and have anti-inflammatory effects. Here, we show for the first time that bone marrow-derived murine mast cells (BMMCs) predominantly express LXRbeta. 25-hydroxycholesterol, a representative LXR activating oxysterol, suppressed IL-6 production and degranulation response in BMMCs following engagement of high-affinity IgE receptor (FcepsilonRI). Interestingly, 25-hydroxycholesterol reduced cell-surface FcepsilonRI expression by inhibiting assembly of FcepsilonRIalpha and FcepsilonRIbeta. We demonstrate that LXR activation was involved in the suppression of IL-6 production in BMMCs, but that reduced FcepsilonRI expression and degranulation response was mediated in an LXR-independent manner.
Collapse
|
21
|
Singleton TE, Platzer B, Dehlink E, Fiebiger E. The first transmembrane region of the beta-chain stabilizes the tetrameric Fc epsilon RI complex. Mol Immunol 2009; 46:2333-9. [PMID: 19406478 PMCID: PMC2745130 DOI: 10.1016/j.molimm.2009.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 03/28/2009] [Indexed: 12/26/2022]
Abstract
The family of activating immune receptors stabilizes via the 3-helix assembly principle. A charged basic transmembrane residue interacts with two charged acidic transmembrane residues and forms a 3-helix interface to stabilize receptor complexes in the lipid bilayer. One family member, the high affinity receptor for IgE, Fc epsilon RI, is a key regulator of immediate allergic responses. Tetrameric Fc epsilon RI consists of the IgE-binding alpha-chain, the multimembrane-spanning beta-chain and a dimer of the gamma-subunit (Fc epsilon R gamma). Comparative analysis of these seven transmembrane regions indicates that Fc epsilon RI does not meet the charge requirements for the 3-helix assembly mechanism. We performed alanine mutagenesis to show that the only basic amino acid in the transmembrane regions, beta K97, is not involved in Fc epsilon RI stabilization or surface upregulation, a hallmark function of the beta-chain. Even a beta K97E mutant is functional despite four negatively charged acidic amino acids in the transmembrane regions. Using truncation mutants, we demonstrate that the first uncharged transmembrane domain of the beta-chain contains the interface for receptor stabilization. In vitro translation experiments depict the first transmembrane region as the internal signal peptide of the beta-chain. We also show that this beta-chain domain can function as a cleavable signal peptide when used as a leader peptide for a Type I protein. Our results provide evidence that tetrameric Fc epsilon RI does not assemble according to the 3-helix assembly principle. We conclude that receptors formed with multispanning proteins use different mechanisms of shielding transmembrane charged amino acids.
Collapse
Affiliation(s)
- Theresa E. Singleton
- Department of Medicine, Division of Gastroenterology and Nutrition, Children's Hospital Boston, Boston, MA 02115
| | - Barbara Platzer
- Department of Medicine, Division of Gastroenterology and Nutrition, Children's Hospital Boston, Boston, MA 02115
| | - Eleonora Dehlink
- Department of Medicine, Division of Gastroenterology and Nutrition, Children's Hospital Boston, Boston, MA 02115
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Edda Fiebiger
- Department of Medicine, Division of Gastroenterology and Nutrition, Children's Hospital Boston, Boston, MA 02115
| |
Collapse
|
22
|
High-affinity IgE receptor-beta chain expression in human mast cells. J Immunol Methods 2008; 336:229-34. [PMID: 18571665 PMCID: PMC2583255 DOI: 10.1016/j.jim.2008.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Accepted: 05/07/2008] [Indexed: 11/25/2022]
Abstract
The high-affinity IgE receptor (FcεRI)-β gene is one of the atopy-associated genes, but its biological significance is largely unknown. In this study, we generated the anti-FcεRI-β chain antibody to clarify β-chain protein expression in human mast cells. The FcεRI-β antibody showed specific binding to a 27 kDa protein with Western blotting and membrane bound immunostaining using cultured mast cells. Monomeric IgE sensitization increased β-chain expression as well as mature α-chain expression in mast cells. Upregulation of β-chain expression with monomeric IgE treatment suggests possible roles of FcεRI-β protein as an atopy-related molecule.
Collapse
|
23
|
Zhang M, Murphy RF, Agrawal DK. Decoding IgE Fc receptors. Immunol Res 2007; 37:1-16. [PMID: 17496343 DOI: 10.1007/bf02686092] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 10/22/2022]
Abstract
Immunoglobulin E (IgE) plays a central role in the pathogenesis of allergic diseases by interacting with two membrane receptors: high-affinity FcepsilonRI and low-affinity FcepsilonRII (CD23). Allergeninduced IgE-occupied FcepsilonRI aggregation on the mast cell or basophil cell surface leads to the activation of intracellular signaling events and eventually the release of pre-formed and de novo synthesized inflammatory mediators. The role of FcepsilonRII in allergic diseases has been proposed to include regulation of IgE synthesis, enhanced histamine release from basophils, and a contribution to Ag-IgE complex presentation but the exact function of CD23 remains poorly understood. This review summarizes some new developments in IgE Fc-receptor studies with an emphasis on regulation of FcepsilonRI expression and signal transduction, including monomeric IgE, lipid raft segregation, and some recently identified negative regulators. A better understanding of signaling events following IgE FcR aggregation will shed new light on how allergy patients might be treated more safely and effectively.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | | | |
Collapse
|
24
|
Ganguly S, Grodzki C, Sugden D, Møller M, Odom S, Gaildrat P, Gery I, Siraganian RP, Rivera J, Klein DC. Neural adrenergic/cyclic AMP regulation of the immunoglobulin E receptor alpha-subunit expression in the mammalian pinealocyte: a neuroendocrine/immune response link? J Biol Chem 2007; 282:32758-64. [PMID: 17728245 DOI: 10.1074/jbc.m705950200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high affinity immunoglobulin E receptor (FcepsilonRI) complex is dedicated to immunoglobulin E-mediated allergic responses. Expression of the FcepsilonRI receptor is thought to be relatively stable and limited to mast cells, basophils, eosinophils, monocytes, Langerhans cells, platelets, and neutrophils. We now report that the FcepsilonRIalpha and FcepsilonRIgamma polypeptides are expressed in the pinealocyte, the melatonin-secreting cell of the pineal gland. Moreover, Fcer1a mRNA levels increased approximately 100-fold at night to levels that were higher than in other tissues examined. Pineal FcepsilonRIalpha protein also increased markedly at night from nearly undetectable daytime levels. Our studies indicate that pineal Fcer1a mRNA levels are controlled by a well described neural pathway that controls pineal function. This pathway includes the master circadian oscillator in the suprachiasmatic nucleus and passes through central and peripheral structures. The circadian expression of FcepsilonRIalpha in the pineal gland is driven by this neural circuit via an adrenergic/cyclic AMP mechanism. Pineal FcepsilonRIalpha and FcepsilonRIgamma may represent a previously unrealized molecular link between the neuroendocrine and immune systems.
Collapse
Affiliation(s)
- Surajit Ganguly
- Section on Neuroendocrinology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Catic A, Fiebiger E, Korbel GA, Blom D, Galardy PJ, Ploegh HL. Screen for ISG15-crossreactive deubiquitinases. PLoS One 2007; 2:e679. [PMID: 17653289 PMCID: PMC1919423 DOI: 10.1371/journal.pone.0000679] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2007] [Accepted: 07/04/2007] [Indexed: 02/04/2023] Open
Abstract
Background The family of ubiquitin-like molecules (UbLs) comprises several members, each of which has sequence, structural, or functional similarity to ubiquitin. ISG15 is a homolog of ubiquitin in vertebrates and is strongly upregulated following induction by type I interferon. ISG15 can be covalently attached to proteins, analogous to ubiquitination and with actual support of ubiquitin conjugating factors. Specific proteases are able to reverse modification with ubiquitin or UbLs by hydrolyzing the covalent bond between their C-termini and substrate proteins. The tail regions of ubiquitin and ISG15 are identical and we therefore hypothesized that promiscuous deubiquitinating proteases (DUBs) might exist, capable of recognizing both ubiquitin and ISG15. Results We have cloned and expressed 22 human DUBs, representing the major clades of the USP protease family. Utilizing suicide inhibitors based on ubiquitin and ISG15, we have identified USP2, USP5 (IsoT1), USP13 (IsoT3), and USP14 as ISG15-reactive proteases, in addition to the bona fide ISG15-specific protease USP18 (UBP43). USP14 is a proteasome-associated DUB, and its ISG15 isopeptidase activity increases when complexed with the proteasome. Conclusions By evolutionary standards, ISG15 is a newcomer among the UbLs and it apparently not only utilizes the conjugating but also the deconjugating machinery of its more established relative ubiquitin. Functional overlap between these two posttranslational modifiers might therefore be more extensive than previously appreciated and explain the rather innocuous phenotype of ISG15 null mice.
Collapse
Affiliation(s)
- André Catic
- Program in Immunology, Harvard Medical School, Boston, Massachusetts, United States of America
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Edda Fiebiger
- GI Cell Biology, Children's Hospital, Boston, Massachusetts, United States of America
| | - Gregory A. Korbel
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Daniël Blom
- Merck, Rahway, New Jersey, United States of America
| | - Paul J. Galardy
- Mayo Clinic, Pediatric and Adolescent Medicine, Rochester, Minnesota, United States of America
- * To whom correspondence should be addressed. E-mail: (PG); (HP)
| | - Hidde L. Ploegh
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail: (PG); (HP)
| |
Collapse
|
26
|
Kraft S, Kinet JP. New developments in FcepsilonRI regulation, function and inhibition. Nat Rev Immunol 2007; 7:365-78. [PMID: 17438574 DOI: 10.1038/nri2072] [Citation(s) in RCA: 445] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The high-affinity Fc receptor for IgE (FcepsilonRI), a multimeric immune receptor, is a crucial structure for IgE-mediated allergic reactions. In recent years, advances have been made in several important areas of the study of FcepsilonRI. The first area relates to FcepsilonRI-mediated biological responses that are antigen independent. The second area encompasses the biological relevance of the distinct signalling pathways that are activated by FcepsilonRI; and the third area relates to the accumulated evidence for the tight control of FcepsilonRI signalling through a broad array of inhibitory mechanisms, which are being developed into promising therapeutic approaches.
Collapse
Affiliation(s)
- Stefan Kraft
- Laboratory of Allergy and Immunology, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine 945, 71 Avenue Louis Pasteur, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
27
|
van Rhee F, Bolejack V, Hollmig K, Pineda-Roman M, Anaissie E, Epstein J, Shaughnessy JD, Zangari M, Tricot G, Mohiuddin A, Alsayed Y, Woods G, Crowley J, Barlogie B. High serum-free light chain levels and their rapid reduction in response to therapy define an aggressive multiple myeloma subtype with poor prognosis. Blood 2007; 110:827-32. [PMID: 17416735 PMCID: PMC1924775 DOI: 10.1182/blood-2007-01-067728] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serum-free light chain (SFLC) levels are useful for diagnosing nonsecretory myeloma and monitoring response in light-chain-only disease, especially in the presence of renal failure. As part of a tandem autotransplantation trial for newly diagnosed multiple myeloma, SFLC levels were measured at baseline, within 7 days of starting the first cycle, and before both the second induction cycle and the first transplantation. SFLC baseline levels higher than 75 mg/dL (top tertile) identified 33% of 301 patients with higher near-complete response rate (n-CR) to induction therapy (37% vs 20%, P = .002) yet inferior 24-month overall survival (OS: 76% vs 91%, P < .001) and event-free survival (EFS: 73% vs 90%, P < .001), retaining independent prognostic significance for both EFS (HR = 2.40, P = .008) and OS (HR = 2.43, P = .016). Baseline SFLC higher than 75 mg/dL was associated with light-chain-only secretion (P < .001), creatinine level 176.8 microM (2 mg/dL) or higher (P < .001), beta-2-microglobulin 297.5 nM/L (3.5 mg/L) or higher (P < .001), lactate dehydrogenase 190 U/L or higher (P < .001), and bone marrow plasmacytosis higher than 30% (P = .003). Additional independent adverse implications were conferred by top-tertile SFLC reductions before cycle 2 (OS: HR = 2.97, P = .003; EFS: HR = 2.56, P = .003) and before transplantation (OS: HR = 3.31, P = .001; EFS: HR = 2.65, P = .003). Unlike baseline and follow-up analyses of serum and urine M-proteins, high SFLC levels at baseline-reflecting more aggressive disease-and steeper reductions after therapy identified patients with inferior survival.
Collapse
|
28
|
Hopkin J, Cookson W. Genetic variation in the beta subunit of the high affinity IgE receptor and atopy and asthma. Clin Exp Allergy 2007; 36:855-7. [PMID: 16839398 DOI: 10.1111/j.1365-2222.2006.02535.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Honda ZI. Fcε- and Fcγ-receptor signaling in diseases. ACTA ACUST UNITED AC 2006; 28:365-75. [PMID: 17106671 DOI: 10.1007/s00281-006-0051-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 09/27/2006] [Indexed: 12/14/2022]
Abstract
It has become increasingly clear that receptors for the immunoglobulin Fc region play pivotal roles in immune homeostasis and disease. This review describes the fine regulation of the high-affinity IgE-receptor (FcepsilonRI) signaling, especially focusing on the early events that are coordinately regulated by Src family protein tyrosine kinases (PTKs), FcepsilonRI beta-subunit, and membrane lipid rafts. Because allergen-mediated FcepsilonRI cross-linking leads to the synthesis and release of a variety of proinflammatory mediators and cytokines, the duration and amplitude of the signal need to be strictly controlled, and the counterbalancing signaling is provided by specialized inhibitory receptors and molecules. However, recent work have revealed that Src family PTKs and FcepsilonRI beta-subunit transduce both positive and negative signaling with unexpectedly complex mechanisms. FcgammaRIIB exerts a unique inhibitory function on cell activation processes after the engagement of Fcgamma, FcepsilonRI and B cell receptors. Recent work has shown that FcgammaRIIB polymorphisms are associated with systemic lupus erythematosus, and that a transmembrane polymorphism in FcgammaRIIB results in an impaired distribution to lipid rafts and a reduced inhibitory function. Studies addressing the functions of disease-associated polymorphisms in the FcepsilonRI beta-subunit and low-affinity FcgammaRs are also considered.
Collapse
Affiliation(s)
- Zen-Ichiro Honda
- Department of Allergy and Rheumatology, Faculty of Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan,
| |
Collapse
|
30
|
Gounni AS. The high-affinity IgE receptor (FcepsilonRI): a critical regulator of airway smooth muscle cells? Am J Physiol Lung Cell Mol Physiol 2006; 291:L312-21. [PMID: 16581830 DOI: 10.1152/ajplung.00005.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The airway smooth muscle (ASM) has been typically described as a contractile tissue, responding to neurotransmitters and inflammatory mediators. However, it has recently been recognized that ASM cells can also secrete cytokines and chemokines and express cell adhesion molecules that are important for the perpetuation and modulation of airway inflammation. Recent progress has revealed the importance of IgE Fc receptors in stimulating and modulating the function of these cells. In particular, the high-affinity receptor for IgE (FcepsilonRI) has been identified in primary human ASM cells in vitro and in vivo within bronchial biopsies of atopic asthmatic individuals. Moreover, activation of this receptor has been found to induce marked increases in the intracellular calcium concentrations and T helper 2 cytokines and chemokines release. This and other evidence discussed in this review provide an emerging view of FcepsilonR/IgE network as a critical modulator of ASM cell function in allergic asthma.
Collapse
|
31
|
Jensen BM, Assing K, Hummelshoj L, Glue C, Skov PS, Poulsen LK. Are basophil histamine release and high affinity IgE receptor expression involved in asymptomatic skin sensitization? Allergy 2006; 61:303-10. [PMID: 16436138 DOI: 10.1111/j.1398-9995.2006.00991.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Immunoglobulin (Ig)E-sensitized persons with positive skin prick test, but no allergy symptoms, are classified as being asymptomatic skin sensitized (AS). The allergic type 1 disease is dependant on IgE binding to the high affinity IgE-receptor (FcepsilonRI) expressed on basophils and mast cells. However, a relationship between the AS status and FcepsilonRI has not been investigated. We aimed to characterize basophils from AS by looking at histamine release (HR) (sensitivity and reactivity) and the FcepsilonRI molecule, and compare it with nonatopic (NA) or allergic (A) persons. METHODS Blood was obtained from NA (n = 14), grass and/or birch A persons (n = 17) and mono-sensitized grass or birch pollen AS (n = 12). The basophil sensitivity and reactivity were examined by anti-IgE triggered HR. Surface expression of FcepsilonRI and IgE were measured by flow cytometry, FcepsilonRIalpha protein was identified using a radioimmunoassay and Western blot. mRNA coding for the classic FcepsilonRIbeta-chain and the truncated form (FcepsilonRIbetaT) were determined by real-time PCR. RESULTS The AS group was less reactive than NA or A persons when triggered by anti-IgE and had a significant higher number of nonresponders. However, there was no difference in sensitivity among the three groups and furthermore; the groups did not vary in FcepsilonRI- and IgE-surface expression, FcepsilonRIalpha-protein level or beta/betaT ratio. CONCLUSION Basophils from AS persons are less reactive and include more nonresponders than basophils from NA and A persons, but do not differ regarding the FcepsilonRI molecule.
Collapse
Affiliation(s)
- B M Jensen
- Allergy Clinic, National University Hospital, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
32
|
Cauvi DM, Tian X, von Loehneysen K, Robertson MW. Transport of the IgE receptor alpha-chain is controlled by a multicomponent intracellular retention signal. J Biol Chem 2006; 281:10448-60. [PMID: 16459334 DOI: 10.1074/jbc.m510751200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human high affinity IgE receptor (FcepsilonRI) is a central component of the allergic response and is expressed as either a trimeric alphagamma2 or tetrameric alphabetagamma2 complex. It has been previously described that the cytoplasmic domain (CD) of the alpha-chain carries a dilysine motif at positions -3/-7 from the C terminus that functions in intracellular retention prior to assembly with other FcepsilonRI subunits. In this report we have further explored the role of the -3/-7 dilysine signal in controlling steady-state alpha-chain transport by mutational analysis and found little surface expression of a -3/-7 dialanine alpha-chain mutant but significant Golgi localization. We compared the transport properties of a series of alpha-chain cytoplasmic domain truncation mutants and observed that truncation mutants lacking 23 or more C-terminal residues showed a dramatic increase in steady-state transport suggesting a role for the membrane-proximal CD sequence in alpha-chain retention. By performing alanine-scanning mutagenesis we identified a dilysine sequence (Lys(212)-Lys(216)) proximal to the transmembrane domain (TMD) that is important for both alpha-chain cell-surface expression and intracellular stability. Furthermore, co-mutation of the Lys(212)-Lys(216) residues with the -3/-7 dilysine signal produced a dramatic increase in alpha-chain surface expression that was further increased by co-mutation of the lone charged residue (Asp(192)) in the TMD thereby defining three regions that function to regulate alpha-chain transport and in a highly synergistic manner.
Collapse
Affiliation(s)
- David M Cauvi
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
33
|
Kraft S, Novak N. Fc receptors as determinants of allergic reactions. Trends Immunol 2006; 27:88-95. [PMID: 16324885 DOI: 10.1016/j.it.2005.11.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2005] [Revised: 10/24/2005] [Accepted: 11/17/2005] [Indexed: 11/27/2022]
Abstract
Activation of the high-affinity receptor for IgE (FcepsilonRI) on allergic effector cells induces a multitude of positive signals via immunoreceptor tyrosine-based activation motifs, which leads to the rapid manifestation of allergic inflammatory reactions. As a counterbalance, the coaggregation of the IgG receptor FcgammaRIIB mediates inhibitory signals via immunoreceptor tyrosine-based inhibition motifs. Advances in the positive and negative regulation of Fc receptor expression and signaling have shed light on the role of Fc receptors in our immune system, indicating them to be bifunctional, inhibitory and activating structures. Based on these findings, exciting new therapeutic strategies have been developed, such as the use of chimeric fusion proteins, which concomitantly activate FcepsilonRI and FcgammaRIIB. These new approaches successfully take advantage of the bivalent character of Fc receptors and pave the way for innovative strategies to modulate allergic immune reactions.
Collapse
Affiliation(s)
- Stefan Kraft
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
34
|
Bruhns P, Frémont S, Daëron M. Regulation of allergy by Fc receptors. Curr Opin Immunol 2005; 17:662-9. [PMID: 16214316 DOI: 10.1016/j.coi.2005.09.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 09/19/2005] [Indexed: 12/26/2022]
Abstract
The aggregation of high-affinity IgE receptors (FcepsilonRI) on mast cells and basophils has long been known as the critical event that initiates allergic reactions. Monomeric IgE was recently found to induce a variety of effects when binding to FcepsilonRI. Upregulation of FcepsilonRI only requires binding, whereas other responses require FcepsilonRI aggregation. Interestingly, FcepsilonRI aggregation has recently been understood to generate a mixture of positive and negative intracellular signals. Mast cells and basophils also express low-affinity and, under specific conditions, high-affinity IgG receptors. When co-engaging these receptors with FcepsilonRI, IgG antibodies can amplify or dampen IgE-induced mast cell activation. On the basis of these findings, it has been proposed that FcRs can be used as targets and/or tools for new therapeutic approaches to allergies.
Collapse
Affiliation(s)
- Pierre Bruhns
- Unité d'Allergologie Moléculaire et Cellulaire, Département d'Immunologie, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
| | | | | |
Collapse
|