1
|
Seipel K, Abbühl M, Bacher U, Nilius H, Daskalakis M, Pabst T. Clinical Impact of Single Nucleotide Polymorphism in CD-19 on Treatment Outcome in FMC63-CAR-T Cell Therapy. Cancers (Basel) 2023; 15:3058. [PMID: 37297020 PMCID: PMC10252965 DOI: 10.3390/cancers15113058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is effective in patients with relapsed or refractory diffuse large B-cell lymphoma (r/r DLBCL) with response rates of 63-84% and complete response observed in 43-54%. Common germline variants of the target antigen CD19 may elicit different responses to CAR-T cell therapy. The CD19 gene single nucleotide polymorphism rs2904880 encoding leucine or valine at amino acid position 174 of the CD19 antigen was prevalent in 51% of the studied DLBCL patients. In a retrospective comparative analysis of clinical outcome, there were significant differences in CD19 L174 versus V174 carriers: the median time of progression-free survival was 22 vs. 6 months (p = 0.06), overall survival was 37 vs. 8 months (p = 0.11), complete response rates were 51% vs. 30% (p = 0.05), and refractory disease rates were 14% vs. 32% (p = 0.04). The single nucleotide polymorphism in CD19 was shown to influence the treatment outcome in FMC63-anti-CD19-CAR-T cell therapy, and the CD19 minor allele L174 predicted a favorable treatment outcome.
Collapse
Affiliation(s)
- Katja Seipel
- Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Mariesol Abbühl
- Department of Medical Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Ulrike Bacher
- Department of Hematology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Henning Nilius
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Michael Daskalakis
- Department of Hematology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Thomas Pabst
- Department of Medical Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| |
Collapse
|
2
|
An unexplored angle: T cell antigen discoveries reveal a marginal contribution of proteasome splicing to the immunogenic MHC class I antigen pool. Proc Natl Acad Sci U S A 2022; 119:e2119736119. [PMID: 35858315 PMCID: PMC9303865 DOI: 10.1073/pnas.2119736119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the current era of T cell–based immunotherapies, it is crucial to understand which types of MHC-presented T cell antigens are produced by tumor cells. In addition to linear peptide antigens, chimeric peptides are generated through proteasome-catalyzed peptide splicing (PCPS). Whether such spliced peptides are abundantly presented by MHC is highly disputed because of disagreement in computational analyses of mass spectrometry data of MHC-eluted peptides. Moreover, such mass spectrometric analyses cannot elucidate how much spliced peptides contribute to the pool of immunogenic antigens. In this Perspective, we explain the significance of knowing the contribution of spliced peptides for accurate analyses of peptidomes on one hand, and to serve as a potential source of targetable tumor antigens on the other hand. Toward a strategy for mass spectrometry independent estimation of the contribution of PCPS to the immunopeptidome, we first reviewed methodologies to identify MHC-presented spliced peptide antigens expressed by tumors. Data from these identifications allowed us to compile three independent datasets containing 103, 74, and 83 confirmed T cell antigens from cancer patients. Only 3.9%, 1.4%, and between 0% and 7.2% of these truly immunogenic antigens are produced by PCPS, therefore providing a marginal contribution to the pool of immunogenic tumor antigens. We conclude that spliced peptides will not serve as a comprehensive source to expand the number of targetable antigens for immunotherapies.
Collapse
|
3
|
Jongsma MLM, de Waard AA, Raaben M, Zhang T, Cabukusta B, Platzer R, Blomen VA, Xagara A, Verkerk T, Bliss S, Kong X, Gerke C, Janssen L, Stickel E, Holst S, Plomp R, Mulder A, Ferrone S, Claas FHJ, Heemskerk MHM, Griffioen M, Halenius A, Overkleeft H, Huppa JB, Wuhrer M, Brummelkamp TR, Neefjes J, Spaapen RM. The SPPL3-Defined Glycosphingolipid Repertoire Orchestrates HLA Class I-Mediated Immune Responses. Immunity 2021; 54:132-150.e9. [PMID: 33271119 PMCID: PMC8722104 DOI: 10.1016/j.immuni.2020.11.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/25/2020] [Accepted: 11/06/2020] [Indexed: 12/26/2022]
Abstract
HLA class I (HLA-I) glycoproteins drive immune responses by presenting antigens to cognate CD8+ T cells. This process is often hijacked by tumors and pathogens for immune evasion. Because options for restoring HLA-I antigen presentation are limited, we aimed to identify druggable HLA-I pathway targets. Using iterative genome-wide screens, we uncovered that the cell surface glycosphingolipid (GSL) repertoire determines effective HLA-I antigen presentation. We show that absence of the protease SPPL3 augmented B3GNT5 enzyme activity, resulting in upregulation of surface neolacto-series GSLs. These GSLs sterically impeded antibody and receptor interactions with HLA-I and diminished CD8+ T cell activation. Furthermore, a disturbed SPPL3-B3GNT5 pathway in glioma correlated with decreased patient survival. We show that the immunomodulatory effect could be reversed through GSL synthesis inhibition using clinically approved drugs. Overall, our study identifies a GSL signature that inhibits immune recognition and represents a potential therapeutic target in cancer, infection, and autoimmunity.
Collapse
Affiliation(s)
- Marlieke L M Jongsma
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands; Oncode Institute and Department of Cell and Chemical Biology, LUMC, Leiden, the Netherlands
| | - Antonius A de Waard
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Matthijs Raaben
- Oncode Institute, Division of Biochemistry, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Tao Zhang
- Center for Proteomics and Metabolics, LUMC, Leiden, the Netherlands
| | - Birol Cabukusta
- Oncode Institute and Department of Cell and Chemical Biology, LUMC, Leiden, the Netherlands
| | - René Platzer
- Institut für Hygiene und Angewandte Immunologie, Vienna, Austria
| | - Vincent A Blomen
- Oncode Institute, Division of Biochemistry, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anastasia Xagara
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Tamara Verkerk
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Sophie Bliss
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Xiangrui Kong
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Carolin Gerke
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lennert Janssen
- Oncode Institute and Department of Cell and Chemical Biology, LUMC, Leiden, the Netherlands
| | - Elmer Stickel
- Oncode Institute, Division of Biochemistry, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Stephanie Holst
- Center for Proteomics and Metabolics, LUMC, Leiden, the Netherlands
| | - Rosina Plomp
- Center for Proteomics and Metabolics, LUMC, Leiden, the Netherlands
| | - Arend Mulder
- Department of Immunology, LUMC, Leiden, the Netherlands
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anne Halenius
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hermen Overkleeft
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Johannes B Huppa
- Institut für Hygiene und Angewandte Immunologie, Vienna, Austria
| | - Manfred Wuhrer
- Center for Proteomics and Metabolics, LUMC, Leiden, the Netherlands
| | - Thijn R Brummelkamp
- Oncode Institute, Division of Biochemistry, the Netherlands Cancer Institute, Amsterdam, the Netherlands; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Cancer Genomics Center, Amsterdam, the Netherlands
| | - Jacques Neefjes
- Oncode Institute and Department of Cell and Chemical Biology, LUMC, Leiden, the Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
de Waard AA, Verkerk T, Hoefakker K, van der Steen DM, Jongsma ML, Melamed Kadosh D, Bliss S, de Ru AH, Admon A, van Veelen PA, Griffioen M, Heemskerk MH, Spaapen RM. Healthy cells functionally present TAP-independent SSR1 peptides: implications for selection of clinically relevant antigens. iScience 2021; 24:102051. [PMID: 33554062 PMCID: PMC7847959 DOI: 10.1016/j.isci.2021.102051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/27/2020] [Accepted: 01/07/2021] [Indexed: 01/02/2023] Open
Abstract
Tumors with an impaired transporter associated with antigen processing (TAP) present several endoplasmic reticulum-derived self-antigens on HLA class I (HLA-I) which are absent on healthy cells. Selection of such TAP-independent antigens for T cell-based immunotherapy should include analysis of their expression on healthy cells to prevent therapy-induced adverse toxicities. However, it is unknown how the absence of clinically relevant antigens on healthy cells needs to be validated. Here, we monitored TAP-independent antigen presentation on various healthy cells after establishing a T cell tool recognizing a TAP-independent signal sequence receptor 1-derived antigen. We found that most but not all healthy cells present this antigen under normal and inflammatory conditions, indicating that TAP-independent antigen presentation is a variable phenomenon. Our data emphasize the necessity of extensive testing of a wide variety of healthy cell types to define clinically relevant TAP-independent antigens that can be safely targeted by immunotherapy. The ER-resident SSR1 holds an antigenic peptide that is processed independently of TAP TAP-independent peptide presentation is functional in healthy cell types TAP-independent SSR1-derived antigen presentation varies between healthy cells This exposes safety and efficacy risks of clinical TAP-independent peptide targeting
Collapse
Affiliation(s)
- Antonius A. de Waard
- Department of Immunopathology, Sanquin Research, Amsterdam, CX 1066, The Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, CX 1066, The Netherlands
| | - Tamara Verkerk
- Department of Immunopathology, Sanquin Research, Amsterdam, CX 1066, The Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, CX 1066, The Netherlands
| | - Kelly Hoefakker
- Department of Immunopathology, Sanquin Research, Amsterdam, CX 1066, The Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, CX 1066, The Netherlands
| | | | - Marlieke L.M. Jongsma
- Department of Immunopathology, Sanquin Research, Amsterdam, CX 1066, The Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, CX 1066, The Netherlands
- Oncode Institute and Department of Cell and Chemical Biology, LUMC, Leiden, ZA 2333, The Netherlands
| | | | - Sophie Bliss
- Department of Immunopathology, Sanquin Research, Amsterdam, CX 1066, The Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, CX 1066, The Netherlands
| | - Arnoud H. de Ru
- Center for Proteomics and Metabolomics, LUMC, Leiden, ZA 2333, The Netherlands
| | - Arie Admon
- Faculty of Biology, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Peter A. van Veelen
- Center for Proteomics and Metabolomics, LUMC, Leiden, ZA 2333, The Netherlands
| | | | | | - Robbert M. Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, CX 1066, The Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, CX 1066, The Netherlands
- Corresponding author
| |
Collapse
|
5
|
Xu J, Nie H, He J, Wang X, Liao K, Tu L, Xiong Z. Using Machine Learning Modeling to Explore New Immune-Related Prognostic Markers in Non-Small Cell Lung Cancer. Front Oncol 2020; 10:550002. [PMID: 33215029 PMCID: PMC7665579 DOI: 10.3389/fonc.2020.550002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To find new immune-related prognostic markers for non-small cell lung cancer (NSCLC). METHODS We found GSE14814 is related to NSCLC in GEO database. The non-small cell lung cancer observation (NSCLC-OBS) group was evaluated for immunity and divided into high and low groups for differential gene screening according to the score of immune evaluation. A single factor COX regression analysis was performed to select the genes related to prognosis. A prognostic model was constructed by machine learning, and test whether the model has a test efficacy for prognosis. A chip-in-chip non-small cell lung cancer chemotherapy (NSCLC-ACT) sample was used as a validation dataset for the same validation and prognostic analysis of the model. The coexpression genes of hub genes were obtained by pearson analysis and gene enrichment, function enrichment and protein interaction analysis. The tumor samples of patients with different clinical stages were detected by immunohistochemistry and the expression difference of prognostic genes in tumor tissues of patients with different stages was compared. RESULTS By screening, we found that LYN, C3, COPG2IT1, HLA.DQA1, and TNFRSF17 is closely related to prognosis. After machine learning, we constructed the immune prognosis model from these 5 genes, and the model AUC values were greater than 0.9 at three time periods of 1, 3, and 5 years; the total survival period of the low-risk group was significantly better than that of the high-risk group. The results of prognosis analysis in ACT samples were consistent with OBS groups. The coexpression genes are mainly involved B cell receptor signaling pathway and are mainly enriched in apoptotic cell clearance. Prognostic key genes are highly correlated with PDCD1, PDCD1LG2, LAG3, and CTLA4 immune checkpoints. The immunohistochemical results showed that the expression of COPG2IT1 and HLA.DQA1 in stage III increased significantly and the expression of LYN, C3, and TNFRSF17 in stage III decreased significantly compared with that of stage I. The experimental results are consistent with the previous analysis. CONCLUSION LYN, C3, COPG2IT1, LA.DQA1, and NFRSF17 may be new immune markers to judge the prognosis of patients with non-small cell lung cancer.
Collapse
Affiliation(s)
- Jiasheng Xu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Han Nie
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiarui He
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xinlu Wang
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kaili Liao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Luxia Tu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenfang Xiong
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Mutis T, Xagara A, Spaapen RM. The Connection Between Minor H Antigens and Neoantigens and the Missing Link in Their Prediction. Front Immunol 2020; 11:1162. [PMID: 32670277 PMCID: PMC7326952 DOI: 10.3389/fimmu.2020.01162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/12/2020] [Indexed: 12/26/2022] Open
Abstract
For hundreds of thousands of years, the human genome has extensively evolved, resulting in genetic variations in almost every gene. Immunological reflections of these genetic variations become clearly visible after an allogeneic stem cell transplantation (allo-SCT) as minor Histocompatibility (H) antigens. Minor H antigens are peptides cleaved from genetically encoded variable protein regions after which they are presented at the cell surface by HLA molecules. After allo-SCT with minor H antigen mismatches between donor and recipient, donor T cells recognize the minor H antigens of the recipient as foreign, evoking strong alloreactive immune responses. Studies in the late eighties have discovered that a subset of minor H antigens are encoded by hematopoietic system-specific genes. After allo-SCT, this subset is strictly expressed on the hematopoietic malignant cells and was therefore the first well-defined highly immunogenic group of tumor-specific antigens. In the last decade, neoantigens derived from genetic mutations in tumors have been identified as another group of immunogenic tumor-specific antigens. Therefore, hematopoietic minor H antigens and neoantigens are therapeutic equivalents. This review will connect our current knowledge about the immune biology and identification of minor H antigens and neoantigens leading to novel conclusions on their prediction.
Collapse
Affiliation(s)
- Tuna Mutis
- Department of Hematology, Amsterdam UMC, VU Medical Center, Amsterdam, Netherlands
| | - Anastasia Xagara
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
7
|
Kremer AN, Bausenwein J, Lurvink E, Kremer AE, Rutten CE, van Bergen CAM, Kretschmann S, van der Meijden E, Honders MW, Mazzeo D, Watts C, Mackensen A, Falkenburg JHF, Griffioen M. Discovery and Differential Processing of HLA Class II-Restricted Minor Histocompatibility Antigen LB-PIP4K2A-1S and Its Allelic Variant by Asparagine Endopeptidase. Front Immunol 2020; 11:381. [PMID: 32218783 PMCID: PMC7078166 DOI: 10.3389/fimmu.2020.00381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/17/2020] [Indexed: 12/03/2022] Open
Abstract
Minor histocompatibility antigens are the main targets of donor-derived T-cells after allogeneic stem cell transplantation. Identification of these antigens and understanding their biology are a key requisite for more insight into how graft vs. leukemia effect and graft vs. host disease could be separated. We here identified four new HLA class II-restricted minor histocompatibility antigens using whole genome association scanning. For one of the new antigens, i.e., LB-PIP4K2A-1S, we measured strong T-cell recognition of the donor variant PIP4K2A-1N when pulsed as exogenous peptide, while the endogenously expressed variant in donor EBV-B cells was not recognized. We showed that lack of T-cell recognition was caused by intracellular cleavage by a protease named asparagine endopeptidase (AEP). Furthermore, microarray gene expression analysis showed that PIP4K2A and AEP are both ubiquitously expressed in a wide variety of healthy tissues, but that expression levels of AEP were lower in primary acute myeloid leukemia (AML). In line with that, we confirmed low activity of AEP in AML cells and demonstrated that HLA-DRB1*03:01 positive primary AML expressing LB-PIP4K2A-1S or its donor variant PIP4K2A-1N were both recognized by specific T-cells. In conclusion, LB-PIP4K2A-1S not only represents a novel minor histocompatibility antigen but also provides evidence that donor T-cells after allogeneic stem cell transplantation can target the autologous allelic variant as leukemia-associated antigen. Furthermore, it demonstrates that endopeptidases can play a role in cell type-specific intracellular processing and presentation of HLA class II-restricted antigens, which may be explored in future immunotherapy of AML.
Collapse
Affiliation(s)
- Anita N. Kremer
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Judith Bausenwein
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ellie Lurvink
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Andreas E. Kremer
- Department of Internal Medicine 1, Gastroenterology, Pneumology and Endocrinology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Caroline E. Rutten
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Sascha Kretschmann
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Edith van der Meijden
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Maria W. Honders
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Daniela Mazzeo
- Division of Cell Signaling & Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Colin Watts
- Division of Cell Signaling & Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
8
|
Pont MJ, Oostvogels R, van Bergen CA, van der Meijden ED, Honders MW, Bliss S, Jongsma ML, Lokhorst HM, Falkenburg JF, Mutis T, Griffioen M, Spaapen RM. T Cells Specific for an Unconventional Natural Antigen Fail to Recognize Leukemic Cells. Cancer Immunol Res 2019; 7:797-804. [DOI: 10.1158/2326-6066.cir-18-0137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 12/21/2018] [Accepted: 03/14/2019] [Indexed: 11/16/2022]
|
9
|
van Balen P, van Bergen CAM, van Luxemburg-Heijs SAP, de Klerk W, van Egmond EHM, Veld SAJ, Halkes CJM, Zwaginga JJ, Griffioen M, Jedema I, Falkenburg JHF. CD4 Donor Lymphocyte Infusion Can Cause Conversion of Chimerism Without GVHD by Inducing Immune Responses Targeting Minor Histocompatibility Antigens in HLA Class II. Front Immunol 2018; 9:3016. [PMID: 30619360 PMCID: PMC6305328 DOI: 10.3389/fimmu.2018.03016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/06/2018] [Indexed: 01/03/2023] Open
Abstract
Under non-inflammatory conditions HLA class II is predominantly expressed on hematopoietic cells. Therefore, donor CD4 T-cells after allogeneic stem cell transplantation (alloSCT) may mediate graft-vs.-leukemia reactivity without graft-vs.-host disease (GVHD). We analyzed immune responses in four patients converting from mixed to full donor chimerism without developing GVHD upon purified CD4 donor lymphocyte infusion (DLI) from their HLA-identical sibling donor after T-cell depleted alloSCT. In vivo activated T-cells were clonally isolated after CD4 DLI. Of the alloreactive T-cell clones, 96% were CD4 positive, illustrating the dominant role of CD4 T-cells in the immune responses. We identified 9 minor histocompatibility antigens (MiHA) as targets for alloreactivity, of which 8 were novel HLA class II restricted MiHA. In all patients, MiHA specific CD4 T-cells were found that were capable to lyse hematopoietic cells and to recognize normal and malignant cells. No GVHD was induced in these patients. Skin fibroblasts forced to express HLA class II, were recognized by only two MiHA specific CD4 T-cell clones. Of the 7 clones that failed to recognize fibroblasts, two targeted MiHA were encoded by genes not expressed in fibroblasts, presentation of one MiHA was dependent on HLA-DO, which is absent in fibroblasts, and T-cells recognizing the remaining 4 MiHA had an avidity that was apparently too low to recognize fibroblasts, despite clear recognition of hematopoietic cells. In conclusion, purified CD4 DLI from HLA-identical sibling donors can induce conversion from mixed to full donor chimerism with graft-vs.-malignancy reactivity, but without GVHD, by targeting HLA class II restricted MiHA.
Collapse
Affiliation(s)
- Peter van Balen
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Wendy de Klerk
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Sabrina A J Veld
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Jaap-Jan Zwaginga
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Inge Jedema
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | |
Collapse
|
10
|
Sebestyen Z, Scheper W, Vyborova A, Gu S, Rychnavska Z, Schiffler M, Cleven A, Chéneau C, van Noorden M, Peigné CM, Olive D, Lebbink RJ, Oostvogels R, Mutis T, Schuurhuis GJ, Adams EJ, Scotet E, Kuball J. RhoB Mediates Phosphoantigen Recognition by Vγ9Vδ2 T Cell Receptor. Cell Rep 2016; 15:1973-85. [PMID: 27210746 DOI: 10.1016/j.celrep.2016.04.081] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/09/2016] [Accepted: 04/21/2016] [Indexed: 11/16/2022] Open
Abstract
Human Vγ9Vδ2 T cells respond to tumor cells by sensing elevated levels of phosphorylated intermediates of the dysregulated mevalonate pathway, which is translated into activating signals by the ubiquitously expressed butyrophilin A1 (BTN3A1) through yet unknown mechanisms. Here, we developed an unbiased, genome-wide screening method that identified RhoB as a critical mediator of Vγ9Vδ2 TCR activation in tumor cells. Our results show that Vγ9Vδ2 TCR activation is modulated by the GTPase activity of RhoB and its redistribution to BTN3A1. This is associated with cytoskeletal changes that directly stabilize BTN3A1 in the membrane, and the subsequent dissociation of RhoB from BTN3A1. Furthermore, phosphoantigen accumulation induces a conformational change in BTN3A1, rendering its extracellular domains recognizable by Vγ9Vδ2 TCRs. These complementary events provide further evidence for inside-out signaling as an essential step in the recognition of tumor cells by a Vγ9Vδ2 TCR.
Collapse
Affiliation(s)
- Zsolt Sebestyen
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht 3508, the Netherlands
| | - Wouter Scheper
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht 3508, the Netherlands
| | - Anna Vyborova
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht 3508, the Netherlands
| | - Siyi Gu
- Department of Clinical Chemistry and Hematology, University Medical Center, Utrecht 3508 GA, the Netherlands
| | - Zuzana Rychnavska
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht 3508, the Netherlands
| | - Marleen Schiffler
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht 3508, the Netherlands
| | - Astrid Cleven
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht 3508, the Netherlands
| | - Coraline Chéneau
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht 3508, the Netherlands
| | - Martje van Noorden
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht 3508, the Netherlands
| | - Cassie-Marie Peigné
- INSERM, Unité Mixte de Recherche 892, Centre de Recherche en Cancérologie Nantes Angers, 44000 Nantes, France; University of Nantes, 44000 Nantes, France; Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 6299, 44000 Nantes, France
| | - Daniel Olive
- INSERM, Centre de Recherche en Cancérologie Marseille, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht 3584, the Netherlands
| | - Rimke Oostvogels
- Department of Clinical Chemistry and Hematology, University Medical Center, Utrecht 3508 GA, the Netherlands
| | - Tuna Mutis
- Department of Clinical Chemistry and Hematology, University Medical Center, Utrecht 3508 GA, the Netherlands
| | - Gerrit Jan Schuurhuis
- Department of Hematology, VU University Medical Center, Amsterdam 1081, the Netherlands
| | - Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57(th) Street, Chicago, IL 60615, USA
| | - Emmanuel Scotet
- INSERM, Unité Mixte de Recherche 892, Centre de Recherche en Cancérologie Nantes Angers, 44000 Nantes, France; University of Nantes, 44000 Nantes, France; Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 6299, 44000 Nantes, France
| | - Jürgen Kuball
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht 3508, the Netherlands.
| |
Collapse
|
11
|
Griffioen M, van Bergen CAM, Falkenburg JHF. Autosomal Minor Histocompatibility Antigens: How Genetic Variants Create Diversity in Immune Targets. Front Immunol 2016; 7:100. [PMID: 27014279 PMCID: PMC4791598 DOI: 10.3389/fimmu.2016.00100] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/01/2016] [Indexed: 11/13/2022] Open
Abstract
Allogeneic stem cell transplantation (alloSCT) can be a curative treatment for hematological malignancies. Unfortunately, the desired anti-tumor or graft-versus-leukemia (GvL) effect is often accompanied with undesired side effects against healthy tissues known as graft-versus-host disease (GvHD). After HLA-matched alloSCT, GvL and GvHD are both mediated by donor-derived T-cells recognizing polymorphic peptides presented by HLA surface molecules on patient cells. These polymorphic peptides or minor histocompatibility antigens (MiHA) are produced by genetic differences between patient and donor. Since polymorphic peptides may be useful targets to manipulate the balance between GvL and GvHD, the dominant repertoire of MiHA needs to be discovered. In this review, the diversity of autosomal MiHA characterized thus far as well as the various molecular mechanisms by which genetic variants create immune targets and the role of cryptic transcripts and proteins as antigen sources are described. The tissue distribution of MiHA as important factor in GvL and GvHD is considered as well as possibilities how hematopoietic MiHA can be used for immunotherapy to augment GvL after alloSCT. Although more MiHA are still needed for comprehensive understanding of the biology of GvL and GvHD and manipulation by immunotherapy, this review shows insight into the composition and kinetics of in vivo immune responses with respect to specificity, diversity, and frequency of specific T-cells and surface expression of HLA-peptide complexes and other (accessory) molecules on the target cell. A complex interplay between these factors and their environment ultimately determines the spectrum of clinical manifestations caused by immune responses after alloSCT.
Collapse
Affiliation(s)
- Marieke Griffioen
- Department of Hematology, Leiden University Medical Center , Leiden , Netherlands
| | | | | |
Collapse
|
12
|
Pont MJ, van der Lee DI, van der Meijden ED, van Bergen CAM, Kester MGD, Honders MW, Vermaat M, Eefting M, Marijt EWA, Kielbasa SM, Hoen PAC', Falkenburg JHF, Griffioen M. Integrated Whole Genome and Transcriptome Analysis Identified a Therapeutic Minor Histocompatibility Antigen in a Splice Variant of ITGB2. Clin Cancer Res 2016; 22:4185-96. [PMID: 26964570 DOI: 10.1158/1078-0432.ccr-15-2307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/29/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE In HLA-matched allogeneic hematopoietic stem cell transplantation (alloSCT), donor T cells recognizing minor histocompatibility antigens (MiHAs) can mediate desired antitumor immunity as well as undesired side effects. MiHAs with hematopoiesis-restricted expression are relevant targets to augment antitumor immunity after alloSCT without side effects. To identify therapeutic MiHAs, we analyzed the in vivo immune response in a patient with strong antitumor immunity after alloSCT. EXPERIMENTAL DESIGN T-cell clones recognizing patient, but not donor, hematopoietic cells were selected for MiHA discovery by whole genome association scanning. RNA-sequence data from the GEUVADIS project were analyzed to investigate alternative transcripts, and expression patterns were determined by microarray analysis and qPCR. T-cell reactivity was measured by cytokine release and cytotoxicity. RESULTS T-cell clones were isolated for two HLA-B*15:01-restricted MiHA. LB-GLE1-1V is encoded by a nonsynonymous SNP in exon 6 of GLE1 For the other MiHAs, an associating SNP in intron 3 of ITGB2 was found, but no SNP disparity was present in the normal gene transcript between patient and donor. RNA-sequence analysis identified an alternative ITGB2 transcript containing part of intron 3. qPCR demonstrated that this transcript is restricted to hematopoietic cells and SNP-positive individuals. In silico translation revealed LB-ITGB2-1 as HLA-B*15:01-binding peptide, which was validated as hematopoietic MiHA by T-cell experiments. CONCLUSIONS Whole genome and transcriptome analysis identified LB-ITGB2-1 as MiHAs encoded by an alternative transcript. Our data support the therapeutic relevance of LB-ITGB2-1 and illustrate the value of RNA-sequence analysis for discovery of immune targets encoded by alternative transcripts. Clin Cancer Res; 22(16); 4185-96. ©2016 AACR.
Collapse
Affiliation(s)
- Margot J Pont
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | - Michel G D Kester
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maria W Honders
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Martijn Vermaat
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Matthias Eefting
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Erik W A Marijt
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Szymon M Kielbasa
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
13
|
Oostvogels R, Lokhorst HM, Mutis T. Minor histocompatibility Ags: identification strategies, clinical results and translational perspectives. Bone Marrow Transplant 2015; 51:163-71. [PMID: 26501766 DOI: 10.1038/bmt.2015.256] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/11/2015] [Accepted: 08/15/2015] [Indexed: 12/14/2022]
Abstract
Allogeneic stem cell transplantation (allo-SCT) and donor lymphocyte infusion are effective treatment modalities for various hematological malignancies. Their therapeutic effect, the graft-versus-tumor (GvT) effect, is based mainly on an alloimmune response of donor T cells directed at tumor cells, in which differences in the expression of minor histocompatibility Ags (mHags) on the cells of the patient and donor have a crucial role. However, these differences are also responsible for induction of sometimes detrimental GvHD. As relapse and development of GvHD pose major threats for a large proportion of allotransplanted patients, additional therapeutic strategies are required. To augment the GvT response without increasing the risk of GvHD, specific mHag-directed immunotherapeutic strategies have been developed. Over the past years, much effort has been put into the identification of therapeutically relevant mHags to enable these strategies for a substantial proportion of patients. Currently, the concept of mHag-directed immunotherapy is tested in clinical trials on feasibility, safety and efficacy. In this review, we will summarize the recent developments in mHag identification and the clinical data on mHag-specific immune responses and mHag-directed therapies in patients with hematological malignancies. Finally, we will outline the current challenges and future prospectives in the field.
Collapse
Affiliation(s)
- R Oostvogels
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Hematology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - H M Lokhorst
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - T Mutis
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Falkenburg JHF, Jedema I. Allo-reactive T cells for the treatment of hematological malignancies. Mol Oncol 2015; 9:1894-903. [PMID: 26578450 DOI: 10.1016/j.molonc.2015.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/11/2022] Open
Abstract
Several mechanisms can be responsible for control of hematological tumors by allo-reactive T cells. Following allogeneic stem cell transplantation (alloSCT) donor T cells recognizing genetic disparities presented on recipient cells and not on donor cells are main effectors of tumor control, but also of the detrimental graft versus host disease (GVHD). Since after transplantation normal hematopoiesis is of donor origin, any T cell response directed against polymorphic antigens expressed on hematopoietic recipient cells but not on donor cells will result in an anti-tumor response not affecting normal hematopoiesis. After fully HLA-matched alloSCT, T cells recognizing polymorphic peptides derived from proteins encoded by genes selectively expressed in hematopoietic lineages may result in anti-tumor responses without GVHD. Due to the high susceptibility of hematopoietic cells for T cell recognition, a low amplitude of the overall T cell response may also be in favor of the anti-tumor reactivity in hematological malignancies. A mismatch between donor and patient for specific HLA-alleles can also be exploited to induce a selective T cell response against patient (malignant) hematopoietic cells. If restricting HLA class II molecules are selectively expressed on hematopoietic cells under non-inflammatory circumstances, allo HLA class-II responses may control the tumor with limited risk of GVHD. Alternatively, T cells recognizing hematopoiesis-restricted antigens presented in the context of mismatched HLA alleles may be used to treat patients with hematological cancers. This review discusses various ways to manipulate the allo-immune response aiming to exploit the powerful ability of allo-reactive T-cells to control the malignancies without causing severe damage to non-hematopoietic tissues.
Collapse
Affiliation(s)
- J H F Falkenburg
- Department of Hematology, Leiden University Medical Center, Netherlands
| | - I Jedema
- Department of Hematology, Leiden University Medical Center, Netherlands.
| |
Collapse
|
15
|
Spierings E. Minor histocompatibility antigens: past, present, and future. ACTA ACUST UNITED AC 2015; 84:374-60. [PMID: 25262921 DOI: 10.1111/tan.12445] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Indexed: 01/02/2023]
Abstract
Minor histocompatibility (H) antigens are key molecules driving allo-immune responses in both graft-versus-host-disease (GvHD) and in graft-versus-leukemia (GvL) reactivity in human leukocyte antigen (HLA)-matched hematopoietic stem-cell transplantation (HSCT). Dissection of the dual function of minor H antigens became evident through their different modes of tissue and cell expression, i.e. hematopoietic system-restricted or broad. Broadly expressed minor H antigens can cause both GvHD and GvL effects, while hematopoietic system-restricted minor H antigens are more prone to induce GvL responses. This phenomenon renders the latter group of minor H antigens as curative tools for HSCT-based immunotherapy of hematological malignancies and disorders, in which minor H antigen-specific responses are enhanced in order to eradicate the malignant cells. This article describes the immunogenetics of minor H antigens and methods that have been developed to identify them. Moreover, it summarizes the clinical relevance of minor H antigens in transplantation, with special regards to allogeneic HSCT and solid-organ transplantation.
Collapse
Affiliation(s)
- Eric Spierings
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
16
|
Zilberberg J, Feinman R, Korngold R. Strategies for the identification of T cell-recognized tumor antigens in hematological malignancies for improved graft-versus-tumor responses after allogeneic blood and marrow transplantation. Biol Blood Marrow Transplant 2014; 21:1000-7. [PMID: 25459643 DOI: 10.1016/j.bbmt.2014.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/02/2014] [Indexed: 12/13/2022]
Abstract
Allogeneic blood and marrow transplantation (allo-BMT) is an effective immunotherapeutic treatment that can provide partial or complete remission for patients with hematological malignancies. Mature donor T cells in the donor inoculum play a central role in mediating graft-versus-tumor (GVT) responses by destroying residual tumor cells that persist after conditioning regimens. Alloreactivity towards minor histocompatibility antigens (miHA), which are varied tissue-related self-peptides presented in the context of major histocompatibility complex (MHC) molecules on recipient cells, some of which may be shared on tumor cells, is a dominant factor for the development of GVT. Potentially, GVT can also be directed to tumor-associated antigens or tumor-specific antigens that are more specific to the tumor cells themselves. The full exploitation of allo-BMT, however, is greatly limited by the development of graft-versus-host disease (GVHD), which is mediated by the donor T cell response against the miHA expressed in the recipient's cells of the intestine, skin, and liver. Because of the significance of GVT and GVHD responses in determining the clinical outcome of patients, miHA and tumor antigens have been intensively studied, and one active immunotherapeutic approach to separate these two responses has been cancer vaccination after allo-BMT. The combination of these two strategies has an advantage over vaccination of the patient without allo-BMT because his or her immune system has already been exposed and rendered unresponsive to the tumor antigens. The conditioning for allo-BMT eliminates the patient's existing immune system, including regulatory elements, and provides a more permissive environment for the newly developing donor immune compartment to selectively target the malignant cells. Utilizing recent technological advances, the identities of many human miHA and tumor antigenic peptides have been defined and are currently being evaluated in clinical and basic immunological studies for their ability to produce effective T cell responses. The first step towards this goal is the identification of targetable tumor antigens. In this review, we will highlight some of the technologies currently used to identify tumor antigens and anti-tumor T cell clones in hematological malignancies.
Collapse
Affiliation(s)
- Jenny Zilberberg
- Research Department and John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey.
| | - Rena Feinman
- Research Department and John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey
| | - Robert Korngold
- Research Department and John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey
| |
Collapse
|
17
|
Oostvogels R, Lokhorst HM, Minnema MC, van Elk M, van den Oudenalder K, Spierings E, Mutis T, Spaapen RM. Identification of minor histocompatibility antigens based on the 1000 Genomes Project. Haematologica 2014; 99:1854-9. [PMID: 25150256 DOI: 10.3324/haematol.2014.109801] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Minor histocompatibility antigens are highly immunogeneic polymorphic peptides playing crucial roles in the clinical outcome of HLA-identical allogeneic stem cell transplantation. Although the introduction of genome-wide association-based strategies significantly has accelerated the identification of minor histocompatibility antigens over the past years, more efficient, rapid and robust identification techniques are required for a better understanding of the immunobiology of minor histocompatibility antigens and for their optimal clinical application in the treatment of hematologic malignancies. To develop a strategy that can overcome the drawbacks of all earlier strategies, we now integrated our previously developed genetic correlation analysis methodology with the comprehensive genomic databases from the 1000 Genomes Project. We show that the data set of the 1000 Genomes Project is suitable to identify all of the previously known minor histocompatibility antigens. Moreover, we demonstrate the power of this novel approach by the identification of the new HLA-DP4 restricted minor histocompatibility antigen UTDP4-1, which despite extensive efforts could not be identified using any of the previously developed biochemical, molecular biological or genetic strategies. The 1000 Genomes Project-based identification of minor histocompatibility antigens thus represents a very convenient and robust method for the identification of new targets for cancer therapy after allogeneic stem cell transplantation.
Collapse
Affiliation(s)
- Rimke Oostvogels
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht; Department of Hematology, University Medical Center Utrecht, Utrecht
| | - Henk M Lokhorst
- Department of Hematology, University Medical Center Utrecht, Utrecht; Department of Hematology, VU University Medical Center, Amsterdam
| | - Monique C Minnema
- Department of Hematology, University Medical Center Utrecht, Utrecht
| | - Maureen van Elk
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht
| | | | - Eric Spierings
- Department of Immunology, University Medical Center Utrecht, Utrecht
| | - Tuna Mutis
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht; Department of Hematology, VU University Medical Center, Amsterdam;
| | - Robbert M Spaapen
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht; Department of Immunopathology, Sanquin Research, Amsterdam; Department of Cell Biology II, The Netherlands Cancer Institute, Amsterdam; Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, the Netherlands
| |
Collapse
|
18
|
Impact of genomic polymorphisms on the repertoire of human MHC class I-associated peptides. Nat Commun 2014; 5:3600. [PMID: 24714562 PMCID: PMC3996541 DOI: 10.1038/ncomms4600] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 03/10/2014] [Indexed: 12/23/2022] Open
Abstract
For decades, the global impact of genomic polymorphisms on the repertoire of peptides presented by major histocompatibility complex (MHC) has remained a matter of speculation. Here we present a novel approach that enables high-throughput discovery of polymorphic MHC class I-associated peptides (MIPs), which play a major role in allorecognition. On the basis of comprehensive analyses of the genomic landscape of MIPs eluted from B lymphoblasts of two MHC-identical siblings, we show that 0.5% of non-synonymous single nucleotide variations are represented in the MIP repertoire. The 34 polymorphic MIPs found in our subjects are encoded by bi-allelic loci with dominant and recessive alleles. Our analyses show that, at the population level, 12% of the MIP-coding exome is polymorphic. Our method provides fundamental insights into the relationship between the genomic self and the immune self and accelerates the discovery of polymorphic MIPs (also known as minor histocompatibility antigens). Mass spectrometry (MS) has furthered our understanding of MHC class I-associated peptides (MIPs), but the technique is inadequate for studying MIP-associated polymorphisms. Here, the authors combine high-throughput MS with exome and transcriptome sequencing to identify polymorphic MIPs from two female siblings.
Collapse
|
19
|
Abstract
Minor histocompatibility (H) antigen mismatching leads to clinically relevant alloimmune reactivity. Depending on the tissue expression pattern of the involved minor H antigens, the immune response may either cause graft-versus-host disease and a graft-versus-tumor effect or lead to only a graft-versus-leukemia effect. Thus, identification of recipient-donor pairs with minor H antigen mismatches has clinical importance. This chapter describes molecular typing methods for molecular typing of minor H antigens.
Collapse
Affiliation(s)
- Eric Spierings
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
20
|
Linscheid C, Petroff MG. Minor histocompatibility antigens and the maternal immune response to the fetus during pregnancy. Am J Reprod Immunol 2013; 69:304-14. [PMID: 23398025 PMCID: PMC4048750 DOI: 10.1111/aji.12075] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/20/2012] [Indexed: 12/21/2022] Open
Abstract
The tolerance of the semiallogeneic fetus by the maternal immune system is an important area of research for understanding how the maternal and fetal systems interact during pregnancy to ensure a successful outcome. Several lines of research reveal that the maternal immune system can recognize and respond to fetal minor histocompatibility antigens during pregnancy. Reactions to these antigens arise because of allelic differences between the mother and fetus and have been shown more broadly to play an important role in mediating transplantation outcomes. This review outlines the discovery of minor histocompatibility antigens and their importance in solid organ and hematopoietic stem cell transplantations, maternal T-cell responses to minor histocompatibility antigens during pregnancy, expression of minor histocompatibility antigens in the human placenta, and the potential involvement of minor histocompatibility antigens in the development and manifestation of pregnancy complications.
Collapse
Affiliation(s)
- Caitlin Linscheid
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS
| | - Margaret G. Petroff
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
21
|
Hombrink P, Hassan C, Kester MGD, de Ru AH, van Bergen CAM, Nijveen H, Drijfhout JW, Falkenburg JHF, Heemskerk MHM, van Veelen PA. Discovery of T Cell Epitopes Implementing HLA-Peptidomics into a Reverse Immunology Approach. THE JOURNAL OF IMMUNOLOGY 2013; 190:3869-77. [DOI: 10.4049/jimmunol.1202351] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Eljaafari A, Yuruker O, Ferrand C, Farre A, Addey C, Tartelin ML, Thomas X, Tiberghien P, Simpson E, Rigal D, Scott D. Isolation of Human CD4/CD8 Double-Positive, Graft-Versus-Host Disease–Protective, Minor Histocompatibility Antigen–Specific Regulatory T Cells and of a Novel HLA-DR7–Restricted HY-Specific CD4 Clone. THE JOURNAL OF IMMUNOLOGY 2012; 190:184-94. [DOI: 10.4049/jimmunol.1201163] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Spierings E, Goulmy E. Minor histocompatibility antigen typing by DNA sequencing for clinical practice in hematopoietic stem-cell transplantation. Methods Mol Biol 2012; 882:509-30. [PMID: 22665253 DOI: 10.1007/978-1-61779-842-9_29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
In HLA-matched stem-cell transplantation (SCT), minor H antigens are key molecules driving allo-immune responses in both graft-versus-host disease (GvHD) and in graft-versus-leukemia (GvL) reactivity. Dissection of the dual function of minor H antigens became evident through their different modes of tissue and cell expression, i.e., hematopoietic system restricted or broad. Broadly expressed minor H antigens are the targets of immune responses in both arms of graft-versus-host (GvH) responses, i.e., both GvHD and GvL, whereas the immune responses against the hematopoietic system-specific minor H antigens are restricted to the GvL arm of SCT. Evidently, it is this latter group of minor H antigens that can function as curative tools for stem-cell (SC)-based immunotherapy of hematological malignancies and disorders. The HLA-matched patient/donor combinations, incompatible for one of the hematopoietic-specific minor H antigens, are suitable for minor H antigen immunotherapy (Goulmy, Immunol Rev 157:125-140, 1997). Information on the minor H antigen phenotype is therefore needed. Hereto, genomic typing for minor H antigens has been implemented in many HLA laboratories. Here, we firstly summarize the relevance of minor H antigens particularly in hematopoietic SCT. Secondly, we describe a method for typing the various polymorphic minor H antigens molecularly identified to date by DNA sequencing.
Collapse
Affiliation(s)
- Eric Spierings
- Department of Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
24
|
Towards effective and safe immunotherapy after allogeneic stem cell transplantation: identification of hematopoietic-specific minor histocompatibility antigen UTA2-1. Leukemia 2012; 27:642-9. [PMID: 23079962 PMCID: PMC3593180 DOI: 10.1038/leu.2012.277] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Donor T cells directed at hematopoietic system-specific minor histocompatibility antigens (mHags) are considered important cellular tools to induce therapeutic graft-versus-tumor (GvT) effects with low risk of graft-versus-host disease after allogeneic stem cell transplantation. To enable the clinical evaluation of the concept of mHag-based immunotherapy and subsequent broad implementation, the identification of more hematopoietic mHags with broad applicability is imperative. Here we describe novel mHag UTA2-1 with ideal characteristics for this purpose. We identified this antigen using genome-wide zygosity-genotype correlation analysis of a mHag-specific CD8+ cytotoxic T lymphocyte (CTL) clone derived from a multiple myeloma patient who achieved a long-lasting complete remission after donor lymphocyte infusion from an human leukocyte antigen (HLA)-matched sibling. UTA2-1 is a polymorphic peptide presented by the common HLA molecule HLA-A*02:01, which is encoded by the bi-allelic hematopoietic-specific gene C12orf35. Tetramer analyses demonstrated an expansion of UTA2-1-directed T cells in patient blood samples after several donor T-cell infusions that mediated clinical GvT responses. More importantly, UTA2-1-specific CTL effectively lysed mHag+ hematopoietic cells, including patient myeloma cells, without affecting non-hematopoietic cells. Thus, with the capacity to induce relevant immunotherapeutic CTLs, it's HLA-A*02 restriction and equally balanced phenotype frequency, UTA2-1 is a highly valuable mHag to facilitate clinical application of mHag-based immunotherapy.
Collapse
|
25
|
Tumor-specific CD4+ T cells develop cytotoxic activity and eliminate virus-induced tumor cells in the absence of regulatory T cells. Cancer Immunol Immunother 2012; 62:257-71. [PMID: 22890822 PMCID: PMC3569596 DOI: 10.1007/s00262-012-1329-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 07/25/2012] [Indexed: 12/17/2022]
Abstract
The important role of tumor-specific cytotoxic CD8+ T cells is well defined in the immune control of the tumors, but the role of effector CD4+ T cells is poorly understood. In the current research, we have used a murine retrovirus-induced tumor cell line of C57BL/6 mouse origin, namely FBL-3 cells, as a model to study basic mechanisms of immunological control and escape during tumor formation. This study shows that tumor-specific CD4+ T cells are able to protect against virus-induced tumor cells. We show here that there is an expansion of tumor-specific CD4+ T cells producing cytokines and cytotoxic molecule granzyme B (GzmB) in the early phase of tumor growth. Importantly, we demonstrate that in vivo depletion of regulatory T cells (Tregs) and CD8+ T cells in FBL-3-bearing DEREG transgenic mice augments IL-2 and GzmB production by CD4+ T cells and increases FV-specific CD4+ T-cell effector and cytotoxic responses leading to the complete tumor regression. Therefore, the capacity to reject tumor acquired by tumor-reactive CD4+ T cells largely depends on the direct suppressive activity of Tregs. We suggest that a cytotoxic CD4+ T-cell immune response may be induced to enhance resistance against oncovirus-associated tumors.
Collapse
|
26
|
Effect of MHC and non-MHC donor/recipient genetic disparity on the outcome of allogeneic HCT. Blood 2012; 120:2796-806. [PMID: 22859606 DOI: 10.1182/blood-2012-04-347286] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The outcome of allogeneic hematopoietic cell transplantation is influenced by donor/recipient genetic disparity at loci both inside and outside the MHC on chromosome 6p. Although disparity at loci within the MHC is the most important risk factor for the development of severe GVHD, disparity at loci outside the MHC that encode minor histocompatibility (H) antigens can elicit GVHD and GVL activity in donor/recipient pairs who are otherwise genetically identical across the MHC. Minor H antigens are created by sequence and structural variations within the genome. The enormous variation that characterizes the human genome suggests that the total number of minor H loci is probably large and ensures that all donor/recipient pairs, despite selection for identity at the MHC, will be mismatched for many minor H antigens. In addition to mismatch at minor H loci, unrelated donor/recipient pairs exhibit genetic disparity at numerous loci within the MHC, particularly HLA-DP, despite selection for identity at HLA-A, -B, -C, and -DRB1. Disparity at HLA-DP exists in 80% of unrelated pairs and clearly influences the outcome of unrelated hematopoietic cell transplantation; the magnitude of this effect probably exceeds that associated with disparity at any locus outside the MHC.
Collapse
|
27
|
Bleakley M, Turtle CJ, Riddell SR. Augmentation of anti-tumor immunity by adoptive T-cell transfer after allogeneic hematopoietic stem cell transplantation. Expert Rev Hematol 2012; 5:409-25. [PMID: 22992235 PMCID: PMC3590108 DOI: 10.1586/ehm.12.28] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (HCT) is currently the standard of care for most patients with high-risk acute leukemias and some other hematologic malignancies. Although HCT can be curative, many patients who undergo allogeneic HCT will later relapse. There is, therefore, a critical need for the development of novel post-HCT therapies for patients who are at high risk for disease recurrence following HCT. One potentially efficacious approach is adoptive T-cell immunotherapy, which is currently undergoing a renaissance that has been inspired by scientific insight into the key issues that impeded its previous clinical application. Translation of the next generation of adoptive T-cell therapies to the allogeneic HCT setting, using donor T cells of defined specificity and function, presents a unique set of challenges and opportunities. The challenges, progress and future of adoptive T-cell therapy following allogeneic HCT are discussed in this review.
Collapse
Affiliation(s)
- Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | | | | |
Collapse
|
28
|
Yamamura T, Hikita J, Bleakley M, Hirosawa T, Sato-Otsubo A, Torikai H, Hamajima T, Nannya Y, Demachi-Okamura A, Maruya E, Saji H, Yamamoto Y, Takahashi T, Emi N, Morishima Y, Kodera Y, Kuzushima K, Riddell SR, Ogawa S, Akatsuka Y. HapMap SNP Scanner: an online program to mine SNPs responsible for cell phenotype. ACTA ACUST UNITED AC 2012; 80:119-25. [PMID: 22568758 DOI: 10.1111/j.1399-0039.2012.01883.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Minor histocompatibility (H) antigens are targets of graft-vs-host disease and graft-vs-tumor responses after human leukocyte antigen matched allogeneic hematopoietic stem cell transplantation. Recently, we reported a strategy for genetic mapping of linkage disequilibrium blocks that encoded novel minor H antigens using the large dataset from the International HapMap Project combined with conventional immunologic assays to assess recognition of HapMap B-lymphoid cell line by minor H antigen-specific T cells. In this study, we have constructed and provide an online interactive program and demonstrate its utility for searching for single-nucleotide polymorphisms (SNPs) responsible for minor H antigen generation. The website is available as 'HapMap SNP Scanner', and can incorporate T-cell recognition and other data with genotyping datasets from CEU, JPT, CHB, and YRI to provide a list of candidate SNPs that correlate with observed phenotypes. This method should substantially facilitate discovery of novel SNPs responsible for minor H antigens and be applicable for assaying of other specific cell phenotypes (e.g. drug sensitivity) to identify individuals who may benefit from SNP-based customized therapies.
Collapse
Affiliation(s)
- T Yamamura
- Division of Immunology, Aichi Cancer Center Research Center, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Griffioen M, Honders MW, van der Meijden ED, van Luxemburg-Heijs SAP, Lurvink EGA, Kester MGD, van Bergen CAM, Falkenburg JHF. Identification of 4 novel HLA-B*40:01 restricted minor histocompatibility antigens and their potential as targets for graft-versus-leukemia reactivity. Haematologica 2012; 97:1196-204. [PMID: 22419570 DOI: 10.3324/haematol.2011.049478] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Patients with hematologic malignancies can be successfully treated with donor lymphocyte infusion after HLA-matched allogeneic hematopoietic stem cell transplantation. The effect of donor lymphocyte infusion is mediated by donor T cells recognizing minor histocompatibility antigens. T cells recognizing hematopoietic restricted minor histocompatibility antigens may induce selective graft-versus-leukemia reactivity, whereas broadly-expressed antigens may be targeted in graft-versus-host disease. DESIGN AND METHODS We analyzed in detail CD8(+) T-cell immunity in a patient with relapsed chronic myelogenous leukemia who responded to donor lymphocyte infusion with minimal graft-versus-host disease of the skin. CD8(+) T-cell clones specific for 4 HLA-B*40:01 restricted minor histocompatibility antigens were isolated which were identified by screening a plasmid cDNA library and whole genome association scanning. Detailed T-cell reactivity and monitoring experiments were performed to estimate the clinical and therapeutic relevance of the novel antigens. RESULTS Three antigens were demonstrated to be expressed on primary leukemic cells of various origins as well as subtypes of non-malignant hematopoietic cells, whereas one antigen was selectively recognized on malignant hematopoietic cells with antigen presenting cell phenotype. Skin derived fibroblasts were only recognized after pre-treatment with IFN-γ by two T-cell clones. CONCLUSIONS Our data show evidence for different roles of the HLA-B*40:01 restricted minor histocompatibility antigens in the onset and execution of the anti-tumor response. All antigens may have contributed to a graft-versus-leukemia effect, and one minor histocompatibility antigen (LB-SWAP70-1Q) has specific therapeutic value based on its in vivo immunodominance and strong presentation on leukemic cells of various origins, but absence of expression on cytokine-treated fibroblasts.
Collapse
Affiliation(s)
- Marieke Griffioen
- Department of Hematology, C2-R, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kis-Toth K, Szanto A, Thai TH, Tsokos GC. Cytosolic DNA-activated human dendritic cells are potent activators of the adaptive immune response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:1222-34. [PMID: 21709148 PMCID: PMC3140546 DOI: 10.4049/jimmunol.1100469] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Recent studies in cell lines and genetically engineered mice have demonstrated that cytosolic dsDNA could activate dendritic cells (DCs) to become effector APCs. Recognition of DNA might be a major factor in antimicrobial immune responses against cytosolic pathogens and also in human autoimmune diseases such as systemic lupus erythematosus. However, the role of cytosolic dsDNA in human DC activation and its effects on effector T and B cells are still elusive. In this study, we demonstrate that intracellular dsDNA is a potent activator of human monocyte-derived DCs as well as primary DCs. Activation by dsDNA depends on NF-κB activation, partially on the adaptor molecule IFN-promoter stimulator-1 and the novel cytosolic dsDNA receptor IFI16, but not on the previously recognized dsDNA sentinels absent in melanoma 2, DNA-dependent activator of IFN regulatory factor 3, RNA polymerase III, or high-mobility group boxes. More importantly, we report for the first time, to our knowledge, that human dsDNA-activated DCs, rather than LPS- or inflammatory cytokine mixture-activated DCs, represent the most potent inducers of naive CD4(+) T cells to promote Th1-type cytokine production and generate CD4(+) and CD8(+) cytotoxic T cells. dsDNA-DCs, but not LPS- or mixture-activated DCs, induce B cells to produce complement-fixing IgG1 and IgG3 Abs. We propose that cytosolic dsDNA represents a novel, more effective approach to generate DCs to enhance vaccine effectiveness in reprogramming the adaptive immune system to eradicate infectious agents, autoimmunity, allergy, and cancer.
Collapse
Affiliation(s)
- Katalin Kis-Toth
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Harvard University Medical School Boston, MA02115, USA
| | - Attila Szanto
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA02114, USA
| | - To-Ha Thai
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Harvard University Medical School Boston, MA02115, USA
| | - George C. Tsokos
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Harvard University Medical School Boston, MA02115, USA
| |
Collapse
|
31
|
Singh A, Qin H, Fernandez I, Wei J, Lin J, Kwak LW, Roy K. An injectable synthetic immune-priming center mediates efficient T-cell class switching and T-helper 1 response against B cell lymphoma. J Control Release 2011; 155:184-92. [PMID: 21708196 DOI: 10.1016/j.jconrel.2011.06.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 05/17/2011] [Accepted: 06/03/2011] [Indexed: 12/21/2022]
Abstract
Patients with malignant non-Hodgkin's lymphomas (NHL) of B-cell lineages relapse despite initial anti-tumor response to chemotherapy or antibody treatments. Failure to eliminate the tumor is often because of inadequate priming, low cell numbers and suboptimal phenotype of effector T cells. Here we describe a new biomaterial-based controlled-release paradigm to treat weakly immunogenic NHLs by in-situ amplifying the number of functional, antigen-specific T-helper 1 (Th1) cells following immunotherapy. An injectable, synthetic immune priming center (sIPC) consisting of an in-situ crosslinking, chemokine-carrying hydrogel and both DNA- and siRNA dual-loaded microparticles, is reported. This sIPC chemo attracts a large number of immature dendritic cells (DCs) at the site of administration and efficiently co-delivers both DNA antigens and interleukin-10 (IL10)-silencing siRNA to those cells. Using a murine model of A20 B cell lymphoma, we demonstrate that combination of DNA-antigen delivery and IL10 silencing, synergistically activate recruited immature DCs and cause a strong shift towards Th1 response while suppressing Th2 and Th17 cytokines. sIPC-based immunotherapy showed 45% more CD8+ cytotoxic T cell (CTL) response and 53% stronger CD4+ CTL activity compared to naked DNA vaccine. In addition, in-vivo sIPC immunization induced significant protection (p<0.01) against subsequent tumor challenge. Such a multi-modal, injectable system that simultaneously delivers chemokines, siRNA and DNA antigens to DCs marks a new approach to in-situ priming and modulation during immunotherapy and could provide effective vaccination strategies against cancers and infectious diseases.
Collapse
Affiliation(s)
- Ankur Singh
- Department of Biomedical Engineering, The University of Texas, Austin, TX 78712, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Falkenburg JHF, Warren EH. Graft versus leukemia reactivity after allogeneic stem cell transplantation. Biol Blood Marrow Transplant 2011; 17:S33-8. [PMID: 21195308 DOI: 10.1016/j.bbmt.2010.11.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Quezada SA, Peggs KS, Simpson TR, Allison JP. Shifting the equilibrium in cancer immunoediting: from tumor tolerance to eradication. Immunol Rev 2011; 241:104-18. [PMID: 21488893 PMCID: PMC3727276 DOI: 10.1111/j.1600-065x.2011.01007.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The continual interaction of the immune system with a developing tumor is thought to result in the establishment of a dynamic state of equilibrium. This equilibrium depends on the balance between effector and regulatory T-cell compartments. Whereas regulatory T cells can infiltrate and accumulate within tumors, effector T cells fail to efficiently do so. Furthermore, effector T cells that do infiltrate the tumor become tightly controlled by different regulatory cellular subsets and inhibitory molecules. The outcome of this balance is critical to survival, and whereas in some cases the equilibrium can rapidly result in the elimination of the transformed cells by the immune system, in many other cases the tumor manages to escape immune control. In this review, we discuss relevant work focusing on the establishment of the intratumor balance, the dynamic changes in the populations of effector and regulatory T cells within the tumor, and the role of the tumor vasculature and its activation state in the recruitment of different T-cell subsets. Finally, we also discuss work associated to the manipulation of the immune response to tumors and its impact on the infiltration, accumulation, and function of tumor-reactive lymphocytes within the tumor microenvironment.
Collapse
Affiliation(s)
- Sergio A. Quezada
- Ludwig Center for Cancer Immunotherapy, Howard Hughes Medical Institute, and Department of Immunology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10021, USA
| | - Karl S. Peggs
- Department of Haematology, UCL Cancer Institute, Paul O’Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Tyler R. Simpson
- Ludwig Center for Cancer Immunotherapy, Howard Hughes Medical Institute, and Department of Immunology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10021, USA
| | - James P. Allison
- Ludwig Center for Cancer Immunotherapy, Howard Hughes Medical Institute, and Department of Immunology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10021, USA
| |
Collapse
|
34
|
Bleakley M, Riddell SR. Exploiting T cells specific for human minor histocompatibility antigens for therapy of leukemia. Immunol Cell Biol 2011; 89:396-407. [PMID: 21301477 PMCID: PMC3061548 DOI: 10.1038/icb.2010.124] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Minor histocompatibility (H) antigens are major targets of a graft-versus-leukemia (GVL) effect mediated by donor CD8(+) and CD4(+) T cells following allogeneic hematopoietic cell transplantation (HCT) between human leukocyte antigen identical individuals. In the 15 years since the first molecular characterization of human minor H antigens, significant strides in minor H antigen discovery have been made as a consequence of advances in cellular, genetic and molecular techniques. Much has been learned about the mechanisms of minor H antigen immunogenicity, their expression on normal and malignant cells, and their role in GVL responses. T cells specific for minor H antigens expressed on leukemic cells, including leukemic stem cells, can be isolated and expanded in vitro and infused into allogeneic HCT recipients to augment the GVL effect to prevent and treat relapse. The first report of the adoptive transfer of minor H antigen-specific T-cell clones to patients with leukemic relapse in 2010 illustrates the potential for the manipulation of alloreactivity for therapeutic benefit. This review describes the recent developments in T-cell recognition of human minor H antigens, and efforts to translate these discoveries to reduce leukemia relapse after allogeneic HCT.
Collapse
Affiliation(s)
- Marie Bleakley
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-981024, USA.
| | | |
Collapse
|
35
|
Bleakley M, Riddell SR. Exploiting T cells specific for human minor histocompatibility antigens for therapy of leukemia. Immunol Cell Biol 2011. [PMID: 21301477 DOI: 10.1038/icb.2010.124.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Minor histocompatibility (H) antigens are major targets of a graft-versus-leukemia (GVL) effect mediated by donor CD8(+) and CD4(+) T cells following allogeneic hematopoietic cell transplantation (HCT) between human leukocyte antigen identical individuals. In the 15 years since the first molecular characterization of human minor H antigens, significant strides in minor H antigen discovery have been made as a consequence of advances in cellular, genetic and molecular techniques. Much has been learned about the mechanisms of minor H antigen immunogenicity, their expression on normal and malignant cells, and their role in GVL responses. T cells specific for minor H antigens expressed on leukemic cells, including leukemic stem cells, can be isolated and expanded in vitro and infused into allogeneic HCT recipients to augment the GVL effect to prevent and treat relapse. The first report of the adoptive transfer of minor H antigen-specific T-cell clones to patients with leukemic relapse in 2010 illustrates the potential for the manipulation of alloreactivity for therapeutic benefit. This review describes the recent developments in T-cell recognition of human minor H antigens, and efforts to translate these discoveries to reduce leukemia relapse after allogeneic HCT.
Collapse
Affiliation(s)
- Marie Bleakley
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-981024, USA.
| | | |
Collapse
|
36
|
Abstract
For the last two decades the immunotherapy of patients with solid and hematopoietic tumors has met with variable success. We have reviewed the field of tumor vaccines to examine what has worked and what has not, why this has been the case, how the anti-tumor responses were examined, and how we can make tumor immunity successful for the majority of individuals rather than for the exceptional patients who currently show successful immune responses against their tumors.
Collapse
Affiliation(s)
- Jan Joseph Melenhorst
- Stem Cell Allogeneic Transplant Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
37
|
van der Veer MS, de Weers M, van Kessel B, Bakker JM, Wittebol S, Parren PWHI, Lokhorst HM, Mutis T. Towards effective immunotherapy of myeloma: enhanced elimination of myeloma cells by combination of lenalidomide with the human CD38 monoclonal antibody daratumumab. Haematologica 2010; 96:284-90. [PMID: 21109694 DOI: 10.3324/haematol.2010.030759] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND In our efforts to develop novel effective treatment regimens for multiple myeloma we evaluated the potential benefits of combining the immunomodulatory drug lenalidomide with daratumumab. Daratumumab is a novel human CD38 monoclonal antibody which kills CD38+ multiple myeloma cells via antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity and apoptosis. DESIGN AND METHODS To explore the effect of lenalidomide combined with daratumumab, we first carried out standard antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity assays in which the CD38+ multiple myeloma cell line UM-9 and primary multiple myeloma cells isolated from patients were used as target cells. We also tested the effect of lenalidomide on daratumumab-dependent cell-mediated-cytotoxicity and complement-dependent cytotoxicity of multiple myeloma cells directly in the bone marrow mononuclear cells of multiple myeloma patients. Finally, we determined the daratumumab-dependent cell-mediated cytotoxicity using peripheral blood mononuclear cells of multiple myeloma patients receiving lenalidomide treatment. RESULTS Daratumumab-dependent cell-mediated cytotoxicity of purified primary multiple myeloma cells, as well as of the UM-9 cell line, was significantly augmented by lenalidomide pre-treatment of the effector cells derived from peripheral blood mononuclear cells from healthy individuals. More importantly, we demonstrated a clear synergy between lenalidomide and daratumumab-induced antibody-dependent cell-mediated cytotoxicity directly in the bone marrow mononuclear cells of multiple myeloma patients, indicating that lenalidomide can also potentiate the daratumumab-dependent lysis of myeloma cells by activating the autologous effector cells within the natural environment of malignant cells. Finally, daratumumab-dependent cell-mediated cytotoxicity was significantly up-regulated in peripheral blood mononuclear cells derived from 3 multiple myeloma patients during lenalidomide treatment. CONCLUSIONS Our results indicate that powerful and complementary effects may be achieved by combining lenalidomide and daratumumab in the clinical management of multiple myeloma.
Collapse
Affiliation(s)
- Michael S van der Veer
- Dept. of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Spaapen RM, Groen RWJ, van den Oudenalder K, Guichelaar T, van Elk M, Aarts-Riemens T, Bloem AC, Storm G, Martens AC, Lokhorst HM, Mutis T. Eradication of medullary multiple myeloma by CD4+ cytotoxic human T lymphocytes directed at a single minor histocompatibility antigen. Clin Cancer Res 2010; 16:5481-8. [PMID: 21062930 DOI: 10.1158/1078-0432.ccr-10-1340] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The essential role of CD4(+) T cells as helpers of anticancer immunity is indisputable. Little is known, however, about their capacity to serve as effector cells in cancer treatment. Therefore, we explored the efficacy of immunotherapy with sole CD4(+) cytotoxic human T cells directed at a hematopoietic-restricted minor histocompatibility antigen (mHag). EXPERIMENTAL DESIGN In macrophage-depleted Rag2(-/-)γc(-/-) mice, which were also devoid of T, B, and natural killer cells, mHag-specific native T cells or tetanus toxoid (TT)-specific T cells transduced with the mHag-specific T-cell receptor (TCR) were injected to treat full-blown mHag(+) human multiple myeloma tumors. RESULTS mHag-specific antitumor responses were achieved after injection of native or mHag-TCR-transduced T cells. Although the therapy completely eradicated the primary tumors in the bone marrow, it failed to control extramedullary relapses, even after repeated T-cell injections. Detailed analyses ruled out mHag or MHC downregulation as mechanisms of extramedullary tumor escape. Impaired T-cell survival in vivo or defective homing to the tumor site were also ruled out as mechanisms behind extramedullary relapses, because injections of TT-loaded antigen presenting cells could facilitate homing of long-term surviving T cells to s.c. tumor sites. Moreover, intratumoral treatment of extramedullary tumors with 3AB11 was also ineffective. CONCLUSIONS Taken together, these results for the first time show the feasibility of immunotherapy of primary bone marrow tumors with sole CD4(+) human T cells directed to a tumor-associated mHag. Extramedullary relapses, probably due to microenvironment-dependent inhibitory mechanisms, remain a challenging issue towards effective cellular immunotherapy of hematologic malignancies.
Collapse
Affiliation(s)
- Robbert M Spaapen
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, University of Utrecht, Heidelberglaan 100, Utrecht, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Van Bergen CA, Rutten CE, Van Der Meijden ED, Van Luxemburg-Heijs SA, Lurvink EG, Houwing-Duistermaat JJ, Kester MG, Mulder A, Willemze R, Falkenburg JF, Griffioen M. High-Throughput Characterization of 10 New Minor Histocompatibility Antigens by Whole Genome Association Scanning. Cancer Res 2010; 70:9073-83. [DOI: 10.1158/0008-5472.can-10-1832] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Minor histocompatibility antigens: presentation principles, recognition logic and the potential for a healing hand. Curr Opin Organ Transplant 2010; 15:512-25. [PMID: 20616723 DOI: 10.1097/mot.0b013e32833c1552] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW There is ample evidence indicating a pathologic role for minor histocompatibility antigens in inciting graft-versus-host disease in major histocompatibility complex (MHC)-matched bone marrow transplantation and rejection of solid organ allografts. Here we review the current knowledge of the genetic and biochemical bases for the cause of minor histoincompatibility and the structural basis for the recognition of the resulting alloantigens by the T-cell receptor. RECENT FINDINGS Recent evidence indicates that we as independently conceived individuals are genetically unique, thus, offering a mechanism for minor histoincompatibility between MHC-identical donor-recipient pairs. Furthermore, advances in delineating the mechanisms underlying antigen cross-presentation by MHC class I molecules and a critical role for autophagy in presenting cytoplasmic antigens by MHC class II molecules have been made. These new insights coupled with the X-ray crystallographic solution of several peptide/MHC-T-cell receptor structures have revealed mechanisms of histoincompatibility. SUMMARY On the basis of these new insights, ways to test for allograft compatibility and concoction of immunotherapies are discussed.
Collapse
|
41
|
Lokhorst H, Einsele H, Vesole D, Bruno B, Miguel JS, Pérez-Simon JA, Kröger N, Moreau P, Gahrton G, Gasparetto C, Giralt S, Bensinger W. International Myeloma Working Group Consensus Statement Regarding the Current Status of Allogeneic Stem-Cell Transplantation for Multiple Myeloma. J Clin Oncol 2010; 28:4521-30. [PMID: 20697091 DOI: 10.1200/jco.2010.29.7929] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose To define consensus statement regarding allogeneic stem-cell transplantation (Allo-SCT) as a treatment option for multiple myeloma (MM) on behalf of International Myeloma Working Group. Patients and Methods In this review, results from prospective and retrospective studies of Allo-SCT in MM are summarized. Results Although the introduction of reduced-intensity conditioning (RIC) has lowered the high treatment-related mortality associated with myeloablative conditioning, convincing evidence is lacking that Allo-RIC improves the survival compared with autologous stem-cell transplantation. Conclusion New strategies are necessary to make Allo-SCT safer and more effective for patients with MM. Until this is achieved, Allo-RIC in myeloma should only be recommended in the context of clinical trials.
Collapse
Affiliation(s)
- Henk Lokhorst
- From the University Hospital Utrecht, the Netherlands; University Hospital Wuerzburg; University Hospital Hamburg-Eppendorf, Germany; The John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ; Giovanni Battista Hospital, University of Torino, Torino, Italy; University Hospital of Salamanca, Salamanca, Spain; Centre Hospitalier Universitaire Hôtel-Dieu, Nantes, France; Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Duke University Hospital, Durham,
| | - Hermann Einsele
- From the University Hospital Utrecht, the Netherlands; University Hospital Wuerzburg; University Hospital Hamburg-Eppendorf, Germany; The John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ; Giovanni Battista Hospital, University of Torino, Torino, Italy; University Hospital of Salamanca, Salamanca, Spain; Centre Hospitalier Universitaire Hôtel-Dieu, Nantes, France; Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Duke University Hospital, Durham,
| | - David Vesole
- From the University Hospital Utrecht, the Netherlands; University Hospital Wuerzburg; University Hospital Hamburg-Eppendorf, Germany; The John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ; Giovanni Battista Hospital, University of Torino, Torino, Italy; University Hospital of Salamanca, Salamanca, Spain; Centre Hospitalier Universitaire Hôtel-Dieu, Nantes, France; Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Duke University Hospital, Durham,
| | - Benedetto Bruno
- From the University Hospital Utrecht, the Netherlands; University Hospital Wuerzburg; University Hospital Hamburg-Eppendorf, Germany; The John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ; Giovanni Battista Hospital, University of Torino, Torino, Italy; University Hospital of Salamanca, Salamanca, Spain; Centre Hospitalier Universitaire Hôtel-Dieu, Nantes, France; Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Duke University Hospital, Durham,
| | - Jesus San Miguel
- From the University Hospital Utrecht, the Netherlands; University Hospital Wuerzburg; University Hospital Hamburg-Eppendorf, Germany; The John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ; Giovanni Battista Hospital, University of Torino, Torino, Italy; University Hospital of Salamanca, Salamanca, Spain; Centre Hospitalier Universitaire Hôtel-Dieu, Nantes, France; Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Duke University Hospital, Durham,
| | - Jose A. Pérez-Simon
- From the University Hospital Utrecht, the Netherlands; University Hospital Wuerzburg; University Hospital Hamburg-Eppendorf, Germany; The John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ; Giovanni Battista Hospital, University of Torino, Torino, Italy; University Hospital of Salamanca, Salamanca, Spain; Centre Hospitalier Universitaire Hôtel-Dieu, Nantes, France; Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Duke University Hospital, Durham,
| | - Nicolaus Kröger
- From the University Hospital Utrecht, the Netherlands; University Hospital Wuerzburg; University Hospital Hamburg-Eppendorf, Germany; The John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ; Giovanni Battista Hospital, University of Torino, Torino, Italy; University Hospital of Salamanca, Salamanca, Spain; Centre Hospitalier Universitaire Hôtel-Dieu, Nantes, France; Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Duke University Hospital, Durham,
| | - Philippe Moreau
- From the University Hospital Utrecht, the Netherlands; University Hospital Wuerzburg; University Hospital Hamburg-Eppendorf, Germany; The John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ; Giovanni Battista Hospital, University of Torino, Torino, Italy; University Hospital of Salamanca, Salamanca, Spain; Centre Hospitalier Universitaire Hôtel-Dieu, Nantes, France; Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Duke University Hospital, Durham,
| | - Gosta Gahrton
- From the University Hospital Utrecht, the Netherlands; University Hospital Wuerzburg; University Hospital Hamburg-Eppendorf, Germany; The John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ; Giovanni Battista Hospital, University of Torino, Torino, Italy; University Hospital of Salamanca, Salamanca, Spain; Centre Hospitalier Universitaire Hôtel-Dieu, Nantes, France; Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Duke University Hospital, Durham,
| | - Cristina Gasparetto
- From the University Hospital Utrecht, the Netherlands; University Hospital Wuerzburg; University Hospital Hamburg-Eppendorf, Germany; The John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ; Giovanni Battista Hospital, University of Torino, Torino, Italy; University Hospital of Salamanca, Salamanca, Spain; Centre Hospitalier Universitaire Hôtel-Dieu, Nantes, France; Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Duke University Hospital, Durham,
| | - Sergio Giralt
- From the University Hospital Utrecht, the Netherlands; University Hospital Wuerzburg; University Hospital Hamburg-Eppendorf, Germany; The John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ; Giovanni Battista Hospital, University of Torino, Torino, Italy; University Hospital of Salamanca, Salamanca, Spain; Centre Hospitalier Universitaire Hôtel-Dieu, Nantes, France; Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Duke University Hospital, Durham,
| | - William Bensinger
- From the University Hospital Utrecht, the Netherlands; University Hospital Wuerzburg; University Hospital Hamburg-Eppendorf, Germany; The John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ; Giovanni Battista Hospital, University of Torino, Torino, Italy; University Hospital of Salamanca, Salamanca, Spain; Centre Hospitalier Universitaire Hôtel-Dieu, Nantes, France; Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Duke University Hospital, Durham,
| |
Collapse
|
42
|
Schiering C, Guarnerio J, Basso V, Muzio L, Mondino A. Antigen-experienced CD4(+) T cells limit naïve T-cell priming in response to therapeutic vaccination in vivo. Cancer Res 2010; 70:6161-70. [PMID: 20631073 DOI: 10.1158/0008-5472.can-09-4398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CD4(+) T cells play a central role in protective immunity. In a mouse tumor model, we previously found that tumor growth elicits natural CD4(+) T-cell responses, but impedes therapeutic vaccination. We show here that inhibition of vaccine-mediated naïve T-cell priming is due to the presence of a minor but distinct population of tumor-reactive CD4(+) T cells. These cells are generated in the tumor draining lymph nodes (LN), are capable of systemic redistribution, and act to limit the representation of antigen-bearing MHC II(+) antigen-presenting cells (APC) in contralateral LNs or when transferred to tumor-free mice. Surgical tumor resection, which lowers the representation of tumor primed CD4(+) T cells, restored to some extent vaccine-induced CD4(+) T-cell activation. Likewise, vaccination with artificial APCs (latex beads) or higher numbers of dendritic cells allowed comparable CD4(+) T-cell priming in tumor-free and tumor-bearing mice. Together, our results emphasize the ability of antigen-experienced CD4(+) T lymphocytes to interfere with therapeutic vaccination and highlight the need for alternative strategies able to surmount limitations imposed by ongoing immune responses.
Collapse
Affiliation(s)
- Chris Schiering
- Program in Immunology and Bio-Immunotherapy of Cancer, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | |
Collapse
|
43
|
Ofran Y, Kim HT, Brusic V, Blake L, Mandrell M, Wu CJ, Sarantopoulos S, Bellucci R, Keskin DB, Soiffer RJ, Antin JH, Ritz J. Diverse patterns of T-cell response against multiple newly identified human Y chromosome-encoded minor histocompatibility epitopes. Clin Cancer Res 2010; 16:1642-51. [PMID: 20160060 PMCID: PMC2834217 DOI: 10.1158/1078-0432.ccr-09-2701] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Donor T cells respond to minor histocompatibility antigens (mHA), resulting in both graft-versus-host disease and graft versus leukemia after allogeneic hematopoietic stem cell transplantation. Because relatively few mHAs are known, we developed a new approach to predict and subsequently validate candidate mHA. EXPERIMENTAL DESIGN We developed an algorithm based on genetic disparities between Y chromosome-encoded and X chromosome-encoded proteins and known requirements for binding to HLA class I molecules to predict Y chromosome-derived, HLA A*0201-restricted peptides (HY) and ranked peptides based on potential immunogenicity. We evaluated T-cell responses to 41 candidate peptides in 28 male recipients with female donors (FM), 22 male recipients with male donors (MM), and 26 normal individuals. All patients and donors were HLA A*0201 positive. RESULTS Thirteen peptides derived from five proteins elicited significantly greater T-cell responses in FM patients compared with MM patients and in normal females compared with normal males. Six peptides were more immunogenic than the only previously known HLA A*0201-restricted Y-encoded mHA. Twenty-seven of 28 FM patients responded to at least one HY peptide, but despite a common Y chromosome mismatch and expression of HLA A*0201, each patient responded to a unique set of peptides. CONCLUSIONS Novel HLA A*0201-restricted HY epitopes can be predicted and validated in patients after allogeneic hematopoietic stem cell transplantation. Highly diverse patterns of T-cell response against these epitopes have been identified. Prospective monitoring of responses to large panels of immunogenic peptides can facilitate the identification of clinically relevant targets of graft-versus-host disease and graft versus leukemia.
Collapse
Affiliation(s)
- Yishai Ofran
- Division of Hematologic Malignancies, Boston, MA
- Cancer Vaccine Center, Boston, MA
- Harvard Medical School Boston, MA
| | - Haesook T. Kim
- Department of Biostatistics and Computational Biology, Boston, MA
| | | | - Loren Blake
- Division of Hematologic Malignancies, Boston, MA
| | | | - Catherine J. Wu
- Division of Hematologic Malignancies, Boston, MA
- Cancer Vaccine Center, Boston, MA
- Harvard Medical School Boston, MA
| | | | | | | | | | | | - Jerome Ritz
- Division of Hematologic Malignancies, Boston, MA
- Cancer Vaccine Center, Boston, MA
- Dana-Farber Cancer Institute Harvard Stem Cell Institute, Boston, MA
- Harvard Medical School Boston, MA
| |
Collapse
|
44
|
Quezada SA, Simpson TR, Peggs KS, Merghoub T, Vider J, Fan X, Blasberg R, Yagita H, Muranski P, Antony PA, Restifo NP, Allison JP. Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. ACTA ACUST UNITED AC 2010; 207:637-50. [PMID: 20156971 PMCID: PMC2839156 DOI: 10.1084/jem.20091918] [Citation(s) in RCA: 675] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Adoptive transfer of large numbers of tumor-reactive CD8(+) cytotoxic T lymphocytes (CTLs) expanded and differentiated in vitro has shown promising clinical activity against cancer. However, such protocols are complicated by extensive ex vivo manipulations of tumor-reactive cells and have largely focused on CD8(+) CTLs, with much less emphasis on the role and contribution of CD4(+) T cells. Using a mouse model of advanced melanoma, we found that transfer of small numbers of naive tumor-reactive CD4(+) T cells into lymphopenic recipients induces substantial T cell expansion, differentiation, and regression of large established tumors without the need for in vitro manipulation. Surprisingly, CD4(+) T cells developed cytotoxic activity, and tumor rejection was dependent on class II-restricted recognition of tumors by tumor-reactive CD4(+) T cells. Furthermore, blockade of the coinhibitory receptor CTL-associated antigen 4 (CTLA-4) on the transferred CD4(+) T cells resulted in greater expansion of effector T cells, diminished accumulation of tumor-reactive regulatory T cells, and superior antitumor activity capable of inducing regression of spontaneous mouse melanoma. These findings suggest a novel potential therapeutic role for cytotoxic CD4(+) T cells and CTLA-4 blockade in cancer immunotherapy, and demonstrate the potential advantages of differentiating tumor-reactive CD4(+) cells in vivo over current protocols favoring in vitro expansion and differentiation.
Collapse
Affiliation(s)
- Sergio A Quezada
- Ludwig Center for Cancer Immunotherapy, Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Spaapen RM, de Kort RA, van den Oudenalder K, van Elk M, Bloem AC, Lokhorst HM, Mutis T. Rapid Identification of Clinical Relevant Minor Histocompatibility Antigens via Genome-Wide Zygosity-Genotype Correlation Analysis. Clin Cancer Res 2009; 15:7137-43. [DOI: 10.1158/1078-0432.ccr-09-1914] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Postnov AA, Rozemuller H, Verwey V, Lokhorst H, De Clerck N, Martens AC. Correlation of high-resolution X-ray micro-computed tomography with bioluminescence imaging of multiple myeloma growth in a xenograft mouse model. Calcif Tissue Int 2009; 85:434-43. [PMID: 19816649 PMCID: PMC2768798 DOI: 10.1007/s00223-009-9284-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 08/12/2009] [Indexed: 01/12/2023]
Abstract
Multiple myeloma (MM) is an incurable B-cell neoplasia in which progressive skeletal lesions are a characteristic feature. Earlier we established an animal model for human MM in the immune-deficient RAG2(-/-)gammac(-/-) mouse, in which the growth of luciferase-transduced MM cells was visualized using noninvasive bioluminescence imaging (BLI). This model appeared well suited to study disease progression and response to therapy by identifying the location of various foci of MM tumor growth scattered throughout the skeleton and at subsequent time points the quantitative assessment of the tumor load by using BLI. We report here on the corresponding high-resolution X-ray micro-computed tomographic (micro-CT) analysis to study skeletal defects in the mice with full-blown MM. Several anatomical derangements were observed, including abnormalities in geometry and morphology, asymmetrical bone structures, decreased overall density in the remaining bone, loss of trabecular bone mass, destruction of the inner microarchitecture, as well as cortical perforations. Using the combination of BLI, micro-CT imaging, and immune-histopathological techniques, we found a high correlation between the micro-CT-identified lesions, exact tumor location, and infiltration leading to structural lesions and local bone deformation. This confirms that this animal model strongly resembles human MM and has the potential for studying the biology of MM growth and for preclinical testing of novel therapies for MM and for repair of MM-induced bone lesions.
Collapse
Affiliation(s)
- Andrei A. Postnov
- Department of Biomedical Sciences and Physics, University of Antwerp, Antwerp, Belgium
| | - Henk Rozemuller
- Department of Immunology, KC02.085.2, Stem cell Research, and Molecular Imaging, University Medical Center Utrecht, PO Box 85090, Lundlaan 6, 3584EA Utrecht, The Netherlands
| | - Viviene Verwey
- Department of Immunology, KC02.085.2, Stem cell Research, and Molecular Imaging, University Medical Center Utrecht, PO Box 85090, Lundlaan 6, 3584EA Utrecht, The Netherlands
| | - Henk Lokhorst
- Department of Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nora De Clerck
- Department of Biomedical Sciences and Physics, University of Antwerp, Antwerp, Belgium
| | - Anton C. Martens
- Department of Immunology, KC02.085.2, Stem cell Research, and Molecular Imaging, University Medical Center Utrecht, PO Box 85090, Lundlaan 6, 3584EA Utrecht, The Netherlands
| |
Collapse
|
47
|
Identification of 4 new HLA-DR–restricted minor histocompatibility antigens as hematopoietic targets in antitumor immunity. Blood 2009; 114:3684-92. [DOI: 10.1182/blood-2009-03-208017] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Potent graft-versus-leukemia (GVL) effects can be mediated by donor-derived T cells recognizing minor histocompatibility antigens (mHags) in patients treated with donor lymphocyte infusion (DLI) for relapsed hematologic malignancies after HLA-matched allogeneic stem cell transplantation (alloSCT). Donor-derived T cells, however, may not only induce GVL, but also mediate detrimental graft-versus-host disease (GVHD). Because HLA-class II is under noninflammatory conditions predominantly expressed on hematopoietic cells, CD4+ T cells administered late after alloSCT may selectively confer GVL without GVHD. Although a broad range of different HLA-class I–restricted mHags have been identified, the first 2 autosomal HLA-class II–restricted mHags have only recently been characterized. By screening a recombinant bacteria cDNA expression library, we identified 4 new HLA-class II–restricted mHags recognized by CD4+ T cells induced in a patient with relapsed chronic myeloid leukemia who achieved long-term complete remission and experienced only mild GVHD of the skin after DLI. All CD4+ T cells were capable of recognizing the mHags presented by HLA-DR surface molecules on primary hematopoietic cells, but not on skin-derived (cytokine-treated) fibroblasts. The selective recognition of hematopoietic cells as well as the balanced population frequencies and common HLA-DR restriction elements make the novel mHags possible targets for development of immunotherapeutic strategies.
Collapse
|
48
|
Abstract
The success of allogeneic hematopoietic cell transplantation (HCT) for B-cell malignancies is evidence that these tumors can be eliminated by T lymphocytes. This has encouraged the development of specific adoptive T-cell therapy, both for augmenting the anti-tumor effect of HCT and for patients not undergoing HCT. T cells that are capable of recognizing antigens expressed on malignant B cells may be recruited from the endogenous repertoire or engineered to express tumor-targeting receptors. Critical insights into the qualities of T cells that enable their persistence and function in vivo have been derived, and obstacles to effective T-cell-mediated tumor eradication are being elucidated. These advances provide the tools to translate adoptive T-cell transfer into reliable clinical therapies.
Collapse
Affiliation(s)
- Michael Hudecek
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA and Department of Hematology, Oncology and Coagulation, University of Leipzig Medical Center, University of Leipzig, Germany, Tel.: +1 206 667 4181, Fax: +1 206 667 7983,
| | - Larry D Anderson
- University of Texas Southwestern Medical Center, Department of Internal Medicine, Hematology–Oncology, 5323 Harry Hines Blvd, Dallas, TX 75390, USA, Tel.: +1 214 648 5906, Fax: +1 214 648 4152,
| | - Tetsuya Nishida
- Nagoya University Graduate School of Medicine, 65-Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8560, Japan, Tel.: +81 527 442 145, Fax: +81 527 442161,
| | - Stanley R Riddell
- Departments of Medicine, University of Washington, Seattle, WA, USA and Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, D3-100, Seattle, WA 98109, USA, Tel.: +1 206 667 5249, Fax: +1 206 667 7983,
| |
Collapse
|
49
|
The relevance of minor histocompatibility antigens in solid organ transplantation. Curr Opin Organ Transplant 2009; 14:419-25. [PMID: 19444105 DOI: 10.1097/mot.0b013e32832d399c] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Disparities in minor histocompatibility antigens between HLA-matched organ and hematopoietic stem cell donors and recipients create the risks of graft failure and graft-versus-host disease (GvHD) respectively. A decade ago, technical advances combined with genomic information resulted in the identification of the chemical nature of the first series of minor histocompatibility antigens, facilitating their molecular typing. A new era of research had begun in exploring the role of minor histocompatibility antigens in physiological and nonphysiological settings. Here we summarize, to the best of our knowledge, human studies on the relevance of minor histocompatibility antigens in solid organ transplantation with a main focus on renal allografting. RECENT FINDINGS The minor histocompatibility antigen HY is associated with acute rejection, and male grafts in female recipients have reduced graft survival; both cellular and humoral responses are observed. Studies on autosomal minor histocompatibility antigens on graft rejection are less conclusive; their role in transplant tolerance, however, offers perspective. SUMMARY Information on the clinical relevance of minor histocompatibility antigen allo-immune responses in solid organ allografting is still scarce. The possible implications of the minor histocompatibility allo-immune responses for future clinical practice in solid organ transplantation are discussed in relation to their possible detrimental or beneficial effects on the host.
Collapse
|