1
|
Oh SG, Noh J, Jang E, Youn J. The transcription repressor Bach2 is required for maintaining the B-1 cell population by regulating self-renewal. Front Immunol 2025; 16:1553089. [PMID: 40170867 PMCID: PMC11958198 DOI: 10.3389/fimmu.2025.1553089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
B-1 cells are a distinct lineage of tissue-resident B cells with crucial roles in innate immunity and tissue homeostasis. Mature B-1 cell pools are mostly maintained by self-renewal in their peripheral niches, in a process that is largely uncharacterized. Here, we investigated the role of the transcription repressor Bach2 in maintaining the B-1 cell pool. We found that B-1 cell numbers and antibody responses were dramatically reduced in adult mice bearing a B cell-specific Bach2 deletion, although the proportions of B-1 progenitors in early neonatal life were unaffected. Cells taken from the fetal liver or bone marrow of Bach2-deleted mice were defective in reconstituting the B-1 cell pool in the peritonea of Rag2-/- hosts, and peritoneal B-1 cell transplants from adult Bach2-deleted mice failed to sustain their numbers in the host's peritoneum. The mutant B-1 cells proliferated normally in vivo but were more apoptotic. They also expressed the reduced level of the self-renewal factor Bmi1. These results indicate that Bach2 deficiency does not affect the development of B-1 progenitors in fetal liver and bone marrow but impairs the self-renewal of mature B-1 cells in peripheral tissues, which is caused by increased apoptosis. Thus, this study suggests that a cell-autonomous function of Bach2 is crucial for maintaining a stable population size of B-1 cells in their peripheral niches.
Collapse
Affiliation(s)
- Seung-Gen Oh
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Jeonghyun Noh
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Eunkyeong Jang
- Laboratory of Autoimmunology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Jeehee Youn
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
- Laboratory of Autoimmunology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Held F, Makarov C, Gasperi C, Flaskamp M, Grummel V, Berthele A, Hemmer B. Proteomics Reveals Age as Major Modifier of Inflammatory CSF Signatures in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200322. [PMID: 39536291 PMCID: PMC11563564 DOI: 10.1212/nxi.0000000000200322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/12/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND OBJECTIVES Multiple sclerosis (MS) can start as relapsing or progressive. While their clinical features and treatment responses are distinct, it has remained uncertain whether their pathomechanisms differ. A notable age-related effect on MS phenotype and response to immunotherapies is well acknowledged, but the underlying pathophysiologic reasons are yet to be fully elucidated. We aimed to identify disease-specific and age-related proteomic signatures using a comprehensive targeted proteomic analysis. METHODS In our retrospective cohort study, we analyzed the CSF and serum proteome of age-matched individuals with treatment-naïve relapsing-remitting and primary progressive MS, neurologic controls (NC), and individuals with neuroborreliosis using targeted proteomics and validated findings in an independent cohort. Proteomic results were integrated with clinical and laboratory covariates. RESULTS Among 2,500 proteins, 47 CSF proteins were distinct between individuals with MS (n = 60) and NC (n = 20), with a subset also differing from those with neuroborreliosis (n = 8). We identified MS-associated proteins, including novel candidate biomarkers such as LY9 and JCHAIN, and putative treatment targets, such as SLAMF7, BCMA, and IL5RA, for which drugs are already licensed in other indications. The CSF proteome differences between relapsing and progressive MS were minimal, but major changes were noted in individuals older than 50 years, indicating a shift from MS-associated inflammatory to age-related protein signature. NEFL was the only serum protein that differed between individuals with MS and controls. DISCUSSION This study unveils a unique CSF proteomic signature in MS, providing new pathophysiologic insights and identifying novel biomarker candidates and potential therapeutic targets. Our findings highlight similar immunologic mechanisms in relapsing and progressive MS and underscore aging's profound effect on the intrathecal immune response. This aligns with the observed lower efficacy of immunotherapies in the elderly, thus emphasizing the necessity for alternative therapeutic approaches in treating individuals with MS beyond the age of 50.
Collapse
Affiliation(s)
- Friederike Held
- From the Department of Neurology (F.H., C.M., C.G., M.F., V.G., A.B., B.H.), University Hospital rechts der Isar, School of Medicine and Health, Technical University Munich, and Munich Cluster for Systems Neurology (SyNergy) (B.H.), Munich, Germany
| | - Christine Makarov
- From the Department of Neurology (F.H., C.M., C.G., M.F., V.G., A.B., B.H.), University Hospital rechts der Isar, School of Medicine and Health, Technical University Munich, and Munich Cluster for Systems Neurology (SyNergy) (B.H.), Munich, Germany
| | - Christiane Gasperi
- From the Department of Neurology (F.H., C.M., C.G., M.F., V.G., A.B., B.H.), University Hospital rechts der Isar, School of Medicine and Health, Technical University Munich, and Munich Cluster for Systems Neurology (SyNergy) (B.H.), Munich, Germany
| | - Martina Flaskamp
- From the Department of Neurology (F.H., C.M., C.G., M.F., V.G., A.B., B.H.), University Hospital rechts der Isar, School of Medicine and Health, Technical University Munich, and Munich Cluster for Systems Neurology (SyNergy) (B.H.), Munich, Germany
| | - Verena Grummel
- From the Department of Neurology (F.H., C.M., C.G., M.F., V.G., A.B., B.H.), University Hospital rechts der Isar, School of Medicine and Health, Technical University Munich, and Munich Cluster for Systems Neurology (SyNergy) (B.H.), Munich, Germany
| | - Achim Berthele
- From the Department of Neurology (F.H., C.M., C.G., M.F., V.G., A.B., B.H.), University Hospital rechts der Isar, School of Medicine and Health, Technical University Munich, and Munich Cluster for Systems Neurology (SyNergy) (B.H.), Munich, Germany
| | - Bernhard Hemmer
- From the Department of Neurology (F.H., C.M., C.G., M.F., V.G., A.B., B.H.), University Hospital rechts der Isar, School of Medicine and Health, Technical University Munich, and Munich Cluster for Systems Neurology (SyNergy) (B.H.), Munich, Germany
| |
Collapse
|
3
|
Ono C, Kochi Y, Baba Y, Tanaka S. Humoral responses are enhanced by facilitating B cell viability by Fcrl5 overexpression in B cells. Int Immunol 2024; 36:529-540. [PMID: 38738271 DOI: 10.1093/intimm/dxae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/11/2024] [Indexed: 05/14/2024] Open
Abstract
B cell initial activity is regulated through a balance of activation and suppression mediated by regulatory molecules expressed in B cells; however, the molecular mechanisms underlying this process remain incompletely understood. In this study, we investigated the function of the Fc receptor-like (Fcrl) family molecule Fcrl5, which is constitutively expressed in naive B cells, in humoral immune responses. Our study demonstrated that B cell-specific overexpression of Fcrl5 enhanced antibody (Ab) production in both T cell-independent type 1 (TI1) and T cell-dependent (TD) responses. Additionally, it promoted effector B cell formation under competitive conditions in TD responses. Mechanistically, in vitro ligation of Fcrl5 by agonistic Abs reduced cell death and enhanced proliferation in lipopolysaccharide-stimulated B cells. In the presence of anti-CD40 Abs and IL-5, the Fcrl5 ligation not only suppressed cell death but also enhanced differentiation into plasma cells. These findings reveal a novel role of Fcrl5 in promoting humoral immune responses by enhancing B cell viability and plasma cell differentiation.
Collapse
Affiliation(s)
- Chisato Ono
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yuta Kochi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shinya Tanaka
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Massoni-Badosa R, Aguilar-Fernández S, Nieto JC, Soler-Vila P, Elosua-Bayes M, Marchese D, Kulis M, Vilas-Zornoza A, Bühler MM, Rashmi S, Alsinet C, Caratù G, Moutinho C, Ruiz S, Lorden P, Lunazzi G, Colomer D, Frigola G, Blevins W, Romero-Rivero L, Jiménez-Martínez V, Vidal A, Mateos-Jaimez J, Maiques-Diaz A, Ovejero S, Moreaux J, Palomino S, Gomez-Cabrero D, Agirre X, Weniger MA, King HW, Garner LC, Marini F, Cervera-Paz FJ, Baptista PM, Vilaseca I, Rosales C, Ruiz-Gaspà S, Talks B, Sidhpura K, Pascual-Reguant A, Hauser AE, Haniffa M, Prosper F, Küppers R, Gut IG, Campo E, Martin-Subero JI, Heyn H. An atlas of cells in the human tonsil. Immunity 2024; 57:379-399.e18. [PMID: 38301653 PMCID: PMC10869140 DOI: 10.1016/j.immuni.2024.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/07/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
Palatine tonsils are secondary lymphoid organs (SLOs) representing the first line of immunological defense against inhaled or ingested pathogens. We generated an atlas of the human tonsil composed of >556,000 cells profiled across five different data modalities, including single-cell transcriptome, epigenome, proteome, and immune repertoire sequencing, as well as spatial transcriptomics. This census identified 121 cell types and states, defined developmental trajectories, and enabled an understanding of the functional units of the tonsil. Exemplarily, we stratified myeloid slan-like subtypes, established a BCL6 enhancer as locally active in follicle-associated T and B cells, and identified SIX5 as putative transcriptional regulator of plasma cell maturation. Analyses of a validation cohort confirmed the presence, annotation, and markers of tonsillar cell types and provided evidence of age-related compositional shifts. We demonstrate the value of this resource by annotating cells from B cell-derived mantle cell lymphomas, linking transcriptional heterogeneity to normal B cell differentiation states of the human tonsil.
Collapse
Affiliation(s)
| | | | - Juan C Nieto
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Paula Soler-Vila
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | - Marta Kulis
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Amaia Vilas-Zornoza
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Universidad de Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Marco Matteo Bühler
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland; Hematopathology Section, Pathology Department, Hospital Clinic, Barcelona, Spain
| | - Sonal Rashmi
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Clara Alsinet
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Ginevra Caratù
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Catia Moutinho
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Sara Ruiz
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Patricia Lorden
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Giulia Lunazzi
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain; Hematopathology Section, Pathology Department, Hospital Clinic, Barcelona, Spain; Departament de Fonaments Clínics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Gerard Frigola
- Hematopathology Section, Pathology Department, Hospital Clinic, Barcelona, Spain
| | - Will Blevins
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Lucia Romero-Rivero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Anna Vidal
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Judith Mateos-Jaimez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alba Maiques-Diaz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sara Ovejero
- Department of Biological Hematology, CHU Montpellier, Montpellier, France; Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Jérôme Moreaux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France; Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France; Department of Clinical Hematology, CHU Montpellier, Montpellier, France
| | - Sara Palomino
- Translational Bioinformatics Unit (TransBio), Navarrabiomed, Navarra Health Department (CHN), Public University of Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - David Gomez-Cabrero
- Translational Bioinformatics Unit (TransBio), Navarrabiomed, Navarra Health Department (CHN), Public University of Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Bioscience Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology KAUST, Thuwal, Saudi Arabia
| | - Xabier Agirre
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Universidad de Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Marc A Weniger
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Hamish W King
- Epigenetics and Development Division, Walter and Eliza Hall Institute, Parkville, Australia
| | - Lucy C Garner
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Peter M Baptista
- Department of Otorhinolaryngology, University of Navarra, Pamplona, Spain
| | - Isabel Vilaseca
- Otorhinolaryngology Head-Neck Surgery Department, Hospital Clínic, IDIBAPS Universitat de Barcelona, Barcelona, Spain
| | - Cecilia Rosales
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Silvia Ruiz-Gaspà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Benjamin Talks
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK; Department of Otolaryngology, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Keval Sidhpura
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Anna Pascual-Reguant
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), Berlin, Germany
| | - Anja E Hauser
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), Berlin, Germany
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK; Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Felipe Prosper
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Universidad de Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain; Departamento de Hematología, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Ivo Glynne Gut
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain; Hematopathology Section, Pathology Department, Hospital Clinic, Barcelona, Spain; Departament de Fonaments Clínics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - José Ignacio Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Departament de Fonaments Clínics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Holger Heyn
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
5
|
Kariyawasam HH, James LK. Chronic rhinosinusitis with nasal polyps: eosinophils versus B lymphocytes in disease pathogenesis. Curr Opin Allergy Clin Immunol 2024; 24:15-24. [PMID: 38018818 DOI: 10.1097/aci.0000000000000959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
PURPOSE OF REVIEW To highlight the current evidence that supports the view that eosinophils may not drive disease in chronic rhinosinusitis with nasal polyps (CRSwNP) and the emerging evidence for B cells as an important player in this disease. RECENT FINDINGS Eosinophil depletion studies in CRSwNP do not fully support a critical role for eosinophils in CRSwNP. Almost complete eosinophil depletion with dexpramipexole had no impact on polyp size reduction or clinical improvement. Anti-interleukin (IL)-5 and IL-5Rα inhibition were more effective though with less clinical impact when compared to anti-immunoglobulin E (IgE) or IL-4Rα inhibition strategies. As IL-5Rα is also expressed on CRSwNP derived IgE+ and IgG4+ plasma cells to the same extent as eosinophils, improvements in CRSwNP with IL-5 inhibition may suggest a role for B cells over eosinophils in CRSwNP. We review both eosinophils and B cells in the context of CRSwNP and highlight the current evidence that supports an emerging role for B cells. SUMMARY Despite many aspects of immunopathology in CRSwNP explainable by B cell dysfunction, B cells have so far been ignored in CRSwNP. Further work is needed, as targeting B cells may offer an exciting new therapeutic option in the future.
Collapse
Affiliation(s)
- Harsha H Kariyawasam
- Specialist Allergy and Clinical Immunology, Royal National ENT and Eastman Hospital, London
- Department of Rhinology, Royal National ENT and Eastman Hospital, London, University College London Hospitals NHS Foundation Trust
| | - Louisa K James
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
6
|
Ying Z, Hardikar S, Plummer JB, Hamidi T, Liu B, Chen Y, Shen J, Mu Y, McBride KM, Chen T. Enhanced CD19 activity in B cells contributes to immunodeficiency in mice deficient in the ICF syndrome gene Zbtb24. Cell Mol Immunol 2023; 20:1487-1498. [PMID: 37990035 PMCID: PMC10687020 DOI: 10.1038/s41423-023-01106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023] Open
Abstract
Immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome is a rare autosomal recessive disorder characterized by DNA hypomethylation and antibody deficiency. It is caused by mutations in DNMT3B, ZBTB24, CDCA7, or HELLS. While progress has been made in elucidating the roles of these genes in regulating DNA methylation, little is known about the pathogenesis of the life-threatening hypogammaglobulinemia phenotype. Here, we show that mice deficient in Zbtb24 in the hematopoietic lineage recapitulate the major clinical features of patients with ICF syndrome. Specifically, Vav-Cre-mediated ablation of Zbtb24 does not affect lymphocyte development but results in reduced plasma cells and low levels of IgM, IgG1, and IgA. Zbtb24-deficient mice are hyper and hypo-responsive to T-dependent and T-independent type 2 antigens, respectively, and marginal zone B-cell activation is impaired. Mechanistically, Zbtb24-deficient B cells show severe loss of DNA methylation in the promoter region of Il5ra (interleukin-5 receptor subunit alpha), and Il5ra derepression leads to elevated CD19 phosphorylation. Heterozygous disruption of Cd19 can revert the hypogammaglobulinemia phenotype of Zbtb24-deficient mice. Our results suggest the potential role of enhanced CD19 activity in immunodeficiency in ICF syndrome.
Collapse
Affiliation(s)
- Zhengzhou Ying
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Swanand Hardikar
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Joshua B Plummer
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tewfik Hamidi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Yueping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Yunxiang Mu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kevin M McBride
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Si Y, Zhang Y, Zuloaga K, Yang Q. The role of innate lymphocytes in regulating brain and cognitive function. Neurobiol Dis 2023; 179:106061. [PMID: 36870457 PMCID: PMC11194859 DOI: 10.1016/j.nbd.2023.106061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Mounting evidence indicates complex interaction between the immune system and the nervous system, challenging the traditional view about the immune privilege of the brain. Innate lymphoid cells (ILCs) and innate-like T cells are unique families of immune cells that functionally mirror traditional T cells but may function via antigen- and T cell antigen receptor (TCR)-independent mechanisms. Recent work indicates that various ILCs and innate-like T cell subsets are present in the brain barrier tissue, where they play important roles in regulating brain barrier integrity, brain homeostasis and cognitive function. In this review, we discuss recent advances in understanding the intricate roles for innate and innate-like lymphocytes in regulating brain and cognitive function.
Collapse
Affiliation(s)
- Youwen Si
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Yuanyue Zhang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Kristen Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, 12208, USA
| | - Qi Yang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; Rutgers Institute for Translational Medicine and Science, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| |
Collapse
|
8
|
Gevaert P, Han JK, Smith SG, Sousa AR, Howarth PH, Yancey SW, Chan R, Bachert C. The roles of eosinophils and interleukin-5 in the pathophysiology of chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol 2022; 12:1413-1423. [PMID: 35243803 PMCID: PMC9790271 DOI: 10.1002/alr.22994] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/10/2022] [Accepted: 03/01/2022] [Indexed: 12/30/2022]
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is generally associated with eosinophilic tissue infiltration linked to type 2 inflammation and characterized by elevated levels of interleukin (IL)-5 and other type 2 inflammatory mediators. Although distinct and overlapping contributions of eosinophils and IL-5 to CRSwNP pathology are still being explored, they are both known to play an important role in NP inflammation. Eosinophils secrete numerous type 2 inflammatory mediators including granule proteins, enzymes, cytokines, chemokines, growth factors, lipids, and oxidative products. IL-5 is critical for the differentiation, migration, activation, and survival of eosinophils but is also implicated in the biological functions of mast cells, basophils, innate lymphoid cells, B cells, and epithelial cells. Results from clinical trials of therapeutics that target type 2 inflammatory mediators (including but not limited to anti-IL-5, anti-immunoglobulin-E, and anti-IL-4/13) may provide further evidence of how eosinophils and IL-5 contribute to CRSwNP. Finally, the association between eosinophilia/elevated IL-5 and greater rates of NP recurrence after endoscopic sinus surgery (ESS) suggests that these mediators may have utility as biomarkers of NP recurrence in diagnosing and assessing the severity of CRSwNP. This review provides an overview of eosinophil and IL-5 biology and explores the literature regarding the role of these mediators in CRSwNP pathogenesis and NP recurrence following ESS. Based on current published evidence, we suggest that although eosinophils play a key role in CRSwNP pathophysiology, IL-5, a cytokine that activates these cells, also represents a pertinent and effective treatment target in patients with CRSwNP.
Collapse
Affiliation(s)
- Philippe Gevaert
- Upper Airway Research LaboratoryDepartment of OtorhinolaryngologyGhent University HospitalGhentBelgium
| | | | - Steven G. Smith
- Respiratory Medical Franchise, GSKResearch Triangle ParkNorth CarolinaUSA
| | - Ana R. Sousa
- Clinical Sciences, Respiratory, GSKBrentfordMiddlesexUK
| | - Peter H. Howarth
- Clinical and Experimental SciencesFaculty of Medicine, University of Southampton and NIHR Respiratory Biomedical Research UnitSouthampton General HospitalSouthamptonUK,Global Respiratory Franchise, GSKBrentfordMiddlesexUK
| | - Steven W. Yancey
- Respiratory Medical Franchise, GSKResearch Triangle ParkNorth CarolinaUSA
| | - Robert Chan
- Clinical Sciences, Respiratory, GSKBrentfordMiddlesexUK
| | - Claus Bachert
- Upper Airway Research LaboratoryDepartment of OtorhinolaryngologyGhent University HospitalGhentBelgium,Division of ENT DiseasesCLINTECKarolinska InstituteStockholmSweden
| |
Collapse
|
9
|
Genetic dissection of TLR9 reveals complex regulatory and cryptic proinflammatory roles in mouse lupus. Nat Immunol 2022; 23:1457-1469. [PMID: 36151396 PMCID: PMC9561083 DOI: 10.1038/s41590-022-01310-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 08/08/2022] [Indexed: 02/04/2023]
Abstract
In lupus, Toll-like receptor 7 (TLR7) and TLR9 mediate loss of tolerance to RNA and DNA, respectively. Yet, TLR7 promotes disease, while TLR9 protects from disease, implying differences in signaling. To dissect this 'TLR paradox', we generated two TLR9 point mutants (lacking either ligand (TLR9K51E) or MyD88 (TLR9P915H) binding) in lupus-prone MRL/lpr mice. Ameliorated disease of Tlr9K51E mice compared to Tlr9-/- controls revealed a TLR9 'scaffold' protective function that is ligand and MyD88 independent. Unexpectedly, Tlr9P915H mice were more protected than both Tlr9K51E and Tlr9WT mice, suggesting that TLR9 also possesses ligand-dependent, but MyD88-independent, regulatory signaling and MyD88-mediated proinflammatory signaling. Triple-mixed bone marrow chimeras showed that TLR9-MyD88-independent regulatory roles were B cell intrinsic and restrained differentiation into pathogenic age-associated B cells and plasmablasts. These studies reveal MyD88-independent regulatory roles of TLR9, shedding light on the biology of endosomal TLRs.
Collapse
|
10
|
Kania AK, Price MJ, George-Alexander LE, Patterson DG, Hicks SL, Scharer CD, Boss JM. H3K27me3 Demethylase UTX Restrains Plasma Cell Formation. THE JOURNAL OF IMMUNOLOGY 2022; 208:1873-1885. [PMID: 35346967 PMCID: PMC9012698 DOI: 10.4049/jimmunol.2100948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/02/2022] [Indexed: 11/19/2022]
Abstract
B cell differentiation is associated with substantial transcriptional, metabolic, and epigenetic remodeling, including redistribution of histone 3 lysine 27 trimethylation (H3K27me3), which is associated with a repressive chromatin state and gene silencing. Although the role of the methyltransferase EZH2 (Enhancer of zeste homolog 2) in B cell fate decisions has been well established, it is not known whether H3K27me3 demethylation is equally important. In this study, we showed that simultaneous genetic deletion of the two H3K27 demethylases UTX and JMJD3 (double-knockout [Utx fl/fl Jmjd3 fl/fl Cd19 cre/+] [dKO]) led to a significant increase in plasma cell (PC) formation after stimulation with the T cell-independent Ags LPS and NP-Ficoll. This phenotype occurred in a UTX-dependent manner as UTX single-knockout mice, but not JMJD3 single-knockout mice, mimicked the dKO. Although UTX- and JMJD3-deficient marginal zone B cells showed increased proliferation, dKO follicular B cells also showed increased PC formation. PCs from dKO mice upregulated genes associated with oxidative phosphorylation and exhibited increased spare respiratory capacity. Mechanistically, deletion of Utx and Jmjd3 resulted in higher levels of H3K27me3 at proapoptotic genes and resulted in reduced apoptosis of dKO PCs in vivo. Furthermore, UTX regulated chromatin accessibility at regions containing ETS and IFN regulatory factor (IRF) transcription factor family motifs, including motifs of known repressors of PC fate. Taken together, these data demonstrate that the H3K27me3 demethylases restrain B cell differentiation.
Collapse
Affiliation(s)
- Anna K Kania
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Madeline J Price
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | | | - Dillon G Patterson
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Sakeenah L Hicks
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
11
|
Santamaria K, Desmots F, Leonard S, Caron G, Haas M, Delaloy C, Chatonnet F, Rossille D, Pignarre A, Monvoisin C, Seffals M, Lamaison C, Cogné M, Tarte K, Fest T. Committed Human CD23-Negative Light-Zone Germinal Center B Cells Delineate Transcriptional Program Supporting Plasma Cell Differentiation. Front Immunol 2021; 12:744573. [PMID: 34925321 PMCID: PMC8674954 DOI: 10.3389/fimmu.2021.744573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022] Open
Abstract
B cell affinity maturation occurs in the germinal center (GC). Light-zone (LZ) GC B cells (BGC-cells) interact with follicular dendritic cells (FDCs) and compete for the limited, sequential help from T follicular helper cells needed to escape from apoptosis and complete their differentiation. The highest-affinity LZ BGC-cells enter the cell cycle and differentiate into PCs, following a dramatic epigenetic reorganization that induces transcriptome changes in general and the expression of the PRDM1 gene in particular. Human PC precursors are characterized by the loss of IL-4/STAT6 signaling and the absence of CD23 expression. Here, we studied the fate of human LZ BGC-cells as a function of their CD23 expression. We first showed that CD23 expression was restricted to the GC LZ, where it was primarily expressed by FDCs; less than 10% of tonsil LZ BGC-cells were positive. Sorted LZ BGC-cells left in culture and stimulated upregulated CD23 expression but were unable to differentiate into PCs – in contrast to cells that did not upregulate CD23 expression. An in-depth analysis (including single-cell gene expression) showed that stimulated CD23-negative LZ BGC-cells differentiated into plasmablasts and time course of gene expression changes delineates the transcriptional program that sustains PC differentiation. In particular, we identified a B cell proliferation signature supported by a transient MYC gene expression. Overall, the CD23 marker might be of value in answering questions about the differentiation of normal BGC-cells and allowed us to propose an instructive LZ BGC-cells maturation and fate model.
Collapse
Affiliation(s)
- Kathleen Santamaria
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France
| | - Fabienne Desmots
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.,Pôle de Biologie, Rennes University Medical Center, Rennes, France
| | - Simon Leonard
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Gersende Caron
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.,Pôle de Biologie, Rennes University Medical Center, Rennes, France
| | - Marion Haas
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.,Pôle de Biologie, Rennes University Medical Center, Rennes, France
| | - Céline Delaloy
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France
| | - Fabrice Chatonnet
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.,Pôle de Biologie, Rennes University Medical Center, Rennes, France
| | - Delphine Rossille
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.,Pôle de Biologie, Rennes University Medical Center, Rennes, France
| | - Amandine Pignarre
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.,Pôle de Biologie, Rennes University Medical Center, Rennes, France
| | - Céline Monvoisin
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France
| | - Marine Seffals
- University of Rennes 1, UMS Biosit, H2P2 Platform, Rennes, France
| | - Claire Lamaison
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France
| | - Michel Cogné
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.,Pôle de Biologie, Rennes University Medical Center, Rennes, France
| | - Karin Tarte
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.,Pôle de Biologie, Rennes University Medical Center, Rennes, France
| | - Thierry Fest
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.,Pôle de Biologie, Rennes University Medical Center, Rennes, France
| |
Collapse
|
12
|
Ma Q, Caillier SJ, Muzic S, Wilson MR, Henry RG, Cree BAC, Hauser SL, Didonna A, Oksenberg JR. Specific hypomethylation programs underpin B cell activation in early multiple sclerosis. Proc Natl Acad Sci U S A 2021; 118:e2111920118. [PMID: 34911760 PMCID: PMC8713784 DOI: 10.1073/pnas.2111920118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic changes have been consistently detected in different cell types in multiple sclerosis (MS). However, their contribution to MS pathogenesis remains poorly understood partly because of sample heterogeneity and limited coverage of array-based methods. To fill this gap, we conducted a comprehensive analysis of genome-wide DNA methylation patterns in four peripheral immune cell populations isolated from 29 MS patients at clinical disease onset and 24 healthy controls. We show that B cells from new-onset untreated MS cases display more significant methylation changes than other disease-implicated immune cell types, consisting of a global DNA hypomethylation signature. Importantly, 4,933 MS-associated differentially methylated regions in B cells were identified, and this epigenetic signature underlies specific genetic programs involved in B cell differentiation and activation. Integration of the methylome to changes in gene expression and susceptibility-associated regions further indicates that hypomethylated regions are significantly associated with the up-regulation of cell activation transcriptional programs. Altogether, these findings implicate aberrant B cell function in MS etiology.
Collapse
Affiliation(s)
- Qin Ma
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA 94158
| | - Stacy J Caillier
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA 94158
| | - Shaun Muzic
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA 94158
| | - Michael R Wilson
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA 94158
| | - Roland G Henry
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA 94158
| | - Bruce A C Cree
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA 94158
| | - Stephen L Hauser
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA 94158
| | - Alessandro Didonna
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA 94158
| | - Jorge R Oksenberg
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA 94158
| |
Collapse
|
13
|
Jaufmann J, Franke FC, Sperlich A, Blumendeller C, Kloos I, Schneider B, Sasaki D, Janssen KP, Beer-Hammer S. The emerging and diverse roles of the SLy/SASH1-protein family in health and disease-Overview of three multifunctional proteins. FASEB J 2021; 35:e21470. [PMID: 33710696 DOI: 10.1096/fj.202002495r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/22/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022]
Abstract
Intracellular adaptor proteins are indispensable for the transduction of receptor-derived signals, as they recruit and connect essential downstream effectors. The SLy/SASH1-adaptor family comprises three highly homologous proteins, all of them sharing conserved structural motifs. The initial characterization of the first member SLy1/SASH3 (SH3 protein expressed in lymphocytes 1) in 2001 was rapidly followed by identification of SLy2/HACS1 (hematopoietic adaptor containing SH3 and SAM domains 1) and SASH1/SLy3 (SAM and SH3 domain containing 1). Based on their pronounced sequence similarity, they were subsequently classified as one family of intracellular scaffold proteins. Despite their obvious homology, the three SLy/SASH1-members fundamentally differ with regard to their expression and function in intracellular signaling. On the contrary, growing evidence clearly demonstrates an important role of all three proteins in human health and disease. In this review, we systematically summarize what is known about the SLy/SASH1-adaptors in the field of molecular cell biology and immunology. To this end, we recapitulate current research about SLy1/SASH3, SLy2/HACS1, and SASH1/SLy3, with an emphasis on their similarities and differences.
Collapse
Affiliation(s)
- Jennifer Jaufmann
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Fabian Christoph Franke
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Andreas Sperlich
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Carolin Blumendeller
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Isabel Kloos
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Barbara Schneider
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Daisuke Sasaki
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.,Medical SC New Technology Strategy Office, General Research Institute, Nitto Boseki, Co., Ltd, Tokyo, Japan
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
14
|
Kariyawasam HH, James LK. Do B cells rather than eosinophils drive chronic rhinosinusitis with nasal polyps? THE LANCET RESPIRATORY MEDICINE 2021; 9:e97. [PMID: 34087100 DOI: 10.1016/s2213-2600(21)00223-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Harsha H Kariyawasam
- Specialist Allergy and Clinical Immunology, Department of Rhinology, Royal National ENT Hospital, London WC1E 6DG, UK; University College London Hospitals NHS Foundation Trust, London, UK; University College London, London, UK.
| | - Louisa K James
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
15
|
Xie B, Khoyratty TE, Abu-Shah E, F Cespedes P, MacLean AJ, Pirgova G, Hu Z, Ahmed AA, Dustin ML, Udalova IA, Arnon TI. The Zinc Finger Protein Zbtb18 Represses Expression of Class I Phosphatidylinositol 3-Kinase Subunits and Inhibits Plasma Cell Differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1515-1527. [PMID: 33608456 PMCID: PMC7980533 DOI: 10.4049/jimmunol.2000367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 01/31/2021] [Indexed: 11/24/2022]
Abstract
The PI3K pathway plays a key role in B cell activation and is important for the differentiation of Ab producing plasma cells (PCs). Although much is known about the molecular mechanisms that modulate PI3K signaling in B cells, the transcriptional regulation of PI3K expression is poorly understood. In this study, we identify the zinc finger protein Zbtb18 as a transcriptional repressor that directly binds enhancer/promoter regions of genes encoding class I PI3K regulatory subunits, subsequently limiting their expression, dampening PI3K signaling and suppressing PC responses. Following activation, dividing B cells progressively downregulated Zbtb18, allowing gradual amplification of PI3K signals and enhanced development of PCs. Human Zbtb18 displayed similar expression patterns and function in human B cells, acting to inhibit development of PCs. Furthermore, a number of Zbtb18 mutants identified in cancer patients showed loss of suppressor activity, which was also accompanied by impaired regulation of PI3K genes. Taken together, our study identifies Zbtb18 as a repressor of PC differentiation and reveals its previously unappreciated function as a transcription modulator of the PI3K signaling pathway.
Collapse
Affiliation(s)
- Bin Xie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| | - Tariq E Khoyratty
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| | - Enas Abu-Shah
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| | - Pablo F Cespedes
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| | - Andrew J MacLean
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| | - Gabriela Pirgova
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| | - Zhiyuan Hu
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford OX3 9DS, United Kingdom
| | - Ahmed A Ahmed
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford OX3 9DS, United Kingdom
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| | - Irina A Udalova
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| | - Tal I Arnon
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| |
Collapse
|
16
|
Moroney JB, Vasudev A, Pertsemlidis A, Zan H, Casali P. Integrative transcriptome and chromatin landscape analysis reveals distinct epigenetic regulations in human memory B cells. Nat Commun 2020; 11:5435. [PMID: 33116135 PMCID: PMC7595102 DOI: 10.1038/s41467-020-19242-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 10/01/2020] [Indexed: 01/08/2023] Open
Abstract
Memory B cells (MBCs) are long-lived and produce high-affinity, generally, class-switched antibodies. Here, we use a multiparameter approach involving CD27 to segregate naïve B cells (NBC), IgD+ unswitched (unsw)MBCs and IgG+ or IgA+ class-switched (sw)MBCs from humans of different age, sex and race. Conserved antibody variable gene expression indicates that MBCs emerge through unbiased selection from NBCs. Integrative analyses of mRNAs, miRNAs, lncRNAs, chromatin accessibility and cis-regulatory elements uncover a core mRNA-ncRNA transcriptional signature shared by IgG+ and IgA+ swMBCs and distinct from NBCs, while unswMBCs display a transitional transcriptome. Some swMBC transcriptional signature loci are accessible but not expressed in NBCs. Profiling miRNAs reveals downregulated MIR181, and concomitantly upregulated MIR181 target genes such as RASSF6, TOX, TRERF1, TRPV3 and RORα, in swMBCs. Finally, lncRNAs differentially expressed in swMBCs cluster proximal to the IgH chain locus on chromosome 14. Our findings thus provide new insights into MBC transcriptional programs and epigenetic regulation, opening new investigative avenues on these critical cell elements in human health and disease. Human memory B cells differentiate from naïve B cells and can express different immunoglobulin (Ig) isotypes resulted from class-switch recombination. Here the authors describe, using transcriptional and epigenetic data from human memory B cells and integrated multi-omics analyses, the differentiation regulation and trajectory of IgG+, IgA+ and IgD+ memory B cells.
Collapse
Affiliation(s)
- Justin B Moroney
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX, 78229, USA
| | - Anusha Vasudev
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX, 78229, USA
| | - Alexander Pertsemlidis
- Greehey Children's Cancer Research Institute, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX, 78229, USA
| | - Hong Zan
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX, 78229, USA
| | - Paolo Casali
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX, 78229, USA.
| |
Collapse
|
17
|
Wang H, Morse HC, Bolland S. Transcriptional Control of Mature B Cell Fates. Trends Immunol 2020; 41:601-613. [PMID: 32446878 DOI: 10.1016/j.it.2020.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 02/05/2023]
Abstract
The mature naïve B cell repertoire consists of three well-defined populations: B1, B2 (follicular B, FOB), and marginal zone B (MZB) cells. FOB cells are the dominant mature B cell population in the secondary lymphoid organs and blood of both humans and mice. The driving forces behind mature B lineage selection have been linked to B cell receptor (BCR) signaling strength and environmental cues, but how these fate-determination factors are transcriptionally regulated remains poorly understood. We summarize emerging data on the role of transcription factors (TFs) - particularly the ETS and IRF families - in regulating MZB and FOB lineage selection. Indeed, genomic analyses have identified four major groups of target genes that are crucial for FOB differentiation, revealing previously unrecognized pathways that ultimately determine biological responses specific to this lineage.
Collapse
Affiliation(s)
- Hongsheng Wang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA.
| | - Herbert C Morse
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Silvia Bolland
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA.
| |
Collapse
|
18
|
Buchheit KM, Dwyer DF, Ordovas-Montanes J, Katz HR, Lewis E, Vukovic M, Lai J, Bankova LG, Bhattacharyya N, Shalek AK, Barrett NA, Boyce JA, Laidlaw TM. IL-5Rα marks nasal polyp IgG4- and IgE-expressing cells in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2020; 145:1574-1584. [PMID: 32199912 DOI: 10.1016/j.jaci.2020.02.035] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/09/2020] [Accepted: 02/25/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND The cause of severe nasal polyposis in aspirin-exacerbated respiratory disease (AERD) is unknown. Elevated antibody levels have been associated with disease severity in nasal polyps, but upstream drivers of local antibody production in nasal polyps are undetermined. OBJECTIVE We sought to identify upstream drivers and phenotypic properties of local antibody-expressing cells in nasal polyps from subjects with AERD. METHODS Sinus tissue was obtained from subjects with AERD, chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP), CRS without nasal polyps, and controls without CRS. Tissue antibody levels were quantified via ELISA and immunohistochemistry and were correlated with disease severity. Antibody-expressing cells were profiled with single-cell RNA sequencing, flow cytometry, and immunofluorescence, with IL-5Rα function determined through IL-5 stimulation and subsequent RNA sequencing and quantitative PCR. RESULTS Tissue IgE and IgG4 levels were elevated in AERD compared with in controls (P < .01 for IgE and P < .001 for IgG4 vs CRSwNP). Subjects with AERD whose nasal polyps recurred rapidly had higher IgE levels than did subjects with AERD, with slower regrowth (P = .005). Single-cell RNA sequencing revealed increased IL5RA, IGHG4, and IGHE in antibody-expressing cells from patients with AERD compared with antibody-expressing cells from patients with CRSwNP. There were more IL-5Rα+ plasma cells in the polyp tissue from those with AERD than in polyp tissue from those with CRSwNP (P = .026). IL-5 stimulation of plasma cells in vitro induced changes in a distinct set of transcripts. CONCLUSIONS Our study identifies an increase in antibody-expressing cells in AERD defined by transcript enrichment of IL5RA and IGHG4 or IGHE, with confirmed surface expression of IL-5Rα and functional IL-5 signaling. Tissue IgE and IgG4 levels are elevated in AERD, and higher IgE levels are associated with faster nasal polyp regrowth. Our findings suggest a role for IL-5Rα+ antibody-expressing cells in facilitating local antibody production and severe nasal polyps in AERD.
Collapse
Affiliation(s)
- Kathleen M Buchheit
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Daniel F Dwyer
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Jose Ordovas-Montanes
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Mass; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Mass; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, Mass; Division of Gastroenterology, Boston Children's Hospital, Boston, Mass
| | - Howard R Katz
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Erin Lewis
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Marko Vukovic
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Mass; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Mass; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, Mass
| | - Juying Lai
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Lora G Bankova
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Neil Bhattacharyya
- Department of Surgery, Harvard Medical School, Boston, Mass; Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Mass
| | - Alex K Shalek
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Mass; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Mass; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, Mass; Harvard-Massachusetts Institute of Technology Division of Health Sciences & Technology, Cambridge, Mass
| | - Nora A Barrett
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Joshua A Boyce
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Tanya M Laidlaw
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass.
| |
Collapse
|
19
|
Haines RR, Scharer CD, Lobby JL, Boss JM. LSD1 Cooperates with Noncanonical NF-κB Signaling to Regulate Marginal Zone B Cell Development. THE JOURNAL OF IMMUNOLOGY 2019; 203:1867-1881. [PMID: 31492745 DOI: 10.4049/jimmunol.1900654] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/05/2019] [Indexed: 12/25/2022]
Abstract
Marginal zone B cells (MZB) are a mature B cell subset that rapidly respond to blood-borne pathogens. Although the transcriptional changes that occur throughout MZB development are known, the corresponding epigenetic changes and epigenetic modifying proteins that facilitate these changes are poorly understood. The histone demethylase LSD1 is an epigenetic modifier that promotes plasmablast formation, but its role in B cell development has not been explored. In this study, a role for LSD1 in the development of B cell subsets was examined. B cell-conditional deletion of LSD1 in mice resulted in a decrease in MZB whereas follicular B cells and bone marrow B cell populations were minimally affected. LSD1 repressed genes in MZB that were normally upregulated in the myeloid and follicular B cell lineages. Correspondingly, LSD1 regulated chromatin accessibility at the motifs of transcription factors known to regulate splenic B cell development, including NF-κB motifs. The importance of NF-κB signaling was examined through an ex vivo MZB development assay, which showed that both LSD1-deficient and NF-κB-inhibited transitional B cells failed to undergo full MZB development. Gene expression and chromatin accessibility analyses of in vivo- and ex vivo-generated LSD1-deficient MZB indicated that LSD1 regulated the downstream target genes of noncanonical NF-κB signaling. Additionally LSD1 was found to interact with the noncanonical NF-κB transcription factor p52. Together, these data reveal that the epigenetic modulation of the noncanonical NF-κB signaling pathway by LSD1 is an essential process during the development of MZB.
Collapse
Affiliation(s)
- Robert R Haines
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Jenna L Lobby
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
20
|
Agarwal D, Schmader KE, Kossenkov AV, Doyle S, Kurupati R, Ertl HCJ. Immune response to influenza vaccination in the elderly is altered by chronic medication use. Immun Ageing 2018; 15:19. [PMID: 30186359 PMCID: PMC6119322 DOI: 10.1186/s12979-018-0124-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The elderly patient population is the most susceptible to influenza virus infection and its associated complications. Polypharmacy is common in the aged, who often have multiple co-morbidities. Previous studies have demonstrated that commonly used prescription drugs can have extensive impact on immune defenses and responses to vaccination. In this study, we examined how the dynamics of immune responses to the two influenza A virus strains of the trivalent inactivated influenza vaccine (TIV) can be affected by patient's history of using the prescription drugs Metformin, NSAIDs or Statins. RESULTS We provide evidence for differential antibody (Ab) production, B-cell phenotypic changes, alteration in immune cell proportions and transcriptome-wide perturbation in individuals with a history of long-term medication use, compared with non-users. We noted a diminished response to TIV in the elderly on Metformin, whereas those on NSAIDs or Statins had higher baseline responses but reduced relative increases in virus-neutralizing Abs (VNAs) or Abs detected by an enzyme-linked immunosorbent assay (ELISA) following vaccination. CONCLUSION Collectively, our findings suggest novel pathways that might underlie how long-term medication use impacts immune response to influenza vaccination in the elderly. They provide a strong rationale for targeting the medication-immunity interaction in the aged population to improve vaccination responses.
Collapse
Affiliation(s)
- Divyansh Agarwal
- Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Kenneth E. Schmader
- Division of Geriatrics, Duke University Medical Center; Geriatric Research, Education, and Clinical Center, Durham VA Medical Center, Durham, NC 27705 USA
| | | | - Susan Doyle
- Division of Geriatrics, Duke University Medical Center; Geriatric Research, Education, and Clinical Center, Durham VA Medical Center, Durham, NC 27705 USA
| | - Raj Kurupati
- The Wistar Institute, Philadelphia, PA 19104 USA
| | | |
Collapse
|
21
|
Dolcino M, Pelosi A, Fiore PF, Patuzzo G, Tinazzi E, Lunardi C, Puccetti A. Long Non-Coding RNAs Play a Role in the Pathogenesis of Psoriatic Arthritis by Regulating MicroRNAs and Genes Involved in Inflammation and Metabolic Syndrome. Front Immunol 2018; 9:1533. [PMID: 30061880 PMCID: PMC6054935 DOI: 10.3389/fimmu.2018.01533] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/21/2018] [Indexed: 01/03/2023] Open
Abstract
Psoriatic arthritis (PsA) is an inflammatory arthritis, characterized by inflammation of entheses and synovium, leading to joint erosions and new bone formation. It affects 10-30% of patients with psoriasis, and has an estimated prevalence of approximately 1%. PsA is considered to be primarily an autoimmune disease, driven by autoreactive T cells directed against autoantigens present in the skin and in the joints. However, an autoinflammatory origin has recently been proposed. Long noncoding RNAs (lncRNAs) are RNAs more than 200 nucleotides in length that do not encode proteins. LncRNAs play important roles in several biological processes, including chromatin remodeling, transcription control, and post-transcriptional processing. Several studies have shown that lncRNAs are expressed in a stage-specific or lineage-specific manner in immune cells that have a role in the development, activation, and effector functions of immune cells. LncRNAs are thought to play a role in several diseases, including autoimmune disorders. Indeed, a few lncRNAs have been identified in systemic lupus erythematosus, rheumatoid arthritis, and psoriasis. Although several high-throughput studies have been performed to identify lncRNAs, their biological and pathological relevance are still unknown, and most transcriptome studies in autoimmune diseases have only assessed protein-coding transcripts. No data are currently available on lncRNAs in PsA. Therefore, by microarray analysis, we have investigated the expression profiles of more than 50,000 human lncRNAs in blood samples from PsA patients and healthy controls using Human Clariom D Affymetrix chips, suitable to detect rare and low-expressing transcripts otherwise unnoticed by common sequencing methodologies. Network analysis identified lncRNAs targeting highly connected genes in the PsA transcriptome. Such genes are involved in molecular pathways crucial for PsA pathogenesis, including immune response, glycolipid metabolism, bone remodeling, type 1 interferon, wingless related integration site, and tumor necrosis factor signaling. Selected lncRNAs were validated by RT-PCR in an expanded cohort of patients. Moreover, modulated genes belonging to meaningful pathways were validated by RT-PCR in PsA PBMCs and/or by ELISA in PsA sera. The findings indicate that lncRNAs are involved in PsA pathogenesis by regulating both microRNAs and genes and open new avenues for the identification of new biomarkers and therapeutical targets.
Collapse
Affiliation(s)
- Marzia Dolcino
- Department of Medicine, University of Verona, Verona, Italy
| | - Andrea Pelosi
- Immunology Area, Pediatric Hospital Bambino Gesù, Rome, Italy
| | | | | | - Elisa Tinazzi
- Department of Medicine, University of Verona, Verona, Italy
| | | | - Antonio Puccetti
- Department of Experimental Medicine - Section of Histology, University of Genova, Genova, Italy
| |
Collapse
|
22
|
Plasma cell differentiation is controlled by multiple cell division-coupled epigenetic programs. Nat Commun 2018; 9:1698. [PMID: 29703886 PMCID: PMC5923265 DOI: 10.1038/s41467-018-04125-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 04/05/2018] [Indexed: 12/13/2022] Open
Abstract
The genomic loci associated with B cell differentiation that are subject to transcriptional and epigenetic regulation in vivo are not well defined, leaving a gap in our understanding of the development of humoral immune responses. Here, using an in vivo T cell independent B cell differentiation model, we define a cellular division-dependent cis-regulatory element road map using ATAC-seq. Chromatin accessibility changes correlate with gene expression and reveal the reprogramming of transcriptional networks and the genes they regulate at specific cell divisions. A subset of genes in naive B cells display accessible promoters in the absence of transcription and are marked by H3K27me3, an EZH2 catalyzed repressive modification. Such genes encode regulators of cell division and metabolism and include the essential plasma cell transcription factor Blimp-1. Chemical inhibition of EZH2 results in enhanced plasma cell formation, increased expression of the above gene set, and premature expression of Blimp-1 ex vivo. These data provide insights into cell-division coupled epigenetic and transcriptional processes that program plasma cells. During B cell differentiation, the role of different genomic loci in transcriptional and epigenetic regulation in vivo is not well defined. Here the authors use an in vivo B cell differentiation model to map cellular division-dependent cis-regulatory element road map with ATAC-seq.
Collapse
|
23
|
Kreslavsky T, Wong JB, Fischer M, Skok JA, Busslinger M. Control of B-1a cell development by instructive BCR signaling. Curr Opin Immunol 2018; 51:24-31. [PMID: 29414528 PMCID: PMC5943138 DOI: 10.1016/j.coi.2018.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022]
Abstract
B-1a cells remain one of the most enigmatic lymphocyte subsets. In this review, we discuss recent advances in our understanding of the development of these cells and their regulation by the transcription factors Bhlhe41 and Arid3a as well as by the RNA-binding protein Lin28b. A large body of literature supports an instructive role of BCR signaling in B-1a cell development and lineage commitment, which is initiated only after signaling from an autoreactive BCR. While both fetal and adult hematopoiesis can generate B-1a cells, the contribution of adult hematopoiesis to the B-1a cell compartment is low under physiological conditions. We discuss several models that can reconcile the instructive role of BCR signaling with this fetal bias in B-1a cell development.
Collapse
Affiliation(s)
- Taras Kreslavsky
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, A-1030 Vienna, Austria.
| | - Jason B Wong
- Department of Pathology, New York Medical Center, New York University, New York, USA
| | - Maria Fischer
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, A-1030 Vienna, Austria
| | - Jane A Skok
- Department of Pathology, New York Medical Center, New York University, New York, USA
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, A-1030 Vienna, Austria.
| |
Collapse
|
24
|
Baumgarth N. A Hard(y) Look at B-1 Cell Development and Function. THE JOURNAL OF IMMUNOLOGY 2017; 199:3387-3394. [PMID: 29109178 DOI: 10.4049/jimmunol.1700943] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/12/2017] [Indexed: 11/19/2022]
Abstract
A small population of B cells exists in lymphoid tissues and body cavities of mice that is distinct in development, phenotype, and function from the majority (B-2) B cell population. This population, originally termed "Ly-1" and now "B-1," has received renewed interest as an innate-like B cell population of fetal-derived hematopoiesis, responsible for natural Ab production and rapid immune responses. Molecular analyses have begun to define fetal and adult hematopoiesis, while cell-fate mapping studies have revealed complex developmental origins of B-1 cells. Together the studies provide a more detailed understanding of B-1 cell regulation and function. This review outlines studies that defined B-1 cells as natural Ab- and cytokine-producing B cells of fetal origin, with a focus on work conducted by R.R. Hardy, an early pioneer and codiscoverer of B-1 cells, whose seminal contributions enhanced our understanding of this enigmatic B cell population.
Collapse
Affiliation(s)
- Nicole Baumgarth
- Center for Comparative Medicine, Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, CA 95616
| |
Collapse
|
25
|
Valor LM, Rodríguez-Bayona B, Ramos-Amaya AB, Brieva JA, Campos-Caro A. The transcriptional profiling of human in vivo-generated plasma cells identifies selective imbalances in monoclonal gammopathies. PLoS One 2017; 12:e0183264. [PMID: 28817638 PMCID: PMC5560601 DOI: 10.1371/journal.pone.0183264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022] Open
Abstract
Plasma cells (PC) represent the heterogeneous final stage of the B cells (BC) differentiation process. To characterize the transition of BC into PC, transcriptomes from human naïve BC were compared to those of three functionally-different subsets of human in vivo-generated PC: i) tonsil PC, mainly consisting of early PC; ii) PC released to the blood after a potent booster-immunization (mostly cycling plasmablasts); and, iii) bone marrow CD138+ PC that represent highly mature PC and include the long-lived PC compartment. This transcriptional transition involves subsets of genes related to key processes for PC maturation: the already known protein processing, apoptosis and homeostasis, and of new discovery including histones, macromolecule assembly, zinc-finger transcription factors and neuromodulation. This human PC signature is partially reproduced in vitro and is conserved in mouse. Moreover, the present study identifies genes that define PC subtypes (e.g., proliferation-associated genes for circulating PC and transcriptional-related genes for tonsil and bone marrow PC) and proposes some putative transcriptional regulators of the human PC signatures (e.g., OCT/POU, XBP1/CREB, E2F, among others). Finally, we also identified a restricted imbalance of the present PC transcriptional program in monoclonal gammopathies that correlated with PC malignancy.
Collapse
Affiliation(s)
- Luis M. Valor
- Unidad de Investigación, Hospital Universitario Puerta del Mar and Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - Beatriz Rodríguez-Bayona
- Unidad de Investigación, Hospital Universitario Puerta del Mar and Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - Ana B. Ramos-Amaya
- Unidad de Investigación, Hospital Universitario Puerta del Mar and Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - José A. Brieva
- Unidad de Investigación, Hospital Universitario Puerta del Mar and Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - Antonio Campos-Caro
- Unidad de Investigación, Hospital Universitario Puerta del Mar and Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
- * E-mail:
| |
Collapse
|
26
|
McKay JT, Haro MA, Daly CA, Yammani RD, Pang B, Swords WE, Haas KM. PD-L2 Regulates B-1 Cell Antibody Production against Phosphorylcholine through an IL-5-Dependent Mechanism. THE JOURNAL OF IMMUNOLOGY 2017; 199:2020-2029. [PMID: 28768724 DOI: 10.4049/jimmunol.1700555] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/11/2017] [Indexed: 11/19/2022]
Abstract
B-1 cells produce natural Abs which provide an integral first line of defense against pathogens while also performing important homeostatic housekeeping functions. In this study, we demonstrate that programmed cell death 1 ligand 2 (PD-L2) regulates the production of natural Abs against phosphorylcholine (PC). Naive PD-L2-deficient (PD-L2-/-) mice produced significantly more PC-reactive IgM and IgA. This afforded PD-L2-/- mice with selectively enhanced protection against PC-expressing nontypeable Haemophilus influenzae, but not PC-negative nontypeable Haemophilus influenzae, relative to wild-type mice. PD-L2-/- mice had significantly increased PC-specific CD138+ splenic plasmablasts bearing a B-1a phenotype, and produced PC-reactive Abs largely of the T15 Id. Importantly, PC-reactive B-1 cells expressed PD-L2 and irradiated chimeras demonstrated that B cell-intrinsic PD-L2 expression regulated PC-specific Ab production. In addition to increased PC-specific IgM, naive PD-L2-/- mice and irradiated chimeras reconstituted with PD-L2-/- B cells had significantly higher levels of IL-5, a potent stimulator of B-1 cell Ab production. PD-L2 mAb blockade of wild-type B-1 cells in culture significantly increased CD138 and Blimp1 expression and PC-specific IgM, but did not affect proliferation. PD-L2 mAb blockade significantly increased IL-5+ T cells in culture. Both IL-5 neutralization and STAT5 inhibition blunted the effects of PD-L2 mAb blockade on B-1 cells. Thus, B-1 cell-intrinsic PD-L2 expression inhibits IL-5 production by T cells and thereby limits natural Ab production by B-1 cells. These findings have broad implications for the development of therapeutic strategies aimed at altering natural Ab levels critical for protection against infectious disease, autoimmunity, allergy, cancer, and atherosclerosis.
Collapse
Affiliation(s)
- Jerome T McKay
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Marcela A Haro
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Christina A Daly
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Rama D Yammani
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Bing Pang
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - W Edward Swords
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Karen M Haas
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
27
|
Mokada-Gopal L, Boeser A, Lehmann CHK, Drepper F, Dudziak D, Warscheid B, Voehringer D. Identification of Novel STAT6-Regulated Proteins in Mouse B Cells by Comparative Transcriptome and Proteome Analysis. THE JOURNAL OF IMMUNOLOGY 2017; 198:3737-3745. [DOI: 10.4049/jimmunol.1601838] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/03/2017] [Indexed: 12/13/2022]
|
28
|
Pone EJ. Analysis by Flow Cytometry of B-Cell Activation and Antibody Responses Induced by Toll-Like Receptors. Methods Mol Biol 2016; 1390:229-48. [PMID: 26803633 DOI: 10.1007/978-1-4939-3335-8_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Toll-like receptors (TLRs) are expressed in B lymphocytes and contribute to B-cell activation, antibody responses, and their maturation. TLR stimulation of mouse B cells induces class switch DNA recombination (CSR) to isotypes specified by cytokines, and also induces formation of IgM(+) as well as class-switched plasma cells. B-cell receptor (BCR) signaling, while on its own inducing limited B-cell proliferation and no CSR, can enhance CSR driven by TLRs. Particular synergistic or antagonistic interactions among TLR pathways, BCR, and cytokine signaling can have important consequences for B-cell activation, CSR, and plasma cell formation. This chapter outlines protocols for the induction and analysis of B-cell activation and antibody production by TLRs with or without other stimuli.
Collapse
Affiliation(s)
- Egest J Pone
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
29
|
Barwick BG, Scharer CD, Bally AP, Boss JM. Plasma cell differentiation is coupled to division-dependent DNA hypomethylation and gene regulation. Nat Immunol 2016; 17:1216-1225. [PMID: 27500631 PMCID: PMC5157049 DOI: 10.1038/ni.3519] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/23/2016] [Indexed: 12/16/2022]
Abstract
The epigenetic processes that regulate antibody-secreting plasma cells are not well understood. Here, analysis of plasma cell differentiation revealed DNA hypomethylation of 10% of CpG loci that were overrepresented at enhancers. Inhibition of DNA methylation enhanced plasma cell commitment in a cell-division-dependent manner. Analysis of B cells differentiating in vivo stratified by cell division revealed a fivefold increase in mRNA transcription coupled to DNA hypomethylation. Demethylation occurred first at binding motifs for the transcription factors NF-κB and AP-1 and later at those for the transcription factors IRF and Oct-2 and was coincident with activation and differentiation gene-expression programs in a cell-division-dependent manner. These data provide mechanistic insight into cell-division-coupled transcriptional and epigenetic reprogramming and suggest that DNA hypomethylation reflects the cis-regulatory history of plasma cell differentiation.
Collapse
Affiliation(s)
- Benjamin G. Barwick
- Department of Microbiology & Immunology Emory University School of Medicine Atlanta, GA, USA
| | - Christopher D. Scharer
- Department of Microbiology & Immunology Emory University School of Medicine Atlanta, GA, USA
| | - Alexander P.R. Bally
- Department of Microbiology & Immunology Emory University School of Medicine Atlanta, GA, USA
| | - Jeremy M. Boss
- Department of Microbiology & Immunology Emory University School of Medicine Atlanta, GA, USA
| |
Collapse
|
30
|
Ebersole JL, Kirakodu SS, Novak MJ, Orraca L, Martinez JG, Cunningham LL, Thomas MV, Stromberg A, Pandruvada SN, Gonzalez OA. Transcriptome Analysis of B Cell Immune Functions in Periodontitis: Mucosal Tissue Responses to the Oral Microbiome in Aging. Front Immunol 2016; 7:272. [PMID: 27486459 PMCID: PMC4947588 DOI: 10.3389/fimmu.2016.00272] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/28/2016] [Indexed: 12/18/2022] Open
Abstract
Evidence has shown activation of T and B cells in gingival tissues in experimental models and in humans diagnosed with periodontitis. The results of this adaptive immune response are noted both locally and systemically with antigenic specificity for an array of oral bacteria, including periodontopathic species, e.g., Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. It has been recognized through epidemiological studies and clinical observations that the prevalence of periodontitis increases with age. This report describes our studies evaluating gingival tissue transcriptomes in humans and specifically exploiting the use of a non-human primate model of naturally occurring periodontitis to delineate gingival mucosal tissue gene expression profiles focusing on cells/genes critical for the development of humoral adaptive immune responses. Patterns of B cell and plasmacyte genes were altered in aging healthy gingival tissues. Substantial increases in a large number of genes reflecting antigen-dependent activation, B cell activation, B cell proliferation, and B cell differentiation/maturation were observed in periodontitis in adults and aged animals. Finally, evaluation of the relationship of these gene expression patterns with those of various tissue destructive molecules (MMP2, MMP9, CTSK, TNFα, and RANKL) showed a greater frequency of positive correlations in healthy tissues versus periodontitis tissues, with only MMP9 correlations similar between the two tissue types. These results are consistent with B cell response activities in healthy tissues potentially contributing to muting the effects of the tissue destructive biomolecules, whereas with periodontitis this relationship is adversely affected and enabling a progression of tissue destructive events.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA; Division of Periodontics, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Sreenatha S Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky , Lexington, KY , USA
| | - M John Novak
- Center for Oral Health Research, College of Dentistry, University of Kentucky , Lexington, KY , USA
| | - Luis Orraca
- Caribbean Primate Research Center , Sabana Seca, PR , USA
| | - Janis Gonzalez Martinez
- Caribbean Primate Research Center, Sabana Seca, PR, USA; Division of Oral and Maxillofacial Surgery, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Larry L Cunningham
- Division of Oral and Maxillofacial Surgery, College of Dentistry, University of Kentucky , Lexington, KY , USA
| | - Mark V Thomas
- Division of Periodontics, College of Dentistry, University of Kentucky , Lexington, KY , USA
| | - Arnold Stromberg
- Department of Statistics, College of Arts and Sciences, University of Kentucky , Lexington, KY , USA
| | - Subramanya N Pandruvada
- Division of Orthodontics, College of Dentistry, University of Kentucky , Lexington, KY , USA
| | - Octavio A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky , Lexington, KY , USA
| |
Collapse
|
31
|
Ellis JS, Guloglu FB, Zaghouani H. Presentation of high antigen-dose by splenic B220(lo) B cells fosters a feedback loop between T helper type 2 memory and antibody isotype switching. Immunology 2016; 147:464-75. [PMID: 26749165 DOI: 10.1111/imm.12579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/07/2015] [Accepted: 01/04/2016] [Indexed: 12/20/2022] Open
Abstract
Effective humoral immunity ensues when antigen presentation by B cells culminates in productive cooperation with T lymphocytes. This collaboration, however, remains ill-defined because naive antigen-specific B cells are rare and difficult to track in vivo. Herein, we used a defined transfer model to examine how B lymphocytes, as antigen-presenting cells, shape the development of T-cell memory suitable for generation of relevant antibody responses. Specifically, we examined how B cells presenting different doses of antigen during the initial priming phase shape the development of CD4 T-cell memory and its influence on humoral immunity. The findings indicate that B cells presenting low dose of antigen favour the development of T helper type 1 (Th1) type memory, while those presenting a high antigen dose yielded better Th2 memory cells. The memory Th2 cells supported the production of antibodies by effector B cells and promoted isotype switching to IgG1. Moreover, among the B-cell subsets tested for induction of Th2 memory, the splenic but not peritoneal B220(lo) cells were most effective in sustaining Th2 memory development as well as immunoglobulin isotype switching, and this function involved a tight control by programmed death 1-programmed death ligand 2 interactions.
Collapse
Affiliation(s)
- Jason S Ellis
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO, USA
| | - F Betul Guloglu
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Habib Zaghouani
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO, USA.,Department of Child Health, University of Missouri School of Medicine, Columbia, MO, USA.,Department of Neurology, University of Missouri School of Medicine, Columbia, MO, USA
| |
Collapse
|
32
|
Bortnick A, Murre C. Cellular and chromatin dynamics of antibody-secreting plasma cells. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 5:136-49. [PMID: 26488117 DOI: 10.1002/wdev.213] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/10/2015] [Accepted: 08/15/2015] [Indexed: 12/12/2022]
Abstract
Plasma cells are terminally differentiated B cells responsible for maintaining protective serum antibody titers. Despite their clinical importance, our understanding of the linear genomic features and chromatin structure of plasma cells is incomplete. The plasma cell differentiation program can be triggered by different signals and in multiple, diverse peripheral B cell subsets. This heterogeneity raises questions about the gene regulatory circuits required for plasma cell specification. Recently, new regulators of plasma cell differentiation have been identified and the enhancer landscapes of naïve B cells have been described. Other studies have revealed that the bone marrow niche harbors heterogeneous plasma cell subsets. Still undefined are the minimal requirements to become a plasma cell and what molecular features make peripheral B cell subsets competent to become antibody-secreting plasma cells. New technologies promise to reveal underlying chromatin configurations that promote efficient antibody secretion. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Alexandra Bortnick
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Cornelis Murre
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
33
|
Enhancer repertoires are reshaped independently of early priming and heterochromatin dynamics during B cell differentiation. Nat Commun 2015; 6:8324. [PMID: 26477271 PMCID: PMC4633987 DOI: 10.1038/ncomms9324] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 08/11/2015] [Indexed: 02/06/2023] Open
Abstract
A widely accepted model posits that activation of enhancers during differentiation goes through a priming step prior to lineage commitment. To investigate the chronology of enhancer repertoire establishment during hematopoiesis, we monitored epigenome dynamics during three developmental stages representing hematopoietic stem cells, B-cell progenitors and mature B-cells. We find that only a minority of enhancers primed in stem cells or progenitors become active at later stages. Furthermore, most enhancers active in differentiated cells were not primed in earlier stages. Thus, the enhancer repertoire is reshaped dynamically during B-cell differentiation and enhancer priming in early stages does not appear to be an obligate step for enhancer activation. Furthermore, our data reveal that heterochromatin and Polycomb-mediated silencing have only a minor contribution in shaping enhancer repertoires during cell differentiation. Together, our data revisit the prevalent model about epigenetic reprogramming during hematopoiesis and give insights into the formation of gene regulatory networks. Enhancers in differentiated haematopoietic cells are generally believed to be primed prior to lineage commitment. Here, the authors show that early priming and Polycomb group mediated silencing have minor roles in shaping the enhancer repertoire in differentiated B cells and that most active enhancers are generated de novo.
Collapse
|
34
|
Abstract
The regulation of antibody production is linked to the generation and maintenance of plasmablasts and plasma cells from their B cell precursors. Plasmablasts are the rapidly produced and short-lived effector cells of the early antibody response, whereas plasma cells are the long-lived mediators of lasting humoral immunity. An extraordinary number of control mechanisms, at both the cellular and molecular levels, underlie the regulation of this essential arm of the immune response. Despite this complexity, the terminal differentiation of B cells can be described as a simple probabilistic process that is governed by a central gene-regulatory network and modified by environmental stimuli.
Collapse
|
35
|
Shin N, Oh JH, Lee YJ. Role of drug transporters: an overview based on knockout animal model studies. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2015. [DOI: 10.1007/s40005-015-0178-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Schmitt F, Schäll D, Bucher K, Schindler TI, Hector A, Biedermann T, Zemlin M, Hartl D, Beer-Hammer S. SLy2 controls the antibody response to pneumococcal vaccine through an IL-5Rα-dependent mechanism in B-1 cells. Eur J Immunol 2014; 45:60-70. [DOI: 10.1002/eji.201444882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/12/2014] [Accepted: 10/17/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Fee Schmitt
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology; Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research, University of Tübingen; Tübingen Germany
| | - Daniel Schäll
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology; Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research, University of Tübingen; Tübingen Germany
| | - Kirsten Bucher
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology; Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research, University of Tübingen; Tübingen Germany
| | | | - Andreas Hector
- Department of Pediatrics I, Pediatric Infectiology and Immunology, University of Tübingen; Tübingen Germany
| | - Tilo Biedermann
- Department of Dermatology; University of Tübingen; Tübingen Germany
| | - Michael Zemlin
- Department of Pediatrics; Philipps University Marburg; Marburg Germany
| | - Dominik Hartl
- Department of Pediatrics I, Pediatric Infectiology and Immunology, University of Tübingen; Tübingen Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology; Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research, University of Tübingen; Tübingen Germany
| |
Collapse
|
37
|
Chevrier S, Emslie D, Shi W, Kratina T, Wellard C, Karnowski A, Erikci E, Smyth GK, Chowdhury K, Tarlinton D, Corcoran LM. The BTB-ZF transcription factor Zbtb20 is driven by Irf4 to promote plasma cell differentiation and longevity. ACTA ACUST UNITED AC 2014; 211:827-40. [PMID: 24711583 PMCID: PMC4010913 DOI: 10.1084/jem.20131831] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Zbtb20 facilitates terminal differentiation of B cells into antibody-secreting cells, and its expression is dependent on Irf4 and independent of Blimp1. The transcriptional network regulating antibody-secreting cell (ASC) differentiation has been extensively studied, but our current understanding is limited. The mechanisms of action of known “master” regulators are still unclear, while the participation of new factors is being revealed. Here, we identify Zbtb20, a Bcl6 homologue, as a novel regulator of late B cell development. Within the B cell lineage, Zbtb20 is specifically expressed in B1 and germinal center B cells and peaks in long-lived bone marrow (BM) ASCs. Unlike Bcl6, an inhibitor of ASC differentiation, ectopic Zbtb20 expression in primary B cells facilitates terminal B cell differentiation to ASCs. In plasma cell lines, Zbtb20 induces cell survival and blocks cell cycle progression. Immunized Zbtb20-deficient mice exhibit curtailed humoral responses and accelerated loss of antigen-specific plasma cells, specifically from the BM pool. Strikingly, Zbtb20 induction does not require Blimp1 but depends directly on Irf4, acting at a newly identified Zbtb20 promoter in ASCs. These results identify Zbtb20 as an important player in late B cell differentiation and provide new insights into this complex process.
Collapse
Affiliation(s)
- Stéphane Chevrier
- Molecular Immunology Division, 2 Bioinformatics Division, 3 Immunology Division, The Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Corcoran L, Emslie D, Kratina T, Shi W, Hirsch S, Taubenheim N, Chevrier S. Oct2 and Obf1 as Facilitators of B:T Cell Collaboration during a Humoral Immune Response. Front Immunol 2014; 5:108. [PMID: 24688485 PMCID: PMC3960507 DOI: 10.3389/fimmu.2014.00108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/03/2014] [Indexed: 11/16/2022] Open
Abstract
The Oct2 protein, encoded by the Pou2f2 gene, was originally predicted to act as a DNA binding transcriptional activator of immunoglobulin (Ig) in B lineage cells. This prediction flowed from the earlier observation that an 8-bp sequence, the “octamer motif,” was a highly conserved component of most Ig gene promoters and enhancers, and evidence from over-expression and reporter assays confirmed Oct2-mediated, octamer-dependent gene expression. Complexity was added to the story when Oct1, an independently encoded protein, ubiquitously expressed from the Pou2f1 gene, was characterized and found to bind to the octamer motif with almost identical specificity, and later, when the co-activator Obf1 (OCA-B, Bob.1), encoded by the Pou2af1 gene, was cloned. Obf1 joins Oct2 (and Oct1) on the DNA of a subset of octamer motifs to enhance their transactivation strength. While these proteins variously carried the mantle of determinants of Ig gene expression in B cells for many years, such a role has not been borne out for them by characterization of mice lacking functional copies of the genes, either as single or as compound mutants. Instead, we and others have shown that Oct2 and Obf1 are required for B cells to mature fully in vivo, for B cells to respond to the T cell cytokines IL5 and IL4, and for B cells to produce IL6 normally during a T cell dependent immune response. We show here that Oct2 affects Syk gene expression, thus influencing B cell receptor signaling, and that Oct2 loss blocks Slamf1 expression in vivo as a result of incomplete B cell maturation. Upon IL4 signaling, Stat6 up-regulates Obf1, indirectly via Xbp1, to enable plasma cell differentiation. Thus, Oct2 and Obf1 enable B cells to respond normally to antigen receptor signals, to express surface receptors that mediate physical interaction with T cells, or to produce and respond to cytokines that are critical drivers of B cell and T cell differentiation during a humoral immune response.
Collapse
Affiliation(s)
- Lynn Corcoran
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Dianne Emslie
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Tobias Kratina
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Wei Shi
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Susanne Hirsch
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Nadine Taubenheim
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Stephane Chevrier
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| |
Collapse
|
39
|
Mutations in linker histone genes HIST1H1 B, C, D, and E; OCT2 (POU2F2); IRF8; and ARID1A underlying the pathogenesis of follicular lymphoma. Blood 2014; 123:1487-98. [PMID: 24435047 DOI: 10.1182/blood-2013-05-500264] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Follicular lymphoma (FL) constitutes the second most common non-Hodgkin lymphoma in the western world. FL carries characteristic recurrent structural genomic aberrations. However, information regarding the coding genome in FL is still evolving. Here, we describe the results of massively parallel exome sequencing and single nucleotide polymorphism 6.0 array genomic profiling of 11 highly purified FL cases, and 1 transformed FL case and the validation of selected mutations in 102 FL cases. We report the identification of 15 novel recurrently mutated genes in FL. These include frequent mutations in the linker histone genes HIST1H1 B-E (27%) and mutations in OCT2 (also known as POU2F2; 8%), IRF8 (6%), and ARID1A (11%). A subset of the mutations in HIST1H1 B-E affected binding to DNMT3B, and mutations in HIST1H1 B-E and in EZH2 or ARID1A were largely mutually exclusive, implicating HIST1H1 B-E in epigenetic deregulation in FL. Mutations in OCT2 (POU2F2) affected its transcriptional and functional properties as measured through luciferase assays, the biological analysis of stably transduced cell lines, and global expression profiling. Finally, multiple novel mutated genes located within regions of acquired uniparental disomy in FL are identified. In aggregate, these data substantially broaden our understanding of the genomic pathogenesis of FL.
Collapse
|
40
|
Tantin D. Oct transcription factors in development and stem cells: insights and mechanisms. Development 2013; 140:2857-66. [PMID: 23821033 DOI: 10.1242/dev.095927] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The POU domain family of transcription factors regulates developmental processes ranging from specification of the early embryo to terminal differentiation. About half of these factors display substantial affinity for an 8 bp DNA site termed the octamer motif, and are hence known as Oct proteins. Oct4 (Pou5f1) is a well-known Oct factor, but there are other Oct proteins with varied and essential roles in development. This Primer outlines our current understanding of Oct proteins and the regulatory mechanisms that govern their role in developmental processes and concludes with the assertion that more investigation into their developmental functions is needed.
Collapse
Affiliation(s)
- Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
41
|
Mok Y, Schwierzeck V, Thomas DC, Vigorito E, Rayner TF, Jarvis LB, Prosser HM, Bradley A, Withers DR, Mårtensson IL, Corcoran LM, Blenkiron C, Miska EA, Lyons PA, Smith KGC. MiR-210 is induced by Oct-2, regulates B cells, and inhibits autoantibody production. THE JOURNAL OF IMMUNOLOGY 2013; 191:3037-3048. [PMID: 23960236 DOI: 10.4049/jimmunol.1301289] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (MiRs) are small, noncoding RNAs that regulate gene expression posttranscriptionally. In this study, we show that MiR-210 is induced by Oct-2, a key transcriptional mediator of B cell activation. Germline deletion of MiR-210 results in the development of autoantibodies from 5 mo of age. Overexpression of MiR-210 in vivo resulted in cell autonomous expansion of the B1 lineage and impaired fitness of B2 cells. Mice overexpressing MiR-210 exhibited impaired class-switched Ab responses, a finding confirmed in wild-type B cells transfected with a MiR-210 mimic. In vitro studies demonstrated defects in cellular proliferation and cell cycle entry, which were consistent with the transcriptomic analysis demonstrating downregulation of genes involved in cellular proliferation and B cell activation. These findings indicate that Oct-2 induction of MiR-210 provides a novel inhibitory mechanism for the control of B cells and autoantibody production.
Collapse
Affiliation(s)
- Yingting Mok
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - Vera Schwierzeck
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - David C Thomas
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - Elena Vigorito
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Tim F Rayner
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - Lorna B Jarvis
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - Haydn M Prosser
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - David R Withers
- MRC Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, B15 2TT, UK
| | - Inga-Lill Mårtensson
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - Lynn M Corcoran
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Cherie Blenkiron
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Eric A Miska
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Paul A Lyons
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - Kenneth G C Smith
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| |
Collapse
|
42
|
Morris SA, Daley GQ. A blueprint for engineering cell fate: current technologies to reprogram cell identity. Cell Res 2013; 23:33-48. [PMID: 23277278 DOI: 10.1038/cr.2013.1] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Human diseases such as heart failure, diabetes, neurodegenerative disorders, and many others result from the deficiency or dysfunction of critical cell types. Strategies for therapeutic tissue repair or regeneration require the in vitro manufacture of clinically relevant quantities of defined cell types. In addition to transplantation therapy, the generation of otherwise inaccessible cells also permits disease modeling, toxicology testing and drug discovery in vitro. In this review, we discuss current strategies to manipulate the identity of abundant and accessible cells by differentiation from an induced pluripotent state or direct conversion between differentiated states. We contrast these approaches with recent advances employing partial reprogramming to facilitate lineage switching, and discuss the mechanisms underlying the engineering of cell fate. Finally, we address the current limitations of the field and how the resulting cell types can be assessed to ensure the production of medically relevant populations.
Collapse
Affiliation(s)
- Samantha A Morris
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Children's Hospital Boston and Dana Farber Cancer Institute, Boston, MA, USA
| | | |
Collapse
|
43
|
Karnowski A, Chevrier S, Belz GT, Mount A, Emslie D, D'Costa K, Tarlinton DM, Kallies A, Corcoran LM. B and T cells collaborate in antiviral responses via IL-6, IL-21, and transcriptional activator and coactivator, Oct2 and OBF-1. ACTA ACUST UNITED AC 2012; 209:2049-64. [PMID: 23045607 PMCID: PMC3478936 DOI: 10.1084/jem.20111504] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transcriptional activator Oct2 and cofactor OBF-1 regulate B cell IL-6 to induce T cell production of IL-21, to support Tfh cell development in antiviral immunity. A strong humoral response to infection requires the collaboration of several hematopoietic cell types that communicate via antigen presentation, surface coreceptors and their ligands, and secreted factors. The proinflammatory cytokine IL-6 has been shown to promote the differentiation of activated CD4+ T cells into T follicular helper cells (TFH cells) during an immune response. TFH cells collaborate with B cells in the formation of germinal centers (GCs) during T cell–dependent antibody responses, in part through secretion of critical cytokines such as IL-21. In this study, we demonstrate that loss of either IL-6 or IL-21 has marginal effects on the generation of TFH cells and on the formation of GCs during the response to acute viral infection. However, mice lacking both IL-6 and IL-21 were unable to generate a robust TFH cell–dependent immune response. We found that IL-6 production in follicular B cells in the draining lymph node was an important early event during the antiviral response and that B cell–derived IL-6 was necessary and sufficient to induce IL-21 from CD4+ T cells in vitro and to support TFH cell development in vivo. Finally, the transcriptional activator Oct2 and its cofactor OBF-1 were identified as regulators of Il6 expression in B cells.
Collapse
Affiliation(s)
- Alex Karnowski
- Molecular Immunology Division and 2 Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Uhm TG, Kim BS, Chung IY. Eosinophil development, regulation of eosinophil-specific genes, and role of eosinophils in the pathogenesis of asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2011; 4:68-79. [PMID: 22379601 PMCID: PMC3283796 DOI: 10.4168/aair.2012.4.2.68] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 08/31/2011] [Indexed: 12/16/2022]
Abstract
Eosinophils arise from hematopoietic CD34+ stem cells in the bone marrow. They acquire IL-5Rα on their surface at a very early stage during eosinophilopoiesis, and differentiate under the strong influence of interleukin (IL)-5. They then exit to the bloodstream, and enter the lung upon exposure to airway inflammatory signals, including eotaxins. In inflamed tissues, eosinophils act as key mediators of terminal effector functions and innate immunity and in linking to adaptive immune responses. Transcription factors GATA-1, CCAAT/enhancer-binding protein, and PU.1 play instructive roles in eosinophil specification from multipotent stem cells through a network of cooperative and antagonistic interactions. Not surprisingly, the interplay of these transcription factors is instrumental in forming the regulatory circuit of expression of eosinophil-specific genes, encoding eosinophil major basic protein and neurotoxin, CC chemokine receptor 3 eotaxin receptor, and IL-5 receptor alpha. Interestingly, a common feature is that the critical cis-acting elements for these transcription factors are clustered in exon 1 and intron 1 of these genes rather than their promoters. Elucidation of the mechanism of eosinophil development and activation may lead to selective elimination of eosinophils in animals and human subjects. Furthermore, availability of a range of genetically modified mice lacking or overproducing eosinophil-specific genes will facilitate evaluation of the roles of eosinophils in the pathogenesis of asthma. This review summarizes eosinophil biology, focusing on development and regulation of eosinophil-specific genes, with a heavy emphasis on the causative link between eosinophils and pathological development of asthma using genetically modified mice as models of asthma.
Collapse
Affiliation(s)
- Tae Gi Uhm
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Korea
| | | | | |
Collapse
|
45
|
Nutt SL, Taubenheim N, Hasbold J, Corcoran LM, Hodgkin PD. The genetic network controlling plasma cell differentiation. Semin Immunol 2011; 23:341-9. [PMID: 21924923 DOI: 10.1016/j.smim.2011.08.010] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 08/19/2011] [Indexed: 12/26/2022]
Abstract
Upon activation by antigen, mature B cells undergo immunoglobulin class switch recombination and differentiate into antibody-secreting plasma cells, the endpoint of the B cell developmental lineage. Careful quantitation of these processes, which are stochastic, independent and strongly linked to the division history of the cell, has revealed that populations of B cells behave in a highly predictable manner. Considerable progress has also been made in the last few years in understanding the gene regulatory network that controls the B cell to plasma cell transition. The mutually exclusive transcriptomes of B cells and plasma cells are maintained by the antagonistic influences of two groups of transcription factors, those that maintain the B cell program, including Pax5, Bach2 and Bcl6, and those that promote and facilitate plasma cell differentiation, notably Irf4, Blimp1 and Xbp1. In this review, we discuss progress in the definition of both the transcriptional and cellular events occurring during late B cell differentiation, as integrating these two approaches is crucial to defining a regulatory network that faithfully reflects the stochastic features and complexity of the humoral immune response.
Collapse
Affiliation(s)
- Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3050, Australia
| | | | | | | | | |
Collapse
|
46
|
Akdis M, Burgler S, Crameri R, Eiwegger T, Fujita H, Gomez E, Klunker S, Meyer N, O'Mahony L, Palomares O, Rhyner C, Ouaked N, Quaked N, Schaffartzik A, Van De Veen W, Zeller S, Zimmermann M, Akdis CA. Interleukins, from 1 to 37, and interferon-γ: receptors, functions, and roles in diseases. J Allergy Clin Immunol 2011; 127:701-21.e1-70. [PMID: 21377040 DOI: 10.1016/j.jaci.2010.11.050] [Citation(s) in RCA: 571] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 12/17/2022]
Abstract
Advancing our understanding of mechanisms of immune regulation in allergy, asthma, autoimmune diseases, tumor development, organ transplantation, and chronic infections could lead to effective and targeted therapies. Subsets of immune and inflammatory cells interact via ILs and IFNs; reciprocal regulation and counter balance among T(h) and regulatory T cells, as well as subsets of B cells, offer opportunities for immune interventions. Here, we review current knowledge about ILs 1 to 37 and IFN-γ. Our understanding of the effects of ILs has greatly increased since the discoveries of monocyte IL (called IL-1) and lymphocyte IL (called IL-2); more than 40 cytokines are now designated as ILs. Studies of transgenic or knockout mice with altered expression of these cytokines or their receptors and analyses of mutations and polymorphisms in human genes that encode these products have provided important information about IL and IFN functions. We discuss their signaling pathways, cellular sources, targets, roles in immune regulation and cellular networks, roles in allergy and asthma, and roles in defense against infections.
Collapse
Affiliation(s)
- Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Davos, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Takatsu K. Interleukin-5 and IL-5 receptor in health and diseases. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2011; 87:463-85. [PMID: 21986312 PMCID: PMC3313690 DOI: 10.2183/pjab.87.463] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 06/03/2011] [Indexed: 05/31/2023]
Abstract
While interleukin-5 (IL-5) is initially identified by its ability to support the growth and terminal differentiation of mouse B cells in vitro into antibody-secreting cells, recombinant IL-5 exerts pleiotropic activities on various target cells including B cells, eosinophils, and basophils. IL-5 is produced by both hematopoietic and non-hematopoietic cells including T cells, granulocytes, and natural helper cells. IL-5 exerts its effects for proliferation and differentiation via receptors that comprise an IL-5-specific α and common β-subunit. IL-5Rα expression in activated B cells is regulated by a complex of transcription factors including E12, E47, Sp1, c/EBPβ, and Oct2. IL-5 signals are transduced through JAK-STAT, Btk, and Ras/Raf-ERK signaling pathways and lead to maintenance of survival and functions of B cells and eosinophils. Overexpression of IL-5 in vivo significantly increases eosinophils and B cells in number, while mice lacking a functional gene for IL-5 or IL-5 receptor display a number of developmental and functional impairments in B cells and eosinophil lineages. In humans, the biologic effects of IL-5 are best characterized for eosinophils. The recent expansion in our understanding of eosinophil development and activation and pathogenesis of eosinophil-dependent inflammatory diseases has led to advance in therapeutic options. Intravenous administration of humanized anti-IL-5 monoclonal antibody reduces baseline bronchial mucosal eosinophils in mild asthma; providing important implications for strategies that inhibit the actions of IL-5 to treat asthma and other allergic diseases.
Collapse
Affiliation(s)
- Kiyoshi Takatsu
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan.
| |
Collapse
|
48
|
Baumgarth N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol 2010; 11:34-46. [PMID: 21151033 DOI: 10.1038/nri2901] [Citation(s) in RCA: 705] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During their development, B and T cells with self-reactive antigen receptors are generally deleted from the repertoire to avoid autoimmune diseases. Paradoxically, innate-like B-1 cells in mice are positively selected for self-reactivity and form a pool of long-lived, self-renewing B cells that produce most of the circulating natural IgM antibodies. This Review provides an overview of the developmental processes that shape the B-1 cell pool in mice, outlines the functions of B-1 cells in both the steady state and during host defence, and discusses possible functional B-1 cell homologues that exist in humans.
Collapse
Affiliation(s)
- Nicole Baumgarth
- Center for Comparative Medicine, University of California, Davis, California 95616, USA.
| |
Collapse
|
49
|
Genomic analysis reveals pre- and postchallenge differences in a rhesus macaque AIDS vaccine trial: insights into mechanisms of vaccine efficacy. J Virol 2010; 85:1099-116. [PMID: 21068249 DOI: 10.1128/jvi.01522-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We have employed global transcriptional profiling of whole blood to identify biologically relevant changes in cellular gene expression in response to alternative AIDS vaccine strategies with subsequent viral challenge in a rhesus macaque vaccine model. Samples were taken at day 0 (prechallenge), day 14 (peak viremia), and week 12 (set point) from animals immunized with replicating adenovirus type 5 host range (Ad5hr) recombinant viruses expressing human immunodeficiency virus HIV(env)(89.6P), simian immunodeficiency virus SIV(gag)(239), or SIV(nef)(239) alone or in combination with two intramuscular boosts with HIV(89.6P)gp140ΔCFI protein (L. J. Patterson et al., Virology 374:322-337, 2008), and each treatment resulted in significant control of viremia following simian-human immunodeficiency virus SHIV(89.6P) challenge (six animals per group plus six controls). At day 0, 8 weeks after the last treatment, the microarray profiles revealed significant prechallenge differences between treatment groups; data from the best-protected animals led to identification of a network of genes related to B cell development and lymphocyte survival. At peak viremia, expression profiles of the immunized groups were extremely similar, and comparisons to control animals reflected immunological differences other than effector T cell functions. Suggested protective mechanisms for vaccinated animals included upregulation of interleukin-27, a cytokine known to inhibit lentivirus replication, and increased expression of complement components, which may synergize with vaccine-induced antibodies. Divergent expression profiles at set point for the immunized groups implied distinct immunological responses despite phenotypic similarities in viral load and CD4(+) T cell levels. Data for the gp140-boosted group provided evidence for antibody-dependent, cell-mediated viral control, whereas animals immunized with only the replicating Ad5hr recombinants exhibited a different evolution of the B cell compartment even at 3 months postchallenge. This study demonstrates the sensitivity and discrimination of gene expression profiling of whole blood as an analytical tool in AIDS vaccine trials, providing unique insights into in vivo mechanisms and potential correlates of protection.
Collapse
|
50
|
Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 2010; 468:521-6. [PMID: 21057492 DOI: 10.1038/nature09591] [Citation(s) in RCA: 525] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 10/20/2010] [Indexed: 12/14/2022]
Abstract
As is the case for embryo-derived stem cells, application of reprogrammed human induced pluripotent stem cells is limited by our understanding of lineage specification. Here we demonstrate the ability to generate progenitors and mature cells of the haematopoietic fate directly from human dermal fibroblasts without establishing pluripotency. Ectopic expression of OCT4 (also called POU5F1)-activated haematopoietic transcription factors, together with specific cytokine treatment, allowed generation of cells expressing the pan-leukocyte marker CD45. These unique fibroblast-derived cells gave rise to granulocytic, monocytic, megakaryocytic and erythroid lineages, and demonstrated in vivo engraftment capacity. We note that adult haematopoietic programs are activated, consistent with bypassing the pluripotent state to generate blood fate: this is distinct from haematopoiesis involving pluripotent stem cells, where embryonic programs are activated. These findings demonstrate restoration of multipotency from human fibroblasts, and suggest an alternative approach to cellular reprogramming for autologous cell-replacement therapies that avoids complications associated with the use of human pluripotent stem cells.
Collapse
|