1
|
Van der Vreken A, Thery F, Tu C, Mwangi K, Meulewaeter S, De Beck L, Janssens E, De Veirman K, Vanderkerken K, De Bruyne E, Franceschini L, Impens F, Verbeke R, Lentacker I, Menu E, Breckpot K. Immunopeptidomics identified antigens for mRNA-lipid nanoparticle vaccines with alpha-galactosylceramide in multiple myeloma therapy. J Immunother Cancer 2025; 13:e010673. [PMID: 40300855 PMCID: PMC12049997 DOI: 10.1136/jitc-2024-010673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 04/05/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Invariant natural killer T (iNKT) cells and CD8+ T cells are key in the immune response against multiple myeloma (MM), a largely incurable blood cancer. Immunization is a promising strategy to activate these T cell populations. To our knowledge, immunization with messenger RNA (mRNA) and the iNKT agonist, α-galactosylceramide (αGC), has not been studied in MM, as knowledge on clinically relevant antigens in preclinical MM models is lacking. METHODS Microarray data and immunopeptidomics (imPep) were used to identify candidate antigens for immunization in 5TMM models. Galsomes, lipid nanoparticles containing antigen mRNA and αGC were used to immunize 5T33MM-bearing mice. This treatment was combined with a CD40 agonist. Tumor burden and activation of iNKT cells and CD8+ T cells were studied using M-protein electrophoresis, flow cytometry and ELISA. RESULTS RNA transcripts revealed survivin as a candidate antigen. Prime-boost Galsomes therapy targeting survivin significantly reduced M-protein levels despite low survivin-specific T cell responses. Further analysis showed potential T cell fratricide. ImPep revealed HSP60, Idiotype, PICALM and EF1A1 as candidate antigens. Prime-boost therapy with Galsomes targeting these antigens reduced MM growth significantly when combined with a CD40 agonist, coinciding with significantly improved antigen presentation, costimulation and cytotoxicity of iNKT cells and CD8+ T cells. CONCLUSION These findings highlight the potential of Galsomes, an mRNA vaccine designed to activate CD8+ T cells and iNKT cells, for MM therapy, and emphasize the importance of combinatorial approaches, addressing immune anergy for effective MM immunotherapies.
Collapse
Affiliation(s)
- Arne Van der Vreken
- Department of Biomedical Sciences Brussels, Translational Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Fabien Thery
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Chenggong Tu
- Department of Biomedical Sciences Brussels, Translational Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kevin Mwangi
- Department of Pharmaceutics, Laboratory of Physical Pharmacy and General Biochemistry, Ghent Research Group on Nanomedicines, Universiteit Gent, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Universiteit Gent, Ghent, Belgium
| | - Sofie Meulewaeter
- Department of Pharmaceutics, Laboratory of Physical Pharmacy and General Biochemistry, Ghent Research Group on Nanomedicines, Universiteit Gent, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Universiteit Gent, Ghent, Belgium
| | - Lien De Beck
- Department of Biomedical Sciences Brussels, Translational Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Edith Janssens
- Department of Biomedical Sciences Brussels, Translational Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kim De Veirman
- Department of Biomedical Sciences Brussels, Translational Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Department of Biomedical Sciences Brussels, Translational Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elke De Bruyne
- Department of Biomedical Sciences Brussels, Translational Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lorenzo Franceschini
- Department of Biomedical Sciences Brussels, Translational Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Rein Verbeke
- Department of Pharmaceutics, Laboratory of Physical Pharmacy and General Biochemistry, Ghent Research Group on Nanomedicines, Universiteit Gent, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Universiteit Gent, Ghent, Belgium
| | - Ine Lentacker
- Department of Pharmaceutics, Laboratory of Physical Pharmacy and General Biochemistry, Ghent Research Group on Nanomedicines, Universiteit Gent, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Universiteit Gent, Ghent, Belgium
| | - Eline Menu
- Department of Biomedical Sciences Brussels, Translational Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Department of Biomedical Sciences Brussels, Translational Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
2
|
Lemke S, Dubbelaar ML, Zimmermann P, Bauer J, Nelde A, Hoenisch Gravel N, Scheid J, Wacker M, Jung S, Dengler A, Maringer Y, Rammensee HG, Gouttefangeas C, Fillinger S, Bilich T, Heitmann JS, Nahnsen S, Walz JS. PCI-DB: a novel primary tissue immunopeptidome database to guide next-generation peptide-based immunotherapy development. J Immunother Cancer 2025; 13:e011366. [PMID: 40234091 PMCID: PMC12001369 DOI: 10.1136/jitc-2024-011366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/20/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Various cancer immunotherapies rely on the T cell-mediated recognition of peptide antigens presented on human leukocyte antigens (HLA). However, the identification and selection of naturally presented peptide targets for the development of personalized as well as off-the-shelf immunotherapy approaches remain challenging. METHODS Over 10,000 raw mass spectrometry (MS) files from over 3,000 tissue samples were analyzed, summing to approximately seven terabytes of data. The raw MS data were processed using the standardized and open-source nf-core pipelines MHCquant2 and epitopeprediction, providing a uniform procedure for data handling. A global false discovery rate was applied to minimize false-positive identifications. RESULTS Here, we introduce the open-access Peptides for Cancer Immunotherapy Database (PCI-DB, https://pci-db.org/), a comprehensive resource of immunopeptidome data originating from various malignant and benign primary tissues that provides the research community with a convenient tool to facilitate the identification of peptide targets for immunotherapy development. The PCI-DB includes >6.6 million HLA class I and >3.4 million HLA class II peptides from over 40 tissue types and cancer entities. First application of the database provided insights into the representation of cancer-testis antigens across malignant and benign tissues, enabling the identification and characterization of cross-tumor entity and entity-specific tumor-associated antigens (TAAs) as well as naturally presented neoepitopes from frequent cancer mutations. Further, we used the PCI-DB to design personalized peptide vaccines for two patients suffering from metastatic cancer. In a retrospective analysis, PCI-DB enabled the composition of both a multi-peptide vaccine comprising non-mutated, highly frequent TAAs matching the immunopeptidome of the individual patient's tumor and a neoepitope-based vaccine matching the mutational profile of a patient with cancer. Both vaccine approaches induced potent and long-lasting T-cell responses, accompanied by long-term survival of these patients with advanced cancer. CONCLUSION The PCI-DB provides a highly versatile tool to broaden the understanding of cancer-related antigen presentation and, ultimately, supports the development of novel immunotherapies.
Collapse
Affiliation(s)
- Steffen Lemke
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, BW, Germany
- Department of Computer Science, University of Tübingen, Tübingen, BW, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, BW, Germany
| | - Marissa L Dubbelaar
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, BW, Germany
| | - Patrick Zimmermann
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, BW, Germany
| | - Jens Bauer
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, BW, Germany
| | - Annika Nelde
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
| | - Naomi Hoenisch Gravel
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
| | - Jonas Scheid
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, BW, Germany
- Department of Computer Science, University of Tübingen, Tübingen, BW, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, BW, Germany
| | - Marcel Wacker
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
| | - Susanne Jung
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, BW, Germany
| | - Anna Dengler
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
| | - Yacine Maringer
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
| | - Hans-Georg Rammensee
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, BW, Germany
- Institute of Immunology, University of Tübingen, Tübingen, BW, Germany
| | - Cecile Gouttefangeas
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- Institute of Immunology, University of Tübingen, Tübingen, BW, Germany
| | - Sven Fillinger
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, BW, Germany
| | - Tatjana Bilich
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
| | - Jonas S Heitmann
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, BW, Germany
| | - Sven Nahnsen
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, BW, Germany
- Department of Computer Science, University of Tübingen, Tübingen, BW, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, BW, Germany
- M3 Research Center, University Hospital of Tübingen, Tübingen, BW, Germany
| | - Juliane S Walz
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, BW, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, BW, Germany
| |
Collapse
|
3
|
Khaddour K, Buchbinder EI. Individualized Neoantigen-Directed Melanoma Therapy. Am J Clin Dermatol 2025; 26:225-235. [PMID: 39875711 DOI: 10.1007/s40257-025-00920-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2025] [Indexed: 01/30/2025]
Abstract
Individualized neoantigen-directed therapy represents a groundbreaking approach in melanoma treatment that leverages the patient's own immune system to target cancer cells. This innovative strategy involves the identification of unique immunogenic neoantigens (mutated proteins specific to an individual's tumor) and the development of therapeutic vaccines that either consist of peptide sequences or RNA encoding these neoantigens. The goal of these therapies is to induce neoantigen-specific immune responses, enabling the immune system to recognize and destroy cancer cells presenting the targeted neoantigens. This individualized approach is particularly advantageous given the genetic heterogeneity of melanoma, which exhibits distinct mutations among different patients. In contrast to traditional therapies, neoantigen-directed therapy offers a tailored treatment that potentially reduces off-target side effects and enhances therapeutic efficacy. Recent advances in neoantigen prediction and vaccine development have facilitated clinical trials exploring the combination of neoantigen vaccines with immune checkpoint inhibitors. These trials have shown promising clinical outcomes, underscoring the potential of this personalized approach. This review provides an overview of the rationale behind neoantigen-directed therapies and summarizes the current state of knowledge regarding personalized neoantigen vaccines in melanoma treatment.
Collapse
Affiliation(s)
- Karam Khaddour
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
- Melanoma Disease Center, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| | - Elizabeth I Buchbinder
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Melanoma Disease Center, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
4
|
Velz J, Freudenmann LK, Medici G, Dubbelaar M, Mohme M, Ghasemi DR, Scheid J, Kowalewski DJ, Patterson AB, Zeitlberger AM, Lamszus K, Westphal M, Eyrich M, Messing-Jünger M, Röhrig A, Reinhard H, Beccaria K, Craveiro RB, Frey BM, Sill M, Nahnsen S, Gauder M, Kapolou K, Silginer M, Weiss T, Wirsching HG, Roth P, Grotzer M, Krayenbühl N, Bozinov O, Regli L, Rammensee HG, Rushing EJ, Sahm F, Walz JS, Weller M, Neidert MC. Mapping naturally presented T cell antigens in medulloblastoma based on integrative multi-omics. Nat Commun 2025; 16:1364. [PMID: 39904979 PMCID: PMC11794601 DOI: 10.1038/s41467-025-56268-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Medulloblastoma is the most frequent malignant primary brain tumor in children. Despite recent advances in integrated genomics, the prognosis in children with high-risk medulloblastoma remains devastating, and new tumor-specific therapeutic approaches are needed. Here, we present an atlas of naturally presented T cell antigens in medulloblastoma. We map the human leukocyte antigen (HLA)-presented peptidomes of 28 tumors and perform comparative immunopeptidome profiling against an in-house benign database. Medulloblastoma is shown to be a rich source of tumor-associated antigens, naturally presented on HLA class I and II molecules. Remarkably, most tumor-associated peptides and proteins are subgroup-specific, whereas shared presentation among all subgroups of medulloblastoma (WNT, SHH, Group 3 and Group 4) is rare. Functional testing of top-ranking novel candidate antigens demonstrates the induction of peptide-specific T cell responses, supporting their potential for T cell immunotherapy. This study is an in-depth mapping of naturally presented T cell antigens in medulloblastoma. Integration of immunopeptidomics, transcriptomics, and epigenetic data leads to the identification of a large set of actionable targets that can be further used for the translation into the clinical setting by facilitating the informed design of immunotherapeutic approaches to children with medulloblastoma.
Collapse
Affiliation(s)
- Julia Velz
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
- Divison of Pediatric Neurosurgery, University Children's Hospital Zurich, Zurich, Switzerland
| | - Lena K Freudenmann
- Institute of Immunology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Gioele Medici
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Marissa Dubbelaar
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David R Ghasemi
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas Scheid
- Institute of Immunology, University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | | | - Angelica B Patterson
- Institute of Immunobiology, Cantonal Hospital St.Gallen, St. Gallen, Switzerland
- Department of Neurosurgery, Cantonal Hospital St.Gallen, St.Gallen, Switzerland
| | - Anna M Zeitlberger
- Department of Neurosurgery, Cantonal Hospital St.Gallen, St.Gallen, Switzerland
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Eyrich
- Department of Pediatric Haematology, Oncology and Stem Cell Transplantation, University Children's Hospital, University Medical Center, University of Würzburg, Würzburg, Germany
| | | | - Andreas Röhrig
- Department of Neurosurgery, Asklepios Children's Hospital, Sankt Augustin, Germany
| | - Harald Reinhard
- Department of Pediatrics, Asklepios Children's Hospital, Sankt Augustin, Germany
| | - Kévin Beccaria
- Department of Pediatric Neurosurgery, Necker Enfants Malades Hospital, APHP, Université Paris Cite, Paris, France
| | - Rogeiro B Craveiro
- Department of Orthodontic, Dental Clinic, University Hospital of RWTH Aachen, Aachen, Germany
| | - Beat M Frey
- Blood Transfusion Service, Swiss Red Cross, Schlieren, Switzerland
| | - Martin Sill
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
- Department for Computer Science, Biomedical Data Science, University of Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital, Tübingen, Baden- Württemberg, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard-Karls University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Marie Gauder
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Konstantina Kapolou
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Manuela Silginer
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Tobias Weiss
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Hans-Georg Wirsching
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Patrick Roth
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Michael Grotzer
- Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Niklaus Krayenbühl
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
- Divison of Pediatric Neurosurgery, University Children's Hospital Zurich, Zurich, Switzerland
| | - Oliver Bozinov
- Department of Neurosurgery, Cantonal Hospital St.Gallen, St.Gallen, Switzerland
| | - Luca Regli
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Hans-Georg Rammensee
- Institute of Immunology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Elisabeth J Rushing
- Department of Neuropathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juliane S Walz
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Marian C Neidert
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland.
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland.
- Department of Neurosurgery, Cantonal Hospital St.Gallen, St.Gallen, Switzerland.
| |
Collapse
|
5
|
Weitzen M, Shahbazy M, Kapoor S, Caron E. Deciphering the HLA-E immunopeptidome with mass spectrometry: an opportunity for universal mRNA vaccines and T-cell-directed immunotherapies. Front Immunol 2024; 15:1442783. [PMID: 39301027 PMCID: PMC11410602 DOI: 10.3389/fimmu.2024.1442783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/15/2024] [Indexed: 09/22/2024] Open
Abstract
Advances in immunotherapy rely on targeting novel cell surface antigens, including therapeutically relevant peptide fragments presented by HLA molecules, collectively known as the actionable immunopeptidome. Although the immunopeptidome of classical HLA molecules is extensively studied, exploration of the peptide repertoire presented by non-classical HLA-E remains limited. Growing evidence suggests that HLA-E molecules present pathogen-derived and tumor-associated peptides to CD8+ T cells, positioning them as promising targets for universal immunotherapies due to their minimal polymorphism. This mini-review highlights recent developments in mass spectrometry (MS) technologies for profiling the HLA-E immunopeptidome in various diseases. We discuss the unique features of HLA-E, its expression patterns, stability, and the potential for identifying new therapeutic targets. Understanding the broad repertoire of actionable peptides presented by HLA-E can lead to innovative treatments for viral and pathogen infections and cancer, leveraging its monomorphic nature for broad therapeutic efficacy.
Collapse
Affiliation(s)
- Maya Weitzen
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - Mohammad Shahbazy
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Saketh Kapoor
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - Etienne Caron
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
- Yale Center for Immuno-Oncology, Yale Center for Systems and Engineering Immunology, Yale Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
6
|
Gul A, Pewe LL, Willems P, Mayer R, Thery F, Asselman C, Aernout I, Verbeke R, Eggermont D, Van Moortel L, Upton E, Zhang Y, Boucher K, Miret-Casals L, Demol H, De Smedt SC, Lentacker I, Radoshevich L, Harty JT, Impens F. Immunopeptidomics Mapping of Listeria monocytogenes T Cell Epitopes in Mice. Mol Cell Proteomics 2024; 23:100829. [PMID: 39147027 PMCID: PMC11414675 DOI: 10.1016/j.mcpro.2024.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/21/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024] Open
Abstract
Listeria monocytogenes is a foodborne intracellular bacterial model pathogen. Protective immunity against Listeria depends on an effective CD8+ T cell response, but very few T cell epitopes are known in mice as a common animal infection model for listeriosis. To identify epitopes, we screened for Listeria immunopeptides presented in the spleen of infected mice by mass spectrometry-based immunopeptidomics. We mapped more than 6000 mouse self-peptides presented on MHC class I molecules, including 12 high confident Listeria peptides from 12 different bacterial proteins. Bacterial immunopeptides with confirmed fragmentation spectra were further tested for their potential to activate CD8+ T cells, revealing VTYNYINI from the putative cell wall surface anchor family protein LMON_0576 as a novel bona fide peptide epitope. The epitope showed high biological potency in a prime boost model and can be used as a research tool to probe CD8+ T cell responses in the mouse models of Listeria infection. Together, our results demonstrate the power of immunopeptidomics for bacterial antigen identification.
Collapse
Affiliation(s)
- Adillah Gul
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lecia L Pewe
- Department of Pathology, University of Iowa-Carver College of Medicine, Iowa City, Iowa, USA
| | - Patrick Willems
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Rupert Mayer
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB Proteomics Core, VIB, Ghent, Belgium
| | - Fabien Thery
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Caroline Asselman
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Ilke Aernout
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Rein Verbeke
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Denzel Eggermont
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Laura Van Moortel
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Ellen Upton
- Department of Microbiology and Immunology, University of Iowa-Carver College of Medicine, Iowa City, Iowa, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Yifeng Zhang
- Department of Microbiology and Immunology, University of Iowa-Carver College of Medicine, Iowa City, Iowa, USA
| | - Katie Boucher
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB Proteomics Core, VIB, Ghent, Belgium
| | - Laia Miret-Casals
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Hans Demol
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB Proteomics Core, VIB, Ghent, Belgium
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Lilliana Radoshevich
- Department of Microbiology and Immunology, University of Iowa-Carver College of Medicine, Iowa City, Iowa, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, USA; Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA.
| | - John T Harty
- Department of Pathology, University of Iowa-Carver College of Medicine, Iowa City, Iowa, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, USA.
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB Proteomics Core, VIB, Ghent, Belgium.
| |
Collapse
|
7
|
Hackenbruch C, Bauer J, Heitmann JS, Maringer Y, Nelde A, Denk M, Zieschang L, Kammer C, Federmann B, Jung S, Martus P, Malek NP, Nikolaou K, Salih HR, Bitzer M, Walz JS. FusionVAC22_01: a phase I clinical trial evaluating a DNAJB1-PRKACA fusion transcript-based peptide vaccine combined with immune checkpoint inhibition for fibrolamellar hepatocellular carcinoma and other tumor entities carrying the oncogenic driver fusion. Front Oncol 2024; 14:1367450. [PMID: 38606105 PMCID: PMC11007196 DOI: 10.3389/fonc.2024.1367450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024] Open
Abstract
The DNAJB1-PRKACA fusion transcript was identified as the oncogenic driver of tumor pathogenesis in fibrolamellar hepatocellular carcinoma (FL-HCC), also known as fibrolamellar carcinoma (FLC), as well as in other tumor entities, thus representing a broad target for novel treatment in multiple cancer entities. FL-HCC is a rare primary liver tumor with a 5-year survival rate of only 45%, which typically affects young patients with no underlying primary liver disease. Surgical resection is the only curative treatment option if no metastases are present at diagnosis. There is no standard of care for systemic therapy. Peptide-based vaccines represent a low side-effect approach relying on specific immune recognition of tumor-associated human leucocyte antigen (HLA) presented peptides. The induction (priming) of tumor-specific T-cell responses against neoepitopes derived from gene fusion transcripts by peptide-vaccination combined with expansion of the immune response and optimization of immune function within the tumor microenvironment achieved by immune-checkpoint-inhibition (ICI) has the potential to improve response rates and durability of responses in malignant diseases. The phase I clinical trial FusionVAC22_01 will enroll patients with FL-HCC or other cancer entities carrying the DNAJB1-PRKACA fusion transcript that are locally advanced or metastatic. Two doses of the DNAJB1-PRKACA fusion-based neoepitope vaccine Fusion-VAC-XS15 will be applied subcutaneously (s.c.) with a 4-week interval in combination with the anti-programmed cell death-ligand 1 (PD-L1) antibody atezolizumab starting at day 15 after the first vaccination. Anti-PD-L1 will be applied every 4 weeks until end of the 54-week treatment phase or until disease progression or other reason for study termination. Thereafter, patients will enter a 6 months follow-up period. The clinical trial reported here was approved by the Ethics Committee II of the University of Heidelberg (Medical faculty of Mannheim) and the Paul-Ehrlich-Institute (P-00540). Clinical trial results will be published in peer-reviewed journals. Trial registration numbers EU CT Number: 2022-502869-17-01 and ClinicalTrials.gov Registry (NCT05937295).
Collapse
Affiliation(s)
- Christopher Hackenbruch
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Jens Bauer
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Jonas S. Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Yacine Maringer
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Annika Nelde
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Monika Denk
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Lisa Zieschang
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Christine Kammer
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Birgit Federmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Susanne Jung
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Peter Martus
- Institute for Medical Biometrics and Clinical Epidemiology, University Hospital Tübingen, Tübingen, Germany
| | - Nisar P. Malek
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
- Center for Personalized Medicine, University of Tübingen, Tübingen, Germany
- The M3 Research Institute, University of Tübingen, Tübingen, Germany
| | - Konstantin Nikolaou
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Helmut R. Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Michael Bitzer
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
- Center for Personalized Medicine, University of Tübingen, Tübingen, Germany
| | - Juliane S. Walz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Larson AC, Knoche SM, Brumfield GL, Doty KR, Gephart BD, Moore-Saufley PR, Solheim JC. Gemcitabine Modulates HLA-I Regulation to Improve Tumor Antigen Presentation by Pancreatic Cancer Cells. Int J Mol Sci 2024; 25:3211. [PMID: 38542184 PMCID: PMC10970070 DOI: 10.3390/ijms25063211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 04/26/2024] Open
Abstract
Pancreatic cancer is a lethal disease, harboring a five-year overall survival rate of only 13%. Current treatment approaches thus require modulation, with attention shifting towards liberating the stalled efficacy of immunotherapies. Select chemotherapy drugs which possess inherent immune-modifying behaviors could revitalize immune activity against pancreatic tumors and potentiate immunotherapeutic success. In this study, we characterized the influence of gemcitabine, a chemotherapy drug approved for the treatment of pancreatic cancer, on tumor antigen presentation by human leukocyte antigen class I (HLA-I). Gemcitabine increased pancreatic cancer cells' HLA-I mRNA transcripts, total protein, surface expression, and surface stability. Temperature-dependent assay results indicated that the increased HLA-I stability may be due to reduced binding of low affinity peptides. Mass spectrometry analysis confirmed changes in the HLA-I-presented peptide pool post-treatment, and computational predictions suggested improved affinity and immunogenicity of peptides displayed solely by gemcitabine-treated cells. Most of the gemcitabine-exclusive peptides were derived from unique source proteins, with a notable overrepresentation of translation-related proteins. Gemcitabine also increased expression of select immunoproteasome subunits, providing a plausible mechanism for its modulation of the HLA-I-bound peptidome. Our work supports continued investigation of immunotherapies, including peptide-based vaccines, to be used with gemcitabine as new combination treatment modalities for pancreatic cancer.
Collapse
Affiliation(s)
- Alaina C. Larson
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shelby M. Knoche
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gabrielle L. Brumfield
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kenadie R. Doty
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benjamin D. Gephart
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Joyce C. Solheim
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
9
|
Hoenisch Gravel N, Nelde A, Bauer J, Mühlenbruch L, Schroeder SM, Neidert MC, Scheid J, Lemke S, Dubbelaar ML, Wacker M, Dengler A, Klein R, Mauz PS, Löwenheim H, Hauri-Hohl M, Martin R, Hennenlotter J, Stenzl A, Heitmann JS, Salih HR, Rammensee HG, Walz JS. TOF IMS mass spectrometry-based immunopeptidomics refines tumor antigen identification. Nat Commun 2023; 14:7472. [PMID: 37978195 PMCID: PMC10656517 DOI: 10.1038/s41467-023-42692-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023] Open
Abstract
T cell recognition of human leukocyte antigen (HLA)-presented tumor-associated peptides is central for cancer immune surveillance. Mass spectrometry (MS)-based immunopeptidomics represents the only unbiased method for the direct identification and characterization of naturally presented tumor-associated peptides, a key prerequisite for the development of T cell-based immunotherapies. This study reports on the implementation of ion mobility separation-based time-of-flight (TOFIMS) MS for next-generation immunopeptidomics, enabling high-speed and sensitive detection of HLA-presented peptides. Applying TOFIMS-based immunopeptidomics, a novel extensive benignTOFIMS dataset was generated from 94 primary benign samples of solid tissue and hematological origin, which enabled the expansion of benign reference immunopeptidome databases with > 150,000 HLA-presented peptides, the refinement of previously described tumor antigens, as well as the identification of frequently presented self antigens and not yet described tumor antigens comprising low abundant mutation-derived neoepitopes that might serve as targets for future cancer immunotherapy development.
Collapse
Affiliation(s)
- Naomi Hoenisch Gravel
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Annika Nelde
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Jens Bauer
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Lena Mühlenbruch
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Sarah M Schroeder
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Marian C Neidert
- Neuroscience Center Zürich (ZNZ), University of Zürich and ETH Zürich, Zürich, Switzerland
- Clinical Neuroscience Center and Department of Neurosurgery, University Hospital and University of Zurich, Zürich, Switzerland
- Department of Neurosurgery, Cantonal Hospital St. Gallen, Zürich, Switzerland
| | - Jonas Scheid
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Quantitative Biology Center (QBIC), University of Tübingen, Tübingen, Germany
| | - Steffen Lemke
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Quantitative Biology Center (QBIC), University of Tübingen, Tübingen, Germany
| | - Marissa L Dubbelaar
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Quantitative Biology Center (QBIC), University of Tübingen, Tübingen, Germany
| | - Marcel Wacker
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Anna Dengler
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Reinhild Klein
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Paul-Stefan Mauz
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Hubert Löwenheim
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Mathias Hauri-Hohl
- Pediatric Stem Cell Transplantation, University Children's Hospital Zürich, Zürich, Switzerland
| | - Roland Martin
- Neuroimmunology and MS Research, Neurology Clinic, University and University Hospital Zürich, Zürich, Switzerland
| | - Jörg Hennenlotter
- Department of Urology, University Hospital Tübingen, Tübingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University Hospital Tübingen, Tübingen, Germany
| | - Jonas S Heitmann
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Hans-Georg Rammensee
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany.
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
10
|
Goyal A, Bauer J, Hey J, Papageorgiou DN, Stepanova E, Daskalakis M, Scheid J, Dubbelaar M, Klimovich B, Schwarz D, Märklin M, Roerden M, Lin YY, Ma T, Mücke O, Rammensee HG, Lübbert M, Loayza-Puch F, Krijgsveld J, Walz JS, Plass C. DNMT and HDAC inhibition induces immunogenic neoantigens from human endogenous retroviral element-derived transcripts. Nat Commun 2023; 14:6731. [PMID: 37872136 PMCID: PMC10593957 DOI: 10.1038/s41467-023-42417-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
Immunotherapies targeting cancer-specific neoantigens have revolutionized the treatment of cancer patients. Recent evidence suggests that epigenetic therapies synergize with immunotherapies, mediated by the de-repression of endogenous retroviral element (ERV)-encoded promoters, and the initiation of transcription. Here, we use deep RNA sequencing from cancer cell lines treated with DNA methyltransferase inhibitor (DNMTi) and/or Histone deacetylase inhibitor (HDACi), to assemble a de novo transcriptome and identify several thousand ERV-derived, treatment-induced novel polyadenylated transcripts (TINPATs). Using immunopeptidomics, we demonstrate the human leukocyte antigen (HLA) presentation of 45 spectra-validated treatment-induced neopeptides (t-neopeptides) arising from TINPATs. We illustrate the potential of the identified t-neopeptides to elicit a T-cell response to effectively target cancer cells. We further verify the presence of t-neopeptides in AML patient samples after in vivo treatment with the DNMT inhibitor Decitabine. Our findings highlight the potential of ERV-derived neoantigens in epigenetic and immune therapies.
Collapse
Affiliation(s)
- Ashish Goyal
- Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jens Bauer
- Department of Peptide-based Immunotherapy, University of Tübingen and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Joschka Hey
- Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German-Israeli Helmholtz Research School in Cancer Biology, Heidelberg, Germany
- German Center for Lung Research, (DZL) partner site Heidelberg, Heidelberg, Germany
| | - Dimitris N Papageorgiou
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Ekaterina Stepanova
- Translational Control and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Daskalakis
- Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern, University Hospital, University of Bern, Bern, Switzerland
| | - Jonas Scheid
- Department of Peptide-based Immunotherapy, University of Tübingen and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Marissa Dubbelaar
- Department of Peptide-based Immunotherapy, University of Tübingen and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Boris Klimovich
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Dominic Schwarz
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Märklin
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Malte Roerden
- Department of Peptide-based Immunotherapy, University of Tübingen and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Yu-Yu Lin
- Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Ma
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Mücke
- Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hans-Georg Rammensee
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Michael Lübbert
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fabricio Loayza-Puch
- Translational Control and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Juliane S Walz
- Department of Peptide-based Immunotherapy, University of Tübingen and University Hospital Tübingen, Tübingen, Germany.
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.
| | - Christoph Plass
- Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Center for Lung Research, (DZL) partner site Heidelberg, Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
11
|
Buonaguro L, Tagliamonte M. Peptide-based vaccine for cancer therapies. Front Immunol 2023; 14:1210044. [PMID: 37654484 PMCID: PMC10467431 DOI: 10.3389/fimmu.2023.1210044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
Different strategies based on peptides are available for cancer treatment, in particular to counter-act the progression of tumor growth and disease relapse. In the last decade, in the context of therapeutic strategies against cancer, peptide-based vaccines have been evaluated in different tumor models. The peptides selected for cancer vaccine development can be classified in two main type: tumor-associated antigens (TAAs) and tumor-specific antigens (TSAs), which are captured, internalized, processed and presented by antigen-presenting cells (APCs) to cell-mediated immunity. Peptides loaded onto MHC class I are recognized by a specific TCR of CD8+ T cells, which are activated to exert their cytotoxic activity against tumor cells presenting the same peptide-MHC-I complex. This process is defined as active immunotherapy as the host's immune system is either de novo activated or restimulated to mount an effective, tumor-specific immune reaction that may ultimately lead to tu-mor regression. However, while the preclinical data have frequently shown encouraging results, therapeutic cancer vaccines clinical trials, including those based on peptides have not provided satisfactory data to date. The limited efficacy of peptide-based cancer vaccines is the consequence of several factors, including the identification of specific target tumor antigens, the limited immunogenicity of peptides and the highly immunosuppressive tumor microenvironment (TME). An effective cancer vaccine can be developed only by addressing all such different aspects. The present review describes the state of the art for each of such factors.
Collapse
Affiliation(s)
| | - Maria Tagliamonte
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - “Fond G. Pascale”, Naples, Italy
| |
Collapse
|
12
|
Medici G, Freudenmann LK, Velz J, Wang SSY, Kapolou K, Paramasivam N, Mühlenbruch L, Kowalewski DJ, Vasella F, Bilich T, Frey BM, Dubbelaar ML, Patterson AB, Zeitlberger AM, Silginer M, Roth P, Weiss T, Wirsching HG, Krayenbühl N, Bozinov O, Regli L, Rammensee HG, Rushing EJ, Sahm F, Walz JS, Weller M, Neidert MC. A T-cell antigen atlas for meningioma: novel options for immunotherapy. Acta Neuropathol 2023; 146:173-190. [PMID: 37368072 PMCID: PMC10329067 DOI: 10.1007/s00401-023-02605-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023]
Abstract
Meningiomas are the most common primary intracranial tumors. Although most symptomatic cases can be managed by surgery and/or radiotherapy, a relevant number of patients experience an unfavorable clinical course and additional treatment options are needed. As meningiomas are often perfused by dural branches of the external carotid artery, which is located outside the blood-brain barrier, they might be an accessible target for immunotherapy. However, the landscape of naturally presented tumor antigens in meningioma is unknown. We here provide a T-cell antigen atlas for meningioma by in-depth profiling of the naturally presented immunopeptidome using LC-MS/MS. Candidate target antigens were selected based on a comparative approach using an extensive immunopeptidome data set of normal tissues. Meningioma-exclusive antigens for HLA class I and II are described here for the first time. Top-ranking targets were further functionally characterized by showing their immunogenicity through in vitro T-cell priming assays. Thus, we provide an atlas of meningioma T-cell antigens which will be publicly available for further research. In addition, we have identified novel actionable targets that warrant further investigation as an immunotherapy option for meningioma.
Collapse
Affiliation(s)
- Gioele Medici
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland.
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland.
| | - Lena K Freudenmann
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Julia Velz
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | - Sophie Shih-Yüng Wang
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
- Department of Neurosurgery and Neurotechnology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Konstantina Kapolou
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
- Roche Diagnostics International Ltd, Rotkreuz, Switzerland
| | - Nagarajan Paramasivam
- Computational Oncology Group, Molecular Precision Oncology Program, NCT Heidelberg and DKFZ, Heidelberg, Germany
| | - Lena Mühlenbruch
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-Based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
| | - Daniel J Kowalewski
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Tübingen, Germany
| | - Flavio Vasella
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | - Tatjana Bilich
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Beat M Frey
- Blood Transfusion Service, Swiss Red Cross, Schlieren, Switzerland
| | - Marissa L Dubbelaar
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-Based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Quantitative Biology Center (QBiC), Eberhard Karls University Tübingen, 72076, Tübingen, Baden-Württemberg, Germany
| | | | - Anna Maria Zeitlberger
- Department of Neurosurgery, Cantonal Hospital St. Gallen, Rorschacher Strasse 95, 9007, St. Gallen, Switzerland
| | - Manuela Silginer
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Patrick Roth
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Tobias Weiss
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Hans-Georg Wirsching
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Niklaus Krayenbühl
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | - Oliver Bozinov
- Department of Neurosurgery, Cantonal Hospital St. Gallen, Rorschacher Strasse 95, 9007, St. Gallen, Switzerland
| | - Luca Regli
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | - Hans-Georg Rammensee
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Tübingen, Germany
| | - Elisabeth Jane Rushing
- Department of Neuropathology, University Hospital and University of Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juliane S Walz
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-Based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Marian C Neidert
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
- Department of Neurosurgery, Cantonal Hospital St. Gallen, Rorschacher Strasse 95, 9007, St. Gallen, Switzerland
| |
Collapse
|
13
|
Ternette N, Adamopoulou E, Purcell AW. How mass spectrometric interrogation of MHC class I ligandomes has advanced our understanding of immune responses to viruses. Semin Immunol 2023; 68:101780. [PMID: 37276649 DOI: 10.1016/j.smim.2023.101780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023]
Affiliation(s)
- Nicola Ternette
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford OX37BN, UK.
| | - Eleni Adamopoulou
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford OX37BN, UK
| | - Anthony W Purcell
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
14
|
Stutzmann C, Peng J, Wu Z, Savoie C, Sirois I, Thibault P, Wheeler AR, Caron E. Unlocking the potential of microfluidics in mass spectrometry-based immunopeptidomics for tumor antigen discovery. CELL REPORTS METHODS 2023; 3:100511. [PMID: 37426761 PMCID: PMC10326451 DOI: 10.1016/j.crmeth.2023.100511] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The identification of tumor-specific antigens (TSAs) is critical for developing effective cancer immunotherapies. Mass spectrometry (MS)-based immunopeptidomics has emerged as a powerful tool for identifying TSAs as physical molecules. However, current immunopeptidomics platforms face challenges in measuring low-abundance TSAs in a precise, sensitive, and reproducible manner from small needle-tissue biopsies (<1 mg). Inspired by recent advances in single-cell proteomics, microfluidics technology offers a promising solution to these limitations by providing improved isolation of human leukocyte antigen (HLA)-associated peptides with higher sensitivity. In this context, we highlight the challenges in sample preparation and the rationale for developing microfluidics technology in immunopeptidomics. Additionally, we provide an overview of promising microfluidic methods, including microchip pillar arrays, valved-based systems, droplet microfluidics, and digital microfluidics, and discuss the latest research on their application in MS-based immunopeptidomics and single-cell proteomics.
Collapse
Affiliation(s)
| | - Jiaxi Peng
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Zhaoguan Wu
- CHU Sainte Justine Research Center, Montreal, QC, Canada
| | | | | | - Pierre Thibault
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
- Department of Chemistry, University of Montreal, Montreal, QC, Canada
| | - Aaron R. Wheeler
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Etienne Caron
- CHU Sainte Justine Research Center, Montreal, QC, Canada
- Department of Pathology and Cellular Biology, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
15
|
Admon A. The biogenesis of the immunopeptidome. Semin Immunol 2023; 67:101766. [PMID: 37141766 DOI: 10.1016/j.smim.2023.101766] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
The immunopeptidome is the repertoire of peptides bound and presented by the MHC class I, class II, and non-classical molecules. The peptides are produced by the degradation of most cellular proteins, and in some cases, peptides are produced from extracellular proteins taken up by the cells. This review attempts to first describe some of its known and well-accepted concepts, and next, raise some questions about a few of the established dogmas in this field: The production of novel peptides by splicing is questioned, suggesting here that spliced peptides are extremely rare, if existent at all. The degree of the contribution to the immunopeptidome by degradation of cellular protein by the proteasome is doubted, therefore this review attempts to explain why it is likely that this contribution to the immunopeptidome is possibly overstated. The contribution of defective ribosome products (DRiPs) and non-canonical peptides to the immunopeptidome is noted and methods are suggested to quantify them. In addition, the common misconception that the MHC class II peptidome is mostly derived from extracellular proteins is noted, and corrected. It is stressed that the confirmation of sequence assignments of non-canonical and spliced peptides should rely on targeted mass spectrometry using spiking-in of heavy isotope-labeled peptides. Finally, the new methodologies and modern instrumentation currently available for high throughput kinetics and quantitative immunopeptidomics are described. These advanced methods open up new possibilities for utilizing the big data generated and taking a fresh look at the established dogmas and reevaluating them critically.
Collapse
Affiliation(s)
- Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Israel.
| |
Collapse
|
16
|
Santharam MA, Shukla A, Levesque D, Kufer TA, Boisvert FM, Ramanathan S, Ilangumaran S. NLRC5-CIITA Fusion Protein as an Effective Inducer of MHC-I Expression and Antitumor Immunity. Int J Mol Sci 2023; 24:ijms24087206. [PMID: 37108368 PMCID: PMC10138588 DOI: 10.3390/ijms24087206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Aggressive tumors evade cytotoxic T lymphocytes by suppressing MHC class-I (MHC-I) expression that also compromises tumor responsiveness to immunotherapy. MHC-I defects strongly correlate to defective expression of NLRC5, the transcriptional activator of MHC-I and antigen processing genes. In poorly immunogenic B16 melanoma cells, restoring NLRC5 expression induces MHC-I and elicits antitumor immunity, raising the possibility of using NLRC5 for tumor immunotherapy. As the clinical application of NLRC5 is constrained by its large size, we examined whether a smaller NLRC5-CIITA fusion protein, dubbed NLRC5-superactivator (NLRC5-SA) as it retains the ability to induce MHC-I, could be used for tumor growth control. We show that stable NLRC5-SA expression in mouse and human cancer cells upregulates MHC-I expression. B16 melanoma and EL4 lymphoma tumors expressing NLRC5-SA are controlled as efficiently as those expressing full-length NLRC5 (NLRC5-FL). Comparison of MHC-I-associated peptides (MAPs) eluted from EL4 cells expressing NLRC5-FL or NLRC5-SA and analyzed by mass spectrometry revealed that both NLRC5 constructs expanded the MAP repertoire, which showed considerable overlap but also included a substantial proportion of distinct peptides. Thus, we propose that NLRC5-SA, with its ability to increase tumor immunogenicity and promote tumor growth control, could overcome the limitations of NLRC5-FL for translational immunotherapy applications.
Collapse
Affiliation(s)
- Madanraj Appiya Santharam
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Akhil Shukla
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Dominique Levesque
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70593 Stuttgart, Germany
| | - François-Michel Boisvert
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- CRCHUS, Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- CRCHUS, Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- CRCHUS, Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
17
|
Wang L, Li X, Yang S, Chen X, Li J, Wang S, Zhang M, Zheng Z, Zhou J, Wang L, Wu Y. Proteomic identification of MHC class I-associated peptidome derived from non-obese diabetic mouse thymus and pancreas. J Proteomics 2023; 270:104746. [PMID: 36210013 DOI: 10.1016/j.jprot.2022.104746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/17/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
The peptides repertoire presented to CD8+ T cells by major histocompatibility complex (MHC) class I molecules is referred to as the MHC I-associated peptidome (MIP), which regulates thymus development, peripheral survival and function during lifetime of CD8+ T cells. Type 1 diabetes (T1D) is an organ-specific autoimmune disease caused by pancreatic β cells destruction mediated primarily by autoreactive CD8+ T cells. Non-obese diabetic (NOD) mouse is an important animal model of T1D. Here, we deeply analyzed the MIP derived from NOD mice thymus and pancreas, and demonstrated that the thymus MIP source proteins partially shared with the MIP source proteins derived from NOD mice pancreas and β cell line. One H-2Kd restricted peptide SLC35B126-34 which was shared by MIP derived from both NOD mice pancreatic tissues and islet β-cell line, but absent in MIP from NOD thymus tissues, showed ability to stimulate IFN-γ secretion and proliferation of NOD mice splenic CD8+ T cells. The global view of the MHC I-associated self-peptides repertoire in the thymus and pancreas of NOD mice may serve as a biological reference to identify potential autoantigens targeted by autoreactive CD8+ T cells in T1D. Data are available via ProteomeXchange with identifier PXD031966. SIGNIFICANCE: The peptides repertoire presented to CD8+ T cells by major histocompatibility complex (MHC) class I molecules is referred to as the MHC I-associated peptidome (MIP). The MIP presented by thymic antigen presenting cells (APCs) is crucial for shaping CD8+ T cell repertoire and self-tolerance, while the MIP presented by peripheral tissues and organs is not only involved in maintaining periphery CD8+ T cell survival and homeostasis, but also mediates immune surveillance and autoimmune responses of CD8+ T cells under pathological conditions. Type 1 diabetes (T1D) is an organ-specific autoimmune disease caused by the destruction of pancreatic β cells, mediated primarily by autoreactive CD8+ T cells. Non-obese diabetic (NOD) mouse is one of important animal models of spontaneous autoimmune diabetes that shares several key features with human T1D. The global view of the MHC I-associated self-peptides repertoire in the thymus and pancreas of NOD mice may serve as a good biological reference to identify potential autoantigens targeted by autoreactive CD8+ T cells in T1D. It has great significance for further clarifying the immune recognition and effect mechanism of autoreactive CD8+ T cells in the pathogenesis of T1D, and then developing antigen-specific immune intervention strategies.
Collapse
Affiliation(s)
- Lina Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, China; Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; Department of Immunology, College of Basic Medicine, Weifang Medical University, Weifang 261053, China
| | - Xiangqian Li
- Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shushu Yang
- Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiaoling Chen
- Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jie Li
- Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shufeng Wang
- Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mengjun Zhang
- Department of Pharmaceutical Analysis, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhengni Zheng
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jie Zhou
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Li Wang
- Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Yuzhang Wu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, China; Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
18
|
Bauer J, Köhler N, Maringer Y, Bucher P, Bilich T, Zwick M, Dicks S, Nelde A, Dubbelaar M, Scheid J, Wacker M, Heitmann JS, Schroeder S, Rieth J, Denk M, Richter M, Klein R, Bonzheim I, Luibrand J, Holzer U, Ebinger M, Brecht IB, Bitzer M, Boerries M, Feucht J, Salih HR, Rammensee HG, Hailfinger S, Walz JS. The oncogenic fusion protein DNAJB1-PRKACA can be specifically targeted by peptide-based immunotherapy in fibrolamellar hepatocellular carcinoma. Nat Commun 2022; 13:6401. [PMID: 36302754 PMCID: PMC9613889 DOI: 10.1038/s41467-022-33746-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/30/2022] [Indexed: 02/01/2023] Open
Abstract
The DNAJB1-PRKACA fusion transcript is the oncogenic driver in fibrolamellar hepatocellular carcinoma, a lethal disease lacking specific therapies. This study reports on the identification, characterization, and immunotherapeutic application of HLA-presented neoantigens specific for the DNAJB1-PRKACA fusion transcript in fibrolamellar hepatocellular carcinoma. DNAJB1-PRKACA-derived HLA class I and HLA class II ligands induce multifunctional cytotoxic CD8+ and T-helper 1 CD4+ T cells, and their cellular processing and presentation in DNAJB1-PRKACA expressing tumor cells is demonstrated by mass spectrometry-based immunopeptidome analysis. Single-cell RNA sequencing further identifies multiple T cell receptors from DNAJB1-PRKACA-specific T cells. Vaccination of a fibrolamellar hepatocellular carcinoma patient, suffering from recurrent short interval disease relapses, with DNAJB1-PRKACA-derived peptides under continued Poly (ADP-ribose) polymerase inhibitor therapy induces multifunctional CD4+ T cells, with an activated T-helper 1 phenotype and high T cell receptor clonality. Vaccine-induced DNAJB1-PRKACA-specific T cell responses persist over time and, in contrast to various previous treatments, are accompanied by durable relapse free survival of the patient for more than 21 months post vaccination. Our preclinical and clinical findings identify the DNAJB1-PRKACA protein as source for immunogenic neoepitopes and corresponding T cell receptors and provide efficacy in a single-patient study of T cell-based immunotherapy specifically targeting this oncogenic fusion.
Collapse
Affiliation(s)
- Jens Bauer
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Natalie Köhler
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Yacine Maringer
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Philip Bucher
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Pediatric Hematology and Oncology, University Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Tatjana Bilich
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Melissa Zwick
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-Universität, Freiburg, Germany
| | - Severin Dicks
- Faculty of Biology, Albert-Ludwigs-Universität, Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Annika Nelde
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Marissa Dubbelaar
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Jonas Scheid
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Marcel Wacker
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Jonas S Heitmann
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Sarah Schroeder
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Jonas Rieth
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Monika Denk
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tübingen, Tübingen, Germany
| | - Marion Richter
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tübingen, Tübingen, Germany
| | - Reinhild Klein
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Irina Bonzheim
- Department of Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Julia Luibrand
- Department of Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Ursula Holzer
- Department of Pediatric Hematology and Oncology, University Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Martin Ebinger
- Department of Pediatric Hematology and Oncology, University Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Ines B Brecht
- Department of Pediatric Hematology and Oncology, University Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Michael Bitzer
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tübingen, Tübingen, Germany
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site, Freiburg, Germany
| | - Judith Feucht
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Pediatric Hematology and Oncology, University Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tübingen, Tübingen, Germany
| | - Stephan Hailfinger
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Juliane S Walz
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany.
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tübingen, Tübingen, Germany.
| |
Collapse
|
19
|
Vigón L, Galán M, Torres M, Martín-Galiano AJ, Rodríguez-Mora S, Mateos E, Corona M, Malo R, Navarro C, Murciano-Antón MA, García-Gutiérrez V, Planelles V, Martínez-Laso J, López-Huertas MR, Coiras M, on behalf of the Multidisciplinary Group of Study of COVID-19 (MGS-COVID). Association between HLA-C alleles and COVID-19 severity in a pilot study with a Spanish Mediterranean Caucasian cohort. PLoS One 2022; 17:e0272867. [PMID: 35960731 PMCID: PMC9374209 DOI: 10.1371/journal.pone.0272867] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022] Open
Abstract
The clinical presentations of COVID-19 may range from an asymptomatic or mild infection to a critical or fatal disease. Several host factors such as elderly age, male gender, and previous comorbidities seem to be involved in the most severe outcomes, but also an impaired immune response that causes a hyperinflammatory state but is unable to clear the infection. In order to get further understanding about this impaired immune response, we aimed to determine the association of specific HLA alleles with different clinical presentations of COVID-19. Therefore, we analyzed HLA Class I and II, as well as KIR gene sequences, in 72 individuals with Spanish Mediterranean Caucasian ethnicity who presented mild, severe, or critical COVID-19, according to their clinical characteristics and management. This cohort was recruited in Madrid (Spain) during the first and second pandemic waves between April and October 2020. There were no significant differences in HLA-A or HLA-B alleles among groups. However, despite the small sample size, we found that HLA-C alleles from group C1 HLA-C*08:02, -C*12:03, or -C*16:01 were more frequently associated in individuals with mild COVID-19 (43.8%) than in individuals with severe (8.3%; p = 0.0030; pc = 0.033) and critical (16.1%; p = 0.0014; pc = 0.0154) disease. C1 alleles are supposed to be highly efficient to present peptides to T cells, and HLA-C*12:03 may present a high number of verified epitopes from abundant SARS-CoV-2 proteins M, N, and S, thereby being allegedly able to trigger an efficient antiviral response. On the contrary, C2 alleles are usually poorly expressed on the cell surface due to low association with β2-microglobulin (β2M) and peptides, which may impede the adequate formation of stable HLA-C/β2M/peptide heterotrimers. Consequently, this pilot study described significant differences in the presence of specific HLA-C1 alleles in individuals with different clinical presentations of COVID-19, thereby suggesting that HLA haplotyping could be valuable to get further understanding in the underlying mechanisms of the impaired immune response during critical COVID-19.
Collapse
Affiliation(s)
- Lorena Vigón
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Galán
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Montserrat Torres
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio J. Martín-Galiano
- Intrahospital Infections Laboratory, National Centre of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Rodríguez-Mora
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Elena Mateos
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Magdalena Corona
- Hematology Service, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Rosa Malo
- Neumology Service, Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | | | | | | | - Vicente Planelles
- Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jorge Martínez-Laso
- Immunogenetic Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - María Rosa López-Huertas
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Mayte Coiras
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Madrid, Spain
| | | |
Collapse
|
20
|
HLA-DR Presentation of the Tumor Antigen MSLN Associates with Clinical Outcome of Ovarian Cancer Patients. Cancers (Basel) 2022; 14:cancers14092260. [PMID: 35565389 PMCID: PMC9101593 DOI: 10.3390/cancers14092260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The immunopeptidome represents the entirety of peptides that are presented on the surface of cells on human leukocyte antigen (HLA) molecules and are recognized by the T-cell receptors of CD4+ and CD8+ T-cells. Malignant cells present tumor-associated antigens essential for tumor immune surveillance, which can be targeted by T-cell-based immunotherapy approaches. For ovarian carcinomas, various tumor-associated antigens, such as Mucin-16 and Mesothelin, have been described. The aim of our study is to analyze immunopeptidome-defined tumor antigen presentation in ovarian carcinoma patients in relation to clinical characteristics and disease outcomes to define potential biomarkers. Our work demonstrates the central role of HLA-DR-restricted peptide presentation of the tumor antigen Mesothelin and of CD4+ T-cell responses for tumor immune surveillance, and underlines Mesothelin as a prime target antigen for novel immunotherapeutic approaches for ovarian carcinoma patients. Abstract T-cell recognition of HLA-presented antigens is central for the immunological surveillance of malignant disease and key for the development of novel T-cell-based immunotherapy approaches. In recent years, large-scale immunopeptidome studies identified naturally presented tumor-associated antigens for several malignancies. Regarding ovarian carcinoma (OvCa), Mucin-16 (MUC16) and Mesothelin (MSLN) were recently described as the top HLA class I- and HLA class II-presented tumor antigens, respectively. Here, we investigate the role and impact of immunopeptidome-presented tumor antigens on the clinical outcomes of 39 OvCa patients with a follow-up time of up to 50 months after surgery. Patients with a HLA-restricted presentation of high numbers of different MSLN-derived peptides on their tumors exhibited significantly prolonged progression-free (PFS) and overall survival (OS), whereas the presentation of MUC16-derived HLA class I-restricted peptides had no impact. Furthermore, a high HLA-DRB gene expression was associated with increased PFS and OS. In line, in silico prediction revealed that MSLN-derived HLA class II-presented peptides are predominantly presented on HLA-DR allotypes. In conclusion, the correlation of MSLN tumor antigen presentation and HLA-DRB gene expression with prolonged survival indicates a central role of CD4+ T-cell responses for tumor immune surveillance in OvCa, and highlights the importance of immunopeptidome-guided tumor antigen discovery.
Collapse
|
21
|
Koşaloğlu-Yalçın Z, Lee J, Greenbaum J, Schoenberger SP, Miller A, Kim YJ, Sette A, Nielsen M, Peters B. Combined assessment of MHC binding and antigen abundance improves T cell epitope predictions. iScience 2022; 25:103850. [PMID: 35128348 PMCID: PMC8806398 DOI: 10.1016/j.isci.2022.103850] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/19/2021] [Accepted: 01/26/2022] [Indexed: 01/16/2023] Open
Abstract
Many steps of the MHC class I antigen processing pathway can be predicted using computational methods. Here we show that epitope predictions can be further improved by considering abundance levels of peptides' source proteins. We utilized biophysical principles and existing MHC binding prediction tools in concert with abundance estimates of source proteins to derive a function that estimates the likelihood of a peptide to be an MHC class I ligand. We found that this combination improved predictions for both naturally eluted ligands and cancer neoantigen epitopes. We compared the use of different measures of antigen abundance, including mRNA expression by RNA-Seq, gene translation by Ribo-Seq, and protein abundance by proteomics on a dataset of SARS-CoV-2 epitopes. Epitope predictions were improved above binding predictions alone in all cases and gave the highest performance when using proteomic data. Our results highlight the value of incorporating antigen abundance levels to improve epitope predictions.
Collapse
Affiliation(s)
- Zeynep Koşaloğlu-Yalçın
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Jenny Lee
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Jason Greenbaum
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Stephen P. Schoenberger
- Division of Hematology and Oncology, Center for Personalized Cancer Therapy, San Diego Moore's Cancer Center, University of California, San Diego, San Diego, CA, USA
- Laboratory of Cellular Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Aaron Miller
- Division of Hematology and Oncology, Center for Personalized Cancer Therapy, San Diego Moore's Cancer Center, University of California, San Diego, San Diego, CA, USA
- Laboratory of Cellular Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Young J. Kim
- Department of Otolaryngology-Head & Neck Surgery, Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, University of California, San Diego, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, DK Lyngby, 2800, Denmark
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, CP San Martín, B1650, Argentina
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, University of California, San Diego, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| |
Collapse
|
22
|
Kubiniok P, Marcu A, Bichmann L, Kuchenbecker L, Schuster H, Hamelin DJ, Duquette JD, Kovalchik KA, Wessling L, Kohlbacher O, Rammensee HG, Neidert MC, Sirois I, Caron E. Understanding the constitutive presentation of MHC class I immunopeptidomes in primary tissues. iScience 2022; 25:103768. [PMID: 35141507 PMCID: PMC8810409 DOI: 10.1016/j.isci.2022.103768] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/15/2021] [Accepted: 01/11/2022] [Indexed: 12/20/2022] Open
Abstract
Understanding the molecular principles that govern the composition of the MHC-I immunopeptidome across different primary tissues is fundamentally important to predict how T cells respond in different contexts in vivo. Here, we performed a global analysis of the MHC-I immunopeptidome from 29 to 19 primary human and mouse tissues, respectively. First, we observed that different HLA-A, HLA-B, and HLA-C allotypes do not contribute evenly to the global composition of the MHC-I immunopeptidome across multiple human tissues. Second, we found that tissue-specific and housekeeping MHC-I peptides share very distinct properties. Third, we discovered that proteins that are evolutionarily hyperconserved represent the primary source of the MHC-I immunopeptidome at the organism-wide scale. Fourth, we uncovered new components of the antigen processing and presentation network, including the carboxypeptidases CPE, CNDP1/2, and CPVL. Together, this study opens up new avenues toward a system-wide understanding of antigen presentation in vivo across mammalian species. Tissue-specific and housekeeping MHC class I peptides share distinct properties HLA-A, HLA-B, and HLA-C allotypes contribute very unevenly to the pool of class I peptides MHC-I immunopeptidomes are represented by evolutionarily conserved proteins An extended antigen processing and presentation pathway is uncovered
Collapse
Affiliation(s)
- Peter Kubiniok
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Ana Marcu
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
- Cluster of Excellence iFIT (EXC 2180), “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Leon Bichmann
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, 72074 Tübingen, Baden-Württemberg, Germany
| | - Leon Kuchenbecker
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, 72074 Tübingen, Baden-Württemberg, Germany
| | - Heiko Schuster
- Immatics Biotechnologies GmbH, 72076 Tübingen, Baden-Württemberg, Germany
| | - David J. Hamelin
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | | | | | - Laura Wessling
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Oliver Kohlbacher
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, 72074 Tübingen, Baden-Württemberg, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
- Biomolecular Interactions, Max Planck Institute for Developmental Biology, 72076 Tübingen, Baden-Württemberg, Germany
- Cluster of Excellence Machine Learning in the Sciences (EXC 2064), University of Tübingen, 72074 Tübingen, Baden-Württemberg, Germany
- Translational Bioinformatics, University Hospital Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
- Cluster of Excellence iFIT (EXC 2180), “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
- DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), 72076 Tübingen, Baden-Württemberg, Germany
| | - Marian C. Neidert
- Clinical Neuroscience Center and Department of Neurosurgery, University Hospital and University of Zürich, 8057&8091 Zürich, Switzerland
| | - Isabelle Sirois
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
- Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, QC H3T 1J4, Canada
- Corresponding author
| |
Collapse
|
23
|
Charneau J, Suzuki T, Shimomura M, Fujinami N, Nakatsura T. Peptide-Based Vaccines for Hepatocellular Carcinoma: A Review of Recent Advances. J Hepatocell Carcinoma 2021; 8:1035-1054. [PMID: 34513746 PMCID: PMC8424432 DOI: 10.2147/jhc.s291558] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Primary liver cancer is the sixth most commonly diagnosed cancer and the third leading cause of cancer-related deaths worldwide. After surgery, up to 70% of patients experience relapses. The current first-line therapy for advanced cases of hepatocellular carcinoma (HCC) comprises sorafenib and lenvatinib administered as single-drug therapies. Regorafenib, cabozantinib, and ramucirumab are administered as second-line therapies. Recently, it has been reported that using the immune checkpoint inhibitors atezolizumab (anti-PDL1 antibody) and bevacizumab (anti-VEGF antibody) leads to longer overall survival of unresectable cases, when compared with the use of sorafenib. The role of cancer immunity against HCC has attracted the attention of clinicians. In this review, we describe our phase I/II clinical trials of peptide vaccines targeting GPC3 in HCC and discuss the potential of peptide vaccines targeting common cancer antigens that are highly expressed in HCC, such as WT-I, AFP, ROBO1, and FOXM1. Further, we introduce recent cancer vaccines targeting neoantigens, which have attracted attention in recent times, as well as present our preclinical studies, the results of which might aid to initiate a neoantigen vaccine clinical trial, which would be the first of its kind in Japan.
Collapse
Affiliation(s)
- Jimmy Charneau
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa City, Japan
| | - Toshihiro Suzuki
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa City, Japan.,Department of Pharmacology, School of Medicine, Teikyo University, Tokyo, Japan
| | - Manami Shimomura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa City, Japan
| | - Norihiro Fujinami
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa City, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa City, Japan
| |
Collapse
|
24
|
Ma Z, Wang X, Lv Q, Gong Y, Xia M, Zhuang L, Lu X, Yang Y, Zhang W, Fu G, Ye Y, Lai D. Identification of Underlying Hub Genes Associated with Hypertrophic Cardiomyopathy by Integrated Bioinformatics Analysis. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:823-837. [PMID: 34285551 PMCID: PMC8285300 DOI: 10.2147/pgpm.s314880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/03/2021] [Indexed: 11/23/2022]
Abstract
Background Considered as one of the major reasons of sudden cardiac death, hypertrophic cardiomyopathy (HCM) is a common inherited cardiovascular disease. However, effective treatment for HCM is still lacking. Identification of hub gene may be a powerful tool for discovering potential therapeutic targets and candidate biomarkers. Methods We analysed three gene expression datasets for HCM from the Gene Expression Omnibus. Two of them were merged by “sva” package. The merged dataset was used for analysis while the other dataset was used for validation. Following this, a weighted gene coexpression network analysis (WGCNA) was performed, and the key module most related to HCM was identified. Based on the intramodular connectivity, we identified the potential hub genes. Then, a receiver operating characteristic curve analysis was performed to verify the diagnostic values of hub genes. Finally, we validated changes of hub genes, for genetic transcription and protein expression levels, in datasets of HCM patients and myocardium of transverse aortic constriction (TAC) mice. Results In the merged dataset, a total of 455 differentially expressed genes (DEGs) were identified from normal and hypertrophic myocardium. In WGCNA, the blue module was identified as the key module and the genes in this module showed a high positive correlation with HCM. Functional enrichment analysis of DEGs and key module revealed that the extracellular matrix, fibrosis, and neurohormone pathways played important roles in HCM. FRZB, COL14A1, CRISPLD1, LUM, and sFRP4 were identified as hub genes in the key module. These genes showed a good predictive value for HCM and were significantly up-regulated in HCM patients and TAC mice. We also found protein expression of LUM and sFRP4 increased in myocardium of TAC mice. Conclusion This study revealed that five hub genes are involved in the occurrence and development of HCM, and they are potentially to be used as therapeutic targets and biomarkers for HCM.
Collapse
Affiliation(s)
- Zetao Ma
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China.,Department of Cardiology, Zhongshan People's Hospital, Zhongshan, Guangdong Province, 528403, People's Republic of China
| | - Xizhi Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Qingbo Lv
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Yingchao Gong
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Minghong Xia
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Lenan Zhuang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Xue Lu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Ying Yang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Wenbin Zhang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Guosheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Yang Ye
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Dongwu Lai
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| |
Collapse
|
25
|
Nelde A, Maringer Y, Bilich T, Salih HR, Roerden M, Heitmann JS, Marcu A, Bauer J, Neidert MC, Denzlinger C, Illerhaus G, Aulitzky WE, Rammensee HG, Walz JS. Immunopeptidomics-Guided Warehouse Design for Peptide-Based Immunotherapy in Chronic Lymphocytic Leukemia. Front Immunol 2021; 12:705974. [PMID: 34305947 PMCID: PMC8297687 DOI: 10.3389/fimmu.2021.705974] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/24/2021] [Indexed: 12/30/2022] Open
Abstract
Antigen-specific immunotherapies, in particular peptide vaccines, depend on the recognition of naturally presented antigens derived from mutated and unmutated gene products on human leukocyte antigens, and represent a promising low-side-effect concept for cancer treatment. So far, the broad application of peptide vaccines in cancer patients is hampered by challenges of time- and cost-intensive personalized vaccine design, and the lack of neoepitopes from tumor-specific mutations, especially in low-mutational burden malignancies. In this study, we developed an immunopeptidome-guided workflow for the design of tumor-associated off-the-shelf peptide warehouses for broadly applicable personalized therapeutics. Comparative mass spectrometry-based immunopeptidome analyses of primary chronic lymphocytic leukemia (CLL) samples, as representative example of low-mutational burden tumor entities, and a dataset of benign tissue samples enabled the identification of high-frequent non-mutated CLL-associated antigens. These antigens were further shown to be recognized by pre-existing and de novo induced T cells in CLL patients and healthy volunteers, and were evaluated as pre-manufactured warehouse for the construction of personalized multi-peptide vaccines in a first clinical trial for CLL (NCT04688385). This workflow for the design of peptide warehouses is easily transferable to other tumor entities and can provide the foundation for the development of broad personalized T cell-based immunotherapy approaches.
Collapse
Affiliation(s)
- Annika Nelde
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Yacine Maringer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Tatjana Bilich
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Malte Roerden
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.,Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Jonas S Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Ana Marcu
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Jens Bauer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Marian C Neidert
- Department of Neurosurgery, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | | | - Gerald Illerhaus
- Clinic for Hematology and Oncology, Klinikum Stuttgart, Stuttgart, Germany
| | - Walter Erich Aulitzky
- Department of Hematology, Oncology and Palliative Medicine, Robert-Bosch-Krankenhaus Stuttgart, Stuttgart, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.,Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and Robert Bosch Center for Tumor Diseases (RBCT), Stuttgart, Germany
| |
Collapse
|
26
|
Nanaware PP, Jurewicz MM, Clement CC, Lu L, Santambrogio L, Stern LJ. Distinguishing Signal From Noise in Immunopeptidome Studies of Limiting-Abundance Biological Samples: Peptides Presented by I-A b in C57BL/6 Mouse Thymus. Front Immunol 2021; 12:658601. [PMID: 33995376 PMCID: PMC8116589 DOI: 10.3389/fimmu.2021.658601] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Antigen presentation by MHC-II proteins in the thymus is central to selection of CD4 T cells, but analysis of the full repertoire of presented peptides responsible for positive and negative selection is complicated by the low abundance of antigen presenting cells. A key challenge in analysis of limiting abundance immunopeptidomes by mass spectrometry is distinguishing true MHC-binding peptides from co-eluting non-specifically bound peptides present in the mixture eluted from immunoaffinity-purified MHC molecules. Herein we tested several approaches to minimize the impact of non-specific background peptides, including analyzing eluates from isotype-control antibody-conjugated beads, considering only peptides present in nested sets, and using predicted binding motif analysis to identify core epitopes. We evaluated these methods using well-understood human cell line samples, and then applied them to analysis of the I-Ab presented immunopeptidome of the thymus of C57BL/6 mice, comparing this to the more easily characterized splenic B cell and dendritic cell populations. We identified a total of 3473 unique peptides eluted from the various tissues, using a data dependent acquisition strategy with a false-discovery rate of <1%. The immunopeptidomes presented in thymus as compared to splenic B cells and DCs identified shared and tissue-specific epitopes. A broader length distribution was observed for peptides presented in the thymus as compared to splenic B cells or DCs. Detailed analysis of 61 differentially presented peptides indicated a wider distribution of I-Ab binding affinities in thymus as compared to splenic B cells. These results suggest different constraints on antigen processing and presentation pathways in central versus peripheral tissues.
Collapse
Affiliation(s)
- Padma P. Nanaware
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Mollie M. Jurewicz
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Cristina C. Clement
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Liying Lu
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Lawrence J. Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
27
|
Story CM, Wang T, Bhatt VR, Battiwalla M, Badawy SM, Kamoun M, Gragert L, Brown V, Baxter-Lowe LA, Marsh SGE, Gadalla SM, Schetelig J, Mytilineos J, Miklos D, Waller EK, Kuxhausen M, Spellman S, Lee S, Paczesny S, Lansford JL, Vincent BG, Riches ML, Armistead PM. Genetics of HLA Peptide Presentation and Impact on Outcomes in HLA-Matched Allogeneic Hematopoietic Cell Transplantation. Transplant Cell Ther 2021; 27:591-599. [PMID: 33882342 DOI: 10.1016/j.jtct.2021.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 01/06/2023]
Abstract
Minor histocompatibility antigens (mHAs), recipient-derived peptide epitopes presented on the cell surface, are known to mediate graft-versus-host disease (GVHD); however, there are no current methods to associate mHA features with GVHD risk. This deficiency is due in part to the lack of technological means to accurately predict, let alone confirm, the tremendous number of potential mHAs in each individual transplant. Previous studies have shown that different HLA molecules present varying fractions of candidate peptide epitopes; however, the genetic "distance" between HLA-matched donors and recipients is relatively constrained. From these 2 observations, it is possible that the HLA type for a donor-recipient pair (DRP) would provide a surrogate measurement of the number of predicted mHAs, which could be related to GVHD risk. Because different HLA molecules present variable numbers of peptide antigens, a predicted cumulative peptide-binding efficiency can be calculated for individual DRP based on the pair's HLA type. The purpose of this study was to test whether cumulative peptide-binding efficiency is associated with the risk of acute GVHD (aGVHD) or relapse. In this retrospective Center for International Blood and Marrow Transplant Research study, a total of 3242 HLA-matched DRPs were analyzed for predicted cumulative peptide-binding efficiency using their HLA types and were divided into tertiles based on their scores. Univariable and multivariable analyses was performed to test for associations between cumulative peptide-binding efficiency for DRPs, divided into the HLA-matched related donor (MRD) and HLA-matched unrelated donor (MUD) cohorts, and the primary outcomes of aGVHD and relapse. Secondary outcomes investigated included overall survival, disease-free survival, and transplantation-related mortality. Using a computationally generated peptidome as a test dataset, the tested series of HLA class I displayed peptide-binding frequencies ranging from 0.1% to 3.8% of the full peptidome, and HLA class II molecules had peptide-binding frequencies of 12% to 77% across the HLA-DRB1 allotypes. By increasing binding efficiency tertile, the cumulative incidence of aGVHD at 6 months for MUD patients was 41%, 41%, and 45% for HLA class I (P = .336) and 44%, 41%, and 42% for HLA class II (P = .452). The cumulative incidences of relapse at 3 years for MUD transplant recipients were 36%, 38%, and 38% for HLA class I (P = .533) and 37%, 37%, and 38% for HLA class II (P = .896). The findings were similar for MRD transplant recipients. Multivariable analysis did not identify any impact of peptide-binding efficiency on aGVHD or relapse in MUD or MRD transplant recipients. Whereas GVHD is mediated by minor antigen mismatches in the context of HLA-matched allo-HCT, peptide-binding efficiency, which was used as a surrogate measurement for predicted number of binding antigens, did not provide additional clinical information for GVHD risk assessment. The negative result may be due to the limitations of this surrogate marker, or it is possible that GVHD is driven by a subset of immunogenic mHAs. Further research should be directed at direct mHA epitope and immunogenicity prediction.
Collapse
Affiliation(s)
| | - Tao Wang
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Vijaya Raj Bhatt
- The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Minoo Battiwalla
- Director of Outcomes Research, Sarah Cannon Blood Cancer Network, Nashville, Tennessee
| | - Sherif M Badawy
- Division of Hematology, Oncology and Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Malek Kamoun
- Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Loren Gragert
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Valerie Brown
- Division of Pediatric Oncology/Hematology, Department of Pediatrics, Penn State Hershey Children's Hospital and College of Medicine, Hershey, Pennsylvania
| | - Lee Ann Baxter-Lowe
- Director of HLA Laboratory, Children's Hospital of Los Angeles, Los Angeles, California
| | - Steven G E Marsh
- Anthony Nolan Research Institute & University College London Cancer Institute, Royal Free Campus, London, United Kingdom
| | - Shahinaz M Gadalla
- Division of Cancer Epidemiology & Genetics, NIH-NCI Clinical Genetics Branch, Rockville, Maryland
| | - Johannes Schetelig
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, TU Dresden, and DKMS, Clinical Trials Unit, Dresden, Germany
| | | | - David Miklos
- BMT and Cell Therapy Division, Department of Medicine, Stanford Health Care, Stanford, California
| | - Edmund K Waller
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Michelle Kuxhausen
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Stephen Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Stephanie Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Jefferson L Lansford
- Orthopedic Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Benjamin G Vincent
- BMTCT Program, Division of Hematology, University of North Carolina, Chapel Hill, North Carolina; BMTCT Program, Division of Hematology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Marcie L Riches
- BMTCT Program, Division of Hematology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Paul M Armistead
- Internal Medicine, University of North Carolina, Chapel Hill, North Carolina; BMTCT Program, Division of Hematology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
28
|
Marcu A, Bichmann L, Kuchenbecker L, Kowalewski DJ, Freudenmann LK, Backert L, Mühlenbruch L, Szolek A, Lübke M, Wagner P, Engler T, Matovina S, Wang J, Hauri-Hohl M, Martin R, Kapolou K, Walz JS, Velz J, Moch H, Regli L, Silginer M, Weller M, Löffler MW, Erhard F, Schlosser A, Kohlbacher O, Stevanović S, Rammensee HG, Neidert MC. HLA Ligand Atlas: a benign reference of HLA-presented peptides to improve T-cell-based cancer immunotherapy. J Immunother Cancer 2021; 9:e002071. [PMID: 33858848 PMCID: PMC8054196 DOI: 10.1136/jitc-2020-002071] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The human leucocyte antigen (HLA) complex controls adaptive immunity by presenting defined fractions of the intracellular and extracellular protein content to immune cells. Understanding the benign HLA ligand repertoire is a prerequisite to define safe T-cell-based immunotherapies against cancer. Due to the poor availability of benign tissues, if available, normal tissue adjacent to the tumor has been used as a benign surrogate when defining tumor-associated antigens. However, this comparison has proven to be insufficient and even resulted in lethal outcomes. In order to match the tumor immunopeptidome with an equivalent counterpart, we created the HLA Ligand Atlas, the first extensive collection of paired HLA-I and HLA-II immunopeptidomes from 227 benign human tissue samples. This dataset facilitates a balanced comparison between tumor and benign tissues on HLA ligand level. METHODS Human tissue samples were obtained from 16 subjects at autopsy, five thymus samples and two ovary samples originating from living donors. HLA ligands were isolated via immunoaffinity purification and analyzed in over 1200 liquid chromatography mass spectrometry runs. Experimentally and computationally reproducible protocols were employed for data acquisition and processing. RESULTS The initial release covers 51 HLA-I and 86 HLA-II allotypes presenting 90,428 HLA-I- and 142,625 HLA-II ligands. The HLA allotypes are representative for the world population. We observe that immunopeptidomes differ considerably between tissues and individuals on source protein and HLA-ligand level. Moreover, we discover 1407 HLA-I ligands from non-canonical genomic regions. Such peptides were previously described in tumors, peripheral blood mononuclear cells (PBMCs), healthy lung tissues and cell lines. In a case study in glioblastoma, we show that potential on-target off-tumor adverse events in immunotherapy can be avoided by comparing tumor immunopeptidomes to the provided multi-tissue reference. CONCLUSION Given that T-cell-based immunotherapies, such as CAR-T cells, affinity-enhanced T cell transfer, cancer vaccines and immune checkpoint inhibition, have significant side effects, the HLA Ligand Atlas is the first step toward defining tumor-associated targets with an improved safety profile. The resource provides insights into basic and applied immune-associated questions in the context of cancer immunotherapy, infection, transplantation, allergy and autoimmunity. It is publicly available and can be browsed in an easy-to-use web interface at https://hla-ligand-atlas.org .
Collapse
Affiliation(s)
- Ana Marcu
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Leon Bichmann
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Leon Kuchenbecker
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Daniel Johannes Kowalewski
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Lena Katharina Freudenmann
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Tübingen, Germany
| | - Linus Backert
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Lena Mühlenbruch
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Tübingen, Germany
| | - András Szolek
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Maren Lübke
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Philipp Wagner
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Department of Obstetrics and Gynecology, University Hospital of Tübingen, Tübingen, Germany
| | - Tobias Engler
- Department of Obstetrics and Gynecology, University Hospital of Tübingen, Tübingen, Germany
| | - Sabine Matovina
- Department of Obstetrics and Gynecology, University Hospital of Tübingen, Tübingen, Germany
| | - Jian Wang
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mathias Hauri-Hohl
- Pediatric Stem Cell Transplantation, University Children's Hospital Zurich, Zurich, Switzerland
| | - Roland Martin
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Konstantina Kapolou
- Clinical Neuroscience Center and Department of Neurosurgery, University Hospital and University of Zurich, Zurich, Switzerland
| | - Juliane Sarah Walz
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital of Tübingen, Tübingen, Germany
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology (IKP) and Robert Bosch Center for Tumor Diseases (RBCT), Stuttgart, Germany
| | - Julia Velz
- Clinical Neuroscience Center and Department of Neurosurgery, University Hospital and University of Zurich, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Luca Regli
- Clinical Neuroscience Center and Department of Neurosurgery, University Hospital and University of Zurich, Zurich, Switzerland
| | - Manuela Silginer
- Clinical Neuroscience Center and Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Clinical Neuroscience Center and Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Markus W Löffler
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Tübingen, Germany
- Department of General, Visceral and Transplant Surgery, University Hospital of Tübingen, Tübingen, Germany
- Department of Clinical Pharmacology, University of Hospital Tübingen, Tübingen, Germany
| | - Florian Erhard
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Bayern, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center - Center for Integrative and Translational Bioimaging, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
- DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
- Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Cluster of Excellence Machine Learning in the Sciences (EXC 2064), University of Tübingen, Tübingen, Germany
- Institute for Translational Bioinformatics, University Hospital Tübingen, Tübingen, Germany
| | - Stefan Stevanović
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Tübingen, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Tübingen, Germany
| | - Marian Christoph Neidert
- Clinical Neuroscience Center and Department of Neurosurgery, University Hospital and University of Zurich, Zurich, Switzerland
- Department of Neurosurgery, Cantonal Hospital St.Gallen, St.Gallen, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Chen R, Fulton KM, Twine SM, Li J. IDENTIFICATION OF MHC PEPTIDES USING MASS SPECTROMETRY FOR NEOANTIGEN DISCOVERY AND CANCER VACCINE DEVELOPMENT. MASS SPECTROMETRY REVIEWS 2021; 40:110-125. [PMID: 31875992 DOI: 10.1002/mas.21616] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Immunotherapy with neoantigens presented by major histocompatibility complex (MHC) is one of the most promising approaches in cancer treatment. Using this approach, cancer vaccines can be designed to target tumor-specific mutations that are not found in normal tissues. Clinical trials have demonstrated an increased immune response and eradication of tumors after injecting synthetic peptides selected from the immunopeptidome. Although the sequence of MHC binding peptides can be predicted from genome sequencing and prediction algorithms, this approach results in large numbers of predicted peptides, requiring the confirmation by mass spectrometry (MS) analysis. Identification of MHC peptides by direct MS analysis of immunopeptidome is accurate and sensitive, with tens of thousands of unique peptides potentially identified from either cancer cell line or tumor tissue. Peptides with mutations can also be identified with patient-specific protein databases constructed from genome or transcriptome sequencing data. MS analysis also enables the characterization of the post-translational modifications (PTMs) of those antigens that cannot be predicted. Moreover, PTMs were found to be more efficient in triggering an immune response. In addition to reviewing recent advances in the identification of neoantigens using MS, the techniques for cancer vaccine candidate selection and formulation, vaccine delivery systems, and the potential for use in combination with other therapeutics are also discussed. It is anticipated that MS-based techniques will play an important role in future cancer vaccine development. © 2019 John Wiley & Sons Ltd. Mass Spec Rev 40:110-125, 2021.
Collapse
Affiliation(s)
- Rui Chen
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - Kelly M Fulton
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - Susan M Twine
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - Jianjun Li
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| |
Collapse
|
30
|
Nelde A, Rammensee HG, Walz JS. The Peptide Vaccine of the Future. Mol Cell Proteomics 2021; 20:100022. [PMID: 33583769 PMCID: PMC7950068 DOI: 10.1074/mcp.r120.002309] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
The approach of peptide-based anticancer vaccination has proven the ability to induce cancer-specific immune responses in multiple studies for various cancer entities. However, clinical responses remain so far limited to single patients and broad clinical applicability was not achieved. Therefore, further efforts are required to improve peptide vaccination in order to integrate this low-side-effect therapy into the clinical routine of cancer therapy. To design clinically effective peptide vaccines in the future, different issues have to be addressed and optimized comprising antigen target selection as well as choice of optimal adjuvants and vaccination schedules. Furthermore, the combination of peptide-based vaccines with other immuno- and molecular targeted therapies as well as the development of predictive biomarkers could further improve efficacy. In this review, current approaches in the development of peptide-based vaccines and critical implications for optimal vaccine design are discussed.
Collapse
Affiliation(s)
- Annika Nelde
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany; Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
| |
Collapse
|
31
|
Ghosh M, Hartmann H, Jakobi M, März L, Bichmann L, Freudenmann LK, Mühlenbruch L, Segan S, Rammensee HG, Schneiderhan-Marra N, Shipp C, Stevanović S, Joos TO. The Impact of Biomaterial Cell Contact on the Immunopeptidome. Front Bioeng Biotechnol 2021; 8:571294. [PMID: 33392160 PMCID: PMC7773052 DOI: 10.3389/fbioe.2020.571294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
Biomaterials play an increasing role in clinical applications and regenerative medicine. A perfectly designed biomaterial should restore the function of damaged tissue without triggering an undesirable immune response, initiate self-regeneration of the surrounding tissue and gradually degrade after implantation. The immune system is well recognized to play a major role in influencing the biocompatibility of implanted medical devices. To obtain a better understanding of the effects of biomaterials on the immune response, we have developed a highly sensitive novel test system capable of examining changes in the immune system by biomaterial. Here, we evaluated for the first time the immunopeptidome, a highly sensitive system that reflects cancer transformation, virus or drug influences and passes these cellular changes directly to T cells, as a test system to examine the effects of contact with materials. Since monocytes are one of the first immune cells reacting to biomaterials, we have tested the influence of different materials on the immunopeptidome of the monocytic THP-1 cell line. The tested materials included stainless steel, aluminum, zinc, high-density polyethylene, polyurethane films containing zinc diethyldithiocarbamate, copper, and zinc sulfate. The incubation with all material types resulted in significantly modulated peptides in the immunopeptidome, which were material-associated. The magnitude of induced changes in the immunopeptidome after the stimulation appeared comparable to that of bacterial lipopolysaccharides (LPS). The source proteins of many detected peptides are associated with cytotoxicity, fibrosis, autoimmunity, inflammation, and cellular stress. Considering all tested materials, it was found that the LPS-induced cytotoxicity-, inflammation- and cellular stress-associated HLA class I peptides were mainly induced by aluminum, whereas HLA class II peptides were mainly induced by stainless steel. These findings provide the first insights into the effects of biomaterials on the immunopeptidome. A more thorough understanding of these effects may enable the design of more biocompatible implant materials using in vitro models in future. Such efforts will provide a deeper understanding of possible immune responses induced by biomaterials such as fibrosis, inflammation, cytotoxicity, and autoimmune reactions.
Collapse
Affiliation(s)
- Michael Ghosh
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.,Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Hanna Hartmann
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Meike Jakobi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Léo März
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Leon Bichmann
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Applied Bioinformatics, Center for Bioinformatics, University of Tübingen, Tübingen, Germany
| | - Lena K Freudenmann
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Tübingen, Germany
| | - Lena Mühlenbruch
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Tübingen, Germany
| | - Sören Segan
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | | | - Christopher Shipp
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Stefan Stevanović
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Thomas O Joos
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| |
Collapse
|
32
|
Kuznetsov A, Voronina A, Govorun V, Arapidi G. Critical Review of Existing MHC I Immunopeptidome Isolation Methods. Molecules 2020; 25:E5409. [PMID: 33228004 PMCID: PMC7699222 DOI: 10.3390/molecules25225409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Major histocompatibility complex class I (MHC I) plays a crucial role in the development of adaptive immune response in vertebrates. MHC molecules are cell surface protein complexes loaded with short peptides and recognized by the T-cell receptors (TCR). Peptides associated with MHC are named immunopeptidome. The MHC I immunopeptidome is produced by the proteasome degradation of intracellular proteins. The knowledge of the immunopeptidome repertoire facilitates the creation of personalized antitumor or antiviral vaccines. A huge number of publications on the immunopeptidome diversity of different human and mouse biological samples-plasma, peripheral blood mononuclear cells (PBMCs), and solid tissues, including tumors-appeared in the scientific journals in the last decade. Significant immunopeptidome identification efficiency was achieved by advances in technology: the immunoprecipitation of MHC and mass spectrometry-based approaches. Researchers optimized common strategies to isolate MHC-associated peptides for individual tasks. They published many protocols with differences in the amount and type of biological sample, amount of antibodies, type and amount of insoluble support, methods of post-fractionation and purification, and approaches to LC-MS/MS identification of immunopeptidome. These parameters have a large impact on the final repertoire of isolated immunopeptidome. In this review, we summarize and compare immunopeptidome isolation techniques with an emphasis on the results obtained.
Collapse
Affiliation(s)
- Alexandr Kuznetsov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (A.K.); (A.V.); (V.G.)
| | - Alice Voronina
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (A.K.); (A.V.); (V.G.)
| | - Vadim Govorun
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (A.K.); (A.V.); (V.G.)
- Department of Molecular and Translational Medicine, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| | - Georgij Arapidi
- Department of Molecular and Translational Medicine, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
33
|
Sturm T, Sautter B, Wörner TP, Stevanović S, Rammensee HG, Planz O, Heck AJR, Aebersold R. Mild Acid Elution and MHC Immunoaffinity Chromatography Reveal Similar Albeit Not Identical Profiles of the HLA Class I Immunopeptidome. J Proteome Res 2020; 20:289-304. [PMID: 33141586 PMCID: PMC7786382 DOI: 10.1021/acs.jproteome.0c00386] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
To
understand and treat immunology-related diseases, a comprehensive,
unbiased characterization of major histocompatibility complex (MHC)
peptide ligands is of key importance. Preceding the analysis by mass
spectrometry, MHC class I peptide ligands are typically isolated by
MHC immunoaffinity chromatography (MHC-IAC) and less often by mild
acid elution (MAE). MAE may provide a cheap alternative to MHC-IAC
for suspension cells but has been hampered by the high number of contaminating,
MHC-unrelated peptides. Here, we optimized MAE, yielding MHC peptide
ligand purities of more than 80%. When compared with MHC-IAC, obtained
peptides were similar in numbers, identities, and to a large extent
intensities, while the percentage of cysteinylated peptides was 5
times higher in MAE. The latter benefitted the discovery of MHC-allotype-specific,
distinct cysteinylation frequencies at individual positions of MHC
peptide ligands. MAE revealed many MHC ligands with unmodified, N-terminal
cysteine residues which get lost in MHC-IAC workflows. The results
support the idea that MAE might be particularly valuable for the high-confidence
analysis of post-translational modifications by avoiding the exposure
of the investigated peptides to enzymes and reactive molecules in
the cell lysate. Our improved and carefully documented MAE workflow
represents a high-quality, cost-effective alternative to MHC-IAC for
suspension cells.
Collapse
Affiliation(s)
- Theo Sturm
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland.,Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Centre, 3584 CH Utrecht, The Netherlands.,Philochem AG, 8112 Otelfingen, Switzerland
| | - Benedikt Sautter
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Tobias P Wörner
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Centre, 3584 CH Utrecht, The Netherlands
| | - Stefan Stevanović
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Oliver Planz
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Centre, 3584 CH Utrecht, The Netherlands
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland.,Faculty of Science, University of Zurich, 8057 Zürich, Switzerland
| |
Collapse
|
34
|
Acebes-Fernández V, Landeira-Viñuela A, Juanes-Velasco P, Hernández AP, Otazo-Perez A, Manzano-Román R, Gongora R, Fuentes M. Nanomedicine and Onco-Immunotherapy: From the Bench to Bedside to Biomarkers. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1274. [PMID: 32610601 PMCID: PMC7407304 DOI: 10.3390/nano10071274] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
The broad relationship between the immune system and cancer is opening a new hallmark to explore for nanomedicine. Here, all the common and synergy points between both areas are reviewed and described, and the recent approaches which show the progress from the bench to the beside to biomarkers developed in nanomedicine and onco-immunotherapy.
Collapse
Affiliation(s)
- Vanessa Acebes-Fernández
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Alicia Landeira-Viñuela
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Pablo Juanes-Velasco
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Angela-Patricia Hernández
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Andrea Otazo-Perez
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Raúl Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain;
| | - Rafael Gongora
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Manuel Fuentes
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain;
| |
Collapse
|
35
|
Brightman SE, Naradikian MS, Miller AM, Schoenberger SP. Harnessing neoantigen specific CD4 T cells for cancer immunotherapy. J Leukoc Biol 2020; 107:625-633. [PMID: 32170883 PMCID: PMC7793607 DOI: 10.1002/jlb.5ri0220-603rr] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/22/2022] Open
Abstract
The goal of precision immunotherapy is to direct a patient's T cell response against the immunogenic mutations expressed on their tumors. Most immunotherapy approaches to-date have focused on MHC class I-restricted peptide epitopes by which cytotoxic CD8+ T lymphocytes (CTL) can directly recognize tumor cells. This strategy largely overlooks the critical role of MHC class II-restricted CD4+ T cells as both positive regulators of CTL and other effector cell types, and as direct effectors of antitumor immunity. In this review, we will discuss the role of neoantigen specific CD4+ T cells in cancer immunotherapy and how existing treatment modalities may be leveraged to engage this important T cell subset.
Collapse
Affiliation(s)
- Spencer E. Brightman
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Martin S. Naradikian
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Aaron M. Miller
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | | |
Collapse
|
36
|
Ghosh M, Gauger M, Marcu A, Nelde A, Denk M, Schuster H, Rammensee HG, Stevanović S. Guidance Document: Validation of a High-Performance Liquid Chromatography-Tandem Mass Spectrometry Immunopeptidomics Assay for the Identification of HLA Class I Ligands Suitable for Pharmaceutical Therapies. Mol Cell Proteomics 2020; 19:432-443. [PMID: 31937595 PMCID: PMC7050110 DOI: 10.1074/mcp.c119.001652] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/09/2020] [Indexed: 12/30/2022] Open
Abstract
For more than two decades naturally presented, human leukocyte antigen (HLA)-restricted peptides (immunopeptidome) have been eluted and sequenced using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Since, identified disease-associated HLA ligands have been characterized and evaluated as potential active substances. Treatments based on HLA-presented peptides have shown promising results in clinical application as personalized T cell-based immunotherapy. Peptide vaccination cocktails are produced as investigational medicinal products under GMP conditions. To support clinical trials based on HLA-presented tumor-associated antigens, in this study the sensitive LC-MS/MS HLA class I antigen identification pipeline was fully validated for our technical equipment according to the current US Food and Drug Administration (FDA) and European Medicines Agency (EMA) guidelines.The immunopeptidomes of JY cells with or without spiked-in, isotope labeled peptides, of peripheral blood mononuclear cells of healthy volunteers as well as a chronic lymphocytic leukemia and a bladder cancer sample were reliably identified using a data-dependent acquisition method. As the LC-MS/MS pipeline is used for identification purposes, the validation parameters include accuracy, precision, specificity, limit of detection and robustness.
Collapse
Affiliation(s)
- Michael Ghosh
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany; Natural and Medical Science Institute at the University of Tübingen (NMI), Reutlingen, Germany
| | - Marion Gauger
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Ana Marcu
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Annika Nelde
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Monika Denk
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany; German Cancer Research Center (DKFZ) partner site and German Cancer Consortium (DKTK) Tübingen, Tübingen, Germany
| | - Heiko Schuster
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany; Immatics Biotechnologies GmbH, Tübingen, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany; German Cancer Research Center (DKFZ) partner site and German Cancer Consortium (DKTK) Tübingen, Tübingen, Germany
| | - Stefan Stevanović
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany; German Cancer Research Center (DKFZ) partner site and German Cancer Consortium (DKTK) Tübingen, Tübingen, Germany.
| |
Collapse
|
37
|
Kote S, Pirog A, Bedran G, Alfaro J, Dapic I. Mass Spectrometry-Based Identification of MHC-Associated Peptides. Cancers (Basel) 2020; 12:cancers12030535. [PMID: 32110973 PMCID: PMC7139412 DOI: 10.3390/cancers12030535] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/15/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023] Open
Abstract
Neoantigen-based immunotherapies promise to improve patient outcomes over the current standard of care. However, detecting these cancer-specific antigens is one of the significant challenges in the field of mass spectrometry. Even though the first sequencing of the immunopeptides was done decades ago, today there is still a diversity of the protocols used for neoantigen isolation from the cell surface. This heterogeneity makes it difficult to compare results between the laboratories and the studies. Isolation of the neoantigens from the cell surface is usually done by mild acid elution (MAE) or immunoprecipitation (IP) protocol. However, limited amounts of the neoantigens present on the cell surface impose a challenge and require instrumentation with enough sensitivity and accuracy for their detection. Detecting these neopeptides from small amounts of available patient tissue limits the scope of most of the studies to cell cultures. Here, we summarize protocols for the extraction and identification of the major histocompatibility complex (MHC) class I and II peptides. We aimed to evaluate existing methods in terms of the appropriateness of the isolation procedure, as well as instrumental parameters used for neoantigen detection. We also focus on the amount of the material used in the protocols as the critical factor to consider when analyzing neoantigens. Beyond experimental aspects, there are numerous readily available proteomics suits/tools applicable for neoantigen discovery; however, experimental validation is still necessary for neoantigen characterization.
Collapse
|
38
|
Mohme M, Neidert MC. Tumor-Specific T Cell Activation in Malignant Brain Tumors. Front Immunol 2020; 11:205. [PMID: 32117316 PMCID: PMC7031483 DOI: 10.3389/fimmu.2020.00205] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/27/2020] [Indexed: 12/17/2022] Open
Abstract
Due to their delicate locations as well as aggressive and infiltrative behavior, malignant brain tumors remain a therapeutic challenge. Harnessing the efficacy and specificity of the T-cell response to counteract malignant brain tumor progression and recurrence, represents an attractive treatment option. With the tremendous advances in the current era of immunotherapy, ongoing studies aim to determine the best treatment strategies for mounting a tumor-specific immune response against malignant brain tumors. However, immunosuppression in the local tumor environment, molecular and cellular heterogeneity as well as a lack of suitable targets for tumor-specific vaccination impede the successful implementation of immunotherapeutic treatment strategies in neuro-oncology. In this review, we therefore discuss the role of T cell exhaustion, the genetic and antigenic landscape, potential pitfalls and ongoing efforts to overcome the individual challenges in order to elicit a tumor-specific T cell response.
Collapse
Affiliation(s)
- Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marian Christoph Neidert
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland.,Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.,Broad Institute of Harvard and MIT, Cambridge, MA, United States
| |
Collapse
|
39
|
Hardy MP, Vincent K, Perreault C. The Genomic Landscape of Antigenic Targets for T Cell-Based Leukemia Immunotherapy. Front Immunol 2019; 10:2934. [PMID: 31921187 PMCID: PMC6933603 DOI: 10.3389/fimmu.2019.02934] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022] Open
Abstract
Intensive fundamental and clinical research in cancer immunotherapy has led to the emergence and evolution of two parallel universes with surprisingly little interactions: the realm of hematologic malignancies and that of solid tumors. Treatment of hematologic cancers using allogeneic hematopoietic cell transplantation (AHCT) serendipitously led to the discovery that T cells specific for minor histocompatibility antigens (MiHAs) could cure hematopoietic cancers. Besides, studies based on treatment of solid tumor with ex vivo-expanded tumor infiltrating lymphocytes or immune checkpoint therapy demonstrated that anti-tumor responses could be achieved by targeting tumor-specific antigens (TSAs). It is our contention that much insight can be gained by sharing the tremendous amount of data generated in the two-abovementioned universes. Our perspective article has two specific goals. First, to discuss the value of methods currently used for MiHA and TSA discovery and to explain the key role of mass spectrometry analyses in this process. Second, to demonstrate the importance of broadening the scope of TSA discovery efforts beyond classic annotated protein-coding genomic sequences.
Collapse
Affiliation(s)
- Marie-Pierre Hardy
- Department of Immunobiology, Institute for Research in Immunology and Cancer, Montreal, QC, Canada
| | - Krystel Vincent
- Department of Immunobiology, Institute for Research in Immunology and Cancer, Montreal, QC, Canada
| | - Claude Perreault
- Department of Immunobiology, Institute for Research in Immunology and Cancer, Montreal, QC, Canada
| |
Collapse
|
40
|
Weinstein-Marom H, Hendel L, Laron EA, Sharabi-Nov A, Margalit A, Gross G. MHC-I presentation of peptides derived from intact protein products of the pioneer round of translation. FASEB J 2019; 33:11458-11468. [PMID: 31343935 DOI: 10.1096/fj.201802717rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Among the earliest protein products of most cellular genes are those synthesized during the pioneer round of translation (PRT), a key step in nonsense-mediated mRNA decay (NMD) that allows scanning of new transcripts for the presence of a premature termination codon (PTC). It has been demonstrated that at least some PRT degradation products can be targeted to major histocompatibility (MHC)-I presentation. To gain new insight into this putative PRT-to-MHC-I route, we have assembled 2 pairs of reporter genes so that the 2 genes in each pair encode an identical fusion protein between a model antigenic peptide and enhanced green fluorescent protein (EGFP), one of which harbors a PTC. We expressed these genes in different mouse and human cell lines and confirmed enhanced NMD activity for the PTC(+) gene in each pair by monitoring the effect of cycloheximide on the level of the respective mRNA. We then exploited several strategies for establishing the ratio between level of peptide presentation and total amount of protein product. We consistently observed significantly higher ratios for the PTC(+) mRNAs compared with the PTC(-) ones, pointing to correlation between the turnover of otherwise identical proteins and the fate of their template mRNA. Using confocal microscopy, we showed a clear link between NMD, the presence of misfolded EGFP polypeptides, and enhanced MHC-I peptide presentation. Altogether, these findings imply that identical full-length gene products differing only in 3' noncoding sequences can be differentially degraded and targeted to the MHC-I presentation pathway, suggesting a more general role for the PRT in establishing the MHC-I peptidome.-Weinstein-Marom, H., Hendel, L., Laron, E. A., Sharabi-Nov, A., Margalit, A., Gross, G. MHC-I presentation of peptides derived from intact protein products of the pioneer round of translation.
Collapse
Affiliation(s)
- Hadas Weinstein-Marom
- Laboratory of Immunology, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel.,Tel-Hai College, Upper Galilee, Israel.,Inter-Faculty Biotechnology Program, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liron Hendel
- Laboratory of Immunology, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel.,Tel-Hai College, Upper Galilee, Israel
| | - Efrat Avigad Laron
- Laboratory of Immunology, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel.,Tel-Hai College, Upper Galilee, Israel
| | | | - Alon Margalit
- Laboratory of Immunology, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel.,Tel-Hai College, Upper Galilee, Israel
| | - Gideon Gross
- Laboratory of Immunology, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel.,Tel-Hai College, Upper Galilee, Israel
| |
Collapse
|
41
|
Bauer J, Nelde A, Bilich T, Walz JS. Antigen Targets for the Development of Immunotherapies in Leukemia. Int J Mol Sci 2019; 20:ijms20061397. [PMID: 30897713 PMCID: PMC6471800 DOI: 10.3390/ijms20061397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
Immunotherapeutic approaches, including allogeneic stem cell transplantation and donor lymphocyte infusion, have significantly improved the prognosis of leukemia patients. Further efforts are now focusing on the development of immunotherapies that are able to target leukemic cells more specifically, comprising monoclonal antibodies, chimeric antigen receptor (CAR) T cells, and dendritic cell- or peptide-based vaccination strategies. One main prerequisite for such antigen-specific approaches is the selection of suitable target structures on leukemic cells. In general, the targets for anti-cancer immunotherapies can be divided into two groups: (1) T-cell epitopes relying on the presentation of peptides via human leukocyte antigen (HLA) molecules and (2) surface structures, which are HLA-independently expressed on cancer cells. This review discusses the most promising tumor antigens as well as the underlying discovery and selection strategies for the development of anti-leukemia immunotherapies.
Collapse
Affiliation(s)
- Jens Bauer
- Department of Hematology and Oncology, University Hospital Tübingen, 72076 Tübingen, Germany.
- Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany.
| | - Annika Nelde
- Department of Hematology and Oncology, University Hospital Tübingen, 72076 Tübingen, Germany.
- Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany.
| | - Tatjana Bilich
- Department of Hematology and Oncology, University Hospital Tübingen, 72076 Tübingen, Germany.
- Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany.
| | - Juliane S Walz
- Department of Hematology and Oncology, University Hospital Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
42
|
Javitt A, Barnea E, Kramer MP, Wolf-Levy H, Levin Y, Admon A, Merbl Y. Pro-inflammatory Cytokines Alter the Immunopeptidome Landscape by Modulation of HLA-B Expression. Front Immunol 2019; 10:141. [PMID: 30833945 PMCID: PMC6387973 DOI: 10.3389/fimmu.2019.00141] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
Antigen presentation on HLA molecules is a major mechanism by which the immune system monitors self and non-self-recognition. Importantly, HLA-I presentation has gained much attention through its role in eliciting anti-tumor immunity. Several determinants controlling the peptides presented on HLA have been uncovered, mainly through the study of model substrates and large-scale immunopeptidome analyses. These determinants include the relative abundances of proteins in the cell, the stability or turnover rate of these proteins and the binding affinities of a given peptide to the HLA haplotypes found in a cell. However, the regulatory principles involved in selection and regulation of specific antigens in response to tumor pro-inflammatory signals remain largely unknown. Here, we chose to examine the effect that TNFα and IFNγ stimulation may exert on the immunopeptidome landscape of lung cancer cells. We show that the expression of many of the proteins involved in the class I antigen presentation pathway are changed by pro-inflammatory cytokines. Further, we could show that increased expression of the HLA-B allomorph drives a significant change in HLA-bound antigens, independently of the significant changes observed in the cellular proteome. Finally, we observed increased HLA-B levels in correlation with tumor infiltration across the TCGA lung cancer cohorts. Taken together, our results suggest that the immunopeptidome landscape should be examined in the context of anti-tumor immunity whereby signals in the microenvironment may be critical in shaping and modulating this important aspect of host-tumor interactions.
Collapse
Affiliation(s)
- Aaron Javitt
- Department of Immunology, Weizmann Institute of ScienceRehovot, Israel
| | - Eilon Barnea
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Hila Wolf-Levy
- Department of Immunology, Weizmann Institute of ScienceRehovot, Israel
| | - Yishai Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, de Botton Institute for Protein Profiling, Weizmann Institute of Science, Rehovot, Israel
| | - Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yifat Merbl
- Department of Immunology, Weizmann Institute of ScienceRehovot, Israel
| |
Collapse
|
43
|
The HLA ligandome landscape of chronic myeloid leukemia delineates novel T-cell epitopes for immunotherapy. Blood 2019; 133:550-565. [DOI: 10.1182/blood-2018-07-866830] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/01/2018] [Indexed: 12/30/2022] Open
Abstract
Abstract
Antileukemia immunity plays an important role in disease control and maintenance of tyrosine kinase inhibitor (TKI)-free remission in chronic myeloid leukemia (CML). Thus, antigen-specific immunotherapy holds promise for strengthening immune control in CML but requires the identification of CML-associated targets. In this study, we used a mass spectrometry–based approach to identify naturally presented HLA class I– and class II–restricted peptides in primary CML samples. Comparative HLA ligandome profiling using a comprehensive dataset of different hematological benign specimens and samples from CML patients in deep molecular remission delineated a panel of novel frequently presented CML-exclusive peptides. These nonmutated target antigens are of particular relevance because our extensive data-mining approach suggests the absence of naturally presented BCR-ABL– and ABL-BCR–derived HLA-restricted peptides and the lack of frequent tumor-exclusive presentation of known cancer/testis and leukemia-associated antigens. Functional characterization revealed spontaneous T-cell responses against the newly identified CML-associated peptides in CML patient samples and their ability to induce multifunctional and cytotoxic antigen-specific T cells de novo in samples from healthy volunteers and CML patients. Thus, these antigens are prime candidates for T-cell–based immunotherapeutic approaches that may prolong TKI-free survival and even mediate cure of CML patients.
Collapse
|
44
|
Lorente E, Martín-Galiano AJ, Barnea E, Barriga A, Palomo C, García-Arriaza J, Mir C, Lauzurica P, Esteban M, Admon A, López D. Proteomics Analysis Reveals That Structural Proteins of the Virion Core and Involved in Gene Expression Are the Main Source for HLA Class II Ligands in Vaccinia Virus-Infected Cells. J Proteome Res 2019; 18:900-911. [PMID: 30629447 DOI: 10.1021/acs.jproteome.8b00595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protective cellular and humoral immune responses require previous recognition of viral antigenic peptides complexed with human leukocyte antigen (HLA) class II molecules on the surface of the antigen presenting cells. The HLA class II-restricted immune response is important for the control and the clearance of poxvirus infection including vaccinia virus (VACV), the vaccine used in the worldwide eradication of smallpox. In this study, a mass spectrometry analysis was used to identify VACV ligands bound to HLA-DR and -DP class II molecules present on the surface of VACV-infected cells. Twenty-six naturally processed viral ligands among the tens of thousands of cell peptides bound to HLA class II proteins were identified. These viral ligands arose from 19 parental VACV proteins: A4, A5, A18, A35, A38, B5, B13, D1, D5, D7, D12, D13, E3, E8, H5, I2, I3, J2, and K2. The majority of these VACV proteins yielded one HLA ligand and were generated mainly, but not exclusively, by the classical HLA class II antigen processing pathway. Medium-sized and abundant proteins from the virion core and/or involved in the viral gene expression were the major source of VACV ligands bound to HLA-DR and -DP class II molecules. These findings will help to understand the effectiveness of current poxvirus-based vaccines and will be important in the design of new ones.
Collapse
Affiliation(s)
| | | | - Eilon Barnea
- Department of Biology , Technion-Israel Institute of Technology , 32000 Haifa , Israel
| | | | | | - Juan García-Arriaza
- Department of Molecular and Cellular Biology , Centro Nacional de Biotecnología , Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid , Spain
| | | | | | - Mariano Esteban
- Department of Molecular and Cellular Biology , Centro Nacional de Biotecnología , Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid , Spain
| | - Arie Admon
- Department of Biology , Technion-Israel Institute of Technology , 32000 Haifa , Israel
| | | |
Collapse
|
45
|
Computational characterization of the peptidome in transporter associated with antigen processing (TAP)-deficient cells. PLoS One 2019; 14:e0210583. [PMID: 30645615 PMCID: PMC6333353 DOI: 10.1371/journal.pone.0210583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/26/2018] [Indexed: 12/24/2022] Open
Abstract
The transporter associated with antigen processing (TAP) is a key element of the major histocompatibility complex (MHC) class I antigen processing and presentation pathway. Nonfunctional TAP complexes impair the translocation of cytosol-derived proteolytic peptides to the endoplasmic reticulum lumen. This drastic reduction in the available peptide repertoire leads to a significant decrease in MHC class I cell surface expression. Using mass spectrometry, different studies have analyzed the cellular MHC class I ligandome from TAP-deficient cells, but the analysis of the parental proteins, the source of these ligands, still deserves an in-depth analysis. In the present report, several bioinformatics protocols were applied to investigate the nature of parental proteins for the previously identified TAP-independent MHC class I ligands. Antigen processing in TAP-deficient cells mainly focused on small, abundant or highly integral transmembrane proteins of the cellular proteome. This process involved abundant proteins of the central RNA metabolism. In addition, TAP-independent ligands were preferentially cleaved from the N- and C-terminal ends with respect to the central regions of the parental proteins. The abundance of glycine, proline and aromatic residues in the C-terminal sequences from TAP-independently processed proteins allows the accessibility and specificity required for the proteolytic activities that generates the TAP-independent ligandome. This limited proteolytic activity towards a set of preferred proteins in a TAP-negative environment would therefore suffice to promote the survival of TAP-deficient individuals.
Collapse
|
46
|
Demeure MJ. The Role of Precision Medicine in the Diagnosis and Treatment of Patients with Rare Cancers. Cancer Treat Res 2019; 178:81-108. [PMID: 31209842 DOI: 10.1007/978-3-030-16391-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rare cancers pose unique challenges for patients and their physicians arising from a lack of information regarding the best therapeutic options. Very often, a lack of clinical trial data leads physicians to choose treatments based on small case series or case reports. Precision medicine based on genomic analysis of tumors may allow for selection of better treatments with greater efficacy and less toxicity. Physicians are increasingly using genetics to identify patients at high risk for certain cancers to allow for early detection or prophylactic interventions. Genomics can be used to inform prognosis and more accurately establish a diagnosis. Genomic analysis may also expose therapeutic targets for which drugs are currently available and approved for use in other cancers. Notable successes in the treatment of previously refractory cancers have resulted. New more advanced sequencing technologies, tools for interpretation, and an increasing array of targeted drugs offer additional hope, but challenges remain.
Collapse
Affiliation(s)
- Michael J Demeure
- Hoag Family Cancer Institute, Newport Beach, CA, USA.
- Translational Genomics Research Institute, Phoenix, AZ, USA.
| |
Collapse
|
47
|
Dolan BP. Quantitating MHC Class I Ligand Production and Presentation Using TCR-Like Antibodies. Methods Mol Biol 2019; 1988:149-157. [PMID: 31147939 DOI: 10.1007/978-1-4939-9450-2_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Accurately determining the number of peptide-MHC class I complexes on the cell surface is necessary when evaluating cellular processes or pharmaceuticals that alter the antigen presentation machinery. Here I describe a quantitative flow cytometry application for determining the number of peptide-MHC complexes on the surface of cells grown in tissue culture that express an endogenous protein from which the peptide is derived. The procedure requires a monoclonal antibody with the ability to distinguish MHC class I molecules presenting the peptide of interest from other peptide-MHC complexes. Fluorescence signal measured on antibody-labeled cells can be compared to fluorescent-calibrated beads to determine the relative number of antibodies bound to the cell surface and hence the number of specific peptide-MHC complexes expressed by the cell. As new monoclonal antibodies with TCR-like specificity for peptide-MHC complexes are created, this method will be helpful in quantifying the exact numbers of complexes generated by cell types and relating these numbers to physiological outcomes of T cell activation.
Collapse
Affiliation(s)
- Brian P Dolan
- Department of Biomedical Sciences, Carson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
48
|
Abstract
Mass spectrometry (MS)-based immunopeptidomics (MHC peptides) is a promising approach for neoantigen discovery through searching MS data against patient-specific protein databases built from exome or transcriptome sequences. MS analysis enables mapping of posttranslational modifications that cannot be predicted from genome sequencing alone but can be more efficient in triggering immune responses. Although MS-based immunopeptidomics has demonstrated its potential in discovering neoantigens as vaccine candidates, the problems such as efficient isolation and sensitive detection (identification) of MHC peptides still hinder the application of its clinical application. Herein, we describe a method based on chemical derivatization and LC-MS/MS for the enhanced detection of MHC peptides.
Collapse
Affiliation(s)
- Rui Chen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Jianjun Li
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada.
| |
Collapse
|
49
|
Bulik-Sullivan B, Busby J, Palmer CD, Davis MJ, Murphy T, Clark A, Busby M, Duke F, Yang A, Young L, Ojo NC, Caldwell K, Abhyankar J, Boucher T, Hart MG, Makarov V, Montpreville VTD, Mercier O, Chan TA, Scagliotti G, Bironzo P, Novello S, Karachaliou N, Rosell R, Anderson I, Gabrail N, Hrom J, Limvarapuss C, Choquette K, Spira A, Rousseau R, Voong C, Rizvi NA, Fadel E, Frattini M, Jooss K, Skoberne M, Francis J, Yelensky R. Deep learning using tumor HLA peptide mass spectrometry datasets improves neoantigen identification. Nat Biotechnol 2018; 37:nbt.4313. [PMID: 30556813 DOI: 10.1038/nbt.4313] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/06/2018] [Indexed: 12/30/2022]
Abstract
Neoantigens, which are expressed on tumor cells, are one of the main targets of an effective antitumor T-cell response. Cancer immunotherapies to target neoantigens are of growing interest and are in early human trials, but methods to identify neoantigens either require invasive or difficult-to-obtain clinical specimens, require the screening of hundreds to thousands of synthetic peptides or tandem minigenes, or are only relevant to specific human leukocyte antigen (HLA) alleles. We apply deep learning to a large (N = 74 patients) HLA peptide and genomic dataset from various human tumors to create a computational model of antigen presentation for neoantigen prediction. We show that our model, named EDGE, increases the positive predictive value of HLA antigen prediction by up to ninefold. We apply EDGE to enable identification of neoantigens and neoantigen-reactive T cells using routine clinical specimens and small numbers of synthetic peptides for most common HLA alleles. EDGE could enable an improved ability to develop neoantigen-targeted immunotherapies for cancer patients.
Collapse
Affiliation(s)
| | - Jennifer Busby
- Gritstone Oncology, Inc., Emeryville, California and Cambridge, Massachusetts, USA
| | - Christine D Palmer
- Gritstone Oncology, Inc., Emeryville, California and Cambridge, Massachusetts, USA
| | - Matthew J Davis
- Gritstone Oncology, Inc., Emeryville, California and Cambridge, Massachusetts, USA
| | - Tyler Murphy
- Gritstone Oncology, Inc., Emeryville, California and Cambridge, Massachusetts, USA
| | - Andrew Clark
- Gritstone Oncology, Inc., Emeryville, California and Cambridge, Massachusetts, USA
| | - Michele Busby
- Gritstone Oncology, Inc., Emeryville, California and Cambridge, Massachusetts, USA
| | - Fujiko Duke
- Gritstone Oncology, Inc., Emeryville, California and Cambridge, Massachusetts, USA
| | - Aaron Yang
- Gritstone Oncology, Inc., Emeryville, California and Cambridge, Massachusetts, USA
| | - Lauren Young
- Gritstone Oncology, Inc., Emeryville, California and Cambridge, Massachusetts, USA
| | - Noelle C Ojo
- Gritstone Oncology, Inc., Emeryville, California and Cambridge, Massachusetts, USA
| | - Kamilah Caldwell
- Gritstone Oncology, Inc., Emeryville, California and Cambridge, Massachusetts, USA
| | - Jesse Abhyankar
- Gritstone Oncology, Inc., Emeryville, California and Cambridge, Massachusetts, USA
| | - Thomas Boucher
- Gritstone Oncology, Inc., Emeryville, California and Cambridge, Massachusetts, USA
| | - Meghan G Hart
- Gritstone Oncology, Inc., Emeryville, California and Cambridge, Massachusetts, USA
| | | | | | - Olaf Mercier
- Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
| | - Timothy A Chan
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Giorgio Scagliotti
- University of Turin, Department of Oncology at San Luigi Hospital, Orbassano (Turin), Italy
| | - Paolo Bironzo
- University of Turin, Department of Oncology at San Luigi Hospital, Orbassano (Turin), Italy
| | - Silvia Novello
- University of Turin, Department of Oncology at San Luigi Hospital, Orbassano (Turin), Italy
| | - Niki Karachaliou
- Instituto Oncologico Dr. Rosell - Hospital Universitari Quiron Dexeus Location, Barcelona, Spain
| | | | - Ian Anderson
- St Joseph Heritage Healthcare, Santa Rosa, California, USA
| | | | - John Hrom
- Hattiesburg Clinic/Forrest General Cancer Center, Hattiesburg, Mississippi, USA
| | | | | | | | - Raphael Rousseau
- Gritstone Oncology, Inc., Emeryville, California and Cambridge, Massachusetts, USA
| | - Cynthia Voong
- Gritstone Oncology, Inc., Emeryville, California and Cambridge, Massachusetts, USA
| | - Naiyer A Rizvi
- New York Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Elie Fadel
- Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
| | - Mark Frattini
- New York Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Karin Jooss
- Gritstone Oncology, Inc., Emeryville, California and Cambridge, Massachusetts, USA
| | - Mojca Skoberne
- Gritstone Oncology, Inc., Emeryville, California and Cambridge, Massachusetts, USA
| | - Joshua Francis
- Gritstone Oncology, Inc., Emeryville, California and Cambridge, Massachusetts, USA
| | - Roman Yelensky
- Gritstone Oncology, Inc., Emeryville, California and Cambridge, Massachusetts, USA
| |
Collapse
|
50
|
Laumont CM, Vincent K, Hesnard L, Audemard É, Bonneil É, Laverdure JP, Gendron P, Courcelles M, Hardy MP, Côté C, Durette C, St-Pierre C, Benhammadi M, Lanoix J, Vobecky S, Haddad E, Lemieux S, Thibault P, Perreault C. Noncoding regions are the main source of targetable tumor-specific antigens. Sci Transl Med 2018; 10:10/470/eaau5516. [DOI: 10.1126/scitranslmed.aau5516] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/15/2018] [Indexed: 12/15/2022]
Abstract
Tumor-specific antigens (TSAs) represent ideal targets for cancer immunotherapy, but few have been identified thus far. We therefore developed a proteogenomic approach to enable the high-throughput discovery of TSAs coded by potentially all genomic regions. In two murine cancer cell lines and seven human primary tumors, we identified a total of 40 TSAs, about 90% of which derived from allegedly noncoding regions and would have been missed by standard exome-based approaches. Moreover, most of these TSAs derived from nonmutated yet aberrantly expressed transcripts (such as endogenous retroelements) that could be shared by multiple tumor types. Last, we demonstrated that, in mice, the strength of antitumor responses after TSA vaccination was influenced by two parameters that can be estimated in humans and could serve for TSA prioritization in clinical studies: TSA expression and the frequency of TSA-responsive T cells in the preimmune repertoire. In conclusion, the strategy reported herein could considerably facilitate the identification and prioritization of actionable human TSAs.
Collapse
|