1
|
Fan L, Tian C, Yang W, Liu X, Dhungana Y, Yang W, Tan H, Glazer ES, Yu J, Peng J, Ma L, Ni M, Zhu L. HKDC1 promotes liver cancer stemness under hypoxia through stabilizing β-catenin. Hepatology 2025; 81:1685-1699. [PMID: 39250463 PMCID: PMC12077336 DOI: 10.1097/hep.0000000000001085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND AND AIMS Hexokinases (HKs), a group of enzymes catalyzing the first step of glycolysis, have been shown to play important roles in liver metabolism and tumorigenesis. Our recent studies identified hexokinase domain containing 1 (HKDC1) as a top candidate associated with liver cancer metastasis. We aimed to compare its cell-type specificity with other HKs upregulated in liver cancer and investigate the molecular mechanisms underlying its involvement in liver cancer metastasis. APPROACH AND RESULTS We found that, compared to HK1 and HK2, the other 2 commonly upregulated HKs in liver cancer, HKDC1 was most strongly associated with the metastasis potential of tumors and organoids derived from 2 liver cancer mouse models we previously established. RNA in situ hybridization and single-cell RNA-seq analysis revealed that HKDC1 was specifically upregulated in malignant cells in HCC and cholangiocarcinoma patient tumors, whereas HK1 and HK2 were widespread across various tumor microenvironment lineages. An unbiased metabolomic profiling demonstrated that HKDC1 overexpression in HCC cells led to metabolic alterations distinct from those from HK1 and HK2 overexpression, with HKDC1 particularly impacting the tricarboxylic acid cycle. HKDC1 was prometastatic in HCC orthotopic and tail vein injection mouse models. Molecularly, HKDC1 was induced by hypoxia and bound to glycogen synthase kinase 3β to stabilize β-catenin, leading to enhanced stemness of HCC cells. CONCLUSIONS Overall, our findings underscore HKDC1 as a prometastatic HK specifically expressed in the malignant compartment of primary liver tumors, thereby providing a mechanistic basis for targeting this enzyme in advanced liver cancer.
Collapse
Affiliation(s)
- Li Fan
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Cheng Tian
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Wentao Yang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Xiaoli Liu
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Yogesh Dhungana
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Wenjian Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Evan S. Glazer
- Departments of Surgery and Cancer Center, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Min Ni
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Liqin Zhu
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
2
|
Fukuda T, Onoe T, Tanimine N, Saito A, Yamamoto R, Hashimoto T, Tazuma S, Sudo T, Kuraoka K, Tashiro H. A case of an alpha-fetoprotein-producing intrahepatic cholangiocarcinoma. Clin J Gastroenterol 2025; 18:535-540. [PMID: 40208463 DOI: 10.1007/s12328-025-02127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025]
Abstract
Alpha-fetoprotein is a well-known marker of hepatocellular carcinoma. Alpha-fetoprotein-producing intrahepatic cholangiocarcinoma is rare. This report detailed our experience with such a case and reviewed the relevant literature. A 71-year-old man underwent dynamic computed tomography, which revealed a 40-mm hepatic mass in S6 with early arterial phase enhancement and delayed phase washout. Analysis of tumor markers revealed elevated alpha-fetoprotein levels. Positron emission tomography-computed tomography indicated a maximum standardized uptake value of 3.70. Presuming hepatocellular carcinoma, we performed a laparoscopic subsegmentectomy of S6. However, immunohistochemical examination revealed that the tumor was cytokeratin 7- and cytokeratin 19-positive, whereas the Hepatocytes and glypican-3 were negative, with some cells expressing alpha-fetoprotein, leading to a final diagnosis of alpha-fetoprotein-producing intrahepatic cholangiocarcinoma. After surgery, the patient was followed up without postoperative adjuvant chemotherapy at his request. Six months later, the patient's alpha-fetoprotein level increased again, and computed tomography revealed multiple intrahepatic and lung metastases. Chemotherapy was subsequently initiated. Six courses were administered; however, the disease gradually worsened, and the patient died 13 months after surgery. Differentiating between hepatocellular carcinoma and intrahepatic cholangiocarcinoma is crucial because of divergent postoperative treatments. Although rare, alpha-fetoprotein-producing intrahepatic cholangiocarcinoma should be considered in liver tumors, even with isolated alpha-fetoprotein elevation.
Collapse
Affiliation(s)
- Takahiro Fukuda
- Department of Surgery, National Hospital Organization, Kure Medical Center, 3-1 Aoyama-cho, Kure , Hiroshima, 737-0023, Japan
| | - Takashi Onoe
- Department of Surgery, National Hospital Organization, Kure Medical Center, 3-1 Aoyama-cho, Kure , Hiroshima, 737-0023, Japan.
| | - Naoki Tanimine
- Department of Surgery, National Hospital Organization, Kure Medical Center, 3-1 Aoyama-cho, Kure , Hiroshima, 737-0023, Japan
| | - Akihisa Saito
- Department of Pathology, National Hospital Organization, Kure Medical Center, 3-1 Aoyama-Cho, Kure, Hiroshima, 737-0023, Japan
| | - Rie Yamamoto
- Department of Pathology, National Hospital Organization, Kure Medical Center, 3-1 Aoyama-Cho, Kure, Hiroshima, 737-0023, Japan
| | - Tatsunori Hashimoto
- Department of Surgery, National Hospital Organization, Kure Medical Center, 3-1 Aoyama-cho, Kure , Hiroshima, 737-0023, Japan
| | - Sho Tazuma
- Department of Surgery, National Hospital Organization, Kure Medical Center, 3-1 Aoyama-cho, Kure , Hiroshima, 737-0023, Japan
| | - Takeshi Sudo
- Department of Surgery, National Hospital Organization, Kure Medical Center, 3-1 Aoyama-cho, Kure , Hiroshima, 737-0023, Japan
| | - Kazuya Kuraoka
- Department of Pathology, National Hospital Organization, Kure Medical Center, 3-1 Aoyama-Cho, Kure, Hiroshima, 737-0023, Japan
| | - Hirotaka Tashiro
- Department of Surgery, National Hospital Organization, Kure Medical Center, 3-1 Aoyama-cho, Kure , Hiroshima, 737-0023, Japan
| |
Collapse
|
3
|
Zhang L, Xiong Z, Chen Z, Xu M, Zhao S, Liu X, Jiang K, Hu Y, Liu S, Sun X, Wu Z, Shen J, Wang L. Periplakin Attenuates Liver Fibrosis via Reprogramming CD44 Low Cells into CD44 High Liver Progenitor Cells. Cell Mol Gastroenterol Hepatol 2025; 19:101498. [PMID: 40107450 DOI: 10.1016/j.jcmgh.2025.101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND & AIMS Liver progenitor cells (LPCs) contribute significantly to the restoration of injured liver parenchyma and promote liver regeneration, thereby ameliorating liver fibrosis. However, the mechanism of the derivation of LPCs remains poorly understood. METHODS We first examined the expression of periplakin (PPL) in patients and mouse models with liver fibrosis. Adenovirus overexpressing PPL was injected into the tail vein of mouse models to detect the regulatory effect of PPL on liver fibrosis. Single-cell sequencing explored how PPL influences liver fibrosis progression. Additionally, PPL+CD44Low cells and PPL+CD44High LPCs were transplanted into 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced mouse models to assess their therapeutic efficacy in treating liver fibrosis. RESULTS The expression of PPL is upregulated in fibrotic livers in human and mouse models of liver fibrosis. Functionally, we found that PPL overexpression significantly attenuated liver fibrosis. Mechanistically, PPL was specifically expressed in LPCs and promoted LPC expansion. Moreover, we observed that PPL+ cells could be categorized into PPL+CD44Low and PPL+CD44High subsets, and PPL+CD44Low cells were found to redifferentiate into PPL+CD44High LPCs during liver fibrosis. Furthermore, transplantation of PPL+CD44High LPCs notably suppressed liver fibrosis. CONCLUSIONS These findings demonstrate that PPL+CD44Low cells can be reprogrammed into PPL+CD44High LPCs, which ameliorate liver fibrosis, suggesting a potential application of PPL for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Lichao Zhang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Zhiyong Xiong
- Department of General Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zebin Chen
- Center of Hepato-Pancreatico-Biliary Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meiyining Xu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Siyu Zhao
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xianzhi Liu
- Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kefeng Jiang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yunyi Hu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Shurui Liu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Zhongdao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Jia Shen
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Lifu Wang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Zhou X, Liu WM, Sun HY, Peng Y, Huang RJ, Chen CY, Zhang HD, Zhou SA, Wu HP, Tang D, Huang WJ, Wu H, Li QG, Zhai B, Xia Q, Yu WF, Yan HX. Hepatocyte-derived liver progenitor-like cells attenuate liver cirrhosis via induction of apoptosis in hepatic stellate cells. Hepatol Commun 2025; 9:e0614. [PMID: 39878682 PMCID: PMC11781762 DOI: 10.1097/hc9.0000000000000614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/12/2024] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Cell therapy demonstrates promising potential as a substitute therapeutic approach for liver cirrhosis. We have developed a strategy to effectively expand murine and human hepatocyte-derived liver progenitor-like cells (HepLPCs) in vitro. The primary objective of the present study was to apply HepLPCs to the treatment of liver cirrhosis and to elucidate the underlying mechanisms responsible for their therapeutic efficacy. METHODS The effects of allogeneic or xenogeneic HepLPC transplantation were investigated in rat model of liver cirrhosis. Liver tissues were collected and subjected to immunostaining to assess changes in histology. In vitro experiments used HSCs to explore the antifibrotic properties of HepLPC-secretomes and their underlying molecular mechanisms. Additionally, proteomic analysis was conducted to characterize the protein composition of HepLPC-secretomes. RESULTS Transplantation of HepLPCs resulted in decreased active fibrogenesis and net fibrosis in cirrhosis models. Apoptosis of HSCs was observed in vivo after HepLPC treatment. HepLPC-secretomes exhibited potent inhibition of TGF-β1-induced HSC activation and promoted apoptosis through signal transducer and activator of transcription (STAT)1-mediated pathways in vitro. Furthermore, synergistic effects between amphiregulin and FGF19 within HepLPC-secretomes were identified, contributing to HSC apoptosis and exerting antifibrotic effects via activation of the janus kinase-STAT1 pathway. CONCLUSIONS HepLPCs have the potential to ameliorate liver cirrhosis by inducing STAT1-dependent apoptosis in HSCs. Amphiregulin and FGF19 are key factors responsible for STAT1 activation, representing promising novel therapeutic targets for the treatment of liver cirrhosis.
Collapse
Affiliation(s)
- Xu Zhou
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Wen-Ming Liu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Han-Yong Sun
- Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuan Peng
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ren-Jie Huang
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai, China
| | - Cai-Yang Chen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong-Dan Zhang
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai, China
| | - Shen-Ao Zhou
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai, China
| | - Hong-Ping Wu
- Molecular Epidemiology Laboratory, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Dan Tang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Wei-Jian Huang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Han Wu
- Hubei Key Laboratory of Tumour Biological Behaviors, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qi-Gen Li
- Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bo Zhai
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiang Xia
- Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - He-Xin Yan
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Zhang S, Liu L, Li X, Zhou T, Shi Q, Li D, Ju X. Transcriptomic and proteomic sequencing unveils the role of vitamin D and metabolic flux shifts in the induction of human hepatic organoids. Stem Cell Res Ther 2024; 15:478. [PMID: 39696644 DOI: 10.1186/s13287-024-04101-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Hepatic organoids (HOs), validated through comparative sequencing with human liver tissues, are reliable models for liver research. Comprehensive transcriptomic and proteomic sequencing of HOs throughout their induction period will enhance the platform's utility, aiding in the elucidation of liver development's molecular mechanisms. METHODS We developed hepatic organoids (HOs) from embryonic stem cells (ESCs) through a de novo induction protocol, mimicking the stages of fetal liver development: ESCs to definitive endoderm (DE), then to foregut (FG), hepatoblasts (HB), and finally to HOs stage 1 (HO1), culminating in self-organizing HOs stage 2 (HO2) via dissociation and re-inoculation. The successful establishment of HOs was validated by immunofluorescence staining and RT-qPCR for specific markers. Comprehensive transcriptomic and proteomic sequencing and analysis were conducted on FG, HB, HO1, and HO2. RESULTS Our data suggest that several transcription factors (TFs) activated during the HB stage share overlapping target genes with the vitamin D receptor (VDR). Calcitriol, a direct activator of VDR, notably facilitated the FG to HB stage transition by activating VDR and enhancing key TFs, thereby promoting hepatic progenitor cell maturation. Furthermore, our findings revealed a significant transition towards glycolytic energy metabolism at the HO2 stage, characterized by increased glycolytic flux and reduced oxidative phosphorylation. Inhibition of glycolysis using 2-deoxy-D-glucose (2-DG) led to suppressed growth and differentiation at the HO2 stage. Analysis of signaling pathways indicated upregulation of the HIF-1 pathway, which is associated with glycolysis activation, as well as the MAPK and PI3K-AKT pathways, which regulate HIF-1α protein translation. CONCLUSIONS We elucidated a pivotal role for calcitriol in facilitating the transition from FG to HB by activating VDR and augmenting the expression of critical transcription factors (TFs). Besides, our research underscores a shift in metabolic pathways toward glycolytic energy metabolism in HO2 organoids. Overall, our multiomics approach reveals the intricate molecular regulation during the development of HOs.
Collapse
Affiliation(s)
- Shule Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan, 250012, Shandong, P.R. China
| | - Linghong Liu
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan, 250012, China
| | - Xianyu Li
- Experimental Research Center, Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Disease, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tiancheng Zhou
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Qing Shi
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan, 250012, China
| | - Dong Li
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan, 250012, China.
| | - Xiuli Ju
- Department of Pediatrics, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan, 250012, Shandong, P.R. China.
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan, 250012, China.
| |
Collapse
|
6
|
Watanabe M, Haeno H, Mimaki S, Tsuchihara K. Multistage carcinogenesis in occupational cholangiocarcinoma: the impact of clonal expansion and risk estimation. Genes Environ 2024; 46:21. [PMID: 39444007 PMCID: PMC11515581 DOI: 10.1186/s41021-024-00315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Both mutation induction and clonal expansion of mutated cells cause cancer. The probability of cancer development depends on mutations, clonal growth rates, and carcinogenic mechanisms. A recent study showed cases of occupational cholangiocarcinomas that originate multifocally, with higher mutation burden levels than those in common cholangiocarcinomas. This study aimed to identify the effect of clonal expansion on and estimate the risk of occupational and common intrahepatic cholangiocarcinomas (ICCs) using a multistage model modified to include the effect of cell expansion at any carcinogenic stage. METHODS The age-specific incidence of common ICC estimated from the Vital Statistics in Japan and the prognosis of ICC, and mutation frequencies of occupational and common ICC available from the previous report, were applied to a multistage model modified with cell proliferation effects. From the fittest model, the risk after exposure was estimated. RESULTS The required number of stages for carcinogenesis was estimated to be three based on the incidences and mutation frequencies of occupational and common ICCs. Based on this estimation, the predicted incidence curve under the model was similar to that estimated from the ICC mortality rate, except for older adults. The model indicated a minor effect of clonal expansion on the observed occupational ICC risk. It predicted a rapid decrease in ICC risk after the cessation of occupational exposure, although the time of clinical detection of cancer after the exposure was affected by latency. The model predicted an increase in cancer risk in older adults caused by cell expansion and common background mutations. However, the risk in older adults was overestimated in the case of common ICC; this divergence could influence occupational ICC cases. CONCLUSIONS Three-stage ICC carcinogenesis has been proposed. The high mutation burden levels caused by occupational exposure led to an immediate incidence of cancer. After a long period of relatively low cancer risk, an increased risk in older adults was also predicted.
Collapse
Affiliation(s)
- Masahiko Watanabe
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Okayama, 703-8516, Japan.
| | - Hiroshi Haeno
- Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba, 277-0022, Japan
| | - Sachiyo Mimaki
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Katsuya Tsuchihara
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| |
Collapse
|
7
|
Sánchez-Lanzas R, Jiménez-Pompa A, Ganuza M. The evolving hematopoietic niche during development. Front Mol Biosci 2024; 11:1488199. [PMID: 39417006 PMCID: PMC11480086 DOI: 10.3389/fmolb.2024.1488199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Mammalian hematopoietic stem cells (HSCs) emerge from the hemogenic endothelium in the major embryonic arteries. HSCs undergo a complex journey first migrating to the fetal liver (FL) and from there to the fetal bone marrow (FBM), where they mostly remain during adult life. In this process, a pool of adult HSCs is produced, which sustains lifelong hematopoiesis. Multiple cellular components support HSC maturation and expansion and modulate their response to environmental and developmental cues. While the adult HSC niche has been extensively studied over the last two decades, the niches present in the major embryonic arteries, FL, FBM and perinatal bone marrow (BM) are poorly described. Recent investigations highlight important differences among FL, FBM and adult BM niches and emphasize the important role that inflammation, microbiota and hormonal factors play regulating HSCs and their niches. We provide a review on our current understanding of these important cellular microenvironments across ontogeny. We mainly focused on mice, as the most widely used research model, and, when possible, include relevant insights from other vertebrates including birds, zebrafish, and human. Developing a comprehensive picture on these processes is critical to understand the earliest origins of childhood leukemia and to achieve multiple goals in regenerative medicine, such as mimicking HSC development in vitro to produce HSCs for broad transplantation purposes in leukemia, following chemotherapy, bone marrow failure, and in HSC-based gene therapy.
Collapse
Affiliation(s)
| | | | - Miguel Ganuza
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
8
|
Hu Y, Bao X, Zhang Z, Chen L, Liang Y, Qu Y, Zhou Q, Zhou X, Fang J, Xiao Z, Fu Y, Yang H, Liu W, Lv Y, Cao H, Chen G, Ping J, Zhang H, Mu Y, Liu C, Lin CP, Wu J, Liu P, Chen J. Hepatic progenitor cell-originated ductular reaction facilitates liver fibrosis through activation of hedgehog signaling. Theranostics 2024; 14:2379-2395. [PMID: 38646644 PMCID: PMC11024850 DOI: 10.7150/thno.91572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/17/2024] [Indexed: 04/23/2024] Open
Abstract
Background: It is poorly understood what cellular types participate in ductular reaction (DR) and whether DR facilitates recovery from injury or accelerates hepatic fibrosis. The aim of this study is to gain insights into the role of hepatic progenitor cell (HPC)-originated DR during fibrotic progression. Methods: DR in liver specimens of PBC, chronic HBV infection (CHB) or NAFLD, and four rodent fibrotic models by different pathogenic processes was evaluated. Gli1 expression was inhibited in rodent models or cell culture and organoid models by AAV-shGli1 or treating with GANT61. Results: Severity of liver fibrosis was positively correlated with DR extent in patients with PBC, CHB or NAFLD. HPCs were activated, expanded, differentiated into reactive cholangiocytes and constituted "HPC-originated DR", accompanying with exacerbated fibrosis in rodent models of HPC activation & proliferation (CCl4/2-AAF-treated), Μdr2-/- spontaneous PSC, BDL-cholestatic fibrosis or WD-fed/CCl4-treated NASH-fibrosis. Gli1 expression was significantly increased in enriched pathways in vivo and in vitro. Enhanced Gli1 expression was identified in KRT19+-reactive cholangiocytes. Suppressing Gli1 expression by administration of AAV-shGli1 or GANT61 ameliorated HPC-originated DR and fibrotic extent. KRT19 expression was reduced after GANT61 treatment in sodium butyrate-stimulated WB-F344 cells or organoids or in cells transduced with Gli1 knockdown lentiviral vectors. In contrast, KRT19 expression was elevated after transducing Gli1 overexpression lentiviral vectors in these cells. Conclusions: During various modes of chronic injury, Gli1 acted as an important mediator of HPC activation, expansion, differentiation into reactive cholangiocytes that formed DR, and subsequently provoked hepatic fibrogenesis.
Collapse
Affiliation(s)
- Yonghong Hu
- Institute of Liver diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
- Institute of Surgery of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinyu Bao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Zheng Zhang
- Institute of Liver diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Long Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue Liang
- Institute of Liver diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Yan Qu
- Department of Hepatobiliary Surgery, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qun Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoxi Zhou
- Institute of Liver diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Jing Fang
- Institute of Liver diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Zhun Xiao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yadong Fu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hailin Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei Liu
- Institute of Liver diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Ying Lv
- Institute of Liver diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Hongyan Cao
- Department of Gastroenterology, Shanghai University of Traditional Chinese Medicine Shanghai TCM - Integrated hospital, Shanghai 201203, China
| | - Gaofeng Chen
- Institute of Liver diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Jian Ping
- Institute of Liver diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Hua Zhang
- Institute of Liver diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Yongping Mu
- Institute of Liver diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Chenghai Liu
- Institute of Liver diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Jian Wu
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Ping Liu
- Institute of Liver diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiamei Chen
- Institute of Liver diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| |
Collapse
|
9
|
Faccioli LA, Dias ML, Martins-Santos R, Paredes BD, Takiya CM, dos Santos Goldenberg RC. Resident Liver Stem Cells. RESIDENT STEM CELLS AND REGENERATIVE THERAPY 2024:23-51. [DOI: 10.1016/b978-0-443-15289-4.00015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Du EJ, Muench MO. A Monocytic Barrier to the Humanization of Immunodeficient Mice. Curr Stem Cell Res Ther 2024; 19:959-980. [PMID: 37859310 PMCID: PMC10997744 DOI: 10.2174/011574888x263597231001164351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023]
Abstract
Mice with severe immunodeficiencies have become very important tools for studying foreign cells in an in vivo environment. Xenotransplants can be used to model cells from many species, although most often, mice are humanized through the transplantation of human cells or tissues to meet the needs of medical research. The development of immunodeficient mice is reviewed leading up to the current state-of-the-art strains, such as the NOD-scid-gamma (NSG) mouse. NSG mice are excellent hosts for human hematopoietic stem cell transplants or immune reconstitution through transfusion of human peripheral blood mononuclear cells. However, barriers to full hematopoietic engraftment still remain; notably, the survival of human cells in the circulation is brief, which limits overall hematological and immune reconstitution. Reports have indicated a critical role for monocytic cells - monocytes, macrophages, and dendritic cells - in the clearance of xenogeneic cells from circulation. Various aspects of the NOD genetic background that affect monocytic cell growth, maturation, and function that are favorable to human cell transplantation are discussed. Important receptors, such as SIRPα, that form a part of the innate immune system and enable the recognition and phagocytosis of foreign cells by monocytic cells are reviewed. The development of humanized mouse models has taken decades of work in creating more immunodeficient mice, genetic modification of these mice to express human genes, and refinement of transplant techniques to optimize engraftment. Future advances may focus on the monocytic cells of the host to find ways for further engraftment and survival of xenogeneic cells.
Collapse
Affiliation(s)
- Emily J. Du
- Vitalant Research Institute, 360 Spear Street, Suite 200, San Francisco, CA, 94105, USA
| | - Marcus O. Muench
- Vitalant Research Institute, 360 Spear Street, Suite 200, San Francisco, CA, 94105, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
11
|
Yoshihara M, Nakayama T, Takahashi S. Chromatin accessibility analysis suggested vascular induction of the biliary epithelium via the Notch signaling pathway in the human liver. BMC Res Notes 2023; 16:379. [PMID: 38129911 PMCID: PMC10734141 DOI: 10.1186/s13104-023-06674-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
The biliary epithelial cells (cholangiocytes) in the liver originate from undifferentiated liver parenchymal cells (hepatoblasts) that are located adjacent to the portal vein. This differentiation process is driven by Notch signaling, which is recognized for generating salt-and-pepper (fine-grained) patterns, in contrast to one- or two-cell layer (spatially confined) patterning in cholangiocyte differentiation. It is unclear how Notch signaling acts and localizes only in cholangiocytes. A computer simulation study suggested that low production rates of the ligands or receptors of Notch signaling are crucial for the spatially confined patterning, although biochemical examination is lacking. Here, we analyzed a publicly available single-cell ATAC-sequencing dataset from human fetal liver samples. We showed high chromatin accessibility for the ligands only in vascular cells, while that for the receptor is limited to a small population of hepatoblasts. This finding strengthens the previously proposed idea that low production rates of the ligands or receptors of Notch signaling enable vascular induction of cholangiocytes.
Collapse
Affiliation(s)
- Masaharu Yoshihara
- Department of Primary Care and Medical Education, Institute of Medicine, University of Tsukuba, Tsukuba, Japan.
- Laboratory Animal Resource Center, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Takahiro Nakayama
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
12
|
Sasikumar S, Chameettachal S, K N V, Kingshott P, Cromer B, Pati F. Strategic Replication of the Hepatic Zonation In Vitro Employing a Biomimetic Approach. ACS APPLIED BIO MATERIALS 2023; 6:5224-5234. [PMID: 38014618 DOI: 10.1021/acsabm.3c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The varied functions of the liver are dependent on the metabolic heterogeneity exhibited by the hepatocytes within the liver lobule spanning the porto-central axis. This complex phenomenon plays an important role in maintaining the physiological homeostasis of the liver. Standard in vitro culture models fail to mimic this spatial heterogeneity of hepatocytes, assuming a homogeneous population of cells, which leads to inaccurate translation of results. Here, we demonstrate the development of an in vitro model of hepatic zonation by mimicking the microarchitecture of the liver using a 3D printed mini bioreactor and decellularized liver matrix to provide the native microenvironmental cues. There was a differential expression of hypoxic and metabolic markers across the developed mini bioreactor, showing the establishment of gradients of oxygen, Wnt/β-catenin pathway, and other metabolic pathways. The model also showed the establishment of zone-dependent toxicity on treatment with acetaminophen. The developed model would thus be a promising avenue in the field of tissue engineering for understanding the liver physiology and pathophysiology and for drug screening to evaluate the potential of new pharmaceutical interventions.
Collapse
Affiliation(s)
- Shyama Sasikumar
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Shibu Chameettachal
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Vijayasankar K N
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- ARC Training Centre Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Brett Cromer
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| |
Collapse
|
13
|
Cardinale V, Lanthier N, Baptista PM, Carpino G, Carnevale G, Orlando G, Angelico R, Manzia TM, Schuppan D, Pinzani M, Alvaro D, Ciccocioppo R, Uygun BE. Cell transplantation-based regenerative medicine in liver diseases. Stem Cell Reports 2023; 18:1555-1572. [PMID: 37557073 PMCID: PMC10444572 DOI: 10.1016/j.stemcr.2023.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 08/11/2023] Open
Abstract
This review aims to evaluate the current preclinical state of liver bioengineering, the clinical context for liver cell therapies, the cell sources, the delivery routes, and the results of clinical trials for end-stage liver disease. Different clinical settings, such as inborn errors of metabolism, acute liver failure, chronic liver disease, liver cirrhosis, and acute-on-chronic liver failure, as well as multiple cellular sources were analyzed; namely, hepatocytes, hepatic progenitor cells, biliary tree stem/progenitor cells, mesenchymal stromal cells, and macrophages. The highly heterogeneous clinical scenario of liver disease and the availability of multiple cellular sources endowed with different biological properties make this a multidisciplinary translational research challenge. Data on each individual liver disease and more accurate endpoints are urgently needed, together with a characterization of the regenerative pathways leading to potential therapeutic benefit. Here, we critically review these topics and identify related research needs and perspectives in preclinical and clinical settings.
Collapse
Affiliation(s)
- Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.
| | - Nicolas Lanthier
- Service d'Hépato-gastroentérologie, Cliniques Universitaires Saint-Luc, Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Pedro M Baptista
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas (CIBERehd), Madrid, Spain; Fundación ARAID, Zaragoza, Spain; Department of Biomedical and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
| | - Guido Carpino
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry, and Morphological Sciences with Interest in Transplant, Oncology, and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giuseppe Orlando
- Section of Transplantation, Department of Surgery, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Roberta Angelico
- Hepatobiliary Surgery and Transplant Unit, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Tommaso Maria Manzia
- Hepatobiliary Surgery and Transplant Unit, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Detlef Schuppan
- Institute of Translational Immunology, Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, Division of Medicine, Royal Free Hospital, London, UK
| | - Domenico Alvaro
- Department of Translation and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy.
| | - Basak E Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
14
|
Zhang W, Xu Y, Wang X, Oikawa T, Su G, Wauthier E, Wu G, Sethupathy P, He Z, Liu J, Reid LM. Fibrolamellar carcinomas-growth arrested by paracrine signals complexed with synthesized 3-O sulfated heparan sulfate oligosaccharides. Matrix Biol 2023; 121:194-216. [PMID: 37402431 DOI: 10.1016/j.matbio.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/30/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023]
Abstract
Fibrolamellar carcinomas (FLCs), lethal tumors occurring in children to young adults, have genetic signatures implicating derivation from biliary tree stem cell (BTSC) subpopulations, co-hepato/pancreatic stem cells, involved in hepatic and pancreatic regeneration. FLCs and BTSCs express pluripotency genes, endodermal transcription factors, and stem cell surface, cytoplasmic and proliferation biomarkers. The FLC-PDX model, FLC-TD-2010, is driven ex vivo to express pancreatic acinar traits, hypothesized responsible for this model's propensity for enzymatic degradation of cultures. A stable ex vivo model of FLC-TD-2010 was achieved using organoids in serum-free Kubota's Medium (KM) supplemented with 0.1% hyaluronans (KM/HA). Heparins (10 ng/ml) caused slow expansion of organoids with doubling times of ∼7-9 days. Spheroids, organoids depleted of mesenchymal cells, survived indefinitely in KM/HA in a state of growth arrest for more than 2 months. Expansion was restored with FLCs co-cultured with mesenchymal cell precursors in a ratio of 3:7, implicating paracrine signaling. Signals identified included FGFs, VEGFs, EGFs, Wnts, and others, produced by associated stellate and endothelial cell precursors. Fifty-three, unique heparan sulfate (HS) oligosaccharides were synthesized, assessed for formation of high affinity complexes with paracrine signals, and each complex screened for biological activity(ies) on organoids. Ten distinct HS-oligosaccharides, all 10-12 mers or larger, and in specific paracrine signal complexes elicited particular biological responses. Of note, complexes of paracrine signals and 3-O sulfated HS-oligosaccharides elicited slowed growth, and with Wnt3a, elicited growth arrest of organoids for months. If future efforts are used to prepare HS-oligosaccharides resistant to breakdown in vivo, then [paracrine signal-HS-oligosaccharide] complexes are potential therapeutic agents for clinical treatments of FLCs, an exciting prospect for a deadly disease.
Collapse
Affiliation(s)
- Wencheng Zhang
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States; Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai 200123, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, United States; Glycan Therapeutics Corporation, 617 Hutton Street, Raleigh, NC 27606, United States
| | - Xicheng Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai 200123, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Tsunekazu Oikawa
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Guowei Su
- Glycan Therapeutics Corporation, 617 Hutton Street, Raleigh, NC 27606, United States
| | - Eliane Wauthier
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Guoxiu Wu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai 200123, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Praveen Sethupathy
- Division of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | - Zhiying He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai 200123, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, United States; Glycan Therapeutics Corporation, 617 Hutton Street, Raleigh, NC 27606, United States
| | - Lola M Reid
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States; Program in Molecular Biology and Biotechnology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, United States.
| |
Collapse
|
15
|
Zhang W, Wang X, Lanzoni G, Wauthier E, Simpson S, Ezzell JA, Allen A, Suitt C, Krolik J, Jhirad A, Dominguez-Bendala J, Cardinale V, Alvaro D, Overi D, Gaudio E, Sethupathy P, Carpino G, Adin C, Piedrahita JA, Mathews K, He Z, Reid LM. A postnatal network of co-hepato/pancreatic stem/progenitors in the biliary trees of pigs and humans. NPJ Regen Med 2023; 8:40. [PMID: 37528116 PMCID: PMC10394089 DOI: 10.1038/s41536-023-00303-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 05/23/2023] [Indexed: 08/03/2023] Open
Abstract
A network of co-hepato/pancreatic stem/progenitors exists in pigs and humans in Brunner's Glands in the submucosa of the duodenum, in peribiliary glands (PBGs) of intrahepatic and extrahepatic biliary trees, and in pancreatic duct glands (PDGs) of intrapancreatic biliary trees, collectively supporting hepatic and pancreatic regeneration postnatally. The network is found in humans postnatally throughout life and, so far, has been demonstrated in pigs postnatally at least through to young adulthood. These stem/progenitors in vivo in pigs are in highest numbers in Brunner's Glands and in PDGs nearest the duodenum, and in humans are in Brunner's Glands and in PBGs in the hepato/pancreatic common duct, a duct missing postnatally in pigs. Elsewhere in PDGs in pigs and in all PDGs in humans are only committed unipotent or bipotent progenitors. Stem/progenitors have genetic signatures in liver/pancreas-related RNA-seq data based on correlation, hierarchical clustering, differential gene expression and principal component analyses (PCA). Gene expression includes representative traits of pluripotency genes (SOX2, OCT4), endodermal transcription factors (e.g. SOX9, SOX17, PDX1), other stem cell traits (e.g. NCAM, CD44, sodium iodide symporter or NIS), and proliferation biomarkers (Ki67). Hepato/pancreatic multipotentiality was demonstrated by the stem/progenitors' responses under distinct ex vivo conditions or in vivo when patch grafted as organoids onto the liver versus the pancreas. Therefore, pigs are logical hosts for translational/preclinical studies for cell therapies with these stem/progenitors for hepatic and pancreatic dysfunctions.
Collapse
Affiliation(s)
- Wencheng Zhang
- Department of Cell Biology and Physiology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC, 27599, USA
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, 200123, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, 200335, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, 200120, Shanghai, China
| | - Xicheng Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, 200123, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, 200335, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, 200120, Shanghai, China
| | - Giacomo Lanzoni
- Diabetes Research Institute, Leonard Miller School of Medicine, 1450 N.W. 10th Avenue, Miami, FL, 33136, USA
| | - Eliane Wauthier
- Department of Cell Biology and Physiology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC, 27599, USA
| | - Sean Simpson
- Department of Molecular Biomedical Sciences, North Carolina State University (NCSU) College of Veterinary Medicine, Raleigh, NC, 27606, USA
- Comparative Medicine Institute, NCSU, Raleigh, NC, 27606, USA
| | - Jennifer Ashley Ezzell
- Department of Cell Biology and Physiology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC, 27599, USA
| | - Amanda Allen
- Department of Cell Biology and Physiology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC, 27599, USA
| | - Carolyn Suitt
- Center for Gastrointestinal Biology and Disease (CGIBD), UNC School of Medicine, Chapel Hill, NC, 27599, USA
| | - Jonah Krolik
- Department of Cell Biology and Physiology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC, 27599, USA
| | - Alexander Jhirad
- Department of Cell Biology and Physiology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC, 27599, USA
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, Leonard Miller School of Medicine, 1450 N.W. 10th Avenue, Miami, FL, 33136, USA
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University, Rome, Latina, 04100, Italy
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University, Rome, 00185, Italy
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University, Rome, 00161, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University, Rome, 00161, Italy
| | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA.
| | - Guido Carpino
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University, Rome, 00161, Italy.
| | - Christopher Adin
- Department of Clinical Sciences, Soft Tissue and Oncologic Surgery Service, College of Veterinary Medicine, NCSU, Raleigh, NC, 27606, USA.
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, 32608, USA.
| | - Jorge A Piedrahita
- Department of Molecular Biomedical Sciences, North Carolina State University (NCSU) College of Veterinary Medicine, Raleigh, NC, 27606, USA.
- Comparative Medicine Institute, NCSU, Raleigh, NC, 27606, USA.
| | - Kyle Mathews
- Department of Clinical Sciences, Soft Tissue and Oncologic Surgery Service, College of Veterinary Medicine, NCSU, Raleigh, NC, 27606, USA.
| | - Zhiying He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, 200123, Shanghai, China.
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, 200335, Shanghai, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, 200120, Shanghai, China.
| | - Lola McAdams Reid
- Department of Cell Biology and Physiology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC, 27599, USA.
- Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
16
|
Passman AM, Haughey MJ, Carlotti E, Williams MJ, Cereser B, Lin ML, Devkumar S, Gabriel JP, Gringeri E, Cillo U, Russo FP, Hoare M, ChinAleong J, Jansen M, Wright NA, Kocher HM, Huang W, Alison MR, McDonald SAC. Hepatocytes undergo punctuated expansion dynamics from a periportal stem cell niche in normal human liver. J Hepatol 2023; 79:417-432. [PMID: 37088309 DOI: 10.1016/j.jhep.2023.03.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND & AIMS While normal human liver is thought to be generally quiescent, clonal hepatocyte expansions have been observed, though neither their cellular source nor their expansion dynamics have been determined. Knowing the hepatocyte cell of origin, and their subsequent dynamics and trajectory within the human liver will provide an important basis to understand disease-associated dysregulation. METHODS Herein, we use in vivo lineage tracing and methylation sequence analysis to demonstrate normal human hepatocyte ancestry. We exploit next-generation mitochondrial sequencing to determine hepatocyte clonal expansion dynamics across spatially distinct areas of laser-captured, microdissected, clones, in tandem with computational modelling in morphologically normal human liver. RESULTS Hepatocyte clones and rare SOX9+ hepatocyte progenitors commonly associate with portal tracts and we present evidence that clones can lineage-trace with cholangiocytes, indicating the presence of a bipotential common ancestor at this niche. Within clones, we demonstrate methylation CpG sequence diversity patterns indicative of periportal not pericentral ancestral origins, indicating a portal to central vein expansion trajectory. Using spatial analysis of mitochondrial DNA variants by next-generation sequencing coupled with mathematical modelling and Bayesian inference across the portal-central axis, we demonstrate that patterns of mitochondrial DNA variants reveal large numbers of spatially restricted mutations in conjunction with limited numbers of clonal mutations. CONCLUSIONS These datasets support the existence of a periportal progenitor niche and indicate that clonal patches exhibit punctuated but slow growth, then quiesce, likely due to acute environmental stimuli. These findings crucially contribute to our understanding of hepatocyte dynamics in the normal human liver. IMPACT AND IMPLICATIONS The liver is mainly composed of hepatocytes, but we know little regarding the source of these cells or how they multiply over time within the disease-free human liver. In this study, we determine a source of new hepatocytes by combining many different lab-based methods and computational predictions to show that hepatocytes share a common cell of origin with bile ducts. Both our experimental and computational data also demonstrate hepatocyte clones are likely to expand in slow waves across the liver in a specific trajectory, but often lie dormant for many years. These data show for the first time the expansion dynamics of hepatocytes in normal liver and their cell of origin enabling the accurate measurment of changes to their dynamics that may lead to liver disease. These findings are important for researchers determining cancer risk in human liver.
Collapse
Affiliation(s)
- Adam M Passman
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Magnus J Haughey
- School of Mathematical Sciences, Queen Mary University of London, London, UK
| | - Emanuela Carlotti
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Marc J Williams
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Bianca Cereser
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Meng-Lay Lin
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Shruthi Devkumar
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jonathan P Gabriel
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Enrico Gringeri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Umberto Cillo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Matthew Hoare
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Marnix Jansen
- Department of Cellular Pathology, University College London, London, UK; UCL Cancer Centre, University College London, London, UK
| | - Nicholas A Wright
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Hermant M Kocher
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK; Cancer Tissue Bank, Barts Cancer Institute, Queen Mary University of London, London, UK; Barts and the London HPB Centre, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Weini Huang
- School of Mathematical Sciences, Queen Mary University of London, London, UK; Group of Theoretical Biology, The State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Malcolm R Alison
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Stuart A C McDonald
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
17
|
Zhang W, Cui Y, Du Y, Yang Y, Fang T, Lu F, Kong W, Xiao C, Shi J, Reid LM, He Z. Liver cell therapies: cellular sources and grafting strategies. Front Med 2023; 17:432-457. [PMID: 37402953 DOI: 10.1007/s11684-023-1002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/27/2023] [Indexed: 07/06/2023]
Abstract
The liver has a complex cellular composition and a remarkable regenerative capacity. The primary cell types in the liver are two parenchymal cell populations, hepatocytes and cholangiocytes, that perform most of the functions of the liver and that are helped through interactions with non-parenchymal cell types comprising stellate cells, endothelia and various hemopoietic cell populations. The regulation of the cells in the liver is mediated by an insoluble complex of proteins and carbohydrates, the extracellular matrix, working synergistically with soluble paracrine and systemic signals. In recent years, with the rapid development of genetic sequencing technologies, research on the liver's cellular composition and its regulatory mechanisms during various conditions has been extensively explored. Meanwhile breakthroughs in strategies for cell transplantation are enabling a future in which there can be a rescue of patients with end-stage liver diseases, offering potential solutions to the chronic shortage of livers and alternatives to liver transplantation. This review will focus on the cellular mechanisms of liver homeostasis and how to select ideal sources of cells to be transplanted to achieve liver regeneration and repair. Recent advances are summarized for promoting the treatment of end-stage liver diseases by forms of cell transplantation that now include grafting strategies.
Collapse
Affiliation(s)
- Wencheng Zhang
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Yangyang Cui
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
- Postgraduate Training Base of Shanghai East Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Yuan Du
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yong Yang
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Ting Fang
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Fengfeng Lu
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Weixia Kong
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Canjun Xiao
- Department of General Surgery, Ji'an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji'an, 343006, China
| | - Jun Shi
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Department of General Surgery, Ji'an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji'an, 343006, China
| | - Lola M Reid
- Department of Cell Biology and Physiology and Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, USA.
| | - Zhiying He
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China.
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| |
Collapse
|
18
|
Rizvi F, Lee YR, Diaz-Aragon R, So J, Florentino RM, Smith AR, Everton E, Ostrowska A, Jung K, Tam Y, Muramatsu H, Pardi N, Weissman D, Soto-Gutierrez A, Shin D, Gouon-Evans V. VEGFA mRNA-LNP promotes biliary epithelial cell-to-hepatocyte conversion in acute and chronic liver diseases and reverses steatosis and fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537186. [PMID: 37131823 PMCID: PMC10153196 DOI: 10.1101/2023.04.17.537186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The liver is known for its remarkable regenerative ability through proliferation of hepatocytes. Yet, during chronic injury or severe hepatocyte death, proliferation of hepatocytes is exhausted. To overcome this hurdle, we propose vascular-endothelial-growth-factor A (VEGFA) as a therapeutic means to accelerate biliary epithelial cell (BEC)-to-hepatocyte conversion. Investigation in zebrafish establishes that blocking VEGF receptors abrogates BEC-driven liver repair, while VEGFA overexpression promotes it. Delivery of VEGFA via non-integrative and safe nucleoside-modified mRNA encapsulated into lipid-nanoparticles (mRNA-LNP) in acutely or chronically injured mouse livers induces robust BEC-to-hepatocyte conversion and reversion of steatosis and fibrosis. In human and murine diseased livers, we further identified VEGFA-receptor KDR-expressing BECs associated with KDR-expressing cell-derived hepatocytes. This defines KDR-expressing cells, most likely being BECs, as facultative progenitors. This study reveals novel therapeutic benefits of VEGFA delivered via nucleoside-modified mRNA-LNP, whose safety is widely validated with COVID-19 vaccines, for harnessing BEC-driven repair to potentially treat liver diseases. Highlights Complementary mouse and zebrafish models of liver injury demonstrate the therapeutic impact of VEGFA-KDR axis activation to harness BEC-driven liver regeneration.VEGFA mRNA LNPs restore two key features of the chronic liver disease in humans such as steatosis and fibrosis.Identification in human cirrhotic ESLD livers of KDR-expressing BECs adjacent to clusters of KDR+ hepatocytes suggesting their BEC origin.KDR-expressing BECs may represent facultative adult progenitor cells, a unique BEC population that has yet been uncovered.
Collapse
|
19
|
Huppert SS, Schwartz RE. Multiple Facets of Cellular Homeostasis and Regeneration of the Mammalian Liver. Annu Rev Physiol 2023; 85:469-493. [PMID: 36270290 PMCID: PMC9918695 DOI: 10.1146/annurev-physiol-032822-094134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Liver regeneration occurs in response to diverse injuries and is capable of functionally reestablishing the lost parenchyma. This phenomenon has been known since antiquity, encapsulated in the Greek myth where Prometheus was to be punished by Zeus for sharing the gift of fire with humanity by having an eagle eat his liver daily, only to have the liver regrow back, thus ensuring eternal suffering and punishment. Today, this process is actively leveraged clinically during living donor liver transplantation whereby up to a two-thirds hepatectomy (resection or removal of part of the liver) on a donor is used for transplant to a recipient. The donor liver rapidly regenerates to recover the lost parenchymal mass to form a functional tissue. This astonishing regenerative process and unique capacity of the liver are examined in further detail in this review.
Collapse
Affiliation(s)
- Stacey S Huppert
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA;
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA;
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
20
|
Muench MO, Fomin ME, Gutierrez AG, López-Terrada D, Gilfanova R, Nosworthy C, Beyer AI, Ostolaza G, Kats D, Matlock KL, Cairo S, Keller C. CD203c is expressed by human fetal hepatoblasts and distinguishes subsets of hepatoblastoma. Front Oncol 2023; 13:927852. [PMID: 36845728 PMCID: PMC9947649 DOI: 10.3389/fonc.2023.927852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Background & Aims Hepatocytic cells found during prenatal development have unique features compared to their adult counterparts, and are believed to be the precursors of pediatric hepatoblastoma. The cell-surface phenotype of hepatoblasts and hepatoblastoma cell lines was evaluated to discover new markers of these cells and gain insight into the development of hepatocytic cells and the phenotypes and origins of hepatoblastoma. Methods Human midgestation livers and four pediatric hepatoblastoma cell lines were screened using flow cytometry. Expression of over 300 antigens was evaluated on hepatoblasts defined by their expression of CD326 (EpCAM) and CD14. Also analyzed were hematopoietic cells, expressing CD45, and liver sinusoidal-endothelial cells (LSECs), expressing CD14 but lacking CD45 expression. Select antigens were further examined by fluorescence immunomicroscopy of fetal liver sections. Antigen expression was also confirmed on cultured cells by both methods. Gene expression analysis by liver cells, 6 hepatoblastoma cell lines, and hepatoblastoma cells was performed. Immunohistochemistry was used to evaluate CD203c, CD326, and cytokeratin-19 expression on three hepatoblastoma tumors. Results Antibody screening identified many cell surface markers commonly or divergently expressed by hematopoietic cells, LSECs, and hepatoblasts. Thirteen novel markers expressed on fetal hepatoblasts were identified including ectonucleotide pyrophosphatase/phosphodiesterase family member 3 (ENPP-3/CD203c), which was found to be expressed by hepatoblasts with widespread expression in the parenchyma of the fetal liver. In culture CD203c+CD326++ cells resembled hepatocytic cells with coexpression of albumin and cytokeratin-19 confirming a hepatoblast phenotype. CD203c expression declined rapidly in culture whereas the loss of CD326 was not as pronounced. CD203c and CD326 were co-expressed on a subset of hepatoblastoma cell lines and hepatoblastomas with an embryonal pattern. Conclusions CD203c is expressed on hepatoblasts and may play a role in purinergic signaling in the developing liver. Hepatoblastoma cell lines were found to consist of two broad phenotypes consisting of a cholangiocyte-like phenotype that expressed CD203c and CD326 and a hepatocyte-like phenotype with diminished expression of these markers. CD203c was expressed by some hepatoblastoma tumors and may represent a marker of a less differentiated embryonal component.
Collapse
Affiliation(s)
- Marcus O. Muench
- Vitalant Research Institute, San Francisco, CA, United States,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States,*Correspondence: Marcus O. Muench,
| | - Marina E. Fomin
- Vitalant Research Institute, San Francisco, CA, United States
| | | | - Dolores López-Terrada
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States,Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX, United States
| | | | | | - Ashley I. Beyer
- Vitalant Research Institute, San Francisco, CA, United States
| | | | - Dina Kats
- Pediatric Cancer Biology, Children’s Cancer Therapy Development Institute, Beaverton, OR, United States
| | | | - Stefano Cairo
- Research and Development Unit, XenTech, Evry, France
| | - Charles Keller
- Pediatric Cancer Biology, Children’s Cancer Therapy Development Institute, Beaverton, OR, United States
| |
Collapse
|
21
|
Kim M, Rizvi F, Shin D, Gouon-Evans V. Update on Hepatobiliary Plasticity. Semin Liver Dis 2023; 43:13-23. [PMID: 36764306 PMCID: PMC10005859 DOI: 10.1055/s-0042-1760306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The liver field has been debating for decades the contribution of the plasticity of the two epithelial compartments in the liver, hepatocytes and biliary epithelial cells (BECs), to derive each other as a repair mechanism. The hepatobiliary plasticity has been first observed in diseased human livers by the presence of biphenotypic cells expressing hepatocyte and BEC markers within bile ducts and regenerative nodules or budding from strings of proliferative BECs in septa. These observations are not surprising as hepatocytes and BECs derive from a common fetal progenitor, the hepatoblast, and, as such, they are expected to compensate for each other's loss in adults. To investigate the cell origin of regenerated cell compartments and associated molecular mechanisms, numerous murine and zebrafish models with ability to trace cell fates have been extensively developed. This short review summarizes the clinical and preclinical studies illustrating the hepatobiliary plasticity and its potential therapeutic application.
Collapse
Affiliation(s)
- Minwook Kim
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Fatima Rizvi
- Department of Medicine, Gastroenterology Section, Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts
| | - Donghun Shin
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Valerie Gouon-Evans
- Department of Medicine, Gastroenterology Section, Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts
| |
Collapse
|
22
|
Cardinale V, Carpino G, Overi D, Safarikia S, Zhang W, Kanke M, Franchitto A, Costantini D, Riccioni O, Nevi L, Chiappetta M, Onori P, Franchitto M, Bini S, Hung YH, Lai Q, Zizzari I, Nuti M, Nicoletti C, Checquolo S, Di Magno L, Giuli MV, Rossi M, Sethupathy P, Reid LM, Alvaro D, Gaudio E. Human duodenal submucosal glands contain a defined stem/progenitor subpopulation with liver-specific regenerative potential. J Hepatol 2023; 78:165-179. [PMID: 36089156 DOI: 10.1016/j.jhep.2022.08.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/25/2022] [Accepted: 08/23/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS Common precursors for the liver, biliary tree, and pancreas exist at an early stage of development in the definitive endoderm forming the foregut. We have identified and characterised endodermal stem/progenitor cells with regenerative potential persisting in the adult human duodenum. METHODS Human duodena were obtained from organ donors, and duodenal submucosal gland cells were isolated after removal of the mucosa layer. Cells were cultured on plastic or as organoids and were transplanted into severe combined immunodeficient (SCID) mouse livers. RESULTS In situ studies of submucosal glands in the human duodenum revealed cells expressing stem/progenitor cell markers that had unique phenotypic traits distinguishable from intestinal crypt cells. Genetic signature studies indicated that the cells are closer to biliary tree stem cells and to definitive endodermal cells than to adult hepatocytes, supporting the interpretation that they are endodermal stem/progenitor cells. In vitro, human duodenal submucosal gland cells demonstrated clonal growth, capability to form organoids, and ability to acquire functional hepatocyte traits. In vivo, transplanted cells engrafted into the livers of immunocompromised mice and differentiated to mature liver cells. In an experimental model of fatty liver, human duodenal submucosal gland cells were able to rescue hosts from liver damage by supporting repopulation and regeneration of the liver. CONCLUSIONS A cell population with clonal growth and organoid formation capability, which has liver differentiation potency in vitro and in vivo in murine experimental models, is present within adult duodenal submucosal glands. These cells can be isolated, do not require reprogramming, and thus could potentially represent a novel cell source for regenerative medicine of the liver. IMPACT AND IMPLICATIONS Cell therapies for liver disease could represent an option to support liver function, but the identification of sustainable and viable cell sources is critical. Here, we describe a cell population with organoid formation capability and liver-specific regenerative potential in submucosal glands of the human duodenum. Duodenal submucosal gland cells are isolated from adult organs, do not require reprogramming, and could rescue hepatocellular damage in preclinical models of chronic, but not acute, liver injury. Duodenal submucosal gland cells could represent a potential candidate cell source for regenerative medicine of the liver, but the determination of cell dose and toxicity is needed before clinical testing in humans.
Collapse
Affiliation(s)
- Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome 'Foro Italico', Rome, Italy.
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Samira Safarikia
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Wencheng Zhang
- Department of Cell Biology and Physiology and Program in Molecular Biology and Biotechnology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Daniele Costantini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Olga Riccioni
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Nevi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Michele Chiappetta
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Matteo Franchitto
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Simone Bini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Yu-Han Hung
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Quirino Lai
- Department of General Surgery and Organ Transplantation, Sapienza University of Rome, Rome, Italy
| | - Ilaria Zizzari
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marianna Nuti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Carmine Nicoletti
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Laura Di Magno
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Massimo Rossi
- Department of General Surgery and Organ Transplantation, Sapienza University of Rome, Rome, Italy
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Lola M Reid
- Department of Cell Biology and Physiology and Program in Molecular Biology and Biotechnology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
23
|
Nambiar SM, Lee J, Yanum JA, Garcia V, Jiang H, Dai G. Maternal hepatocytes heterogeneously and dynamically exhibit developmental phenotypes partially via yes-associated protein 1 during pregnancy. Am J Physiol Gastrointest Liver Physiol 2023; 324:G38-G50. [PMID: 36283963 PMCID: PMC9799147 DOI: 10.1152/ajpgi.00197.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 02/08/2023]
Abstract
Pregnancy induces reprogramming of maternal physiology to support fetal development and growth. Maternal hepatocytes undergo hypertrophy and hyperplasia to drive maternal liver growth and alter their gene expression profiles simultaneously. This study aimed to further understand maternal hepatocyte adaptation to pregnancy. Timed pregnancies were generated in mice. In a nonpregnant state, most hepatocytes expressed Cd133, α-fetal protein (Afp) and epithelial cell adhesion molecule (Epcam) mRNAs, whereas overall, at the protein level, they exhibited a CD133-/AFP- phenotype; however, pericentral hepatocytes were EpCAM+. As pregnancy advanced, although most maternal hepatocytes retained Cd133, Afp, and Epcam mRNA expression, they generally displayed a phenotype of CD133+/AFP+, and EpCAM protein expression was switched from pericentral to periportal maternal hepatocytes. In addition, we found that the Hippo/yes-associated protein (YAP) pathway does not respond to pregnancy. Yap1 gene deletion specifically in maternal hepatocytes did not affect maternal liver growth or metabolic zonation. However, the absence of Yap1 gene eliminated CD133 protein expression without interfering with Cd133 transcript expression in maternal livers. We demonstrated that maternal hepatocytes acquire heterogeneous and dynamic developmental phenotypes, resembling fetal hepatocytes, partially via YAP1 through a posttranscriptional mechanism. Moreover, maternal liver is a new source of AFP. In addition, maternal liver grows and maintains its metabolic zonation independent of the Hippo/YAP1 pathway. Our findings revealed a novel and gestation-dependent phenotypic plasticity in adult hepatocytes.NEW & NOTEWORTHY We found that maternal hepatocytes exhibit developmental phenotypes in a temporal and spatial manner, similarly to fetal hepatocytes. They acquire this new property partially via yes-associated protein 1.
Collapse
Affiliation(s)
- Shashank Manohar Nambiar
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Joonyong Lee
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Jennifer Abla Yanum
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Veronica Garcia
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Huaizhou Jiang
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Guoli Dai
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
24
|
Muench MO, Nosworthy C. Antibody screening data of human midgestation liver cells with a focus on hematopoietic, liver sinusoidal endothelial, and hepatoblast cell-populations. BMC Res Notes 2022; 15:358. [PMID: 36474299 PMCID: PMC9724407 DOI: 10.1186/s13104-022-06229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 09/23/2022] [Accepted: 10/14/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Cell-surface antigen screening was performed on human fetal liver cells using flow cytometry. The goal was to provide proteomic expression data on a number of human fetal liver cell populations that can inform studies on developmental hepatology and hematology. DATA DESCRIPTION A 21 weeks' gestation liver was depleted of erythrocytes prior to antibody staining. Screening was performed using phycoerythrin-labelled antibodies against 332 antigens. In addition to these antibodies, all samples were stained for CD14, CD45, CD235a, and CD326 (epithelial cell adhesion molecule - EpCAM). Subpopulations of fetal liver cells were identified using the co-stained antigens. Hematopoietic cells were identified by their expression of CD45 and CD235a; non-hematopoietic cells were further subdivided based on CD14 and CD326 expression. CD326++CD14low hepatoblasts and CD14++ liver sinusoidal endothelial cells were analyzed for the frequency and intensity of antigen expression. Analyzed flow cytometry data are presented for the expression of the antigens on hematopoietic cells and on non-hematopoietic cells in the context of CD14 and CD326 expression.
Collapse
Affiliation(s)
- Marcus O. Muench
- Vitalant Research Institute, 360 Spear Street, Suite 200, 94105 San Francisco, CA USA
- Department of Laboratory Medicine, University of California, 94141 San Francisco, CA USA
| | - Christopher Nosworthy
- Vitalant Research Institute, 360 Spear Street, Suite 200, 94105 San Francisco, CA USA
| |
Collapse
|
25
|
Petrosyan A, Montali F, Peloso A, Citro A, Byers LN, La Pointe C, Suleiman M, Marchetti A, Mcneill EP, Speer AL, Ng WH, Ren X, Bussolati B, Perin L, Di Nardo P, Cardinale V, Duisit J, Monetti AR, Savino JR, Asthana A, Orlando G. Regenerative medicine technologies applied to transplant medicine. An update. Front Bioeng Biotechnol 2022; 10:1015628. [PMID: 36263358 PMCID: PMC9576214 DOI: 10.3389/fbioe.2022.1015628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Regenerative medicine (RM) is changing how we think and practice transplant medicine. In regenerative medicine, the aim is to develop and employ methods to regenerate, restore or replace damaged/diseased tissues or organs. Regenerative medicine investigates using tools such as novel technologies or techniques, extracellular vesicles, cell-based therapies, and tissue-engineered constructs to design effective patient-specific treatments. This review illustrates current advancements in regenerative medicine that may pertain to transplant medicine. We highlight progress made and various tools designed and employed specifically for each tissue or organ, such as the kidney, heart, liver, lung, vasculature, gastrointestinal tract, and pancreas. By combing both fields of transplant and regenerative medicine, we can harbor a successful collaboration that would be beneficial and efficacious for the repair and design of de novo engineered whole organs for transplantations.
Collapse
Affiliation(s)
- Astgik Petrosyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Filippo Montali
- Department of General Surgery, di Vaio Hospital, Fidenza, Italy
| | - Andrea Peloso
- Visceral Surgery Division, University Hospitals of Geneva, Geneva, Switzerland
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Lori N. Byers
- Wake Forest School of Medicine, Winston Salem, NC, United States
| | | | - Mara Suleiman
- Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alice Marchetti
- Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Eoin P. Mcneill
- Department of Pediatric Surgery, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Allison L Speer
- Department of Pediatric Surgery, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Wai Hoe Ng
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Paolo Di Nardo
- Centro Interdipartimentale per la Medicina Rigenerativa (CIMER), Università Degli Studi di Roma Tor Vergata, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Jerome Duisit
- Department of Plastic, Reconstructive and Aesthetic Surgery, CHU Rennes, University of Rennes I, Rennes, France
| | | | | | - Amish Asthana
- Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Giuseppe Orlando
- Wake Forest School of Medicine, Winston Salem, NC, United States
| |
Collapse
|
26
|
Guo J, Wang S, Gao Q. Can next-generation humanized mice that reconstituted with both functional human immune system and hepatocytes model the progression of viral hepatitis to hepatocarcinogenesis? Front Med (Lausanne) 2022; 9:1002260. [PMID: 36213658 PMCID: PMC9537463 DOI: 10.3389/fmed.2022.1002260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
Hepatitis B virus (HBV) and Hepatitis C virus (HCV) chronic infections cause liver immunopathological diseases such as hepatitis, fibrosis, cirrhosis, and hepatocellular carcinomas, which are difficult to treat and continue to be major health problems globally. Due to the species-specific hepato-tropism of HBV and HCV, conventional rodent models are limited in their utility for studying the infection and associated liver immunopathogenesis. Humanized mice reconstituted with both functional human immune system and hepatocytes (HIS-HuHEP mice) have been extremely instrumental for in vivo studies of HBV or HCV infection and human-specific aspects of the progression of liver immunopathogenesis. However, none of the current HIS-HuHEP mice can model the progression of viral hepatitis to hepatocarcinogenesis which may be a notorious result of HBV or HCV chronic infection in patients, suggesting that they were functionally compromised and that there is still significant space to improve and establish next-generation of HIS-HuHEP mice with more sophisticated functions. In this review, we first summarize the principal requirements to establish HIS-HuHEP mice. We then discuss the respective protocols for current HIS-HuHEP mice and their applications, as well as their advantages and disadvantages. We also raise perspectives for further improving and establishing next-generation HIS-HuHEP mice.
Collapse
Affiliation(s)
- Jinglong Guo
- Department of Cardiovascular Disease, The First Hospital of Jilin University, Changchun, China
| | - Siyue Wang
- Graduate Program in Immunology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| | - Qi Gao
- Department of Cardiovascular Disease, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
Wang L, Li S, Mei J, Ye L. Immunotherapies of retinoblastoma: Effective methods for preserving vision in the future. Front Oncol 2022; 12:949193. [PMID: 36132125 PMCID: PMC9483150 DOI: 10.3389/fonc.2022.949193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Retinoblastoma is the most common intraocular tumor in children. Patients can be cured by enucleation, but it can lead to vision loss. Chemotherapy is the main method of treatment for RB currently. Unfortunately, chemoresistant and tumor metastasis often happen, resulting in a relatively poor prognosis. Therefore, immunotherapy becomes one of the optimal choices. Targeting not only tumor cells but also the active tumor microenvironment is a novel strategy for RB treatment. Here, we conclude several potential targets for RB immunotherapy, including gangliosides GD2, PD-1 and PD-L1, B7H3, EpCAM and SYK. We also review the techniques for CART, bispecific antibodies and genetically modified Dendritic cells according to the characteristics of different targets and discuss the feasibility of immunotherapy with different targets.
Collapse
|
28
|
Barzaman K, Vafaei R, Samadi M, Kazemi MH, Hosseinzadeh A, Merikhian P, Moradi-Kalbolandi S, Eisavand MR, Dinvari H, Farahmand L. Anti-cancer therapeutic strategies based on HGF/MET, EpCAM, and tumor-stromal cross talk. Cancer Cell Int 2022; 22:259. [PMID: 35986321 PMCID: PMC9389806 DOI: 10.1186/s12935-022-02658-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 07/19/2022] [Indexed: 02/08/2023] Open
Abstract
As an intelligent disease, tumors apply several pathways to evade the immune system. It can use alternative routes to bypass intracellular signaling pathways, such as nuclear factor-κB (NF-κB), Wnt, and mitogen-activated protein (MAP)/phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR). Therefore, these mechanisms lead to therapeutic resistance in cancer. Also, these pathways play important roles in the proliferation, survival, migration, and invasion of cells. In most cancers, these signaling pathways are overactivated, caused by mutation, overexpression, etc. Since numerous molecules share these signaling pathways, the identification of key molecules is crucial to achieve favorable consequences in cancer therapy. One of the key molecules is the mesenchymal-epithelial transition factor (MET; c-Met) and its ligand hepatocyte growth factor (HGF). Another molecule is the epithelial cell adhesion molecule (EpCAM), which its binding is hemophilic. Although both of them are involved in many physiologic processes (especially in embryonic stages), in some cancers, they are overexpressed on epithelial cells. Since they share intracellular pathways, targeting them simultaneously may inhibit substitute pathways that tumor uses to evade the immune system and resistant to therapeutic agents.
Collapse
|
29
|
Xu X, Jiang S, Gu L, Li B, Xu F, Li C, Chen P. High-throughput bioengineering of homogenous and functional human-induced pluripotent stem cells-derived liver organoids via micropatterning technique. Front Bioeng Biotechnol 2022; 10:937595. [PMID: 36032707 PMCID: PMC9399390 DOI: 10.3389/fbioe.2022.937595] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/05/2022] [Indexed: 11/15/2022] Open
Abstract
Human pluripotent stem cell-derived liver organoids are emerging as more human-relevant in vitro models for studying liver diseases and hepatotoxicity than traditional hepatocyte cultures and animal models. The generation of liver organoids is based on the Matrigel dome method. However, the organoids constructed by this method display significant heterogeneity in their morphology, size, and maturity. Additionally, the formed organoid is randomly encapsulated in the Matrigel dome, which is not convenient for in situ staining and imaging. Here, we demonstrate an approach to generate a novel type of liver organoids via micropatterning technique. This approach enables the reproducible and high-throughput formation of bioengineered fetal liver organoids with uniform morphology and deterministic size and location in a multiwell plate. The liver organoids constructed by this technique closely recapitulate some critical features of human liver development at the fetal stage, including fetal liver-specific gene and protein expression, glycogen storage, lipid accumulation, and protein secretion. Additionally, the organoids allow whole-mount in-situ staining and imaging. Overall, this new type of liver organoids is compatible with the pharmaceutical industry’s widely-used preclinical drug discovery tools and will facilitate liver drug screening and hepatotoxic assessment.
Collapse
Affiliation(s)
- Xiaodong Xu
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Shanqing Jiang
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Longjun Gu
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Bin Li
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Fang Xu
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Changyong Li
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Pu Chen
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
- Institute of Hepatobiliary Diseases of Wuhan University, Hubei Engineering Center of Natural Polymers-based Medical Materials, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Pu Chen,
| |
Collapse
|
30
|
Wang W, Chen D, Wang J, Wen L. Cellular Homeostasis and Repair in the Biliary Tree. Semin Liver Dis 2022; 42:271-282. [PMID: 35672015 DOI: 10.1055/a-1869-7714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
During biliary tree homeostasis, BECs are largely in a quiescent state and their turnover is slow for maintaining normal tissue homeostasis. BTSCs continually replenish new BECs in the luminal surface of EHBDs. In response to various types of biliary injuries, distinct cellular sources, including HPCs, BTSCs, hepatocytes, and BECs, repair or regenerate the injured bile duct. BEC, biliary epithelial cell; BTSC, biliary tree stem/progenitor cell; EHBD, extrahepatic bile ducts; HPC, hepatic progenitor cell.The biliary tree comprises intrahepatic bile ducts and extrahepatic bile ducts lined with epithelial cells known as biliary epithelial cells (BECs). BECs are a common target of various cholangiopathies for which there is an unmet therapeutic need in clinical hepatology. The repair and regeneration of biliary tissue may potentially restore the normal architecture and function of the biliary tree. Hence, the repair and regeneration process in detail, including the replication of existing BECs, expansion and differentiation of the hepatic progenitor cells and biliary tree stem/progenitor cells, and transdifferentiation of the hepatocytes, should be understood. In this paper, we review biliary tree homeostasis, repair, and regeneration and discuss the feasibility of regenerative therapy strategies for cholangiopathy treatment.
Collapse
Affiliation(s)
- Wei Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Dongfeng Chen
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Liangzhi Wen
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
31
|
Huang R, Zhang X, Gracia-Sancho J, Xie WF. Liver regeneration: Cellular origin and molecular mechanisms. Liver Int 2022; 42:1486-1495. [PMID: 35107210 DOI: 10.1111/liv.15174] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/16/2021] [Accepted: 01/12/2022] [Indexed: 01/11/2023]
Abstract
The liver is known as an organ with high proliferation potential. Clarifying the cellular origin and deepening the understanding of liver regeneration mechanisms will help provide new directions for the treatment of liver disease. With the development and application of lineage tracing technology, the specific distribution and dynamic changes of hepatocyte subpopulations in homeostasis and liver injury have been illustrated. Self-replication of hepatocytes is responsible for the maintenance of liver function and mass under homeostasis. The compensatory proliferation of remaining hepatocytes is the main mechanism of liver regeneration following acute and chronic liver injury. Transdifferentiation between hepatocytes and cholangiocytes has been recognized upon severe chronic liver injury. Wnt/β-catenin, Hippo/YAP and Notch signalling play essential roles in the maintenance of homeostatic liver and hepatocyte-to-cholangiocyte conversion under liver injury. In this review, we summarized the recent studies on cell origin of newly generated hepatocytes and the underlying mechanisms of liver regeneration in homeostasis and liver injury.
Collapse
Affiliation(s)
- Ru Huang
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS, CIBEREHD, Barcelona, Spain
| | - Wei-Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
32
|
Xie X, Lee J, Fuson JA, Liu H, Iwase T, Yun K, Margain C, Tripathy D, Ueno NT. Emerging drug targets for triple-negative breast cancer: a guided tour of the preclinical landscape. Expert Opin Ther Targets 2022; 26:405-425. [PMID: 35574694 PMCID: PMC11972560 DOI: 10.1080/14728222.2022.2077188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is the most fatal molecular subtype of breast cancer because of its aggressiveness and resistance to chemotherapy. FDA-approved therapies for TNBC are limited to poly(ADP-ribose) polymerase inhibitors, immune checkpoint inhibitors, and trophoblast cell surface antigen 2-targeted antibody-drug conjugate. Therefore, developing a novel effective targeted therapy for TNBC is an urgent unmet need. AREAS COVERED In this narrative review, we discuss emerging targets for TNBC treatment discovered in early translational studies. We focus on cancer cell membrane molecules, hyperactive intracellular signaling pathways, and the tumor microenvironment (TME) based on their druggability, therapeutic potency, specificity to TNBC, and application in immunotherapy. EXPERT OPINION The significant challenges in the identification and validation of TNBC-associated targets are 1) application of appropriate genetic, molecular, and immunological approaches for modulating the target, 2) establishment of a proper mouse model that accurately represents the human immune TME, 3) TNBC molecular heterogeneity, and 4) failure translation of preclinical findings to clinical practice. To overcome those difficulties, future research needs to apply novel technology, such as single-cell RNA sequencing, thermostable group II intron reverse transcriptase sequencing, and humanized mouse models. Further, combination treatment targeting multiple pathways in both the TNBC tumor and its TME is essential for effective disease control.
Collapse
Affiliation(s)
- Xuemei Xie
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jangsoon Lee
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jon A. Fuson
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huey Liu
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Toshiaki Iwase
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kyuson Yun
- Research Institute at Houston Methodist, Weill Cornell Medical College, Houston, TX 77030, USA
| | | | - Debu Tripathy
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Naoto T. Ueno
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Cancer Biology and Therapeutics, University of Hawai’i Cancer Center, Honolulu, HI 96813, USA
| |
Collapse
|
33
|
Imamura S, Yoshimoto K, Terada S, Takamuro K, Kamei KI. In vitro culture at 39 °C during hepatic maturation of human ES cells facilitates hepatocyte-like cell functions. Sci Rep 2022; 12:5155. [PMID: 35338220 PMCID: PMC8956733 DOI: 10.1038/s41598-022-09119-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/14/2022] [Indexed: 11/12/2022] Open
Abstract
Hepatocyte-like cells derived from human pluripotent stem cells (hPSC-HLCs) offer an alternative to primary hepatocytes commonly used for drug screenings and toxicological tests. However, these cells do not have hepatic functions comparable to those of hepatocytes in vivo due to insufficient hepatic differentiation. Here we showed that the hepatic functions of hPSC-HLCs were facilitated by applying physiological liver temperatures during hepatic differentiation. We identified the optimal temperature by treating HLCs derived from H9 human embryonic stem cells (hESC-HLCs) at 39 °C; the 42 °C treatment caused significantly greater cell death than the 39 °C treatment. We confirmed the improvement of hepatic functions, such as albumin secretion, cytochrome P450 3A activity, and collagen production, without severe cell damage. In combination with existing hepatic differentiation protocols, the method proposed here may further improve hepatic functions for hPSCs and lead to the realization of drug discovery efforts and drug toxicological tests.
Collapse
Affiliation(s)
- Satoshi Imamura
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Koki Yoshimoto
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin-Kawara-cho, Sakyo-ku, Kyoto, 606-8397, Japan.,Laboratory of Cellular and Molecular Biomechanics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8397, Japan
| | - Shiho Terada
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kaho Takamuro
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ken-Ichiro Kamei
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan. .,Wuya College of Innovation, Shenyang Pharmaceutical University, Liaoning, 110016, People's Republic of China. .,Department of Pharmaceutics, Shenyang Pharmaceutical University, Liaoning, 110016, People's Republic of China.
| |
Collapse
|
34
|
Giancotti A, D'Ambrosio V, Corno S, Pajno C, Carpino G, Amato G, Vena F, Mondo A, Spiniello L, Monti M, Muzii L, Bosco D, Gaudio E, Alvaro D, Cardinale V. Current protocols and clinical efficacy of human fetal liver cell therapy in patients with liver disease: A literature review. Cytotherapy 2022; 24:376-384. [DOI: 10.1016/j.jcyt.2021.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/12/2021] [Accepted: 10/30/2021] [Indexed: 12/28/2022]
|
35
|
Xie Y, Yao J, Jin W, Ren L, Li X. Induction and Maturation of Hepatocyte-Like Cells In Vitro: Focus on Technological Advances and Challenges. Front Cell Dev Biol 2021; 9:765980. [PMID: 34901010 PMCID: PMC8662991 DOI: 10.3389/fcell.2021.765980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
Limited by the poor proliferation and restricted sources of adult hepatocytes, there is an urgent need to find substitutes for proliferation and cultivation of mature hepatocytes in vitro for use in disease treatment, drug approval, and toxicity testing. Hepatocyte-like cells (HLCs), which originate from undifferentiated stem cells or modified adult cells, are considered good candidates because of their advantages in terms of cell source and in vitro expansion ability. However, the majority of induced HLCs are in an immature state, and their degree of differentiation is heterogeneous, diminishing their usability in basic research and limiting their clinical application. Therefore, various methods have been developed to promote the maturation of HLCs, including chemical approaches, alteration of cell culture systems, and genetic manipulation, to meet the needs of in vivo transplantation and in vitro model establishment. This review proposes different cell types for the induction of HLCs, and provide a comprehensive overview of various techniques to promote the generation and maturation of HLCs in vitro.
Collapse
Affiliation(s)
- Ye Xie
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jia Yao
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Weilin Jin
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Institute of Cancer Neuroscience, The First Hospital of Lanzhou University, Lanzhou, China.,The Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Longfei Ren
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xun Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China.,The Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China.,The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou, China
| |
Collapse
|
36
|
Sato Y, Yoneda A, Shimizu F, Nishimura M, Shimoyama R, Tashiro Y, Kurata W, Niitsu Y. Resolution of fibrosis by siRNA HSP47 in vitamin A-coupled liposomes induces regeneration of chronically injured livers. J Gastroenterol Hepatol 2021; 36:3418-3428. [PMID: 34151462 DOI: 10.1111/jgh.15587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIM In chronic hepatic diseases where treatment strategies are not available, deposited fibrotic tissues deteriorate the intrinsic regeneration capacity of the liver by creating special restrictions. Thus, if the anti-fibrosis modality is efficiently applied, the regeneration capacity of the liver should be reactivated even in such refractory hepatic diseases. METHODS Rat liver fibrosis was induced by dimethyl-nitrosamine (DMN). Another liver fibrosis model was established in CCl4 treated Sox9CreERT2ROSA26: YFP mice. To resolve hepatic fibrosis, vitamin A-coupled liposomes containing siRNA HSP47 (VA-liposome siHSP47) were employed. EpCAM + hepatic progenitor cells from GFP rats were transplanted to DMN rat liver to examine their trans-differentiation into hepatic cells after resolution of liver fibrosis. RESULTS Even under continuous exposure to such strong hepatotoxin as DMN, rats undergoing VA-liposome siHSP47 treatment showed an increment of DNA synthesis of hepatocytes with the concomitant restoration of impaired liver weight and normalization of albumin levels. These results were consistent with the observation that GFP + EpCAM hepatic progenitor cells transplanted to DMN rat liver, trans-differentiated into GFP + mature hepatic cells after VA-liposome siHSP47 treatment. Another rodent model also proved regeneration potential of the fibrotic liver in CCl4 administered Sox9CreERT2ROSA26: YFP mice, VA-liposome siHSP47 treatment-induced restoration of liver weight and trans-differentiation of YEP + Sox9 + cells into YFP + hepatic cells, although because of relatively mild hepatotoxicity of CCl4, undamaged hepatocytes also proliferated. CONCLUSIONS These results demonstrated that regeneration of chronically damaged liver indeed occurs after anti-fibrosis treatment even under continuous exposure to hepatotoxin, which promises a significant benefit of the anti-fibrosis therapy for refractory liver diseases.
Collapse
Affiliation(s)
- Yasushi Sato
- Department of Community Medicine for Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Akihiro Yoneda
- Department of Molecular Target Exploration, School of Medicine, Sapporo Medical University, Sapporo, Japan.,Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for the Business-Regional Collaboration, Hokkaido University, Sapporo, Japan
| | - Fumiko Shimizu
- Department of Molecular Target Exploration, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Miyuki Nishimura
- Department of Molecular Target Exploration, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Rai Shimoyama
- Division of Gastroenterology, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Yasuyuki Tashiro
- Oncology Section, Center of Advanced Medicine, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Wataru Kurata
- Oncology Section, Center of Advanced Medicine, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Yoshiro Niitsu
- Department of Molecular Target Exploration, School of Medicine, Sapporo Medical University, Sapporo, Japan.,Oncology Section, Center of Advanced Medicine, Shonan Kamakura General Hospital, Kamakura, Japan
| |
Collapse
|
37
|
Feng J, Zhu R, Yin Y, Wang S, Zhou L, Lv F, Zhao D. Re-Recognizing the Cellular Origin of the Primary Epithelial Tumors of the Liver. J Hepatocell Carcinoma 2021; 8:1537-1563. [PMID: 34917552 PMCID: PMC8668194 DOI: 10.2147/jhc.s334935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/25/2021] [Indexed: 11/29/2022] Open
Abstract
The primary epithelial tumors of the liver (PETL) are composed of a series of heterogeneous tumors. Although the classification of PETLs has been updated several times by the World Health Organization, the cellular origins of some tumors in this family remain to be precisely depicted. In addition, certain tumors in different categories have similar histology, molecular phenotypes and biological characteristics, suggesting that they may have the same cellular origin. In this work, a narrative review method was adopted to review the relevant papers. By comparing the expression profiles of biomarkers of liver epithelium at different lineages and stages of differentiation, the cells-of-origin of some major members of the PETL family were reassessed. We propose that 1) hepatic adenomas, hepatocellular carcinomas (HCCs) and pure fetal hepatoblastomas (HBs) share the same spectrum in their cellular origin including the hepatocytic-committed progenitors (HCP) and their differentiated descendants. 2) Bile duct adenomas, peribiliary cysts and intrahepatic cholangiocellular carcinomas (ICCs) can share the same spectrum in their cellular origin including the cholangiocytic-committed progenitors (CCP) and their differentiated descendants. 3) The cells-of-origin of embryonal HBs include liver stem cells (LSCs), hepatoblasts, and transitional cells between them. Embryonal HB with small cell element, small cell undifferentiated HB and small cell neuroendocrine carcinoma of the liver can have the same or similar cells-of-origin from LSC. Embryonal HB lacking the small cell component of the LSC phenotype and presenting both hepatocytic and bile duct/ductule components may originate from actual hepatoblasts/hepatic progenitor cells (HPCs) as the combined HCC-ICC does. 4) Teratoid hepatoblastoma and mixed epithelial/mesenchymal HBs can be derived from the LSCs or even less committed extrahepatic pluripotent stem cell. 5) Many members of the PETLs family, including those derived from LSCs, hepatoblasts/HPCs, early HCPs and CCPs, have neuroendocrine potentiality. Except for those primary hepatic neuroendocrine tumor (PHNET) exhibit hepatocytic and/or cholangiocytic phenotypes, other PHNETs subtype may be derived from the descendants of LSC that differentiate towards the upper digestive tract, pancreas or other lineages.
Collapse
Affiliation(s)
- Jiliang Feng
- Clinical-Pathology Center, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
- Correspondence: Jiliang Feng Clinical-Pathology Center, Beijing You-An Hospital, Capital Medical University, No. 8, Xitoutiao, Youanmenwai Street, FengTai District, Beijing, 100069, People’s Republic of ChinaTel +86-10-83997342Fax +86-10-83997343 Email
| | - Ruidong Zhu
- General Surgical Center, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Yu Yin
- Department of Pathology, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Shanshan Wang
- Clinical-Pathology Center, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Lei Zhou
- Department of Pathology, First Affiliated Hospital of Bengbu Medical College/Bengbu Medical College, Bengbu, 233004, People’s Republic of China
| | - Fudong Lv
- Clinical-Pathology Center, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Dawei Zhao
- Department of Medical Imaging, Capital Medical University, Beijing, 100069, People’s Republic of China
| |
Collapse
|
38
|
Pan M, Kohlbauer V, Blancke Soares A, Schinke H, Huang Y, Kranz G, Quadt T, Hachmeister M, Gires O. Interactome analysis reveals endocytosis and membrane recycling of EpCAM during differentiation of embryonic stem cells and carcinoma cells. iScience 2021; 24:103179. [PMID: 34693227 PMCID: PMC8517208 DOI: 10.1016/j.isci.2021.103179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/16/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022] Open
Abstract
Transmembrane epithelial cell adhesion molecule (EpCAM) is expressed in epithelia, carcinoma, teratoma, and embryonic stem cells (ESCs). EpCAM displays spatiotemporal patterning during embryogenesis, tissue morphogenesis, cell differentiation, and epithelial-to-mesenchymal transition (EMT) in carcinomas. Potential interactors of EpCAM were identified in murine F9 teratoma cells using a stable isotope labeling with amino acids in cell culture-based proteomic approach (n = 77, enrichment factor >3, p value ≤ 0.05). Kyoto Encyclopedia of Genes and Genomes and gene ontology terms revealed interactions with regulators of endosomal trafficking and membrane recycling, which were further validated for Rab5, Rab7, and Rab11. Endocytosis and membrane recycling of EpCAM were confirmed in mF9 cells, E14TG2α ESC, and Kyse30 carcinoma cells. Reduction of EpCAM during mesodermal differentiation and TGFβ-induced EMT correlated with enhanced endocytosis and block or reduction of recycling in ESCs and esophageal carcinoma cells. Hence, endocytosis and membrane recycling are means of regulation of EpCAM protein levels during differentiation of ESC and EMT induction in carcinoma cells.
Collapse
Affiliation(s)
- Min Pan
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Vera Kohlbauer
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Alexandra Blancke Soares
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Henrik Schinke
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Yuanchi Huang
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Gisela Kranz
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Tanja Quadt
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Hachmeister
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany.,Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer", Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
39
|
Xu Q. Human Three-Dimensional Hepatic Models: Cell Type Variety and Corresponding Applications. Front Bioeng Biotechnol 2021; 9:730008. [PMID: 34631680 PMCID: PMC8497968 DOI: 10.3389/fbioe.2021.730008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
Owing to retained hepatic phenotypes and functions, human three-dimensional (3D) hepatic models established with diverse hepatic cell types are thought to recoup the gaps in drug development and disease modeling limited by a conventional two-dimensional (2D) cell culture system and species-specific variability in drug metabolizing enzymes and transporters. Primary human hepatocytes, human hepatic cancer cell lines, and human stem cell-derived hepatocyte-like cells are three main hepatic cell types used in current models and exhibit divergent hepatic phenotypes. Primary human hepatocytes derived from healthy hepatic parenchyma resemble in vivo-like genetic and metabolic profiling. Human hepatic cancer cell lines are unlimitedly reproducible and tumorigenic. Stem cell-derived hepatocyte-like cells derived from patients are promising to retain the donor's genetic background. It has been suggested in some studies that unique properties of cell types endue them with benefits in different research fields of in vitro 3D modeling paradigm. For instance, the primary human hepatocyte was thought to be the gold standard for hepatotoxicity study, and stem cell-derived hepatocyte-like cells have taken a main role in personalized medicine and regenerative medicine. However, the comprehensive review focuses on the hepatic cell type variety, and corresponding applications in 3D models are sparse. Therefore, this review summarizes the characteristics of different cell types and discusses opportunities of different cell types in drug development, liver disease modeling, and liver transplantation.
Collapse
Affiliation(s)
- Qianqian Xu
- School of Chinese Medicine, and Centre for Cancer and Inflammation Research, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
40
|
Yim SY, Lee JS. An Overview of the Genomic Characterization of Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:1077-1088. [PMID: 34522690 PMCID: PMC8434863 DOI: 10.2147/jhc.s270533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/18/2021] [Indexed: 02/03/2023] Open
Abstract
Tumor classifications based on alterations in the genome, epigenome, or proteome have revealed distinct tumor subgroups that are associated with clinical outcomes. Several landmark studies have demonstrated that such classifications can significantly improve patient outcomes by enabling tailoring of therapy to specific alterations in cancer cells. Since cancer cells accumulate numerous alterations in many cancer-related genes, it is a daunting task to find and confirm important cancer-promoting alterations as therapeutic targets or biomarkers that can predict clinical outcomes such as survival and response to treatments. To aid further advances, we provide here an overview of the current understanding of molecular and genomic subtypes of hepatocellular carcinoma (HCC). System-level integration of data from multiple studies and development of new technical platforms for analyzing patient samples hold great promise for the discovery of new targets for treatment and correlated biomarkers, leading to personalized medicine for treatment of HCC patients.
Collapse
Affiliation(s)
- Sun Young Yim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
41
|
Dong Y, Kong W, An W. Downregulation of augmenter of liver regeneration impairs the therapeutic efficacy of liver epithelial progenitor cells against acute liver injury by enhancing mitochondrial fission. STEM CELLS (DAYTON, OHIO) 2021; 39:1546-1562. [PMID: 34310799 DOI: 10.1002/stem.3439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/08/2021] [Accepted: 06/25/2021] [Indexed: 11/07/2022]
Abstract
Cell-based therapeutic approaches have been proven to be effective strategies for the treatment of acute liver injury (ALI). However, widespread application of these procedures is limited by several key issues, including rapid loss of stemness in vitro, aberrant differentiation into undesirable cell types, and low engraftment in vivo. In this study, liver epithelial progenitor cells (LEPCs) were characterized and transfected with augmenter of liver regeneration (ALR). The results revealed that in ALI mice with CCl4 , the transplantation of ALR-bearing LEPCs into the liver markedly protected mice against ALI by decreasing the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), thus relieving hepatic tissue injury and attenuating inflammatory infiltration. Mechanistically, the knockdown of ALR in LEPCs activated the phosphorylation of dynamin-related protein 1 (Drp1) at the S616 site and thereby enhanced mitochondrial fission. In contrast, the transfection of ALR into LEPCs significantly inhibited Drp1 phosphorylation, thereby favoring the maintenance of mitochondrial integrity and the preservation of adenosine triphosphate contents in LEPCs. Consequently, the ALR-bearing LEPCs transplanted into ALI mice exhibited substantially greater homing ability to the injured liver via the SDF-1/CXCR4 axis than that of LEPCs-lacking ALR. In conclusion, we demonstrated that the transplantation of ALR-transfected LEPCs protected mice against CCl4 -induced ALI, thus offering immense curative potential in the clinic.
Collapse
Affiliation(s)
- Yuan Dong
- Department of Cell Biology, Capital Medical University, The Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Beijing, People's Republic of China
| | - Weining Kong
- Department of Cell Biology, Capital Medical University, The Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Beijing, People's Republic of China
| | - Wei An
- Department of Cell Biology, Capital Medical University, The Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Beijing, People's Republic of China
| |
Collapse
|
42
|
Moin AT, Sarkar B, Ullah MA, Araf Y, Ahmed N, Rudra B. In silico assessment of EpCAM transcriptional expression and determination of the prognostic biomarker for human lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). Biochem Biophys Rep 2021; 27:101074. [PMID: 34345719 PMCID: PMC8319582 DOI: 10.1016/j.bbrep.2021.101074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/24/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein which is involved in cell signaling, proliferation, maturation, and movement, all of which are crucial for the proper development of cells and tissues. Cleavage of the EpCAM protein leads to the up-regulation of c-myc, e-fabp, and cyclins A and E which promote tumorigenesis. EpCAM can act as potential diagnostic and prognostic biomarker for different types of cancers as it is also found to be expressed in epithelia and epithelial-derived neoplasms. Hence, we aimed to analyze the EpCAM gene expression and any associated feedback in the patients of two major types of lung cancer (LC) i.e., lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), based on the publicly available online databases. In this study, server-based gene expression analysis represents the up-regulation of EpCAM in both LUAD and LUSC subtypes as compared to the corresponding normal tissues. Besides, the histological sections revealed the over-expression of EpCAM protein in cancerous tissues by depicting strong staining signals. Furthermore, mutation analysis suggested missense as the predominant type of mutation both in LUAD and LUSC in the EpCAM gene. A significant correlation (P-value < 0.05) between the higher EpCAM expression and lower patient survival was also found in this study. Finally, the co-expressed genes were identified with their ontological features and signaling pathways associated in LC development. The overall study suggests EpCAM to be a significant biomarker for human LC prognosis.
Collapse
Affiliation(s)
- Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Bishajit Sarkar
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Md Asad Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Nafisa Ahmed
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Dhaka, Bangladesh
| | - Bashudev Rudra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| |
Collapse
|
43
|
Kulkeaw K. Next-Generation Human Liver Models for Antimalarial Drug Assays. Antibiotics (Basel) 2021; 10:antibiotics10060642. [PMID: 34071885 PMCID: PMC8229011 DOI: 10.3390/antibiotics10060642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/23/2022] Open
Abstract
Advances in malaria prevention and treatment have significantly reduced the related morbidity and mortality worldwide, however, malaria continues to be a major threat to global public health. Because Plasmodium parasites reside in the liver prior to the appearance of clinical manifestations caused by intraerythrocytic development, the Plasmodium liver stage represents a vulnerable therapeutic target to prevent progression. Currently, a small number of drugs targeting liver-stage parasites are available, but all cause lethal side effects in glucose-6-phosphate dehydrogenase-deficient individuals, emphasizing the necessity for new drug development. Nevertheless, a longstanding hurdle to developing new drugs is the availability of appropriate in vitro cultures, the crucial conventional platform for evaluating the efficacy and toxicity of drugs in the preclinical phase. Most current cell culture systems rely primarily on growing immortalized or cancerous cells in the form of a two-dimensional monolayer, which is not very physiologically relevant to the complex cellular architecture of the human body. Although primary human cells are more relevant to human physiology, they are mainly hindered by batch-to-batch variation, limited supplies, and ethical issues. Advances in stem cell technologies and multidimensional culture have allowed the modelling of human infectious diseases. Here, current in vitro hepatic models and toolboxes for assaying the antimalarial drug activity are summarized. Given the physiological potential of pluripotent and adult stem cells to model liver-stage malaria, the opportunities and challenges in drug development against liver-stage malaria is highlighted, paving the way to assess the efficacy of hepatic plasmodicidal activity.
Collapse
Affiliation(s)
- Kasem Kulkeaw
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
44
|
Yao T, Zhang Y, Lv M, Zang G, Ng SS, Chen X. Advances in 3D cell culture for liver preclinical studies. Acta Biochim Biophys Sin (Shanghai) 2021; 53:643-651. [PMID: 33973620 DOI: 10.1093/abbs/gmab046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Indexed: 11/13/2022] Open
Abstract
The 3D cell culture model is an indispensable tool in the study of liver biology in the field of health and disease and the development of clinically relevant products for liver therapies. The 3D culture model captures critical factors of the microenvironmental niche required by hepatocytes for exhibiting optimal phenotypes, thus enabling the pursuit of a range of preclinical studies that are not entirely feasible in conventional 2D cell models. In this review, we highlight the major attributes associated with and the components needed for the development of a functional 3D liver culture model for a range of applications.
Collapse
Affiliation(s)
- Ting Yao
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Yi Zhang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Mengjiao Lv
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Guoqing Zang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Soon Seng Ng
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| | - Xiaohua Chen
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| |
Collapse
|
45
|
Abstract
Aim of the study CD326 has been used as a single marker to enrich for hepatic stem cell populations in the liver. However, bile duct epithelium is also positive for CD326, which impedes the selection of pure hepatic stem cell populations. Some markers have been proposed to be co-expressed by hepatic stem cells but these have not been systematically compared. Therefore, we determined the percentages and compared the characteristics of human liver cells expressing potential stem cell surface markers. Material and methods We analyzed CD326 expression in human liver tissues from fetal, neonatal, pediatric, and adult stages using immunohistochemistry. In flow cytometry, we quantified fetal liver cells for their co-expression of CD326 with CD56, CD117, CD44, CD90, CD49f, LGR5 and SSEA4. We analyzed the various fractions for their quantitative expression of genes typically associated with progenitors and hepatic lineages. Results 12.5% of cells were positive for CD326; of these, 63.5% co-expressed CD44. The lowest co-expression percentages were for SSEA4 (2.1%) and LGR5 (0.7%). Fractions revealed distinct gene expression patterns. Of all combinations, cells that co-expressed surface CD326 and SSEA4 demonstrated the highest gene expression for the proliferation marker MKi67 and hepatic markers DLK1, AFP and ALB, and were the only fraction negative for the biliary epithelial marker KRT19. Histology of adult and fetal liver showed cells positive for CD326 and SSEA4 but negative for CK19. Conclusions CD326-positive cells represent a heterogeneous population, which in combination with SSEA4 potentially distinguishes bile duct epithelium from hepatic stem cells. These findings can help to further classify human hepatic progenitor stages.
Collapse
|
46
|
Kasuga A, Semba T, Sato R, Nobusue H, Sugihara E, Takaishi H, Kanai T, Saya H, Arima Y. Oncogenic KRAS-expressing organoids with biliary epithelial stem cell properties give rise to biliary tract cancer in mice. Cancer Sci 2021; 112:1822-1838. [PMID: 33068050 PMCID: PMC8088913 DOI: 10.1111/cas.14703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Biliary tract cancer (BTC) arises from biliary epithelial cells (BECs) and includes intrahepatic cholangiocarcinoma (IHCC), gallbladder cancer (GC), and extrahepatic cholangiocarcinoma (EHCC). Although frequent KRAS mutations and epigenetic changes at the INK4A/ARF locus have been identified, the molecular pathogenesis of BTC is unclear and the development of corresponding anticancer agents remains inadequate. We isolated epithelial cell adhesion molecule (EpCAM)–positive BECs from the mouse intrahepatic bile duct, gallbladder, and extrahepatic bile duct, and established organoids derived from these cells. Introduction of activated KRAS and homozygous deletion of Ink4a/Arf in the cells of each organoid type conferred the ability to form lethal metastatic adenocarcinoma with differentiated components and a pronounced desmoplastic reaction on cell transplantation into syngeneic mice, indicating that the manipulated cells correspond to BTC–initiating cells. The syngeneic mouse models recapitulate the pathological features of human IHCC, GC, and EHCC, and they should therefore prove useful for the investigation of BTC carcinogenesis and the development of new therapeutic strategies. Tumor cells isolated from primary tumors formed organoids in three‐dimensional culture, and serial syngeneic transplantation of these cells revealed that their cancer stem cell properties were supported by organoid culture, but not by adherent culture. Adherent culture thus attenuated tumorigenic activity as well as the expression of both epithelial and stem cell markers, whereas the expression of epithelial‐mesenchymal transition (EMT)–related transcription factor genes and mesenchymal cell markers was induced. Our data show that organoid culture is important for maintenance of epithelial cell characteristics, stemness, and tumorigenic activity of BTC–initiating cells.
Collapse
Affiliation(s)
- Akiyoshi Kasuga
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Semba
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Department of Thoracic Surgery, Kumamoto University, Kumamoto, Japan
| | - Ryo Sato
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Department of Respiratory Medicine, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Nobusue
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Eiji Sugihara
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hiromasa Takaishi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yoshimi Arima
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
47
|
Meng Y, Zhao Q, An L, Jiao S, Li R, Sang Y, Liao J, Nie P, Wen F, Ju J, Zhou Z, Wei L. A TNFR2-hnRNPK Axis Promotes Primary Liver Cancer Development via Activation of YAP Signaling in Hepatic Progenitor Cells. Cancer Res 2021; 81:3036-3050. [PMID: 33619115 DOI: 10.1158/0008-5472.can-20-3175] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/13/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022]
Abstract
Most primary liver cancer (PLC) cases progress mainly due to underlying chronic liver inflammation, yet the underlying mechanisms of inflammation-mediated PLC remain unclear. Here we uncover a TNF receptor II (TNFR2)-hnRNPK-YAP signaling axis in hepatic progenitor cells (HPC) essential for PLC development. TNFR2, but not TNF receptor I (TNFR1), was required for TNFα-induced activation of YAP during malignant transformation of HPCs and liver tumorigenesis. Mechanistically, heterogeneous nuclear ribonuclear protein K (hnRNPK) acted downstream of TNFα-TNFR2 signaling to directly interact with and stabilize YAP on target gene promoters genome-wide, therefore coregulating the expression of YAP target genes. Single-cell RNA sequencing confirmed the association of TNFR2-hnRNPK with YAP expression and the pathologic importance of HPC. Accordingly, expressions of TNFR2, hnRNPK, and YAP were all upregulated in PLC tissues and were strongly associated with poor prognosis of PLC including patient survival. Collectively, this study clarifies the differential roles of TNFRs in HPC-mediated tumorigenesis, uncovering a TNFR2-hnRNPK-centered mechanistic link between the TNFα-mediated inflammatory milieu and YAP activation in HPCs during PLC development. SIGNIFICANCE: This work defines how hnRNPK links TNFα signaling and Hippo pathway transcription coactivator YAP in hepatic progenitor cells during primary liver tumorigenesis.
Collapse
Affiliation(s)
- Yan Meng
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qiudong Zhao
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Liwei An
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Shanghai, China
| | - Shi Jiao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Rong Li
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yan Sang
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jianping Liao
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Pingping Nie
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fuping Wen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Junyi Ju
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Shanghai, China
| | - Zhaocai Zhou
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Shanghai, China. .,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
48
|
Wang Z, Faria J, Penning LC, Masereeuw R, Spee B. Tissue-Engineered Bile Ducts for Disease Modeling and Therapy. Tissue Eng Part C Methods 2021; 27:59-76. [PMID: 33267737 DOI: 10.1089/ten.tec.2020.0283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent biotechnical advances in the in vitro culture of cholangiocytes and generation of bioengineered biliary tissue have a high potential for creating biliary tissue to be used for disease modeling, drug screening, and transplantation. For the past few decades, scientists have searched for a source of cholangiocytes, focused on primary cholangiocytes or cholangiocytes derived from hepatocytes or stem cells. At the same time, the development of scaffolds for biliary tissue engineering for transplantation and modeling of cholangiopathies has been explored. In this review, we provide an overview on the current understanding of cholangiocytes sources, the effect of signaling molecules, and transcription factors on cell differentiation, along with the effects of extracellular matrix molecules and scaffolds on bioengineered biliary tissues, and their application in disease modeling and drug screening. Impact statement Over the past few decades, biliary tissue engineering has acquired significant attention, but currently a number of factors hinder this field to eventually generate bioengineered bile ducts that mimic in vivo physiology and are suitable for transplantation. In this review, we present the latest advances with respect to cell source selection, influence of growth factors and scaffolds, and functional characterization, as well as applications in cholangiopathy modeling and drug screening. This review is suited for a broad spectrum of readers, including fundamental liver researchers and clinicians with interest in the current state and application of bile duct engineering and disease modeling.
Collapse
Affiliation(s)
- Zhenguo Wang
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - João Faria
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Louis C Penning
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
49
|
Zhang J, Chan HF, Wang H, Shao D, Tao Y, Li M. Stem cell therapy and tissue engineering strategies using cell aggregates and decellularized scaffolds for the rescue of liver failure. J Tissue Eng 2021; 12:2041731420986711. [PMID: 35003615 PMCID: PMC8733710 DOI: 10.1177/2041731420986711] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
Liver failure is a lethal condition with hepatocellular dysfunction, and liver transplantation is presently the only effective treatment. However, due to the limited availability of donors and the potential immune rejection, novel therapeutic strategies are actively sought to restore the normal hepatic architectures and functions, especially for livers with inherited metabolic dysfunctions or chronic diseases. Although the conventional cell therapy has shown promising results, the direct infusion of hepatocytes is hampered by limited hepatocyte sources, poor cell viability, and engraftment. Hence, this review mainly highlights the role of stem cells and progenitors as the alternative cell source and summarizes the potential approaches based on tissue engineering to improve the delivery efficiency of cells. Particularly, the underlying mechanisms for cell therapy using stem cells and progenitors are discussed in two main aspects: paracrine effect and cell differentiation. Moreover, tissue-engineering approaches using cell aggregates and decellularized liver scaffolds for bioengineering of functional hepatic constructs are discussed and compared in terms of the potential to replicate liver physiological structures. In the end, a potentially effective strategy combining the premium advantages of stem cell aggregates and decellularized liver scaffolds is proposed as the future direction of liver tissue engineering and regeneration.
Collapse
Affiliation(s)
- Jiabin Zhang
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan Shao
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, China
| |
Collapse
|
50
|
Liu L, Borlak J. Advances in Liver Cancer Stem Cell Isolation and their Characterization. Stem Cell Rev Rep 2021; 17:1215-1238. [PMID: 33432485 DOI: 10.1007/s12015-020-10114-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2020] [Indexed: 12/24/2022]
Abstract
Over the last decade research on cancer stem cells (CSC) significantly contributed to a better understanding of tumor biology. Given their similarity to normal stem cells, i.e. self-renewal and pluripotency the need arises to develop robust protocols for the isolation and characterization of CSCs. As with other malignancies, hepatic tumors are composed of a heterogeneous population of cells including liver cancer stem cells (LCSC). Yet, a precise understanding of why stem cells become cancerous is still lacking. There is unmet need to develop robust protocols for the successful isolation of LCSCs from human tissue resection material as to assist in the development of molecular targeted therapies. Here we review the research progress made in the isolation and characterization of LCSCs by considering a wide range of cell surface markers and sorting methods, as applied to side populations, microsphere cultures and the gradient centrifugation method. We emphasize the different fluorescence activated cell sorting methods and the possibility to enrich LCSCs by immunomagnetic beads. We review the specificity of functional assays by considering ABCG transporter and ALDH1 enzyme activities and evaluate the in vivo tumorigenicity of LCSCs in highly sensitive bioassays. Finally, we evaluate different LCSC markers in association with viral and non-viral liver disease and explore the potential of novel drug delivery systems targeting CD133, EpCAM, CD13 and CD90 for the development of molecular targeted therapies. Graphical Abstract.
Collapse
Affiliation(s)
- Lu Liu
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|