1
|
Shinzawa Y, Sasaki SI, Iwabuchi S, Hashimoto S, Kawada M, Hayakawa Y. Protein phosphatase 2A inhibitor modulates natural killer cell homeostasis in peripheral tissues. Biochem Biophys Res Commun 2024; 741:151020. [PMID: 39577078 DOI: 10.1016/j.bbrc.2024.151020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Although natural killer (NK) cell responses to tumor and viral infection have been studied, the mechanisms underlying NK cell homeostasis in vivo remain unclear. In this study, we demonstrate the pharmacological action of cytostatin, a protein phosphatase 2A (PP2A) specific inhibitor (PP2Ai), on NK cells in regulating NK cell homeostasis in the peripheral tissues. We found that PP2Ai treatment decreased NK cell percentages in the bone marrow and secondary lymphoid tissues while increasing NK cell percentages in peripheral tissues such as the lung and liver. In the peripheral tissues of PP2Ai-treated mice, Ki-67 expression and BrdU uptake in NK cells were upregulated, and an initial increase in the pre-mature CD11bhiCD27hi NK subset was observed, followed by an increase in the terminally differentiated mature CD11bhiCD27lo NK subset. In addition, bone marrow Ki-67+ NK cells predominantly expressed CX3CR1 in the PP2Ai-treated mice and were further mobilized to the peripheral tissues. Among various target molecules of PP2A, we found that the upregulation of c-Myc pathway and its phosphorylation, along with its downstream cyclin E expression and G1/S cell cycle transition in PP2Ai-treated mice NK cells. Our results suggest that PP2Ai modulates NK cell proliferation through c-Myc and cyclin E, leading to their maturation and trafficking from the bone marrow to the peripheral tissues.
Collapse
Affiliation(s)
- Yui Shinzawa
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, 2630, Sugitani, Toyama-shi, Toyama 930-0194, Japan.
| | - So-Ichiro Sasaki
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, 2630, Sugitani, Toyama-shi, Toyama 930-0194, Japan.
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, 811-1, Kimiidera, Wakayama-shi, Wakayama 641-8509, Japan.
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, 811-1, Kimiidera, Wakayama-shi, Wakayama 641-8509, Japan
| | - Manabu Kawada
- Laboratory of Oncology, Institute of Microbial Chemistry, 3-14-23, Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan.
| | - Yoshihiro Hayakawa
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, 2630, Sugitani, Toyama-shi, Toyama 930-0194, Japan.
| |
Collapse
|
2
|
Imširović V, Wensveen FM, Polić B, Jelenčić V. Maintaining the Balance: Regulation of NK Cell Activity. Cells 2024; 13:1464. [PMID: 39273034 PMCID: PMC11393908 DOI: 10.3390/cells13171464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Natural Killer (NK) cells, integral components of the innate immune system, play a crucial role in the protection against intracellular threats. Their cytotoxic power requires that activation is tightly controlled, and in this, they take a unique position within the immune system. Rather than depending on the engagement of a single activating receptor, their activation involves a delicate balance between inhibitory and activating signals mediated through an array of surface molecules. Only when this cumulative balance surpasses a specific threshold do NK cells initiate their activity. Remarkably, the activation threshold of NK cells remains robust even when cells express vastly different repertoires of inhibitory and activating receptors. These threshold values seem to be influenced by NK cell interactions with their environment during development and after release from the bone marrow. Understanding how NK cells integrate this intricate pattern of stimuli is an ongoing area of research, particularly relevant for cellular therapies seeking to harness the anti-cancer potential of these cells by modifying surface receptor expression. In this review, we will explore some of the current dogmas regarding NK cell activation and discuss recent literature addressing advances in our understanding of this field.
Collapse
Affiliation(s)
| | | | | | - Vedrana Jelenčić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
3
|
Chen J, Liu Y, Zhan P, Gao T, Zuo J, Li X, Zhang F, Wang H, Fu S. Bayesian-based analysis of the causality between 731 immune cells and erectile dysfunction: a two-sample, bidirectional, and multivariable Mendelian randomization study. Sex Med 2024; 12:qfae062. [PMID: 39315306 PMCID: PMC11416910 DOI: 10.1093/sexmed/qfae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Background The causal relationship between certain immune cells and erectile dysfunction (ED) is still uncertain. Aim The study sought to investigate the causal effect of 731 types of immune cells on ED through Mendelian randomization (MR) using genome-wide association studies (GWAS). Methods Genetic instruments for 731 immune cells were identified through GWAS, and ED data were obtained from the FinnGen database. Univariable and multivariable bidirectional MR studies were conducted to explore potential causal relationships between these immune cells and ED. The inverse-variance weighted method was primarily used, with Cochran's Q test and MR-Egger intercept test assessing pleiotropy and heterogeneity. Bayesian weighted Mendelian randomization (BWMR) was also employed. Outcomes Six immune cells were identified as related to ED. CD45 on Natural Killer (NK) cells, CD33dim HLA DR+ CD11b + Absolute Count, CD19 on IgD- CD38dim B cells, and CD3 on CD39+ resting CD4 regulatory T cells were identified as risk factors, whereas CD20 on IgD+ CD38dim B cells and Activated & resting CD4 regulatory T cell %CD4+ T cells were protective factors. Further multivariable MR analysis confirmed that 5 of these immune cells independently impacted ED, except for CD45 on NK cells. Reverse MR analysis indicated that ED occurrence decreases certain immune cell counts, but BWMR found no causal relationship for CD20 on IgD+ CD38dim B cells. Results Our MR analysis confirmed a potential bidirectional causal relationship between immune cells and ED, providing new insights into potential mechanisms and therapeutic strategies. Clinical Translation This study provides evidence for the impact of certain immune cells on the development of ED and suggests potential therapeutic targets. Strengths and Limitations We performed both univariable and multivariable MR to strengthen the causal relationship between exposures and outcomes. However, the population in this study was limited to European ancestry. Conclusion Our MR analysis confirmed a potential bidirectional causal relationship between immune cells and ED. This provides new insights into potential mechanisms of pathogenesis and subsequent therapeutic strategies.
Collapse
Affiliation(s)
- Junhao Chen
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Wuhua District, Kunming, 650032, Yunnan, China
| | - Yidao Liu
- Department of Urology, Dehong People's Hospital, Mangshi City, Dehong, Yunnan Province, 678499, China
| | - Peiqin Zhan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Wuhua District, Kunming, 650032, Yunnan, China
| | - Tianci Gao
- The Second Hospital of Jilin University, Nanguan District, Changchun City, Jilin Province, China
- College of Clinical Medicine, Jiamusi University, Xiangyang District, Jiamusi City, Heilongjiang Province
| | - Jieming Zuo
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Wuhua District, Kunming, 650032, Yunnan, China
| | - Xiangyun Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Wuhua District, Kunming, 650032, Yunnan, China
| | - Fangfei Zhang
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226United States
| | - Haifeng Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Wuhua District, Kunming, 650032, Yunnan, China
| | - Shi Fu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Wuhua District, Kunming, 650032, Yunnan, China
| |
Collapse
|
4
|
Das M, Teli P, Vaidya A, Kale V. Expression of CD45 in non-hematopoietic cells: implications in regenerative medicine and disease management. Regen Med 2024; 19:407-419. [PMID: 39058408 PMCID: PMC11370962 DOI: 10.1080/17460751.2024.2378627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
CD45 plays a crucial role in the regulation of hematopoiesis. However, a comprehensive understanding of its role in non-hematopoietic cells is lacking. Several tissue precursors express CD45, indicating its crucial role in tissue regeneration. These precursors would fall prey to the recent therapies involving CD45 as a target. CD45+ double-positive tumor cells contribute to cancer progression, but whether CD45 is involved in the process needs to be investigated. Recently, we showed that aging induces CD45 expression in mesenchymal stromal cells and affects their differentiation potential. In this review, we, for the first time, unravel the important implications of the expression of CD45 in non-hematopoietic cells and provide novel insights into its potential therapeutic target in regenerative medicine and disease management.
Collapse
Affiliation(s)
- Madhurima Das
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, 412115, India
| | - Prajakta Teli
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, 412115, India
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, 412115, India
| | - Anuradha Vaidya
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, 412115, India
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, 412115, India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, 412115, India
| |
Collapse
|
5
|
Karmakar S, Mishra A, Pal P, Lal G. Effector and cytolytic function of natural killer cells in anticancer immunity. J Leukoc Biol 2024; 115:235-252. [PMID: 37818891 DOI: 10.1093/jleuko/qiad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
Adaptive immune cells play an important role in mounting antigen-specific antitumor immunity. The contribution of innate immune cells such as monocytes, macrophages, natural killer (NK) cells, dendritic cells, and gamma-delta T cells is well studied in cancer immunology. NK cells are innate lymphoid cells that show effector and regulatory function in a contact-dependent and contact-independent manner. The cytotoxic function of NK cells plays an important role in killing the infected and transformed host cells and controlling infection and tumor growth. However, several studies have also ascribed the role of NK cells in inducing pathophysiology in autoimmune diseases, promoting immune tolerance in the uterus, and antitumor function in the tumor microenvironment. We discuss the fundamentals of NK cell biology, its distribution in different organs, cellular and molecular interactions, and its cytotoxic and noncytotoxic functions in cancer biology. We also highlight the use of NK cell-based adoptive cellular therapy in cancer.
Collapse
Affiliation(s)
- Surojit Karmakar
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| | - Amrita Mishra
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| | - Pradipta Pal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| | - Girdhari Lal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| |
Collapse
|
6
|
Harfmann M, Schröder T, Głów D, Jung M, Uhde A, Kröger N, Horn S, Riecken K, Fehse B, Ayuk FA. CD45-Directed CAR-T Cells with CD45 Knockout Efficiently Kill Myeloid Leukemia and Lymphoma Cells In Vitro Even after Extended Culture. Cancers (Basel) 2024; 16:334. [PMID: 38254824 PMCID: PMC10814116 DOI: 10.3390/cancers16020334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND CAR-T cell therapy has shown impressive results and is now part of standard-of-care treatment of B-lineage malignancies, whereas the treatment of myeloid diseases has been limited by the lack of suitable targets. CD45 is expressed on almost all types of blood cells including myeloid leukemia cells, but not on non-hematopoietic tissue, making it a potential target for CAR-directed therapy. Because of its high expression on T and NK cells, fratricide is expected to hinder CD45CAR-mediated therapy. Due to its important roles in effector cell activation, signal transduction and cytotoxicity, CD45 knockout aimed at preventing fratricide in T and NK cells has been expected to lead to considerable functional impairment. METHODS CD45 knockout was established on T and NK cell lines using CRISPR/Cas9-RNPs and electroporation, and the successful protocol was transferred to primary T cells. A combined protocol was developed enabling CD45 knockout and retroviral transduction with a third-generation CAR targeting CD45 or CD19. The functionality of CD45ko effector cells, CD45ko/CD45CAR-T and CD45ko/CD19CAR-T cells was studied using proliferation as well as short- and long-term cytotoxicity assays. RESULTS As expected, the introduction of a CD45-CAR into T cells resulted in potent fratricide that can be avoided by CD45 knockout. Unexpectedly, the latter had no negative impact on T- and NK-cell proliferation in vitro. Moreover, CD45ko/CD45CAR-T cells showed potent cytotoxicity against CD45-expressing AML and lymphoma cell lines in short-term and long-term co-culture assays. A pronounced cytotoxicity of CD45ko/CD45CAR-T cells was maintained even after four weeks of culture. In a further setup, we confirmed the conserved functionality of CD45ko cells using a CD19-CAR. Again, the proliferation and cytotoxicity of CD45ko/CD19CAR-T cells showed no differences from those of their CD45-positive counterparts in vitro. CONCLUSIONS We report the efficient production of highly and durably active CD45ko/CAR-T cells. CD45 knockout did not impair the functionality of CAR-T cells in vitro, irrespective of the target antigen. If their activity can be confirmed in vivo, CD45ko/CD45CAR-T cells might, for example, be useful as part of conditioning regimens prior to stem cell transplantation.
Collapse
Affiliation(s)
- Maraike Harfmann
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Tanja Schröder
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Dawid Głów
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Maximilian Jung
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Almut Uhde
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Stefan Horn
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Francis A. Ayuk
- Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| |
Collapse
|
7
|
Meza Guzman LG, Hyland CD, Bidgood GM, Leong E, Shen Z, Goh W, Rautela J, Vince JE, Nicholson SE, Huntington ND. CD45 limits early Natural Killer cell development. Immunol Cell Biol 2024; 102:58-70. [PMID: 37855066 PMCID: PMC10952700 DOI: 10.1111/imcb.12701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023]
Abstract
The clinical development of Natural Killer (NK) cell-mediated immunotherapy marks a milestone in the development of new cancer therapies and has gained traction due to the intrinsic ability of the NK cell to target and kill tumor cells. To fully harness the tumor killing ability of NK cells, we need to improve NK cell persistence and to overcome suppression of NK cell activation in the tumor microenvironment. The trans-membrane, protein tyrosine phosphatase CD45, regulates NK cell homeostasis, with the genetic loss of CD45 in mice resulting in increased numbers of mature NK cells. This suggests that CD45-deficient NK cells might display enhanced persistence following adoptive transfer. However, we demonstrate here that adoptive transfer of CD45-deficiency did not enhance NK cell persistence in mice, and instead, the homeostatic disturbance of NK cells in CD45-deficient mice stemmed from a developmental defect in the progenitor population. The enhanced maturation within the CD45-deficient NK cell compartment was intrinsic to the NK cell lineage, and independent of the developmental defect. CD45 is not a conventional immune checkpoint candidate, as systemic loss is detrimental to T and B cell development, compromising the adaptive immune system. Nonetheless, this study suggests that inhibition of CD45 in progenitor or stem cell populations may improve the yield of in vitro generated NK cells for adoptive therapy.
Collapse
Affiliation(s)
- Lizeth G Meza Guzman
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVICAustralia
| | - Craig D Hyland
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
| | - Grace M Bidgood
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVICAustralia
| | - Evelyn Leong
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
| | - Zihan Shen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Wilford Goh
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
| | - Jai Rautela
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
| | - Sandra E Nicholson
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVICAustralia
| | - Nicholas D Huntington
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| |
Collapse
|
8
|
Tutino M, Hankinson J, Murray C, Lowe L, Kerry G, Rattray M, Custovic A, Johnston SL, Shi C, Orozco G, Eyre S, Martin P, Simpson A, Curtin JA. Identification of differences in CD4 + T-cell gene expression between people with asthma and healthy controls. Sci Rep 2023; 13:22796. [PMID: 38129444 PMCID: PMC10739740 DOI: 10.1038/s41598-023-49135-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Functional enrichment analysis of genome-wide association study (GWAS)-summary statistics has suggested that CD4+ T-cells play an important role in asthma pathogenesis. Despite this, CD4+ T-cells are under-represented in asthma transcriptome studies. To fill the gap, 3'-RNA-Seq was used to generate gene expression data on CD4+ T-cells (isolated within 2 h from collection) from peripheral blood from participants with well-controlled asthma (n = 32) and healthy controls (n = 11). Weighted Gene Co-expression Network Analysis (WGCNA) was used to identify sets of co-expressed genes (modules) associated with the asthma phenotype. We identified three modules associated with asthma, which are strongly enriched for GWAS-identified asthma genes, antigen processing/presentation and immune response to viral infections. Through integration of publicly available eQTL and GWAS summary statistics (colocalisation), and protein-protein interaction (PPI) data, we identified PTPRC, a potential druggable target, as a putative master regulator of the asthma gene-expression profiles. Using a co-expression network approach, with integration of external genetic and PPI data, we showed that CD4+ T-cells from peripheral blood from asthmatics have different expression profiles, albeit small in magnitude, compared to healthy controls, for sets of genes involved in immune response to viral infections (upregulated) and antigen processing/presentation (downregulated).
Collapse
Affiliation(s)
- Mauro Tutino
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK.
| | - Jenny Hankinson
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Clare Murray
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Lesley Lowe
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Gina Kerry
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Magnus Rattray
- Division of Informatics, Imaging and Data Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Adnan Custovic
- National Heart and Lung Institute, Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK
| | - Sebastian L Johnston
- National Heart and Lung Institute, Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK
| | - Chenfu Shi
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Gisela Orozco
- Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, UK
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Stephen Eyre
- Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, UK
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Paul Martin
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - John A Curtin
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
9
|
Abeynaike SA, Huynh TR, Mehmood A, Kim T, Frank K, Gao K, Zalfa C, Gandarilla A, Shultz L, Paust S. Human Hematopoietic Stem Cell Engrafted IL-15 Transgenic NSG Mice Support Robust NK Cell Responses and Sustained HIV-1 Infection. Viruses 2023; 15:365. [PMID: 36851579 PMCID: PMC9960100 DOI: 10.3390/v15020365] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Mice reconstituted with human immune systems are instrumental in the investigation of HIV-1 pathogenesis and therapeutics. Natural killer (NK) cells have long been recognized as a key mediator of innate anti-HIV responses. However, established humanized mouse models do not support robust human NK cell development from engrafted human hematopoietic stem cells (HSCs). A major obstacle to human NK cell reconstitution is the lack of human interleukin-15 (IL-15) signaling, as murine IL-15 is a poor stimulator of the human IL-15 receptor. Here, we demonstrate that immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice expressing a transgene encoding human IL-15 (NSG-Tg(IL-15)) have physiological levels of human IL-15 and support long-term engraftment of human NK cells when transplanted with human umbilical-cord-blood-derived HSCs. These Hu-NSG-Tg(IL-15) mice demonstrate robust and long-term reconstitution with human immune cells, but do not develop graft-versus-host disease (GVHD), allowing for long-term studies of human NK cells. Finally, we show that these HSC engrafted mice can sustain HIV-1 infection, resulting in human NK cell responses in HIV-infected mice. We conclude that Hu-NSG-Tg(IL-15) mice are a robust novel model to study NK cell responses to HIV-1.
Collapse
Affiliation(s)
- Shawn A. Abeynaike
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tridu R. Huynh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Research Translational Institute, La Jolla, CA 92037, USA
- Division of Internal Medicine, Scripps Clinic/Scripps Green Hospital, La Jolla, CA 92037, USA
| | - Abeera Mehmood
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Teha Kim
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kayla Frank
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kefei Gao
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Cristina Zalfa
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Angel Gandarilla
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
10
|
Al Barashdi MA, Ali A, McMullin MF, Mills K. Protein tyrosine phosphatase receptor type C (PTPRC or CD45). J Clin Pathol 2021; 74:548-552. [PMID: 34039664 PMCID: PMC8380896 DOI: 10.1136/jclinpath-2020-206927] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
The leucocyte common antigen, protein tyrosine phosphatase receptor type C (PTPRC), also known as CD45, is a transmembrane glycoprotein, expressed on almost all haematopoietic cells except for mature erythrocytes, and is an essential regulator of T and B cell antigen receptor-mediated activation. Disruption of the equilibrium between protein tyrosine kinase and phosphatase activity (from CD45 and others) can result in immunodeficiency, autoimmunity, or malignancy. CD45 is normally present on the cell surface, therefore it works upstream of a large signalling network which differs between cell types, and thus the effects of CD45 on these cells are also different. However, it is becoming clear that CD45 plays an essential role in the innate immune system and this is likely to be a key area for future research. In this review of PTPRC (CD45), its structure and biological activities as well as abnormal expression of CD45 in leukaemia and lymphoma will be discussed.
Collapse
Affiliation(s)
| | - Ahlam Ali
- Patrick G Johnston Centre for Cancer Research (PGJCCR), Queen's University Belfast, Belfast, UK
| | | | - Ken Mills
- Patrick G Johnston Centre for Cancer Research (PGJCCR), Queen's University Belfast, Belfast, UK
| |
Collapse
|
11
|
Louis C, Souza-Fonseca-Guimaraes F, Yang Y, D'Silva D, Kratina T, Dagley L, Hediyeh-Zadeh S, Rautela J, Masters SL, Davis MJ, Babon JJ, Ciric B, Vivier E, Alexander WS, Huntington ND, Wicks IP. NK cell-derived GM-CSF potentiates inflammatory arthritis and is negatively regulated by CIS. J Exp Med 2020; 217:133838. [PMID: 32097462 PMCID: PMC7201918 DOI: 10.1084/jem.20191421] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/25/2019] [Accepted: 01/15/2020] [Indexed: 01/08/2023] Open
Abstract
Despite increasing recognition of the importance of GM-CSF in autoimmune disease, it remains unclear how GM-CSF is regulated at sites of tissue inflammation. Using GM-CSF fate reporter mice, we show that synovial NK cells produce GM-CSF in autoantibody-mediated inflammatory arthritis. Synovial NK cells promote a neutrophilic inflammatory cell infiltrate, and persistent arthritis, via GM-CSF production, as deletion of NK cells, or specific ablation of GM-CSF production in NK cells, abrogated disease. Synovial NK cell production of GM-CSF is IL-18–dependent. Furthermore, we show that cytokine-inducible SH2-containing protein (CIS) is crucial in limiting GM-CSF signaling not only during inflammatory arthritis but also in experimental allergic encephalomyelitis (EAE), a murine model of multiple sclerosis. Thus, a cellular cascade of synovial macrophages, NK cells, and neutrophils mediates persistent joint inflammation via production of IL-18 and GM-CSF. Endogenous CIS provides a key brake on signaling through the GM-CSF receptor. These findings shed new light on GM-CSF biology in sterile tissue inflammation and identify several potential therapeutic targets.
Collapse
Affiliation(s)
- Cynthia Louis
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Medical Biology, University of Melbourne, Parkville, Australia
| | - Fernando Souza-Fonseca-Guimaraes
- Medical Biology, University of Melbourne, Parkville, Australia.,Molecular Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Yuyan Yang
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Medical Biology, University of Melbourne, Parkville, Australia
| | - Damian D'Silva
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Medical Biology, University of Melbourne, Parkville, Australia
| | - Tobias Kratina
- Medical Biology, University of Melbourne, Parkville, Australia.,Molecular Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Laura Dagley
- Medical Biology, University of Melbourne, Parkville, Australia.,Systems Biology and Personalized Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Soroor Hediyeh-Zadeh
- Medical Biology, University of Melbourne, Parkville, Australia.,Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Jai Rautela
- Medical Biology, University of Melbourne, Parkville, Australia.,Molecular Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Seth Lucian Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Medical Biology, University of Melbourne, Parkville, Australia
| | - Melissa J Davis
- Medical Biology, University of Melbourne, Parkville, Australia.,Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Jeffrey J Babon
- Medical Biology, University of Melbourne, Parkville, Australia.,Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University. Philadelphia, PA
| | - Eric Vivier
- Innate Pharma Research Labs, Innate Pharma, Marseille, France.,Aix Marseille University, CNRS, INSERM, CIML, Marseille, France.,Service d'Immunologie, Marseille Immunopole, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Warren S Alexander
- Medical Biology, University of Melbourne, Parkville, Australia.,Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Nicholas D Huntington
- Medical Biology, University of Melbourne, Parkville, Australia.,Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Ian P Wicks
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Medical Biology, University of Melbourne, Parkville, Australia.,Rheumatology Unit, Royal Melbourne Hospital, Parkville, Australia
| |
Collapse
|
12
|
Nanbakhsh A, Srinivasamani A, Holzhauer S, Riese MJ, Zheng Y, Wang D, Burns R, Reimer MH, Rao S, Lemke A, Tsaih SW, Flister MJ, Lao S, Dahl R, Thakar MS, Malarkannan S. Mirc11 Disrupts Inflammatory but Not Cytotoxic Responses of NK Cells. Cancer Immunol Res 2019; 7:1647-1662. [PMID: 31515257 DOI: 10.1158/2326-6066.cir-18-0934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/14/2019] [Accepted: 08/12/2019] [Indexed: 11/16/2022]
Abstract
Natural killer (NK) cells generate proinflammatory cytokines that are required to contain infections and tumor growth. However, the posttranscriptional mechanisms that regulate NK cell functions are not fully understood. Here, we define the role of the microRNA cluster known as Mirc11 (which includes miRNA-23a, miRNA-24a, and miRNA-27a) in NK cell-mediated proinflammatory responses. Absence of Mirc11 did not alter the development or the antitumor cytotoxicity of NK cells. However, loss of Mirc11 reduced generation of proinflammatory factors in vitro and interferon-γ-dependent clearance of Listeria monocytogenes or B16F10 melanoma in vivo by NK cells. These functional changes resulted from Mirc11 silencing ubiquitin modifiers A20, Cbl-b, and Itch, allowing TRAF6-dependent activation of NF-κB and AP-1. Lack of Mirc11 caused increased translation of A20, Cbl-b, and Itch proteins, resulting in deubiquitylation of scaffolding K63 and addition of degradative K48 moieties on TRAF6. Collectively, our results describe a function of Mirc11 that regulates generation of proinflammatory cytokines from effector lymphocytes.
Collapse
Affiliation(s)
- Arash Nanbakhsh
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Anupallavi Srinivasamani
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Sandra Holzhauer
- Laboratory of Lymphocyte Signaling, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Matthew J Riese
- Laboratory of Lymphocyte Signaling, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin.,Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yongwei Zheng
- Laboratory of B Cell Biology, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Demin Wang
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Laboratory of B Cell Biology, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Robert Burns
- Bioinformatics Core, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Michael H Reimer
- Laboratory of Stem Cell Biology, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin.,Department of Cell Biology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sridhar Rao
- Laboratory of Stem Cell Biology, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin.,Department of Cell Biology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Angela Lemke
- Genome Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shirng-Wern Tsaih
- Genome Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael J Flister
- Genome Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shunhua Lao
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Richard Dahl
- Indiana University School of Medicine, South Bend, Indiana
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin. .,Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Genome Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
13
|
Abel AM, Tiwari AA, Gerbec ZJ, Siebert JR, Yang C, Schloemer NJ, Dixon KJ, Thakar MS, Malarkannan S. IQ Domain-Containing GTPase-Activating Protein 1 Regulates Cytoskeletal Reorganization and Facilitates NKG2D-Mediated Mechanistic Target of Rapamycin Complex 1 Activation and Cytokine Gene Translation in Natural Killer Cells. Front Immunol 2018; 9:1168. [PMID: 29892299 PMCID: PMC5985319 DOI: 10.3389/fimmu.2018.01168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/09/2018] [Indexed: 12/25/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play essential roles in mediating antitumor immunity. NK cells respond to various inflammatory stimuli including cytokines and stress-induced cellular ligands which activate germline-encoded activation receptors (NKRs), such as NKG2D. The signaling molecules activated downstream of NKRs are well defined; however, the mechanisms that regulate these pathways are not fully understood. IQ domain-containing GTPase-activating protein 1 (IQGAP1) is a ubiquitously expressed scaffold protein. It regulates diverse cellular signaling programs in various physiological contexts, including immune cell activation and function. Therefore, we sought to investigate the role of IQGAP1 in NK cells. Development and maturation of NK cells from mice lacking IQGAP1 (Iqgap1-/- ) were mostly intact; however, the absolute number of splenic NK cells was significantly reduced. Phenotypic and functional characterization revealed a significant reduction in the egression of NK cells from the bone marrow of Iqagp1-/- mice altering their peripheral homeostasis. Lack of IQGAP1 resulted in reduced NK cell motility and their ability to mediate antitumor immunity in vivo. Activation of Iqgap1-/- NK cells via NKRs, including NKG2D, resulted in significantly reduced levels of inflammatory cytokines compared with wild-type (WT). This reduction in Iqgap1-/- NK cells is neither due to an impaired membrane proximal signaling nor a defect in gene transcription. The levels of Ifng transcripts were comparable between WT and Iqgap1-/- , suggesting that IQGAP1-dependent regulation of cytokine production is regulated by a post-transcriptional mechanism. To this end, Iqgap1-/- NK cells failed to fully induce S6 phosphorylation and showed significantly reduced protein translation following NKG2D-mediated activation, revealing a previously undefined regulatory function of IQGAP1 via the mechanistic target of rapamycin complex 1. Together, these results implicate IQGAP1 as an essential scaffold for NK cell homeostasis and function and provide novel mechanistic insights to the post-transcriptional regulation of inflammatory cytokine production.
Collapse
Affiliation(s)
- Alex M Abel
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Aradhana A Tiwari
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Zachary J Gerbec
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Jason R Siebert
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Chao Yang
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Nathan J Schloemer
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kate J Dixon
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Subramaniam Malarkannan
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
14
|
Sathe P, Pang SHM, Delconte R, Elwood N, Huntington ND. Identification of Novel Human NK Cell Progenitor Subsets. Int J Mol Sci 2017; 18:ijms18122716. [PMID: 29244714 PMCID: PMC5751317 DOI: 10.3390/ijms18122716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 11/16/2022] Open
Abstract
Understanding the pathways and regulation of human haematopoiesis, in particular, lymphopoiesis, is vital to manipulation of these processes for therapeutic purposes. However, although haematopoiesis has been extensively characterised in mice, translation of these findings to human biology remains rudimentary. Here, we describe the isolation of three progenitor subsets from human foetal bone marrow that represent differential stages of commitment to the natural killer (NK) cell lineage based on IL-15 responsiveness. We identify CD7 as a marker of IL-15 responsive progenitors in human bone marrow and find that this expression is maintained throughout commitment and maturation. Within the CD7+ fraction, we focussed on the lineage potential of three subsets based on CD127 and CD117 expression and observed restricted lymphoid and biased NK cell potential amongst subsets. We further demonstrate the presence of subsets similar in both phenotype and function in umbilical cord blood and the bone marrow of humanised mice, validating these as appropriate sources of progenitors for the investigation of human haematopoiesis. Overall, we describe several stages in the process of lymphopoiesis that will form the basis of investigating the regulators of this process in humans.
Collapse
Affiliation(s)
- Priyanka Sathe
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia.
| | - Swee Heng Milon Pang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia.
| | - Rebecca Delconte
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia.
| | - Ngaire Elwood
- Cord Blood Research, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Nicholas D Huntington
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia.
| |
Collapse
|
15
|
Lajoie L, Congy-Jolivet N, Bolzec A, Thibault G. Gradual Increase of FcγRIIIa/CD16a Expression and Shift toward IFN-γ Secretion during Differentiation of CD56 dim Natural Killer Cells. Front Immunol 2017; 8:1556. [PMID: 29209315 PMCID: PMC5701929 DOI: 10.3389/fimmu.2017.01556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/31/2017] [Indexed: 01/03/2023] Open
Abstract
Natural killer (NK) cell effector functions include cytotoxicity and secretion of cytokines such as interferon-γ (IFN-γ). The immature CD56bright subset of human NK cells lacks expression of FcγRIIIa/CD16a, one of the low-affinity immunoglobulin G receptors, or exhibits low-density expression (CD56brightCD16-/dim) and produces IFN-γ in response to cytokine stimulation, whereas the mature CD56dimCD16+ subset is the most cytotoxic one. A further differentiation/maturation of the latter subset according to the gradual loss of NKG2A and/or gain of KIR2DL (CD158a and CD158b) has been demonstrated and the ability to produce IFN-γ in response to activating receptor (AR) co-engagement is gradually acquired during terminal differentiation. In the course of flow cytometry analysis of CD56dim NK cells, we noted a substantial intraindividual heterogeneity of expression of FcγRIIIa. FcγRIIIa is unique among ARs: it does not require the co-engagement of other ARs to induce substantial cytotoxicity or cytokine synthesis in CD56dim cells. We, therefore, investigated whether individual differentiation/maturation of polyclonal CD56dim NK cells defined by expression of NKG2A/KIR2DL is related to FcγRIIIa expression and to the heterogeneity of NK cell responses upon FcγRIIIa engagement. When we analyzed unstimulated CD56dim cells by increasing level of FcγRIIIa expression, we found that the proportion of the more differentiated CD158a,h+ and/or CD158b,j+ cells and that of the less differentiated NKG2A+ cells gradually increased and decreased, respectively. FcγRIIIa engagement by using plate-bound murine anti-CD16 monoclonal antibody (mAb) or rituximab or trastuzumab (two therapeutic mAbs), resulted in donor-dependent partial segregation of IFN-γ-producing and/or degranulating CD56dim cells. Importantly, the proportion of CD158a,h/b,j+ cells and that of NKG2A+ cells was increased and decreased, respectively, IFN-γ-producing cells, whereas these proportions were poorly modified in degranulating cells. Similar results were observed after engagement of ARs by a combination of mAbs targeting NKG2D, NKp30, NKp46, and 2B4. Thus, the gradual increase of FcγRIIIa expression is an important feature of the differentiation/maturation of CD56dim cells and this differentiation/maturation is associated with a shift in functionality toward IFN-γ secretion observed upon both FcγRIIIa-dependent and FcγRIIIa-independent stimulation. The functional heterogeneity related to the differentiation/maturation of CD56dim NK cells could be involved in the variability of the clinical responses observed in patients treated with therapeutic mAbs.
Collapse
Affiliation(s)
- Laurie Lajoie
- CNRS UMR 7292, Génétique, Immunothérapie, Chimie et Cancer (GICC), Université François-Rabelais, Tours, France.,Laboratoire d'Immunologie, Centre Hospitalier Régional Universitaire, Tours, France
| | - Nicolas Congy-Jolivet
- CNRS UMR 7292, Génétique, Immunothérapie, Chimie et Cancer (GICC), Université François-Rabelais, Tours, France.,Laboratoire d'Immunologie, Centre Hospitalier Régional Universitaire, Tours, France
| | - Armelle Bolzec
- CNRS UMR 7292, Génétique, Immunothérapie, Chimie et Cancer (GICC), Université François-Rabelais, Tours, France
| | - Gilles Thibault
- CNRS UMR 7292, Génétique, Immunothérapie, Chimie et Cancer (GICC), Université François-Rabelais, Tours, France.,Laboratoire d'Immunologie, Centre Hospitalier Régional Universitaire, Tours, France
| |
Collapse
|
16
|
Huang YQ, Li PY, Wang JB, Zhou HQ, Yang ZR, Yang RC, Bai ZF, Wang LF, Li JY, Liu HH, Zhao YL, Xiao XH. Inhibition of Sophocarpine on Poly I: C/D-GalN-Induced Immunological Liver Injury in Mice. Front Pharmacol 2016; 7:256. [PMID: 27570511 PMCID: PMC4981750 DOI: 10.3389/fphar.2016.00256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/02/2016] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence has suggested that natural killer (NK) cells contribute to the pathogenesis of human immunological liver injury (ILI). Previous studies have demonstrated that Sophocarpine exerts activity in immune modulation. It also has a therapeutic effect on liver protection in that it can alleviate liver fibrosis by suppressing both the activation of hepatic stellate cells and the proliferation of the activated hepatic stellate cells. However, whether Sophocarpine protects the liver by regulating NK cell activity remains unclear. In this study, the modulating effect of Sophocarpine on NK cells in the liver was investigated. The results showed that Sophocarpine dramatically decreased the production of pro-inflammatory cytokines and attenuated the liver injury induced by Poly I: C/D-GalN in C57BL/6- mice. More importantly, Sophocarpine pre-treatment significantly suppressed NK cell activation and downregulated the expression of NKG2D, a receptor responsible for NK cell activation. Moreover, the protein levels of DAP12, ZAP76 and Syk decreased, as did their corresponding mRNA levels. Overall, our study demonstrates that Sophocarpine inhibits NK cell activity, thus making it a promising therapy for ILI.
Collapse
Affiliation(s)
- Yin-Qiu Huang
- Pharmacy College, Chengdu University of Traditional Chinese MedicineChengdu, China
- Department of Pharmacy, 302 Military Hospital of ChinaBeijing, China
| | - Peng-Yan Li
- China Military Institute of Chinese Medicine, 302 Military Hospital of ChinaBeijing, China
| | - Jia-Bo Wang
- China Military Institute of Chinese Medicine, 302 Military Hospital of ChinaBeijing, China
| | - Hou-Qin Zhou
- Pharmacy College, Chengdu University of Traditional Chinese MedicineChengdu, China
- Department of Pharmacy, 302 Military Hospital of ChinaBeijing, China
| | - Zhi-Rui Yang
- Pharmacy College, Chengdu University of Traditional Chinese MedicineChengdu, China
- Department of Pharmacy, 302 Military Hospital of ChinaBeijing, China
| | - Rui-Chuang Yang
- Research Center for Clinical and Translational Medicine, 302 Hospital of People’s Liberation ArmyBeijing, China
| | - Zhao-Fang Bai
- China Military Institute of Chinese Medicine, 302 Military Hospital of ChinaBeijing, China
| | - Li-Fu Wang
- Department of Integrative Medical Center, 302 Hospital of People’s Liberation ArmyBeijing, China
| | - Jian-Yu Li
- Department of Integrative Medical Center, 302 Hospital of People’s Liberation ArmyBeijing, China
| | - Hong-Hong Liu
- Department of Integrative Medical Center, 302 Hospital of People’s Liberation ArmyBeijing, China
| | - Yan-Ling Zhao
- Department of Pharmacy, 302 Military Hospital of ChinaBeijing, China
| | - Xiao-He Xiao
- China Military Institute of Chinese Medicine, 302 Military Hospital of ChinaBeijing, China
| |
Collapse
|
17
|
Krzywinska E, Cornillon A, Allende-Vega N, Vo DN, Rene C, Lu ZY, Pasero C, Olive D, Fegueux N, Ceballos P, Hicheri Y, Sobecki M, Rossi JF, Cartron G, Villalba M. CD45 Isoform Profile Identifies Natural Killer (NK) Subsets with Differential Activity. PLoS One 2016; 11:e0150434. [PMID: 27100180 PMCID: PMC4839597 DOI: 10.1371/journal.pone.0150434] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/13/2016] [Indexed: 01/30/2023] Open
Abstract
The leucocyte-specific phosphatase CD45 is present in two main isoforms: the large CD45RA and the short CD45RO. We have recently shown that distinctive expression of these isoforms distinguishes natural killer (NK) populations. For example, co-expression of both isoforms identifies in vivo the anti tumor NK cells in hematological cancer patients. Here we show that low CD45 expression associates with less mature, CD56bright, NK cells. Most NK cells in healthy human donors are CD45RA+CD45RO-. The CD45RA-RO+ phenotype, CD45RO cells, is extremely uncommon in B or NK cells, in contrast to T cells. However, healthy donors possess CD45RAdimRO- (CD45RAdim cells), which show immature markers and are largely expanded in hematopoietic stem cell transplant patients. Blood borne cancer patients also have more CD45RAdim cells that carry several features of immature NK cells. However, and in opposition to their association to NK cell progenitors, they do not proliferate and show low expression of the transferrin receptor protein 1/CD71, suggesting low metabolic activity. Moreover, CD45RAdim cells properly respond to in vitro encounter with target cells by degranulating or gaining CD69 expression. In summary, they are quiescent NK cells, with low metabolic status that can, however, respond after encounter with target cells.
Collapse
Affiliation(s)
- Ewelina Krzywinska
- INSERM U1183, Université de Montpellier 1, UFR Médecine, Montpellier, France
| | - Amelie Cornillon
- INSERM U1183, Université de Montpellier 1, UFR Médecine, Montpellier, France
| | - Nerea Allende-Vega
- INSERM U1183, Université de Montpellier 1, UFR Médecine, Montpellier, France
- Institute for Regenerative Medicine and Biotherapy (IRMB), CHU Montpellier, Montpellier, 34295, France
| | - Dang-Nghiem Vo
- INSERM U1183, Université de Montpellier 1, UFR Médecine, Montpellier, France
| | - Celine Rene
- INSERM U1183, Université de Montpellier 1, UFR Médecine, Montpellier, France
| | - Zhao-Yang Lu
- INSERM U1183, Université de Montpellier 1, UFR Médecine, Montpellier, France
| | - Christine Pasero
- Centre de Cancérologie de Marseille, Plateforme d'Immunomonitoring en Cancérologie, INSERM, U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, CNRS, UMR7258, Marseille, France
| | - Daniel Olive
- Centre de Cancérologie de Marseille, Plateforme d'Immunomonitoring en Cancérologie, INSERM, U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, CNRS, UMR7258, Marseille, France
| | - Nathalie Fegueux
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier I, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Patrick Ceballos
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier I, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Yosr Hicheri
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier I, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Michal Sobecki
- Institute for Integrative Biology of the Cell (I2BC), Genome Biology Department CNRS - UMR9198, Gif-sur-Yvette, France
| | - Jean-François Rossi
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier I, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Guillaume Cartron
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier I, 80 avenue Augustin Fliche, 34295, Montpellier, France
- CNRS UMR5235, Université de Montpellier, Montpellier, France
| | - Martin Villalba
- INSERM U1183, Université de Montpellier 1, UFR Médecine, Montpellier, France
- Institute for Regenerative Medicine and Biotherapy (IRMB), CHU Montpellier, Montpellier, 34295, France
- * E-mail:
| |
Collapse
|
18
|
Gerbec ZJ, Thakar MS, Malarkannan S. The Fyn-ADAP Axis: Cytotoxicity Versus Cytokine Production in Killer Cells. Front Immunol 2015; 6:472. [PMID: 26441977 PMCID: PMC4584950 DOI: 10.3389/fimmu.2015.00472] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/31/2015] [Indexed: 11/13/2022] Open
Abstract
Lymphocyte signaling cascades responsible for anti-tumor cytotoxicity and inflammatory cytokine production must be tightly regulated in order to control an immune response. Disruption of these cascades can cause immune suppression as seen in a tumor microenvironment, and loss of signaling integrity can lead to autoimmunity and other forms of host-tissue damage. Therefore, understanding the distinct signaling events that exclusively control specific effector functions of “killer” lymphocytes (T and NK cells) is critical for understanding disease progression and formulating successful immunotherapy. Elucidation of divergent signaling pathways involved in receptor-mediated activation has provided insights into the independent regulation of cytotoxicity and cytokine production in lymphocytes. Specifically, the Fyn signaling axis represents a branch point for killer cell effector functions and provides a model for how cytotoxicity and cytokine production are differentially regulated. While the Fyn–PI(3)K pathway controls multiple functions, including cytotoxicity, cell development, and cytokine production, the Fyn–ADAP pathway preferentially regulates cytokine production in NK and T cells. In this review, we discuss how the structure of Fyn controls its function in lymphocytes and the role this plays in mediating two facets of lymphocyte effector function, cytotoxicity and production of inflammatory cytokines. This offers a model for using mechanistic and structural approaches to understand clinically relevant lymphocyte signaling.
Collapse
Affiliation(s)
- Zachary J Gerbec
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Microbiology, Immunology and Molecular Genetics, Medical College of Wisconsin , Milwaukee, WI , USA
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Pediatrics, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Medicine, Medical College of Wisconsin , Milwaukee, WI , USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Microbiology, Immunology and Molecular Genetics, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Pediatrics, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Medicine, Medical College of Wisconsin , Milwaukee, WI , USA
| |
Collapse
|
19
|
Krzywinska E, Allende-Vega N, Cornillon A, Vo DN, Cayrefourcq L, Panabieres C, Vilches C, Déchanet-Merville J, Hicheri Y, Rossi JF, Cartron G, Villalba M. Identification of Anti-tumor Cells Carrying Natural Killer (NK) Cell Antigens in Patients With Hematological Cancers. EBioMedicine 2015; 2:1364-76. [PMID: 26629531 PMCID: PMC4634619 DOI: 10.1016/j.ebiom.2015.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 08/11/2015] [Accepted: 08/11/2015] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) cells, a cytotoxic lymphocyte lineage, are able to kill tumor cells in vitro and in mouse models. However, whether these cells display an anti-tumor activity in cancer patients has not been demonstrated. Here we have addressed this issue in patients with several hematological cancers. We found a population of highly activated CD56dimCD16+ NK cells that have recently degranulated, evidence of killing activity, and it is absent in healthy donors. A high percentage of these cells expressed natural killer cell p46-related protein (NKp46), natural-killer group 2, member D (NKG2D) and killer inhibitory receptors (KIRs) and a low percentage expressed NKG2A and CD94. They are also characterized by a high metabolic activity and active proliferation. Notably, we found that activated NK cells from hematological cancer patients have non-NK tumor cell antigens on their surface, evidence of trogocytosis during tumor cell killing. Finally, we found that these activated NK cells are distinguished by their CD45RA+RO+ phenotype, as opposed to non-activated cells in patients or in healthy donors displaying a CD45RA+RO− phenotype similar to naïve T cells. In summary, we show that CD45RA+RO+ cells, which resemble a unique NK population, have recognized tumor cells and degranulate in patients with hematological neoplasias. Expression of both CD45 isoforms RA and RO identifies anti-leukemia NK cells. Anti-leukemia NK cells proliferate, degranulate and perform trogocytosis in vivo. The presence of CD45RARO population identifies hematological cancer patients.
NK cells are thought to have an intrinsic anti-tumor activity. However, the presence of anti-leukemia NK cells in patients is unknown. We present a relatively simple protocol to identify and characterize them. This is based on differential protein expression and on the fact that they gain tumor cell proteins by the process of trogocytosis. These phenotypic differences should be taken into account in analysis to identify different NK cell subpopulations. Hence, NK cells are actively recognizing tumor cells in leukemia patients; but this seems to be insufficient to eradicate disease. Future efforts should enhance the antitumor activity of this population.
Collapse
Affiliation(s)
- Ewelina Krzywinska
- INSERM U1183, Université de Montpellier, UFR Médecine, Montpellier, France
| | - Nerea Allende-Vega
- INSERM U1183, Université de Montpellier, UFR Médecine, Montpellier, France
| | - Amelie Cornillon
- INSERM U1183, Université de Montpellier, UFR Médecine, Montpellier, France
| | - Dang-Nghiem Vo
- INSERM U1183, Université de Montpellier, UFR Médecine, Montpellier, France
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells (LCCRH), Department of Cellular and Tissular Biopathology of Tumors, University Medical Centre, Montpellier, France ; EA2415 - Help for Personalized Decision: Methodological Aspects, University Institute of Clinical Research, Montpellier University, Montpellier, France
| | - Catherine Panabieres
- Laboratory of Rare Human Circulating Cells (LCCRH), Department of Cellular and Tissular Biopathology of Tumors, University Medical Centre, Montpellier, France ; EA2415 - Help for Personalized Decision: Methodological Aspects, University Institute of Clinical Research, Montpellier University, Montpellier, France
| | - Carlos Vilches
- Inmunogenética-HLA, Hospital Univ. Puerta de Hierro, Manuel de Falla 1, 28220 Majadahonda, Madrid, Spain
| | | | - Yosr Hicheri
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier, 80 Avenue Augustin Fliche, 34295 Montpellier, France
| | - Jean-François Rossi
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier, 80 Avenue Augustin Fliche, 34295 Montpellier, France
| | - Guillaume Cartron
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier, 80 Avenue Augustin Fliche, 34295 Montpellier, France
| | - Martin Villalba
- INSERM U1183, Université de Montpellier, UFR Médecine, Montpellier, France ; Institut for Regenerative Medicine and Biotherapy (IRMB), CHU Montpellier, Montpellier 34295, France
| |
Collapse
|
20
|
Viral interference with functions of the cellular receptor tyrosine phosphatase CD45. Viruses 2015; 7:1540-57. [PMID: 25807057 PMCID: PMC4379584 DOI: 10.3390/v7031540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 12/24/2022] Open
Abstract
The receptor tyrosine phosphatase CD45 is expressed on the surface of almost all cells of hematopoietic origin. CD45 functions are central to the development of T cells and determine the threshold at which T and B lymphocytes can become activated. Given this pivotal role of CD45 in the immune system, it is probably not surprising that viruses interfere with the activity of CD45 in lymphocytes to dampen the immune response and that they also utilize this molecule to accomplish their replication cycle. Here we report what is known about the interaction of viral proteins with CD45. Moreover, we debate putative interactions of viruses with CD45 in myeloid cells and the resulting consequences-subjects that remain to be investigated. Finally, we summarize the evidence that pathogens were the driving force for the evolution of CD45.
Collapse
|
21
|
Seillet C, Belz GT, Huntington ND. Development, Homeostasis, and Heterogeneity of NK Cells and ILC1. Curr Top Microbiol Immunol 2015; 395:37-61. [PMID: 26305047 DOI: 10.1007/82_2015_474] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Natural killer (NK) cells are a population of cytotoxic innate lymphocytes that evolved prior to their adaptive counterparts and constitute one of the first lines of defense against infected or mutated cells. NK cells are rapidly activated, expressing an array of germ-line encoded receptors that allow them to scan for protein irregularities on cells and kill those deemed "altered-self." NK cells rapidly produce a broad range of cytokines and chemokines following activation by virus, bacterial, or parasitic infection and are thus key in orchestrating inflammation. NK cells have previously been viewed to represent a relatively homogeneous group of IFN-γ-producing cells that express the surface markers NK1.1 and natural killer cell p46-related protein (NKp46 or NCR1 encoded by Ncr1) and depend on the transcription factor T-bet for their development. Recently, a second subset of T-bet-dependent innate cells, the group 1 innate lymphoid cells (ILC1), has been discovered which share many attributes of conventional NK (cNK) cells. Despite the similarities between ILC1 and cNK cells , they differ in several important aspects including their localization, transcriptional regulation, and phenotype suggesting each subset has distinct origins and functions in immune responses. Previously, the ability to detect and spontaneously kill cells that exhibit "altered-self" which is central to tumor and viral immunity has been thought to be an attribute restricted solely to cNK cells. The identification of ILC1 challenges this notion and suggests that key contributions from ILC1 may have gone unrecognized. Thus, understanding the different rules that govern the behavior of ILC1 and cNK cells in immune responses may potentially open unexpected doorways to uncover novel strategies to manipulate these cells in treating disease. Here, we review recent advances in our understanding of peripheral cNK cell and ILC1 heterogeneity in terms of their development, phenotype, homeostasis, and effector functions.
Collapse
Affiliation(s)
- Cyril Seillet
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Gabrielle T Belz
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Nicholas D Huntington
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
22
|
Sathe P, Delconte RB, Souza-Fonseca-Guimaraes F, Seillet C, Chopin M, Vandenberg CJ, Rankin LC, Mielke LA, Vikstrom I, Kolesnik TB, Nicholson SE, Vivier E, Smyth MJ, Nutt SL, Glaser SP, Strasser A, Belz GT, Carotta S, Huntington ND. Innate immunodeficiency following genetic ablation of Mcl1 in natural killer cells. Nat Commun 2014; 5:4539. [DOI: 10.1038/ncomms5539] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/27/2014] [Indexed: 02/06/2023] Open
|
23
|
Guimont-Desrochers F, Lesage S. Revisiting the Prominent Anti-Tumoral Potential of Pre-mNK Cells. Front Immunol 2013; 4:446. [PMID: 24376447 PMCID: PMC3858890 DOI: 10.3389/fimmu.2013.00446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/26/2013] [Indexed: 01/06/2023] Open
Abstract
Interferon-producing killer dendritic cells (IKDC) were first described for their outstanding anti-tumoral properties. The “IKDC” terminology implied the description of a novel DC subset and initiated a debate on their cellular lineage origin. This debate shifted the focus away from their notable anti-tumoral potential. IKDC were recently redefined as precursors to mature NK (mNK) cells and consequently renamed pre-mNK cells. Importantly, a putative human equivalent of pre-mNK cells was recently associated with improved disease outcome in cancer patients. It is thus timely to revisit the functional attributes as well as the therapeutic potential of pre-mNK cells in line with their newly defined NK-cell precursor function.
Collapse
Affiliation(s)
- Fanny Guimont-Desrochers
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital , Montreal, QC , Canada ; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal , Montreal, QC , Canada
| | - Sylvie Lesage
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital , Montreal, QC , Canada ; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal , Montreal, QC , Canada
| |
Collapse
|
24
|
Different combinations of cytokines and activating receptor stimuli are required for human natural killer cell functional diversity. Cytokine 2013; 62:58-63. [DOI: 10.1016/j.cyto.2013.02.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/14/2013] [Accepted: 02/11/2013] [Indexed: 11/23/2022]
|
25
|
Gleason MK, Verneris MR, Todhunter DA, Zhang B, McCullar V, Zhou SX, Panoskaltsis-Mortari A, Weiner LM, Vallera DA, Miller JS. Bispecific and trispecific killer cell engagers directly activate human NK cells through CD16 signaling and induce cytotoxicity and cytokine production. Mol Cancer Ther 2012; 11:2674-84. [PMID: 23075808 DOI: 10.1158/1535-7163.mct-12-0692] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study evaluates the mechanism by which bispecific and trispecific killer cell engagers (BiKEs and TriKEs) act to trigger human natural killer (NK) cell effector function and investigates their ability to induce NK cell cytokine and chemokine production against human B-cell leukemia. We examined the ability of BiKEs and TriKEs to trigger NK cell activation through direct CD16 signaling, measuring intracellular Ca²⁺ mobilization, secretion of lytic granules, induction of target cell apoptosis, and production of cytokine and chemokines in response to the Raji cell line and primary leukemia targets. Resting NK cells triggered by the recombinant reagents led to intracellular Ca²⁺ mobilization through direct CD16 signaling. Coculture of reagent-treated resting NK cells with Raji targets resulted in significant increases in NK cell degranulation and target cell death. BiKEs and TriKEs effectively mediated NK cytotoxicity of Raji targets at high and low effector-to-target ratios and maintained functional stability after 24 and 48 hours of culture in human serum. NK cell production of IFN-γ, TNF-α, granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-8, macrophage inflammatory protein (MIP)-1α, and regulated and normal T cell expressed and secreted (RANTES) was differentially induced in the presence of recombinant reagents and Raji targets. Moreover, significant increases in NK cell degranulation and enhancement of IFN-γ production against primary acute lymphoblastic leukemia and chronic lymphocytic leukemia targets were induced with reagent treatment of resting NK cells. In conclusion, BiKEs and TriKEs directly trigger NK cell activation through CD16, significantly increasing NK cell cytolytic activity and cytokine production against tumor targets, showing their therapeutic potential for enhancing NK cell immunotherapies for leukemias and lymphomas.
Collapse
Affiliation(s)
- Michelle K Gleason
- Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mouse natural killer cell development and maturation are differentially regulated by SHIP-1. Blood 2012; 120:4583-90. [PMID: 23034281 DOI: 10.1182/blood-2012-04-425009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The SH2-containing inositol phosphatase-1 (SHIP-1) is a 5' inositol phosphatase known to negatively regulate the product of phosphoinositide-3 kinase (PI3K), phosphatidylinositol-3.4,5-trisphosphate. SHIP-1 can be recruited to a large number of inhibitory receptors expressed on natural killer (NK) cells. However, its role in NK cell development, maturation, and functions is not well defined. In this study, we found that the absence of SHIP-1 results in a loss of peripheral NK cells. However, using chimeric mice we demonstrated that SHIP-1 expression is not required intrinsically for NK cell lineage development. In contrast, SHIP-1 is required cell autonomously for NK cell terminal differentiation. These findings reveal both a direct and indirect role for SHIP-1 at different NK cell development checkpoints. Notably, SHIP-1-deficient NK cells display an impaired ability to secrete IFN-γ during cytokine receptor-mediated responses, whereas immunoreceptor tyrosine-based activation motif containing receptor-mediated responses is not affected. Taken together, our results provide novel insights on how SHIP-1 participates in the development, maturation, and effector functions of NK cells.
Collapse
|
27
|
Rhee I, Veillette A. Protein tyrosine phosphatases in lymphocyte activation and autoimmunity. Nat Immunol 2012; 13:439-47. [PMID: 22513334 DOI: 10.1038/ni.2246] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lymphocyte activation must be tightly regulated to ensure sufficient immunity to pathogens and prevent autoimmunity. Protein tyrosine phosphatases (PTPs) serve critical roles in this regulation by controlling the functions of key receptors and intracellular signaling molecules in lymphocytes. In some cases, PTPs inhibit lymphocyte activation, whereas in others they promote it. Here we discuss recent progress in elucidating the roles and mechanisms of action of PTPs in lymphocyte activation. We also review the accumulating evidence that genetic alterations in PTPs are involved in human autoimmunity.
Collapse
Affiliation(s)
- Inmoo Rhee
- Laboratory of Molecular Oncology, Clinical Research Institute of Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
28
|
Tim-3 is an inducible human natural killer cell receptor that enhances interferon gamma production in response to galectin-9. Blood 2012; 119:3064-72. [PMID: 22323453 DOI: 10.1182/blood-2011-06-360321] [Citation(s) in RCA: 286] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
NK-cell function is regulated by the integration of signals received from activating and inhibitory receptors. Here we show that a novel immune receptor, T-cell Ig and mucin-containing domain-3 (Tim-3), is expressed on resting human NK cells and is up-regulated on activation. The NK92 NK-cell line engineered to overexpress Tim-3 showed a marked increase in IFN-γ production in the presence of soluble rhGal-9 or Raji tumor cells engineered to express Gal-9. The Tim-3(+) population of low-dose IL-12/IL-18-activated primary NK cells significantly increased IFN-γ production in response to soluble rhGal-9, Gal-9 presented by cell lines, and primary acute myelogenous leukemia (AML) targets that endogenously express Gal-9. This effect is highly specific as Tim-3 Ab blockade significantly decreased IFN-γ production, and Tim-3 cross-linking induced ERK activation and degradation of IκBα. Exposure to Gal-9-expressing target cells had little effect on CD107a degranulation. Reconstituted NK cells obtained from patients after hematopoietic cell transplantation had diminished expression of Tim-3 compared with paired donors. This observation correlates with the known IFN-γ defect seen early posttransplantation. In conclusion, we show that Tim-3 functions as a human NK-cell coreceptor to enhance IFN-γ production, which has important implications for control of infectious disease and cancer.
Collapse
|
29
|
Huntington ND, Alves NL, Legrand N, Lim A, Strick-Marchand H, Plet A, Weijer K, Jacques Y, Spits H, Di Santo JP. Autonomous and extrinsic regulation of thymopoiesis inhuman immune system (HIS) mice. Eur J Immunol 2011; 41:2883-2893. [DOI: 10.1002/eji.201141586] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
30
|
Shivtiel S, Lapid K, Kalchenko V, Avigdor A, Goichberg P, Kalinkovich A, Nagler A, Kollet O, Lapidot T. CD45 regulates homing and engraftment of immature normal and leukemic human cells in transplanted immunodeficient mice. Exp Hematol 2011; 39:1161-1170.e1. [PMID: 21911094 DOI: 10.1016/j.exphem.2011.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 08/21/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
Abstract
Bone marrow homing and engraftment by clinically transplanted hematopoietic stem and progenitor cells is a complex process that is not fully understood. We report that the pan-leukocyte CD45 phosphatase plays an essential role in trafficking and repopulation of the bone marrow by immature human CD34(+) cells and leukemic cells in transplanted nonobese diabetic severe combined immunodeficient mice. Inhibiting CD45 function by blocking antibodies or a CD45 inhibitor impaired the motility of both normal and leukemic human cells. Blocking CD45 inhibited homing and repopulation by immature human CD34(+) cells as well as homing of primary patient leukemic cells. In addition, CD45 inhibition negatively affected development of hematopoietic progenitors in vitro and their recovery in transplanted recipients in vivo, revealing the central role of CD45 in the regulation of hematopoiesis. Moreover, CD45 blockage induced a hyperadhesive phenotype in immature human progenitor cells as well as in murine leukocytes, leading to their defective adhesion interactions with endothelial cells. This phenotype was further manifested by the ability of CD45 blockage to prevent breakdown of adhesion interactions in the BM, which inhibited murine progenitor mobilization. The substantial effects of a direct CD45 inhibition point at its essential roles in cell trafficking, including murine progenitor cell mobilization and both normal immature and leukemic human hematopoietic cells as well as regulation of hematopoiesis and engraftment potential.
Collapse
Affiliation(s)
- Shoham Shivtiel
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mesecke S, Urlaub D, Busch H, Eils R, Watzl C. Integration of activating and inhibitory receptor signaling by regulated phosphorylation of Vav1 in immune cells. Sci Signal 2011; 4:ra36. [PMID: 21632469 DOI: 10.1126/scisignal.2001325] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Natural killer (NK) cells are effector cells of the immune system whose activation is carefully regulated by the interplay of signals from activating and inhibitory receptors. Signals from activating receptors induce phosphorylation of the guanine nucleotide exchange factor Vav1, whereas those from inhibitory receptors lead to the dephosphorylation of Vav1 by the Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1). Here, we used mathematical modeling and experiments with NK cells to gain insight into this integration of positive and negative signals at a molecular level. Our data showed a switch-like regulation of Vav1 phosphorylation, the extent of which correlated with the cytotoxic activity of NK cells. Comparison of our experimental results with the predictions that we derived from an ensemble of 72 mathematical models showed that a physical association between Src family kinases and activating receptors on NK cells was essential to generate the cytotoxic response. Our data support a central role for Vav1 in determining the cytotoxic activity of NK cells and provide insight into the molecular mechanism of the integration of positive and negative signals during lymphocyte activation.
Collapse
Affiliation(s)
- Sven Mesecke
- Division of Theoretical Bioinformatics, German Cancer Research Center, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
32
|
IL-15 transpresentation promotes both human T-cell reconstitution and T-cell-dependent antibody responses in vivo. Proc Natl Acad Sci U S A 2011; 108:6217-22. [PMID: 21444793 DOI: 10.1073/pnas.1019167108] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytokine immunotherapies targeting T lymphocytes are attractive clinical interventions against viruses and tumors. In the mouse, the homeostasis of memory α/β CD8(+) T cells and natural killer (NK) cells is significantly improved with increased IL-15 bioavailability. In contrast, the role of "transpresented" IL-15 on human T-cell development and homeostasis in vivo is unknown. We found that both CD8 and CD4 T cells in human immune system (HIS) mice are highly sensitive to transpresented IL-15 in vivo, with both naïve (CD62L(+)CD45RA(+)) and memory phenotype (CD62L(-)CD45RO(+)) subsets being significantly increased following IL-15 "boosting." The unexpected global improvement in human T-cell homeostasis involved enhanced proliferation and survival of both naïve and memory phenotype peripheral T cells, which potentiated B-cell responses by increasing the frequency of antigen-specific responses following immunization. Transpresented IL-15 did not modify T-cell activation patterns or alter the global T-cell receptor (TCR) repertoire diversity. Our results indicate an unexpected effect of IL-15 on human T cells in vivo, in particular on CD4(+) T cells. As IL-15 promotes human peripheral T-cell homeostasis and increases the frequency of neutralizing antibody responses in HIS mice, IL-15 immunotherapy could be envisaged as a unique approach to improve vaccine responses in the clinical setting.
Collapse
|
33
|
A role for Blimp1 in the transcriptional network controlling natural killer cell maturation. Blood 2011; 117:1869-79. [DOI: 10.1182/blood-2010-08-303123] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
Natural killer (NK) cells are innate lymphocytes capable of immediate effector functions including cytokine production and cytotoxicity. Compared with B and T cells, the factors that control the peripheral maturation of NK cells are poorly understood. We show that Blimp1, a transcriptional repressor required for the differentiation of plasma cells and short-lived effector T cells, is expressed by NK cells throughout their development. Interleukin 15 (IL-15) is required for the early induction of Blimp1 in NK cells, with expression increasing in the most mature subsets of mouse and human NK cells. We show that Blimp1 is required for NK-cell maturation and homeostasis and for regulating their proliferative potential. It is also essential for high granzyme B expression, but not for most cytokine production and cytotoxicity. Surprisingly, interferon regulatory factor 4 (IRF4) and B-cell lymphoma 6 (Bcl6), 2 transcription factors crucial for the regulation of Blimp1 in B and T cells, are largely dispensable for Blimp1 expression in NK cells. T-bet deficiency, however, leads to attenuated Blimp1 expression. We have identified NK cells as the first hematopoietic cell type in which the IRF4-Blimp1-Bcl6 regulatory axis is not in operation, highlighting the distinct nature of the NK-cell gene-regulatory network.
Collapse
|
34
|
Differential requirements for CD45 in NK-cell function reveal distinct roles for Syk-family kinases. Blood 2011; 117:3087-95. [PMID: 21245479 DOI: 10.1182/blood-2010-06-292219] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The protein tyrosine phosphatase CD45 is an important regulator of Src-family kinase activity. We found that in the absence of CD45, natural killer (NK) cells are defective in protecting the host from mouse cytomegalovirus infection. We show that although CD45 is necessary for all immunoreceptor tyrosine-based activation motif (ITAM)-specific NK-cell functions and processes such as degranulation, cytokine production, and expansion during viral infection, the impact of CD45 deficiency on ITAM signaling differs depending on the downstream function. CD45-deficient NK cells are normal in their response to inflammatory cytokines when administered ex vivo and in the context of viral infection. Syk and ζ chain-associated protein kinase 70 (Zap70) are thought to play redundant roles in transmitting ITAM signals in NK cells. We show that Syk, but not Zap70, controls the remaining CD45-independent, ITAM-specific NK-cell functions, demonstrating a functional difference between these 2 Syk-kinase family members in primary NK cells.
Collapse
|
35
|
Abstract
Natural killer (NK) cells play an important role in host defense against tumors and viruses and other infectious diseases. NK cell development is regulated by mechanisms that are both shared with and separate from other hematopoietic cell lineages. Functionally, NK cells use activating and inhibitory receptors to recognize both healthy and altered cells such as transformed or infected cells. Upon activation, NK cells produce cytokines and cytotoxic granules using mechanisms similar to other hematopoietic cell lineages especially cytotoxic T cells. Here we review the transcription factors that control NK cell development and function. Although many of these transcription factors are shared with other hematopoietic cell lineages, they control unexpected and unique aspects of NK cell biology. We review the mechanisms and target genes by which these transcriptional regulators control NK cell development and functional activity.
Collapse
Affiliation(s)
- David G T Hesslein
- Department of Microbiology and Immunology, The Cancer Research Institute, University of California, San Francisco, USA
| | | |
Collapse
|
36
|
Höglund P, Brodin P. Current perspectives of natural killer cell education by MHC class I molecules. Nat Rev Immunol 2010; 10:724-34. [PMID: 20818413 DOI: 10.1038/nri2835] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
From the early days of natural killer (NK) cell research, it was clear that MHC genes controlled the specificity of mouse NK cell-dependent responses, such as the ability to reject transplanted allogeneic bone marrow and to kill tumour cells. Although several mechanisms that are involved in this 'education' process have been clarified, most of the mechanisms have still to be identified. Here, we review the current understanding of the processes that are involved in NK cell education, including how the host MHC class I molecules regulate responsiveness and receptor repertoire formation in NK cells and the signalling pathways that are involved.
Collapse
Affiliation(s)
- Petter Höglund
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | | |
Collapse
|
37
|
Brzostek J, Chai JG, Gebhardt F, Busch DH, Zhao R, van der Merwe PA, Gould KG. Ligand dimensions are important in controlling NK-cell responses. Eur J Immunol 2010; 40:2050-9. [PMID: 20432238 PMCID: PMC2909396 DOI: 10.1002/eji.201040335] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/18/2010] [Accepted: 04/20/2010] [Indexed: 11/24/2022]
Abstract
Size-dependent protein segregation at the cell-cell contact interface has been suggested to be critical for regulation of lymphocyte function. We investigated the role of ligand dimensions in regulation of mouse NK-cell activation and inhibition. Elongated forms of H60a, a mouse NKG2D ligand, were generated and expressed stably in the RMA cell line. RMA cells expressing the normal size H60a were lysed efficiently by both freshly isolated and IL-2 stimulated C57BL/6 mouse-derived NK cells; however the level of lysis decreased as the H60a ligand size increased. Importantly, H60a elongation did not affect NKG2D binding, as determined by soluble NKG2D tetramer staining, and by examining NK-cell target cell conjugate formation. CHO cells are efficient at activating NK cells from C57BL/6 mice, and expression of a single chain form of H-2K(b), a ligand for the mouse inhibitory receptor Ly49C, strongly inhibited such activation of Ly49C/I positive NK cells. Elongation of H-2K(b) resulted in decreased inhibition of both lysis and IFN-gamma production by NK cells. These results establish that small ligand dimensions are important for both NK-cell activation and inhibition, and suggest that there are shared features between the mechanisms of receptor triggering on different types of lymphocytes.
Collapse
Affiliation(s)
- Joanna Brzostek
- Department of Immunology, Wright-Fleming Institute, Imperial College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
38
|
Saunders AE, Johnson P. Modulation of immune cell signalling by the leukocyte common tyrosine phosphatase, CD45. Cell Signal 2010; 22:339-48. [PMID: 19861160 DOI: 10.1016/j.cellsig.2009.10.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 10/18/2009] [Indexed: 01/01/2023]
Abstract
CD45 is a leukocyte specific transmembrane glycoprotein and a receptor-like protein tyrosine phosphatase (PTP). CD45 can be expressed as several alternatively spliced isoforms that differ in the extracellular domain. The isoforms are regulated in a cell type and activation state-dependent manner, yet their function has remained elusive. The Src family kinase members Lck and Lyn are key substrates for CD45 in T and B lymphocytes, respectively. CD45 lowers the threshold of antigen receptor signalling, which impacts T and B cell activation and development. CD45 also regulates antigen triggered Fc receptor signalling in mast cells and Toll-like receptor (TLR) signalling in dendritic cells, thus broadening the role of CD45 to other recognition receptors involved in adaptive and innate immunity. In addition, CD45 can affect immune cell adhesion and migration and can modulate cytokine production and signalling. Here we review what is known about the substrate specificity and regulation of CD45 and summarise its effect on immune cell signalling pathways, from its established role in T and B antigen receptor signalling to its emerging role regulating innate immune cell recognition and cytokine production.
Collapse
Affiliation(s)
- A E Saunders
- Department of Microbiology and Immunology, Life Sciences Institute, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | |
Collapse
|
39
|
Panchal RG, Ulrich RL, Bradfute SB, Lane D, Ruthel G, Kenny TA, Iversen PL, Anderson AO, Gussio R, Raschke WC, Bavari S. Reduced expression of CD45 protein-tyrosine phosphatase provides protection against anthrax pathogenesis. J Biol Chem 2009; 284:12874-85. [PMID: 19269962 DOI: 10.1074/jbc.m809633200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The modulation of cellular processes by small molecule inhibitors, gene inactivation, or targeted knockdown strategies combined with phenotypic screens are powerful approaches to delineate complex cellular pathways and to identify key players involved in disease pathogenesis. Using chemical genetic screening, we tested a library of known phosphatase inhibitors and identified several compounds that protected Bacillus anthracis infected macrophages from cell death. The most potent compound was assayed against a panel of sixteen different phosphatases of which CD45 was found to be most sensitive to inhibition. Testing of a known CD45 inhibitor and antisense phosphorodiamidate morpholino oligomers targeting CD45 also protected B. anthracis-infected macrophages from cell death. However, reduced CD45 expression did not protect anthrax lethal toxin (LT) treated macrophages, suggesting that the pathogen and independently added LT may signal through distinct pathways. Subsequent, in vivo studies with both gene-targeted knockdown of CD45 and genetically engineered mice expressing reduced levels of CD45 resulted in protection of mice after infection with the virulent Ames B. anthracis. Intermediate levels of CD45 expression were critical for the protection, as mice expressing normal levels of CD45 or disrupted CD45 phosphatase activity or no CD45 all succumbed to this pathogen. Mechanism-based studies suggest that the protection provided by reduced CD45 levels results from regulated immune cell homeostasis that may diminish the impact of apoptosis during the infection. To date, this is the first report demonstrating that reduced levels of host phosphatase CD45 modulate anthrax pathogenesis.
Collapse
Affiliation(s)
- Rekha G Panchal
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702-5011, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hermiston ML, Zikherman J, Zhu JW. CD45, CD148, and Lyp/Pep: critical phosphatases regulating Src family kinase signaling networks in immune cells. Immunol Rev 2009; 228:288-311. [PMID: 19290935 PMCID: PMC2739744 DOI: 10.1111/j.1600-065x.2008.00752.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reciprocal regulation of tyrosine phosphorylation by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) is central to normal immune cell function. Disruption of the equilibrium between PTK and PTP activity can result in immunodeficiency, autoimmunity, or malignancy. Src family kinases (SFKs) play a central role in both immune cell function and disease due to their proximal position in numerous signal transduction cascades including those emanating from integrin, T and B-cell antigen receptors, Fc, growth factor, and cytokine receptors. Given that tight regulation of SFKs activity is critical for appropriate responses to stimulation of these various signaling pathways, it is perhaps not surprising that multiple PTPs are involved in their regulation. Here, we focus on the role of three phosphatases, CD45, CD148, and LYP/PEP, which are critical regulators of SFKs in hematopoietic cells. We review our current understanding of their structures, expression, functions in different hematopoietic cell subsets, regulation, and putative roles in disease. Finally, we discuss remaining questions that must be addressed if we are to have a clearer understanding of the coordinated regulation of tyrosine phosphorylation and signaling networks in hematopoietic cells and how they could potentially be manipulated therapeutically in disease.
Collapse
Affiliation(s)
- Michelle L. Hermiston
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, Phone: 415-476-2413, Fax: 415-502-5127,
| | - Julie Zikherman
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, Phone: 415-476-4115, Fax: 502-5081, ;
| | - Jing W. Zhu
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, Phone: 415-476-4115, Fax: 502-5081, ;
| |
Collapse
|
41
|
Falahati R, Leitenberg D. Selective regulation of TCR signaling pathways by the CD45 protein tyrosine phosphatase during thymocyte development. THE JOURNAL OF IMMUNOLOGY 2009; 181:6082-91. [PMID: 18941197 DOI: 10.4049/jimmunol.181.9.6082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In CD45-deficient animals, there is a severe defect in thymocyte-positive selection, resulting in an absence of mature T cells and the accumulation of thymocytes at the DP stage of development. However, the signaling defect(s) responsible for the block in development of mature single-positive T cells is not well characterized. Previous studies have found that early signal transduction events in CD45-deficient cell lines and thymocytes are markedly diminished following stimulation with anti-CD3. Nevertheless, there are also situations in which T cell activation and TCR signaling events can be induced in the absence of CD45. For example, CD45-independent TCR signaling can be recovered upon simultaneous Ab cross-linking of CD3 and CD4 compared with cross-linking of CD3 alone. These data suggest that CD45 may differentially regulate TCR signaling events depending on the nature of the signal and/or on the differentiation state of the cell. In the current study, we have assessed the role of CD45 in regulating primary thymocyte activation following physiologic stimulation with peptide. Unlike CD3-mediated stimulation, peptide stimulation of CD45-deficient thymocytes induces diminished, but readily detectable TCR-mediated signaling events, such as phosphorylation of TCR-associated zeta, ZAP70, linker for activation of T cells, and Akt, and increased intracellular calcium concentration. In contrast, phosphorylation of ERK, which is essential for positive selection, is more severely affected in the absence of CD45. These data suggest that CD45 has a selective role in regulating different aspects of T cell activation.
Collapse
Affiliation(s)
- Rustom Falahati
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC 20037, USA
| | | |
Collapse
|
42
|
Huntington ND, Legrand N, Alves NL, Jaron B, Weijer K, Plet A, Corcuff E, Mortier E, Jacques Y, Spits H, Di Santo JP. IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. ACTA ACUST UNITED AC 2008; 206:25-34. [PMID: 19103877 PMCID: PMC2626663 DOI: 10.1084/jem.20082013] [Citation(s) in RCA: 432] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The in vivo requirements for human natural killer (NK) cell development and differentiation into cytotoxic effectors expressing inhibitory receptors for self-major histocompatibility complex class I (MHC-I; killer Ig-like receptors [KIRs]) remain undefined. Here, we dissect the role of interleukin (IL)-15 in human NK cell development using Rag2(-/-)gamma c(-/-) mice transplanted with human hematopoietic stem cells. Human NK cell reconstitution was intrinsically low in this model because of the poor reactivity to mouse IL-15. Although exogenous human IL-15 (hIL-15) alone made little improvement, IL-15 coupled to IL-15 receptor alpha (IL-15R alpha) significantly augmented human NK cells. IL-15-IL-15R alpha complexes induced extensive NK cell proliferation and differentiation, resulting in accumulation of CD16(+)KIR(+) NK cells, which was not uniquely dependent on enhanced survival or preferential responsiveness of this subset to IL-15. Human NK cell differentiation in vivo required hIL-15 and progressed in a linear fashion from CD56(hi)CD16(-)KIR(-) to CD56(lo)CD16(+)KIR(-), and finally to CD56(lo)CD16(+)KIR(+). These data provide the first evidence that IL-15 trans-presentation regulates human NK cell homeostasis. Use of hIL-15 receptor agonists generates a robust humanized immune system model to study human NK cells in vivo. IL-15 receptor agonists may provide therapeutic tools to improve NK cell reconstitution after bone marrow transplants, enhance graft versus leukemia effects, and increase the pool of IL-15-responsive cells during immunotherapy strategies.
Collapse
Affiliation(s)
- Nicholas D Huntington
- Immunology Department, 2 Institut National de la Santé et de la Recherche Médicale U668, 3 INSERM U883, Unité de Régulation Immunitaire et Vaccinologie, Institut Pasteur, Paris 75724, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Morel E, Bellón T. HLA class I molecules regulate IFN-gamma production induced in NK cells by target cells, viral products, or immature dendritic cells through the inhibitory receptor ILT2/CD85j. THE JOURNAL OF IMMUNOLOGY 2008; 181:2368-81. [PMID: 18684926 DOI: 10.4049/jimmunol.181.4.2368] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent advances support an important role for NK cells in determining immune responses beyond their cytolytic functions, which is supported by their capacity to secrete several cytokines and chemokines. In particular, NK-derived IFN-gamma has proven to be fundamental in shaping adaptive immune responses. Although the role of inhibitory NK receptors (iNKR) in the regulation of cytotoxicity has been widely explored, their involvement in the control of cytokine production has been scarcely analyzed. Specifically, no data are available referring to the role of the iNKR ILT2/CD85j in the regulation of IFN-gamma secretion by NK cells. Published data support a differential regulation of cytotoxicity and cytokine expression. Thus, formal proof of the involvement of HLA class I in regulating the production of cytokines through binding to ILT2/CD85j has been missing. We have determined the response of human NK-92 and primary human ILT2/CD85j(+) NK cells from healthy donors to target cells expressing or not HLA class I. We found specificities of HLA class I-mediated inhibition of IFN-gamma mRNA expression, protein production, and secretion consistent with the specific recognition by ILT2/CD85j. We also found inhibition of IFN-gamma production by ILT2/CD85j(+) T cells in response to superantigen stimulation. Furthermore, ligation of ILT2/CD85j inhibited the production of IFN-gamma in response to poly(I:C), and blocking of ILT2/CD85j-HLA class I interactions increased the secretion of IFN-gamma in NK/immature dendritic cell cocultures. The data support a role for self HLA class I in the regulation of IFN-gamma secretion at the mRNA and protein levels by interacting with the iNKR ILT2/CD85j.
Collapse
Affiliation(s)
- Esther Morel
- Research Unit, Hospital Universitario La Paz-Fundación para la Investigación Biomédica Hospital La Paz, Madrid, Spain
| | | |
Collapse
|
44
|
NK cell-activating receptors require PKC-theta for sustained signaling, transcriptional activation, and IFN-gamma secretion. Blood 2008; 112:4109-16. [PMID: 18784374 DOI: 10.1182/blood-2008-02-139527] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural killer (NK) cell sense virally infected cells and tumor cells through multiple cell surface receptors. Many NK cell-activating receptors signal through immunoreceptor tyrosine-based activation motif (ITAM)-containing adapters, which trigger both cytotoxicy and secretion of interferon-gamma (IFN-gamma). Within the ITAM pathway, distinct signaling intermediates are variably involved in cytotoxicity and/or IFN-gamma secretion. In this study, we have evaluated the role of protein kinase C- (PKC-) in NK-cell secretion of lytic mediators and IFN-gamma. We found that engagement of NK-cell receptors that signal through ITAMs results in prompt activation of PKC-. Analyses of NK cells from PKC--deficient mice indicated that PKC- is absolutely required for ITAM-mediated IFN-gamma secretion, whereas it has no marked influence on the release of cytolytic mediators. Moreover, we found that PKC- deficiency preferentially impairs sustained extracellular-regulated kinase signaling as well as activation of c-Jun N-terminal kinase and the transcription factors AP-1 and NFAT but does not affect activation of NF-kappaB. These results indicate that NK cell-activating receptors require PKC- to generate sustained intracellular signals that reach the nucleus and promote transcriptional activation, ultimately inducing IFN-gamma production.
Collapse
|
45
|
Hara H, Ishihara C, Takeuchi A, Xue L, Morris SW, Penninger JM, Yoshida H, Saito T. Cell type-specific regulation of ITAM-mediated NF-kappaB activation by the adaptors, CARMA1 and CARD9. THE JOURNAL OF IMMUNOLOGY 2008; 181:918-30. [PMID: 18606643 DOI: 10.4049/jimmunol.181.2.918] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activating NK cell receptors transduce signals through ITAM-containing adaptors, including FcRgamma and DAP12. Although the caspase recruitment domain (CARD)9-Bcl10 complex is essential for FcRgamma/DAP12-mediated NF-kappaB activation in myeloid cells, its involvement in NK cell receptor signaling is unknown. Herein we show that the deficiency of CARMA1 or Bcl10, but not CARD9, resulted in severe impairment of cytokine/chemokine production mediated by activating NK cell receptors due to a selective defect in NF-kappaB activation, whereas cytotoxicity mediated by the same receptors did not require CARMA1-Bcl10-mediated signaling. IkappaB kinase (IKK) activation by direct protein kinase C (PKC) stimulation with PMA plus ionomycin (P/I) was abrogated in CARMA1-deficient NK cells, similar to T and B lymphocytes, whereas CARD9-deficient dendritic cells (DCs) exhibited normal P/I-induced IKK activation. Surprisingly, CARMA1 deficiency also abrogated P/I-induced IKK activation in DCs, indicating that CARMA1 is essential for PKC-mediated NF-kappaB activation in all cell types, although the PKC-CARMA1 axis is not used downstream of myeloid ITAM receptors. Consistently, PKC inhibition abrogated ITAM receptor-mediated activation only in NK cells but not in DCs, suggesting PKC-CARMA1-independent, CARD9-dependent ITAM receptor signaling in myeloid cells. Conversely, the overexpression of CARD9 in CARMA1-deficient cells failed to restore the PKC-mediated NF-kappaB activation. Thus, NF-kappaB activation signaling through ITAM receptors is regulated by a cell type-specific mechanism depending on the usage of adaptors CARMA1 and CARD9, which determines the PKC dependence of the signaling.
Collapse
Affiliation(s)
- Hiromitsu Hara
- Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology, Yokohama City, Kanagawa, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Natural killer (NK) cells circulate through the blood, lymphatics and tissues, on patrol for the presence of transformed or pathogen-infected cells. As almost all NK cell receptors bind to host-encoded ligands, signals are constantly being transmitted into NK cells, whether they interact with normal or abnormal cells. The sophisticated repertoire of activating and inhibitory receptors that has evolved to regulate NK cell activity ensures that NK cells protect hosts against pathogens, yet prevents deleterious NK cell-driven autoimmune responses. Here I highlight recent advances in our understanding of the structural properties and signaling pathways of the inhibitory and activating NK cell receptors, with a particular focus on the ITAM-dependent activating receptors, the NKG2D-DAP10 receptor complexes and the CD244 receptor system.
Collapse
Affiliation(s)
- Lewis L Lanier
- Department of Microbiology and Immunology and the Cancer Research Institute, University of California San Francisco, San Francisco, California 94143-0414, USA.
| |
Collapse
|
47
|
Bryceson YT, Long EO. Line of attack: NK cell specificity and integration of signals. Curr Opin Immunol 2008; 20:344-52. [PMID: 18439809 DOI: 10.1016/j.coi.2008.03.005] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 03/09/2008] [Accepted: 03/10/2008] [Indexed: 12/13/2022]
Abstract
Natural killer (NK) cells possess potent cytolytic activity and secrete immune modulating cytokines. The large repertoire of NK cell receptors provides versatility for the identification of infected and transformed cells and for their elimination by NK cells. NK cell responses also stimulate and regulate the adaptive arm of the immune system. We review current knowledge about the molecular specificity of NK cell receptors and about the regulation of NK cell effector functions upon encounter with target cells. Mechanisms of recognition, interplay among receptors, signal integration, and the dynamic fine-tuning of NK cell responses are discussed. New insights into the molecular checkpoints for NK cell effector function are highlighted, and underlying reasons for the complexity in NK cell recognition and signaling are proposed.
Collapse
Affiliation(s)
- Yenan T Bryceson
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| | | |
Collapse
|
48
|
Malarkannan S, Regunathan J, Chu H, Kutlesa S, Chen Y, Zeng H, Wen R, Wang D. Bcl10 plays a divergent role in NK cell-mediated cytotoxicity and cytokine generation. THE JOURNAL OF IMMUNOLOGY 2007; 179:3752-62. [PMID: 17785812 DOI: 10.4049/jimmunol.179.6.3752] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activating receptors such as NKG2D and Ly49D mediate a multitude of effector functions including cytotoxicity and cytokine generation in NK cells. However, specific signaling events that are responsible for the divergence of distinct effector functions have yet to be determined. In this study, we show that lack of caspase recruitment domain-containing protein Bcl10 significantly affected receptor-mediated cytokine and chemokine generation, but not cytotoxicity against tumor cells representing "missing-self" or "induced-self." Lack of Bcl10 completely abrogated the generation of GM-CSF and chemokines and it significantly reduced the generation of IFN-gamma (>75%) in NK cells. Commitment, development, and terminal maturation of NK cells were largely unaffected in the absence of Bcl10. Although IL-2-activated NK cells could mediate cytotoxicity to the full extent, the ability of the freshly isolated NK cells to mediate cytotoxicity was somewhat reduced. Therefore, we conclude that the Carma1-Bcl10-Malt1 signaling axis is critical for cytokine and chemokine generation, although it is dispensable for cytotoxic granule release depending on the activation state of NK cells. These results indicate that Bcl10 represents an exclusive "molecular switch" that links the upstream receptor-mediated signaling to cytokine and chemokine generations.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/biosynthesis
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Antigens, Ly/physiology
- Antigens, Surface/physiology
- B-Cell CLL-Lymphoma 10 Protein
- CHO Cells
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line, Tumor
- Chemokines/antagonists & inhibitors
- Chemokines/biosynthesis
- Cricetinae
- Cricetulus
- Cytokines/antagonists & inhibitors
- Cytokines/biosynthesis
- Cytotoxicity, Immunologic/genetics
- Immunity, Innate/genetics
- Interleukin-2/physiology
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NK Cell Lectin-Like Receptor Subfamily A
- NK Cell Lectin-Like Receptor Subfamily B
- NK Cell Lectin-Like Receptor Subfamily K
- Receptors, Immunologic/physiology
- Receptors, NK Cell Lectin-Like
- Receptors, Natural Killer Cell
- Self Tolerance/genetics
- Self Tolerance/immunology
Collapse
|
49
|
Kim N, Saudemont A, Webb L, Camps M, Ruckle T, Hirsch E, Turner M, Colucci F. The p110delta catalytic isoform of PI3K is a key player in NK-cell development and cytokine secretion. Blood 2007; 110:3202-8. [PMID: 17644738 DOI: 10.1182/blood-2007-02-075366] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AbstractThe signal transduction pathways that lead activated natural killer (NK) cells to produce cytokines, releases cytotoxic granules, or do both, are not clearly dissected. For example, phosphoinositide 3-kinases (PI3Ks) are key players in the execution of both functions, but the relative contribution of each isoform is unknown. We show here that the catalytic isoform p110δ, not p110γ, was required for interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and granulocyte macrophage colony-stimulating factor (GM-CSF) secretion, whereas neither was necessary for cytotoxicity. Yet, when both p110δ and p110γ isoforms were inactivated by a combination of genetic and biochemical approaches, cytotoxicity was decreased. NK-cell numbers were also affected by the lack of p110δ but not p110γ and more severely so in mice lacking both subunits. These results provide genetic evidence that p110δ is the dominant PI3K isoform for cytokine secretion by NK cells and suggest that PI3Ks cooperate during NK-cell development and cytotoxicity.
Collapse
Affiliation(s)
- Nayoung Kim
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Huntington ND, Puthalakath H, Gunn P, Naik E, Michalak EM, Smyth MJ, Tabarias H, Degli-Esposti MA, Dewson G, Willis SN, Motoyama N, Huang DCS, Nutt SL, Tarlinton DM, Strasser A. Interleukin 15-mediated survival of natural killer cells is determined by interactions among Bim, Noxa and Mcl-1. Nat Immunol 2007; 8:856-63. [PMID: 17618288 PMCID: PMC2951739 DOI: 10.1038/ni1487] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 06/14/2007] [Indexed: 12/30/2022]
Abstract
Interleukin 15 (IL-15) promotes the survival of natural killer (NK) cells by preventing apoptosis through mechanisms unknown at present. Here we identify Bim, Noxa and Mcl-1 as key regulators of IL-15-dependent survival of NK cells. IL-15 suppressed apoptosis by limiting Bim expression through the kinases Erk1 and Erk2 and mechanisms dependent on the transcription factor Foxo3a, while promoting expression of Mcl-1, which was necessary and sufficient for the survival of NK cells. Withdrawal of IL-15 led to upregulation of Bim and, accordingly, both Bim-deficient and Foxo3a-/- NK cells were resistant to cytokine deprivation. Finally, IL-15-mediated inactivation of Foxo3a and cell survival were dependent on phosphotidylinositol-3-OH kinase. Thus, IL-15 regulates the survival of NK cells at multiple steps, with Bim and Noxa being key antagonists of Mcl-1, the critical survivor factor in this process.
Collapse
Affiliation(s)
- Nicholas D Huntington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|