1
|
Wang Y, Dou W, Qian X, Chen H, Zhang Y, Yang L, Wu Y, Xu X. Advancements in the study of short-chain fatty acids and their therapeutic effects on atherosclerosis. Life Sci 2025; 369:123528. [PMID: 40049368 DOI: 10.1016/j.lfs.2025.123528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/15/2025] [Accepted: 03/02/2025] [Indexed: 03/09/2025]
Abstract
Atherosclerosis (AS) remains a leading cause of cardiovascular disease and mortality globally. This chronic condition is characterized by inflammation, lipid accumulation, and the deposition of cellular components within arterial walls. Emerging evidence has highlighted the multifaceted therapeutic potential of short-chain fatty acids (SCFAs) in mitigating AS progression. SCFAs have demonstrated anti-inflammatory properties and the ability to regulate immune responses, metabolic pathways, vascular integrity, and intestinal barrier function in animal models of AS. Consequently, SCFAs have garnered significant attention as a promising approach for the prevention and treatment of AS. However, further clinical trials and studies are necessary to fully elucidate the underlying mechanisms and effects of SCFAs. Additionally, different types of SCFAs may exert distinct impacts, necessitating more in-depth investigation into their specific roles and mechanisms. This review provides an overview of the diverse cellular mechanisms contributing to AS formation, as well as a discussion of the significance of SCFAs in AS pathogenesis and their multifaceted therapeutic potential. Nonetheless, additional research is warranted to comprehensively understand and harness the potential of various SCFAs in the context of AS.
Collapse
Affiliation(s)
- Yongsen Wang
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Taiping Street 25, Luzhou, Sichuan 646000, PR China; Department of Hepatobiliary Pancreatic and Splcnic Surgery, Luzhou People's Hospital, Luzhou, Sichuan 646000, PR China; Department of Vascular and Breast Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan 621000, PR China
| | - Wei Dou
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Taiping Street 25, Luzhou, Sichuan 646000, PR China
| | - Xin Qian
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Taiping Street 25, Luzhou, Sichuan 646000, PR China
| | - Hao Chen
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Taiping Street 25, Luzhou, Sichuan 646000, PR China
| | - Yi Zhang
- Department of Vascular and Breast Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan 621000, PR China
| | - Liu Yang
- Department of Hepatobiliary Pancreatic and Splcnic Surgery, Luzhou People's Hospital, Luzhou, Sichuan 646000, PR China
| | - Ya Wu
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Taiping Street 25, Luzhou, Sichuan 646000, PR China
| | - Xiongfei Xu
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Taiping Street 25, Luzhou, Sichuan 646000, PR China.
| |
Collapse
|
2
|
Bartoli-Leonard F, Pennel T, Caputo M. Immunotherapy in the Context of Aortic Valve Diseases. Cardiovasc Drugs Ther 2024; 38:1173-1185. [PMID: 39017904 PMCID: PMC11680629 DOI: 10.1007/s10557-024-07608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE Aortic valve disease (AVD) affects millions of people around the world, with no pharmacological intervention available. Widely considered a multi-faceted disease comprising both regurgitative pathogenesis, in which retrograde blood flows back through to the left ventricle, and aortic valve stenosis, which is characterized by the thickening, fibrosis, and subsequent mineralization of the aortic valve leaflets, limiting the anterograde flow through the valve, surgical intervention is still the main treatment, which incurs considerable risk to the patient. RESULTS Though originally thought of as a passive degeneration of the valve or a congenital malformation that has occurred before birth, the paradigm of AVD is shifting, and research into the inflammatory drivers of valve disease as a potential mechanism to modulate the pathobiology of this life-limiting pathology is taking center stage. Following limited success in mainstay therapeutics such as statins and mineralisation inhibitors, immunomodulatory strategies are being developed. Immune cell therapy has begun to be adopted in the cancer field, in which T cells (chimeric antigen receptor (CAR) T cells) are isolated from the patient, programmed to attack the cancer, and then re-administered to the patient. Within cardiac research, a novel T cell-based therapeutic approach has been developed to target lipid nanoparticles responsible for increasing cardiac fibrosis in a failing heart. With clonally expanded T-cell populations recently identified within the diseased valve, their unique epitope presentation may serve to identify novel targets for the treatment of valve disease. CONCLUSION Taken together, targeted T-cell therapy may hold promise as a therapeutic platform to target a multitude of diseases with an autoimmune aspect, and this review aims to frame this in the context of cardiovascular disease, delineating what is currently known in the field, both clinically and translationally.
Collapse
Affiliation(s)
- Francesca Bartoli-Leonard
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK.
- Bristol Heart Institute, University Hospital Bristol and Weston NHS Foundation Trust, Bristol, UK.
- Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Cape Town, South Africa.
| | - Tim Pennel
- Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Cape Town, South Africa
| | - Massimo Caputo
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
- Bristol Heart Institute, University Hospital Bristol and Weston NHS Foundation Trust, Bristol, UK
| |
Collapse
|
3
|
Zhang W, Cai Z, Ma D, Liu M, Wang J, Sun L, Lew AM, Xu Y. Local adaptive immunity in atherosclerosis with T cell activation by aortic dendritic cells accelerates pathogenesis. iScience 2024; 27:111144. [PMID: 39502289 PMCID: PMC11536043 DOI: 10.1016/j.isci.2024.111144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Atherosclerosis represents a chronic inflammatory condition in arterial walls, where local immune cells significantly contribute to disease progression. This study employed various in situ immunological techniques to investigate the specific roles of aortic dendritic cell (DC) subsets in atherosclerotic animal models, distinguishing between normal and diseased immune contexts. Our findings revealed that aortic DCs, particularly the cDC1 subset, played a critical role in facilitating CD8+ T cell activation through antigen presentation. Additionally, atherosclerosis-induced increases in GM-CSF levels enhanced CCR7 expression on aortic monocyte-derived DCs, promoting their recruitment and IL-12 production for Th1 differentiation. Notably, immunizing pre-atherosclerotic mice with DC-presented antigens or transferring aortic DCs from atherosclerotic mice resulted in accelerated disease onset. This research elucidates the adaptive immune functions of aortic DCs, offering insights into the cellular mechanisms driving aortic inflammation and potential therapeutic targets for atherosclerosis management.
Collapse
Affiliation(s)
- Wenjie Zhang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Zecheng Cai
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Dan Ma
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Meng Liu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Juncheng Wang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Li Sun
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Andrew M. Lew
- The Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville, VIC, Australia
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
4
|
Le Nezet E, Marqueze-Pouey C, Guisle I, Clavel MA. Molecular Features of Calcific Aortic Stenosis in Female and Male Patients. CJC Open 2024; 6:1125-1137. [PMID: 39525825 PMCID: PMC11544188 DOI: 10.1016/j.cjco.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/06/2024] [Indexed: 11/16/2024] Open
Abstract
Over the past 15 years, sex-related differences in aortic valve (AV) stenosis (AS) have been highlighted, affecting various aspects of AS, such as the pathophysiology, AV lesions, left ventricle remodelling, and outcomes. Female patients were found to present a more profibrotic pattern of leaflet remodelling and/or thickening, whereas male patients have a preponderance of calcification within stenosed leaflets. The understanding of these sex differences is still limited, owing to the underrepresentation of female patients in many basic and clinical research studies and trials. A better understanding of sex differences in the pathophysiology of AS may highlight new therapeutic targets that potentially could be sex-specific. This review aims to summarize sex-related differences in AS, as discovered from basic research experiments, covering aspects of the disease ranging from leaflet composition to signalling pathways, sex hormones, genetics and/or transcriptomics, and potential sex-adapted medical treatments.
Collapse
Affiliation(s)
- Emma Le Nezet
- Institut universitaire de cardiologie et pneumologie de Québec [Quebec Heart & Lung Institute], Université Laval, Québec City, Québec, Canada
| | - Chloé Marqueze-Pouey
- Institut universitaire de cardiologie et pneumologie de Québec [Quebec Heart & Lung Institute], Université Laval, Québec City, Québec, Canada
| | - Isabelle Guisle
- Institut universitaire de cardiologie et pneumologie de Québec [Quebec Heart & Lung Institute], Université Laval, Québec City, Québec, Canada
| | - Marie-Annick Clavel
- Institut universitaire de cardiologie et pneumologie de Québec [Quebec Heart & Lung Institute], Université Laval, Québec City, Québec, Canada
| |
Collapse
|
5
|
Liu T, Chen Y, Hou L, Yu Y, Ma D, Jiang T, Zhao G. Immune cell-mediated features of atherosclerosis. Front Cardiovasc Med 2024; 11:1450737. [PMID: 39234608 PMCID: PMC11371689 DOI: 10.3389/fcvm.2024.1450737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by innate and adaptive immune responses, which seriously threatens human life and health. It is a primary cause of coronary heart disease, myocardial infarction, and peripheral vascular disease. Research has demonstrated that immune cells are fundamental to the development of atherosclerosis and chronic inflammation. Therefore, it is anticipated that immunotherapy targeting immune cells will be a novel technique in the management of atherosclerosis. This article reviews the growth of research on the regulatory role of immune cells in atherosclerosis and targeted therapy approaches. The purpose is to offer new therapeutic approaches for the control and treatment of cardiovascular illnesses caused by atherosclerosis.
Collapse
Affiliation(s)
- Tingting Liu
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Yanjun Chen
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lianjie Hou
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Yulu Yu
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Dan Ma
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ting Jiang
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Guojun Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| |
Collapse
|
6
|
Nicholas SAE, Helming SR, Ménoret A, Pathoulas C, Xu MM, Hensel J, Kimble AL, Heineman B, Jellison ER, Reese B, Zhou B, Rodriguez-Oquendo A, Vella AT, Murphy PA. Endothelial Immunosuppression in Atherosclerosis : Translational Control by Elavl1/HuR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.605922. [PMID: 39131295 PMCID: PMC11312609 DOI: 10.1101/2024.08.02.605922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Atherosclerotic plaques are defined by the accumulation of lipids and immune cells beneath the endothelium of the arterial intima. CD8 T cells are among the most abundant immune cell types in plaque, and conditions linked to their activation correlate with increased levels of cardiovascular disease. As lethal effectors of the immune response, CD8 T cell activation is suppressed at multiple levels. These checkpoints are critical in dampening autoimmune responses, and limiting damage in cardiovascular disease. Endothelial cells are well known for their role in recruiting CD8 T and other hematopoietic cells to low and disturbed flow (LDF) arterial regions that develop plaque, but whether they locally influence CD8 effector functions is unclear. Here, we show that endothelial cells can actively suppress CD8 T cell responses in settings of chronic plaque inflammation, but that this behavior is governed by expression of the RNA-binding protein Embryonic Lethal, Abnormal Vision-Like 1 (Elavl1). In response to immune cell recruitment in plaque, the endothelium dynamically shifts splicing of pre-mRNA and their translation to enhance expression of immune-regulatory proteins including C1q and CD27. This program is immuno-suppressive, and limited by Elavl1. We show this by Cdh5(PAC)-CreERT2-mediated deletion of Elavl1 (ECKO), and analysis of changes in translation by Translating Ribosome Affinity Purification (TRAP). In ECKO mice, the translational shift in chronic inflammation is enhanced, leading to increased ribosomal association of C1q components and other critical regulators of immune response and resulting in a ~70% reduction in plaque CD8 T cells. CITE-seq analysis of the remaining plaque T cells shows that they exhibit lower levels of markers associated with T cell receptor (TCR) signaling, survival, and activation. To understand whether the immunosuppressive mechanism occurred through failed CD8 recruitment or local modulation of T cell responses, we used a novel in vitro co-culture system to show that ECKO endothelial cells suppress CD8 T cell expansion-even in the presence of wild-type myeloid antigen-presenting cells, antigen-specific CD8 T cells, and antigen. Despite the induction of C1q mRNA by T cell co-culture in both wild-type and ECKO endothelial cells, we find C1q protein abundantly expressed only in co-culture with ECKO cells. Together, our data define a novel immune-suppressive transition in the endothelium, reminiscent of the transition of T cells to T-regs, and demonstrate the regulation of this process by Elavl1.
Collapse
Affiliation(s)
- Sarah-Anne E Nicholas
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | - Stephen R Helming
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | | | - Christopher Pathoulas
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | - Maria M Xu
- Department of Immunology, UCONN Health, Farmington, CT
| | - Jessica Hensel
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | - Amy L Kimble
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | - Brent Heineman
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | | | - Bo Reese
- Institute for Systems Genomics - Center for Genome Innovation, UCONN, Storrs, CT
| | - Beiyan Zhou
- Department of Immunology, UCONN Health, Farmington, CT
| | | | | | - Patrick A Murphy
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| |
Collapse
|
7
|
Zheng K, Hao Y, Xia C, Cheng S, Yu J, Chen Z, Li Y, Niu Y, Ran S, Wang S, Ye W, Luo Z, Li X, Zhao J, Li R, Zong J, Zhang H, Lai L, Huang P, Zhou C, Xia J, Zhang X, Wu J. Effects and mechanisms of the myocardial microenvironment on cardiomyocyte proliferation and regeneration. Front Cell Dev Biol 2024; 12:1429020. [PMID: 39050889 PMCID: PMC11266095 DOI: 10.3389/fcell.2024.1429020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
The adult mammalian cardiomyocyte has a limited capacity for self-renewal, which leads to the irreversible heart dysfunction and poses a significant threat to myocardial infarction patients. In the past decades, research efforts have been predominantly concentrated on the cardiomyocyte proliferation and heart regeneration. However, the heart is a complex organ that comprises not only cardiomyocytes but also numerous noncardiomyocyte cells, all playing integral roles in maintaining cardiac function. In addition, cardiomyocytes are exposed to a dynamically changing physical environment that includes oxygen saturation and mechanical forces. Recently, a growing number of studies on myocardial microenvironment in cardiomyocyte proliferation and heart regeneration is ongoing. In this review, we provide an overview of recent advances in myocardial microenvironment, which plays an important role in cardiomyocyte proliferation and heart regeneration.
Collapse
Affiliation(s)
- Kexiao Zheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenkun Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoxian Cheng
- Jingshan Union Hospital, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Longyong Lai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pinyan Huang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Obare LM, Temu T, Mallal SA, Wanjalla CN. Inflammation in HIV and Its Impact on Atherosclerotic Cardiovascular Disease. Circ Res 2024; 134:1515-1545. [PMID: 38781301 PMCID: PMC11122788 DOI: 10.1161/circresaha.124.323891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
People living with HIV have a 1.5- to 2-fold increased risk of developing cardiovascular disease. Despite treatment with highly effective antiretroviral therapy, people living with HIV have chronic inflammation that makes them susceptible to multiple comorbidities. Several factors, including the HIV reservoir, coinfections, clonal hematopoiesis of indeterminate potential (CHIP), microbial translocation, and antiretroviral therapy, may contribute to the chronic state of inflammation. Within the innate immune system, macrophages harbor latent HIV and are among the prominent immune cells present in atheroma during the progression of atherosclerosis. They secrete inflammatory cytokines such as IL (interleukin)-6 and tumor necrosis-α that stimulate the expression of adhesion molecules on the endothelium. This leads to the recruitment of other immune cells, including cluster of differentiation (CD)8+ and CD4+ T cells, also present in early and late atheroma. As such, cells of the innate and adaptive immune systems contribute to both systemic inflammation and vascular inflammation. On a molecular level, HIV-1 primes the NLRP3 (NLR family pyrin domain containing 3) inflammasome, leading to an increased expression of IL-1β, which is important for cardiovascular outcomes. Moreover, activation of TLRs (toll-like receptors) by HIV, gut microbes, and substance abuse further activates the NLRP3 inflammasome pathway. Finally, HIV proteins such as Nef (negative regulatory factor) can inhibit cholesterol efflux in monocytes and macrophages through direct action on the cholesterol transporter ABCA1 (ATP-binding cassette transporter A1), which promotes the formation of foam cells and the progression of atherosclerotic plaque. Here, we summarize the stages of atherosclerosis in the context of HIV, highlighting the effects of HIV, coinfections, and antiretroviral therapy on cells of the innate and adaptive immune system and describe current and future interventions to reduce residual inflammation and improve cardiovascular outcomes among people living with HIV.
Collapse
Affiliation(s)
- Laventa M. Obare
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN (L.M.O., S.A.M., C.N.W.)
| | - Tecla Temu
- Department of Pathology, Harvard Medical School, Boston, MA (T.T.)
| | - Simon A. Mallal
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN (L.M.O., S.A.M., C.N.W.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN (S.A.M.)
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN (S.A.M.)
- Institute for Immunology and Infectious Diseases, Murdoch University, WA, Western Australia (S.A.M.)
| | - Celestine N. Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN (L.M.O., S.A.M., C.N.W.)
| |
Collapse
|
9
|
Polenz CK, Scipione CA, Hyduk SJ, Althagafi MG, Ibrahim HM, Cybulsky MI. Plasma S1P Orchestrates the Reverse Transendothelial Migration of Aortic Intimal Myeloid Cells in Mice. Arterioscler Thromb Vasc Biol 2024; 44:883-897. [PMID: 38328936 DOI: 10.1161/atvbaha.123.320227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Myeloid cells (MCs) reside in the aortic intima at regions predisposed to atherosclerosis. Systemic inflammation triggers reverse transendothelial migration (RTM) of intimal MCs into the arterial blood, which orchestrates a protective immune response that clears intracellular pathogens from the arterial intima. Molecular pathways that regulate RTM remain poorly understood. S1P (sphingosine-1-phosphate) is a lipid mediator that regulates immune cell trafficking by signaling via 5 G-protein-coupled receptors (S1PRs [S1P receptors]). We investigated the role of S1P in the RTM of aortic intimal MCs. METHODS Intravenous injection of lipopolysaccharide was used to model a systemic inflammatory stimulus that triggers RTM. CD11c+ intimal MCs in the lesser curvature of the ascending aortic arch were enumerated by en face confocal microscopy. Local gene expression was evaluated by transcriptomic analysis of microdissected intimal cells. RESULTS In wild-type C57BL/6 mice, lipopolysaccharide induced intimal cell expression of S1pr1, S1pr3, and Sphk1 (a kinase responsible for S1P production). Pharmacological modulation of multiple S1PRs blocked lipopolysaccharide-induced RTM and modulation of S1PR1 and S1PR3 reduced RTM in an additive manner. Cre-mediated deletion of S1pr1 in MCs blocked lipopolysaccharide-induced RTM, confirming a role for myeloid-specific S1PR1 signaling. Global or hematopoietic deficiency of Sphk1 reduced plasma S1P levels, the abundance of CD11c+ MCs in the aortic intima, and blunted lipopolysaccharide-induced RTM. In contrast, plasma S1P levels, the abundance of intimal MCs, and lipopolysaccharide-induced RTM were rescued in Sphk1-/- mice transplanted with Sphk1+/+ or mixed Sphk1+/+ and Sphk1-/- bone marrow. Stimulation with lipopolysaccharide increased endothelial permeability and intimal MC exposure to circulating factors such as S1P. CONCLUSIONS Functional and expression studies support a novel role for S1P signaling in the regulation of lipopolysaccharide-induced RTM and the homeostatic maintenance of aortic intimal MCs. Our data provide insight into how circulating plasma mediators help orchestrate intimal MC dynamics.
Collapse
Affiliation(s)
- Chanele K Polenz
- Departments of Laboratory Medicine and Pathobiology (C.K.P., C.A.S., M.G.A., H.M.I., M.I.C.), University of Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Canada (C.K.P., C.A.S., S.J.H., M.G.A., H.M.I., M.I.C.)
| | - Corey A Scipione
- Departments of Laboratory Medicine and Pathobiology (C.K.P., C.A.S., M.G.A., H.M.I., M.I.C.), University of Toronto, Canada
- Immunology (C.A.S., M.I.C.), University of Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Canada (C.K.P., C.A.S., S.J.H., M.G.A., H.M.I., M.I.C.)
| | - Sharon J Hyduk
- Toronto General Hospital Research Institute, University Health Network, Canada (C.K.P., C.A.S., S.J.H., M.G.A., H.M.I., M.I.C.)
| | - Marwan G Althagafi
- Departments of Laboratory Medicine and Pathobiology (C.K.P., C.A.S., M.G.A., H.M.I., M.I.C.), University of Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Canada (C.K.P., C.A.S., S.J.H., M.G.A., H.M.I., M.I.C.)
| | - Hisham M Ibrahim
- Departments of Laboratory Medicine and Pathobiology (C.K.P., C.A.S., M.G.A., H.M.I., M.I.C.), University of Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Canada (C.K.P., C.A.S., S.J.H., M.G.A., H.M.I., M.I.C.)
| | - Myron I Cybulsky
- Departments of Laboratory Medicine and Pathobiology (C.K.P., C.A.S., M.G.A., H.M.I., M.I.C.), University of Toronto, Canada
- Immunology (C.A.S., M.I.C.), University of Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Canada (C.K.P., C.A.S., S.J.H., M.G.A., H.M.I., M.I.C.)
- Peter Munk Cardiac Centre, University Health Network, Toronto, Canada (M.I.C.)
| |
Collapse
|
10
|
Hoque MM, Gbadegoye JO, Hassan FO, Raafat A, Lebeche D. Cardiac fibrogenesis: an immuno-metabolic perspective. Front Physiol 2024; 15:1336551. [PMID: 38577624 PMCID: PMC10993884 DOI: 10.3389/fphys.2024.1336551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Cardiac fibrosis is a major and complex pathophysiological process that ultimately culminates in cardiac dysfunction and heart failure. This phenomenon includes not only the replacement of the damaged tissue by a fibrotic scar produced by activated fibroblasts/myofibroblasts but also a spatiotemporal alteration of the structural, biochemical, and biomechanical parameters in the ventricular wall, eliciting a reactive remodeling process. Though mechanical stress, post-infarct homeostatic imbalances, and neurohormonal activation are classically attributed to cardiac fibrosis, emerging evidence that supports the roles of immune system modulation, inflammation, and metabolic dysregulation in the initiation and progression of cardiac fibrogenesis has been reported. Adaptive changes, immune cell phenoconversions, and metabolic shifts in the cardiac nonmyocyte population provide initial protection, but persistent altered metabolic demand eventually contributes to adverse remodeling of the heart. Altered energy metabolism, mitochondrial dysfunction, various immune cells, immune mediators, and cross-talks between the immune cells and cardiomyocytes play crucial roles in orchestrating the transdifferentiation of fibroblasts and ensuing fibrotic remodeling of the heart. Manipulation of the metabolic plasticity, fibroblast-myofibroblast transition, and modulation of the immune response may hold promise for favorably modulating the fibrotic response following different cardiovascular pathological processes. Although the immunologic and metabolic perspectives of fibrosis in the heart are being reported in the literature, they lack a comprehensive sketch bridging these two arenas and illustrating the synchrony between them. This review aims to provide a comprehensive overview of the intricate relationship between different cardiac immune cells and metabolic pathways as well as summarizes the current understanding of the involvement of immune-metabolic pathways in cardiac fibrosis and attempts to identify some of the previously unaddressed questions that require further investigation. Moreover, the potential therapeutic strategies and emerging pharmacological interventions, including immune and metabolic modulators, that show promise in preventing or attenuating cardiac fibrosis and restoring cardiac function will be discussed.
Collapse
Affiliation(s)
- Md Monirul Hoque
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Joy Olaoluwa Gbadegoye
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Fasilat Oluwakemi Hassan
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amr Raafat
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Djamel Lebeche
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
- Medicine-Cardiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
- Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
11
|
Abdalla AME, Miao Y, Ahmed AIM, Meng N, Ouyang C. CAR-T cell therapeutic avenue for fighting cardiac fibrosis: Roadblocks and perspectives. Cell Biochem Funct 2024; 42:e3955. [PMID: 38379220 DOI: 10.1002/cbf.3955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
Heart diseases remain the primary cause of human mortality in the world. Although conventional therapeutic opportunities fail to halt or recover cardiac fibrosis, the promising clinical results and therapeutic efficacy of engineered chimeric antigen receptor (CAR) T cell therapy show several advancements. However, the current models of CAR-T cells need further improvement since the T cells are associated with the triggering of excessive inflammatory cytokines that directly affect cardiac functions. Thus, the current study highlights the critical function of heart immune cells in tissue fibrosis and repair. The study also confirms CAR-T cell as an emerging therapeutic for treating cardiac fibrosis, explores the current roadblocks to CAR-T cell therapy, and considers future outlooks for research development.
Collapse
Affiliation(s)
- Ahmed M E Abdalla
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
- Department of Biochemistry, College of Applied Science, University of Bahri, Khartoum, Sudan
| | - Yu Miao
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Ahmed I M Ahmed
- Department of Biochemistry, College of Applied Science, University of Bahri, Khartoum, Sudan
| | - Ning Meng
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Britsch S, Langer H, Duerschmied D, Becher T. The Evolving Role of Dendritic Cells in Atherosclerosis. Int J Mol Sci 2024; 25:2450. [PMID: 38397127 PMCID: PMC10888834 DOI: 10.3390/ijms25042450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Atherosclerosis, a major contributor to cardiovascular morbidity and mortality, is characterized by chronic inflammation of the arterial wall. This inflammatory process is initiated and maintained by both innate and adaptive immunity. Dendritic cells (DCs), which are antigen-presenting cells, play a crucial role in the development of atherosclerosis and consist of various subtypes with distinct functional abilities. Following the recognition and binding of antigens, DCs become potent activators of cellular responses, bridging the innate and adaptive immune systems. The modulation of specific DC subpopulations can have either pro-atherogenic or atheroprotective effects, highlighting the dual pro-inflammatory or tolerogenic roles of DCs. In this work, we provide a comprehensive overview of the evolving roles of DCs and their subtypes in the promotion or limitation of atherosclerosis development. Additionally, we explore antigen pulsing and pharmacological approaches to modulate the function of DCs in the context of atherosclerosis.
Collapse
Affiliation(s)
- Simone Britsch
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 13092 Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Harald Langer
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 13092 Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Daniel Duerschmied
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 13092 Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Tobias Becher
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
| |
Collapse
|
13
|
Döring Y, van der Vorst EP, Yan Y, Neideck C, Blanchet X, Jansen Y, Kemmerich M, Bayasgalan S, Peters LJ, Hristov M, Bidzhekov K, Yin C, Zhang X, Leberzammer J, Li Y, Park I, Kral M, Nitz K, Parma L, Gencer S, Habenicht A, Faussner A, Teupser D, Monaco C, Holdt L, Megens RT, Atzler D, Santovito D, von Hundelshausen P, Weber C. Identification of a non-canonical chemokine-receptor pathway suppressing regulatory T cells to drive atherosclerosis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:221-242. [PMID: 39044999 PMCID: PMC7616283 DOI: 10.1038/s44161-023-00413-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/14/2023] [Indexed: 07/25/2024]
Abstract
CCL17 is produced by conventional dendritic cells (cDCs), signals through CCR4 on regulatory T cells (Tregs), and drives atherosclerosis by suppressing Treg functions through yet undefined mechanisms. Here we show that cDCs from CCL17-deficient mice display a pro-tolerogenic phenotype and transcriptome that is not phenocopied in mice lacking its cognate receptor CCR4. In the plasma of CCL17-deficient mice, CCL3 was the only decreased cytokine/chemokine. We found that CCL17 signaled through CCR8 as an alternate high-affinity receptor, which induced CCL3 expression and suppressed Treg functions in the absence of CCR4. Genetic ablation of CCL3 and CCR8 in CD4+ T cells reduced CCL3 secretion, boosted FoxP3+ Treg numbers, and limited atherosclerosis. Conversely, CCL3 administration exacerbated atherosclerosis and restrained Treg differentiation. In symptomatic versus asymptomatic human carotid atheroma, CCL3 expression was increased, while FoxP3 expression was reduced. Together, we identified a non-canonical chemokine pathway whereby CCL17 interacts with CCR8 to yield a CCL3-dependent suppression of atheroprotective Tregs.
Collapse
Affiliation(s)
- Yvonne Döring
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Emiel P.C. van der Vorst
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Yi Yan
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Pediatric Translational Medicine Institute and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Carlos Neideck
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Xavier Blanchet
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Yvonne Jansen
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Manuela Kemmerich
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | | | - Linsey J.F. Peters
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Michael Hristov
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Kiril Bidzhekov
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Changjun Yin
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Xi Zhang
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Julian Leberzammer
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Ya Li
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Inhye Park
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, United Kingdom
| | - Maria Kral
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Katrin Nitz
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Laura Parma
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Selin Gencer
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Andreas Habenicht
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Alexander Faussner
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Daniel Teupser
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Germany
| | - Claudia Monaco
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Lesca Holdt
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Germany
| | - Remco T.A. Megens
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich
| | - Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, Milan, Italy
| | | | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| |
Collapse
|
14
|
Scipione CA, Hyduk SJ, Polenz CK, Cybulsky MI. Unveiling the Hidden Landscape of Arterial Diseases at Single-Cell Resolution. Can J Cardiol 2023; 39:1781-1794. [PMID: 37716639 DOI: 10.1016/j.cjca.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023] Open
Abstract
High-resolution single-cell technologies have shed light on the pathogenesis of cardiovascular diseases by enabling the discovery of novel cellular and transcriptomic signatures associated with various conditions, and uncovering new contributions of inflammatory processes, immunity, metabolic stress, and risk factors. We review the information obtained from studies using single-cell technologies in tissues with atherosclerosis and aortic aneurysms. Insights are provided on the biology of endothelial, smooth muscle, and immune cells in the arterial intima and media. In addition to cellular diversity, numerous examples of plasticity and phenotype switching are highlighted and presented in the context of normal cell functions.
Collapse
Affiliation(s)
- Corey A Scipione
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada.
| | - Sharon J Hyduk
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Chanele K Polenz
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Myron I Cybulsky
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada; Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Wang E, Zhou R, Li T, Hua Y, Zhou K, Li Y, Luo S, An Q. The Molecular Role of Immune Cells in Dilated Cardiomyopathy. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1246. [PMID: 37512058 PMCID: PMC10385992 DOI: 10.3390/medicina59071246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Dilated cardiomyopathy (DCM) is a rare and severe condition characterized by chamber dilation and impaired contraction of the left ventricle. It constitutes a fundamental etiology for profound heart failure and abrupt cardiac demise, rendering it a prominent clinical indication for heart transplantation (HTx) among both adult and pediatric populations. DCM arises from various etiologies, including genetic variants, epigenetic disorders, infectious insults, autoimmune diseases, and cardiac conduction abnormalities. The maintenance of cardiac function involves two distinct types of immune cells: resident immune cells and recruited immune cells. Resident immune cells play a crucial role in establishing a harmonious microenvironment within the cardiac tissue. Nevertheless, in response to injury, cardiomyocytes initiate a cytokine cascade that attracts peripheral immune cells, thus perturbing this intricate equilibrium and actively participating in the initiation and pathological remodeling of dilated cardiomyopathy (DCM), particularly during the progression of myocardial fibrosis. Additionally, immune cells assume a pivotal role in orchestrating the inflammatory processes, which are intimately linked to the prognosis of DCM. Consequently, understanding the molecular role of various immune cells and their regulation mechanisms would provide an emerging era for managing DCM. In this review, we provide a summary of the most recent advancements in our understanding of the molecular mechanisms of immune cells in DCM. Additionally, we evaluate the effectiveness and limitations of immunotherapy approaches for the treatment of DCM, with the aim of optimizing future immunotherapeutic strategies for this condition.
Collapse
Affiliation(s)
- Enping Wang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Ruofan Zhou
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Tiange Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yifei Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuhua Luo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Qi An
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Spinetti G, Mutoli M, Greco S, Riccio F, Ben-Aicha S, Kenneweg F, Jusic A, de Gonzalo-Calvo D, Nossent AY, Novella S, Kararigas G, Thum T, Emanueli C, Devaux Y, Martelli F. Cardiovascular complications of diabetes: role of non-coding RNAs in the crosstalk between immune and cardiovascular systems. Cardiovasc Diabetol 2023; 22:122. [PMID: 37226245 PMCID: PMC10206598 DOI: 10.1186/s12933-023-01842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/25/2023] [Indexed: 05/26/2023] Open
Abstract
Diabetes mellitus, a group of metabolic disorders characterized by high levels of blood glucose caused by insulin defect or impairment, is a major risk factor for cardiovascular diseases and related mortality. Patients with diabetes experience a state of chronic or intermittent hyperglycemia resulting in damage to the vasculature, leading to micro- and macro-vascular diseases. These conditions are associated with low-grade chronic inflammation and accelerated atherosclerosis. Several classes of leukocytes have been implicated in diabetic cardiovascular impairment. Although the molecular pathways through which diabetes elicits an inflammatory response have attracted significant attention, how they contribute to altering cardiovascular homeostasis is still incompletely understood. In this respect, non-coding RNAs (ncRNAs) are a still largely under-investigated class of transcripts that may play a fundamental role. This review article gathers the current knowledge on the function of ncRNAs in the crosstalk between immune and cardiovascular cells in the context of diabetic complications, highlighting the influence of biological sex in such mechanisms and exploring the potential role of ncRNAs as biomarkers and targets for treatments. The discussion closes by offering an overview of the ncRNAs involved in the increased cardiovascular risk suffered by patients with diabetes facing Sars-CoV-2 infection.
Collapse
Affiliation(s)
- Gaia Spinetti
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy.
| | - Martina Mutoli
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Federica Riccio
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Soumaya Ben-Aicha
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Franziska Kenneweg
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | | | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Anne Yaël Nossent
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Susana Novella
- Department of Physiology, University of Valencia - INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Georgios Kararigas
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Costanza Emanueli
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy.
| |
Collapse
|
17
|
Su X, Wang L, Ma N, Yang X, Liu C, Yang F, Li J, Yi X, Xing Y. Immune heterogeneity in cardiovascular diseases from a single-cell perspective. Front Cardiovasc Med 2023; 10:1057870. [PMID: 37180791 PMCID: PMC10167030 DOI: 10.3389/fcvm.2023.1057870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
A variety of immune cell subsets occupy different niches in the cardiovascular system, causing changes in the structure and function of the heart and vascular system, and driving the progress of cardiovascular diseases (CVDs). The immune cells infiltrating the injury site are highly diverse and integrate into a broad dynamic immune network that controls the dynamic changes of CVDs. Due to technical limitations, the effects and molecular mechanisms of these dynamic immune networks on CVDs have not been fully revealed. With recent advances in single-cell technologies such as single-cell RNA sequencing, systematic interrogation of the immune cell subsets is feasible and will provide insights into the way we understand the integrative behavior of immune populations. We no longer lightly ignore the role of individual cells, especially certain highly heterogeneous or rare subpopulations. We summarize the phenotypic diversity of immune cell subsets and their significance in three CVDs of atherosclerosis, myocardial ischemia and heart failure. We believe that such a review could enhance our understanding of how immune heterogeneity drives the progression of CVDs, help to elucidate the regulatory roles of immune cell subsets in disease, and thus guide the development of new immunotherapies.
Collapse
Affiliation(s)
- Xin Su
- China Academy of Chinese Medical Sciences, Guang’anmen Hospital, Beijing, China
| | - Li Wang
- Department of Breast Surgery, Xingtai People’s Hospital, Xingtai, China
| | - Ning Ma
- Department of Breast Surgery, Dezhou Second People’s Hospital, Dezhou, China
| | - Xinyu Yang
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Can Liu
- China Academy of Chinese Medical Sciences, Guang’anmen Hospital, Beijing, China
| | - Fan Yang
- China Academy of Chinese Medical Sciences, Guang’anmen Hospital, Beijing, China
| | - Jun Li
- China Academy of Chinese Medical Sciences, Guang’anmen Hospital, Beijing, China
| | - Xin Yi
- Department of Cardiology, Beijing Huimin Hospital, Beijing, China
| | - Yanwei Xing
- China Academy of Chinese Medical Sciences, Guang’anmen Hospital, Beijing, China
| |
Collapse
|
18
|
Nguyen TAV, Lino CA, Hang HT, Alves JV, Thang BQ, Shin SJ, Sugiyama K, Matsunaga H, Takeyama H, Yamashiro Y, Yanagisawa H. Protective Role of Endothelial Fibulin-4 in Valvulo-Arterial Integrity. J Am Heart Assoc 2022; 12:e026942. [PMID: 36565192 PMCID: PMC9973605 DOI: 10.1161/jaha.122.026942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Homeostasis of the vessel wall is cooperatively maintained by endothelial cells (ECs), smooth muscle cells, and adventitial fibroblasts. The genetic deletion of fibulin-4 (Fbln4) in smooth muscle cells (SMKO) leads to the formation of thoracic aortic aneurysms with the disruption of elastic fibers. Although Fbln4 is expressed in the entire vessel wall, its function in ECs and relevance to the maintenance of valvulo-arterial integrity are not fully understood. Methods and Results Gene silencing of FBLN4 was conducted on human aortic ECs to evaluate morphological changes and gene expression profile. Fbln4 double knockout (DKO) mice in ECs and smooth muscle cells were generated and subjected to histological analysis, echocardiography, Western blotting, RNA sequencing, and immunostaining. An evaluation of the thoracic aortic aneurysm phenotype and screening of altered signaling pathways were performed. Knockdown of FBLN4 in human aortic ECs induced mesenchymal cell-like changes with the upregulation of mesenchymal genes, including TAGLN and MYL9. DKO mice showed the exacerbation of thoracic aortic aneurysms when compared with those of SMKO and upregulated Thbs1, a mechanical stress-responsive molecule, throughout the aorta. DKO mice also showed progressive aortic valve thickening with collagen deposition from postnatal day 14, as well as turbulent flow in the ascending aorta. Furthermore, RNA sequencing and immunostaining of the aortic valve revealed the upregulation of genes involved in endothelial-to-mesenchymal transition, inflammatory response, and tissue fibrosis in DKO valves and the presence of activated valve interstitial cells. Conclusions The current study uncovers the pivotal role of endothelial fibulin-4 in the maintenance of valvulo-arterial integrity, which influences thoracic aortic aneurysm progression.
Collapse
Affiliation(s)
- Tram Anh Vu Nguyen
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research AllianceUniversity of TsukubaIbarakiJapan,Ph.D. Program in Human Biology, School of Integrative and Global MajorsUniversity of TsukubaIbarakiJapan
| | - Caroline Antunes Lino
- Department of AnatomyUniversity of Sao Paulo, Institute of Biomedical SciencesSao PauloBrazil
| | - Huynh Thuy Hang
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research AllianceUniversity of TsukubaIbarakiJapan,Graduate School of Comprehensive Human SciencesUniversity of TsukubaIbarakiJapan
| | - Juliano Vilela Alves
- Department of PharmacologyUniversity of Sao Paulo, Ribeirao Preto Medical SchoolRibeirao PretoBrazil
| | - Bui Quoc Thang
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research AllianceUniversity of TsukubaIbarakiJapan,Deputy Head of Scientific Research Department‐ Training center, Cho Ray hospitalHo Chi Minh CityVietnam
| | - Seung Jae Shin
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research AllianceUniversity of TsukubaIbarakiJapan,Graduate School of Life and Environmental SciencesUniversity of TsukubaIbarakiJapan
| | - Kaori Sugiyama
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research AllianceUniversity of TsukubaIbarakiJapan,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda UniversityTokyoJapan
| | - Hiroko Matsunaga
- Research organization for Nano and Life InnovationWaseda UniversityTokyoJapan
| | - Haruko Takeyama
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda UniversityTokyoJapan,Research organization for Nano and Life InnovationWaseda UniversityTokyoJapan,Department of Life Science and Medical BioscienceWaseda UniversityTokyoJapan,Computational Bio Big‐Data Open Innovation LaboratoryAIST‐Waseda UniversityTokyoJapan
| | - Yoshito Yamashiro
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research AllianceUniversity of TsukubaIbarakiJapan,Present address:
Department of Advanced Medical TechnologiesNational Cerebral and Cardiovascular Center Research InstituteOsaka564‐8565Japan
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research AllianceUniversity of TsukubaIbarakiJapan,Faculty of MedicineUniversity of TsukubaIbarakiJapan
| |
Collapse
|
19
|
Moggio A, Schunkert H, Kessler T, Sager HB. Quo Vadis? Immunodynamics of Myeloid Cells after Myocardial Infarction. Int J Mol Sci 2022; 23:15814. [PMID: 36555456 PMCID: PMC9779515 DOI: 10.3390/ijms232415814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Myocardial infarction (MI), a major contributor to worldwide morbidity and mortality, is caused by a lack of blood flow to the heart. Affected heart tissue becomes ischemic due to deficiency of blood perfusion and oxygen delivery. In case sufficient blood flow cannot be timely restored, cardiac injury with necrosis occurs. The ischemic/necrotic area induces a systemic inflammatory response and hundreds of thousands of leukocytes are recruited from the blood to the injured heart. The blood pool of leukocytes is rapidly depleted and urgent re-supply of these cells is needed. Myeloid cells are generated in the bone marrow (BM) and spleen, released into the blood, travel to sites of need, extravasate and accumulate inside tissues to accomplish various functions. In this review we focus on the "leukocyte supply chain" and will separately evaluate different myeloid cell compartments (BM, spleen, blood, heart) in steady state and after MI. Moreover, we highlight the local and systemic kinetics of extracellular factors, chemokines and danger signals involved in the regulation of production/generation, release, transportation, uptake, and activation of myeloid cells during the inflammatory phase of MI.
Collapse
Affiliation(s)
- Aldo Moggio
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW To highlight recent conceptual and technological advances that have positioned the field to interrogate the cellular and molecular mechanisms contributing to the initiation of atherosclerosis, including intimal lipid accumulation, inflammation, and lesion growth. RECENT FINDINGS Advances in the understanding of endothelial LDL transcytosis and rapid lipid uptake by intimal macrophages provide mechanistic insights into intimal LDL accumulation and the initiation of atherogenesis. Recent studies have used unbiased single-cell approaches, such as single-cell RNA sequencing and CyTOF, to characterize the cellular components of the normal intima and atherosclerotic lesions. In-vitro studies and high-resolution transcriptomic analysis of aortic intimal lipid-loaded versus lipid-poor myeloid populations in vivo suggest that lipid-loaded macrophages may not be the primary drivers of inflammation in atherosclerotic lesions. SUMMARY A new perspective on the complex cellular landscape of the aorta, specifically the atherosclerosis-prone regions, confirm that intimal accumulation of lipid, monocyte recruitment, and macrophage accumulation are key events in atherogenesis triggered by hypercholesterolemia. Targeting these early events may prove to be a promising strategy for the attenuation of lesion development; however, the specific details of how hypercholesterolemia acts to initiate early inflammatory events remain to be fully elucidated.
Collapse
Affiliation(s)
- Corey A. Scipione
- Toronto General Hospital Research Institute, University Health Network
- Department of Laboratory Medicine and Pathobiology
- Department of Immunology, University of Toronto
| | - Myron I. Cybulsky
- Toronto General Hospital Research Institute, University Health Network
- Department of Laboratory Medicine and Pathobiology
- Department of Immunology, University of Toronto
- Peter Munk Cardiac Centre, University Health Network, Toronto, Canada
| |
Collapse
|
21
|
Lee SH, Kim N, Kim M, Woo SH, Han I, Park J, Kim K, Park KS, Kim K, Shim D, Park SE, Zhang JY, Go DM, Kim DY, Yoon WK, Lee SP, Chung J, Kim KW, Park JH, Lee SH, Lee S, Ann SJ, Lee SH, Ahn HS, Jeong SC, Kim TK, Oh GT, Park WY, Lee HO, Choi JH. Single-cell transcriptomics reveal cellular diversity of aortic valve and the immunomodulation by PPARγ during hyperlipidemia. Nat Commun 2022; 13:5461. [PMID: 36115863 PMCID: PMC9482653 DOI: 10.1038/s41467-022-33202-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Valvular inflammation triggered by hyperlipidemia has been considered as an important initial process of aortic valve disease; however, cellular and molecular evidence remains unclear. Here, we assess the relationship between plasma lipids and valvular inflammation, and identify association of low-density lipoprotein with increased valvular lipid and macrophage accumulation. Single-cell RNA sequencing analysis reveals the cellular heterogeneity of leukocytes, valvular interstitial cells, and valvular endothelial cells, and their phenotypic changes during hyperlipidemia leading to recruitment of monocyte-derived MHC-IIhi macrophages. Interestingly, we find activated PPARγ pathway in Cd36+ valvular endothelial cells increased in hyperlipidemic mice, and the conservation of PPARγ activation in non-calcified human aortic valves. While the PPARγ inhibition promotes inflammation, PPARγ activation using pioglitazone reduces valvular inflammation in hyperlipidemic mice. These results show that low-density lipoprotein is the main lipoprotein accumulated in the aortic valve during hyperlipidemia, leading to early-stage aortic valve disease, and PPARγ activation protects the aortic valve against inflammation. Identifying the mechanisms underlying the early inflammatory phase of aortic valve disease is crucial for disease prevention. Here the authors perform single-cell RNA sequencing to show the immunomodulatory role of PPARγ in valvular endothelial cells during hyperlipidemia.
Collapse
|
22
|
Bellini R, Bonacina F, Norata GD. Crosstalk between dendritic cells and T lymphocytes during atherogenesis: Focus on antigen presentation and break of tolerance. Front Cardiovasc Med 2022; 9:934314. [PMID: 35966516 PMCID: PMC9365967 DOI: 10.3389/fcvm.2022.934314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/05/2022] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is a chronic disease resulting from an impaired lipid and immune homeostasis, where the interaction between innate and adaptive immune cells leads to the promotion of atherosclerosis-associated immune-inflammatory response. Emerging evidence has suggested that this response presents similarities to the reactivity of effector immune cells toward self-epitopes, often as a consequence of a break of tolerance. In this context, dendritic cells, a heterogeneous population of antigen presenting cells, play a key role in instructing effector T cells to react against foreign antigens and T regulatory cells to maintain tolerance against self-antigens and/or to patrol for self-reactive effector T cells. Alterations in this delicate balance appears to contribute to atherogenesis. The aim of this review is to discuss different DC subsets, and their role in atherosclerosis as well as in T cell polarization. Moreover, we will discuss how loss of T cell tolerogenic phenotype participates to the immune-inflammatory response associated to atherosclerosis and how a better understanding of these mechanisms might result in designing immunomodulatory therapies targeting DC-T cell crosstalk for the treatment of atherosclerosis-related inflammation.
Collapse
Affiliation(s)
- Rossella Bellini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- *Correspondence: Fabrizia Bonacina,
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy
- Giuseppe Danilo Norata,
| |
Collapse
|
23
|
A cardioimmunologist's toolkit: genetic tools to dissect immune cells in cardiac disease. Nat Rev Cardiol 2022; 19:395-413. [PMID: 35523863 DOI: 10.1038/s41569-022-00701-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Cardioimmunology is a field that encompasses the immune cells and pathways that modulate cardiac function in homeostasis and regulate the temporal balance between tissue injury and repair in disease. Over the past two decades, genetic fate mapping and high-dimensional sequencing techniques have defined increasing functional heterogeneity of innate and adaptive immune cell populations in the heart and other organs, revealing a complexity not previously appreciated and challenging established frameworks for the immune system. Given these rapid advances, understanding how to use these tools has become crucial. However, cardiovascular biologists without immunological expertise might not be aware of the strengths and caveats of immune-related tools and how they can be applied to examine the pathogenesis of myocardial diseases. In this Review, we guide readers through case-based examples to demonstrate how tool selection can affect data quality and interpretation and we provide critical analysis of the experimental tools that are currently available, focusing on their use in models of ischaemic heart injury and heart failure. The goal is to increase the use of relevant immunological tools and strategies among cardiovascular researchers to improve the precision, translatability and consistency of future studies of immune cells in cardiac disease.
Collapse
|
24
|
Liang G, Wang S, Shao J, Jin Y, Xu L, Yan Y, Günther S, Wang L, Offermanns S. Tenascin-X Mediates Flow-Induced Suppression of EndMT and Atherosclerosis. Circ Res 2022; 130:1647-1659. [PMID: 35443807 DOI: 10.1161/circresaha.121.320694] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Endothelial-to-mesenchymal transition (EndMT) has been identified as a critical driver of vascular inflammation and atherosclerosis, and TGF-β (transforming growth factor β) is a key mediator of EndMT. Both EndMT and atherosclerosis are promoted by disturbed flow, whereas unidirectional laminar flow limits EndMT and is atheroprotective. How EndMT and endothelial TGF-β signaling are regulated by different flow patterns is, however, still poorly understood. METHODS Flow chamber experiments in vitro and endothelium-specific knockout mice were used to study the role of tenascin-X in the regulation of EndMT and atherosclerosis as well as the underlying mechanisms. RESULTS In human endothelial cells as well as in human and mouse aortae, unidirectional laminar flow but not disturbed flow strongly increased endothelial expression of the extracellular matrix protein TN-X (tenascin-X) in a KLF4 (Krüppel-like factor 4) dependent manner. Mice with endothelium-specific loss of TN-X (EC-Tnxb-KO) showed increased endothelial TGF-β signaling as well as increased endothelial expression of EndMT and inflammatory marker genes. When EC-Tnxb-KO mice were subjected to partial carotid artery ligation, we observed increased vascular remodeling. EC-Tnxb-KO mice crossed to low-density lipoprotein receptor-deficient mice showed advanced atherosclerotic lesions after being fed a high-fat diet. Treatment of EC-Tnxb-KO mice with an anti-TGF-beta antibody or additional endothelial loss of TGF-beta receptors 1 and 2 normalized endothelial TGF-beta signaling and prevented EndMT. In in vitro studies, we found that TN-X through its fibrinogen-like domain directly interacts with TGF-β and thereby interferes with its binding to the TGF-β receptor. CONCLUSIONS In summary, we show that TN-X is a central mediator of flow-induced inhibition of EndMT, endothelial inflammation and atherogenesis, which functions by binding to and by blocking the activity of TGF-β. Our data identify a novel mechanism of flow-dependent regulation of vascular TGF-β, which holds promise for generating new strategies to prevent vascular inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Guozheng Liang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Germany (G.L., J.S., Y.J., L.W., S.O.)
| | - ShengPeng Wang
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (S.W., L.X.)
| | - Jingchen Shao
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Germany (G.L., J.S., Y.J., L.W., S.O.)
| | - YoungJune Jin
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Germany (G.L., J.S., Y.J., L.W., S.O.)
| | - Liran Xu
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (S.W., L.X.)
| | - Yang Yan
- Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, China (Y.Y.)
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Germany (S.G.)
| | - Lei Wang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Germany (G.L., J.S., Y.J., L.W., S.O.)
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Germany (G.L., J.S., Y.J., L.W., S.O.).,Center for Molecular Medicine, Goethe University Frankfurt, Germany (S.O.).,Cardiopulmonary Institute (CPI), Frankfurt/Bad Nauheim, Germany (S.O.).,German Center for Cardiovascular Research (DZHK), Rhine-Main site, Frankfurt and Bad Nauheim, Germany (S.O.)
| |
Collapse
|
25
|
Abstract
The immune system is fundamental to tissue homeostasis and is the first line of defense following infection, injury or disease. In the damaged heart, large numbers of immune cells are recruited to the site of injury. These cells play an integral part in both repair by scar formation and the initiation of tissue regeneration. They initially assume inflammatory phenotypes, releasing pro-inflammatory cytokines and removing dead and dying tissue, before entering a reparative stage, replacing dead muscle tissue with a non-contractile scar. In this Review, we present an overview of the innate and adaptive immune response to heart injury. We explore the kinetics of immune cell mobilization following cardiac injury and how the different innate and adaptive immune cells interact with one another and with the damaged tissue. We draw on key findings from regenerative models, providing insight into how to support a robust immune response permissible for cardiac regeneration. Finally, we consider how the latest technological developments can offer opportunities for a deeper and unbiased functional understanding of the immune response to heart disease, highlighting the importance of such knowledge as the basis for promoting regeneration following cardiac injury in human patients.
Collapse
Affiliation(s)
- Filipa C. Simões
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford,Oxford, OxfordshireOX3 9DS, UK
- Institute of Developmental and Regenerative Medicine, Old Road Campus, Oxford, OxfordshireOX3 7DQ, UK
| | - Paul R. Riley
- Institute of Developmental and Regenerative Medicine, Old Road Campus, Oxford, OxfordshireOX3 7DQ, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OxfordshireOX1 3PT, UK
| |
Collapse
|
26
|
Roy P, Orecchioni M, Ley K. How the immune system shapes atherosclerosis: roles of innate and adaptive immunity. Nat Rev Immunol 2022; 22:251-265. [PMID: 34389841 PMCID: PMC10111155 DOI: 10.1038/s41577-021-00584-1] [Citation(s) in RCA: 254] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is the root cause of many cardiovascular diseases. Extensive research in preclinical models and emerging evidence in humans have established the crucial roles of the innate and adaptive immune systems in driving atherosclerosis-associated chronic inflammation in arterial blood vessels. New techniques have highlighted the enormous heterogeneity of leukocyte subsets in the arterial wall that have pro-inflammatory or regulatory roles in atherogenesis. Understanding the homing and activation pathways of these immune cells, their disease-associated dynamics and their regulation by microbial and metabolic factors will be crucial for the development of clinical interventions for atherosclerosis, including potentially vaccination-based therapeutic strategies. Here, we review key molecular mechanisms of immune cell activation implicated in modulating atherogenesis and provide an update on the contributions of innate and adaptive immune cell subsets in atherosclerosis.
Collapse
Affiliation(s)
- Payel Roy
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Marco Orecchioni
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
27
|
Sauter M, Langer HF. Targeting Cell-Specific Molecular Mechanisms of Innate Immunity in Atherosclerosis. Front Physiol 2022; 13:802990. [PMID: 35432000 PMCID: PMC9010538 DOI: 10.3389/fphys.2022.802990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanisms of innate immunity contribute to inflammation, one of the major underlying causes of atherogenesis and progression of atherosclerotic vessel disease. How immune cells exactly contribute to atherosclerosis and interact with molecules of cholesterol homeostasis is still a matter of intense research. Recent evidence has proposed a potential role of previously underappreciated cell types in this chronic disease including platelets and dendritic cells (DCs). The pathophysiology of atherosclerosis is studied in models with dysfunctional lipid homeostasis and several druggable molecular targets are derived from these models. Specific therapeutic approaches focussing on these immune mechanisms, however, have not been successfully introduced into everyday clinical practice, yet. This review highlights molecular insights into immune processes related to atherosclerosis and potential future translational approaches targeting these molecular mechanisms.
Collapse
Affiliation(s)
- M. Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - H. F. Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- Department of Cardiology, University Heart Center Luebeck, University Hospital, Luebeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
- *Correspondence: H. F. Langer,
| |
Collapse
|
28
|
Ronen D, Bsoul A, Lotem M, Abedat S, Yarkoni M, Amir O, Asleh R. Exploring the Mechanisms Underlying the Cardiotoxic Effects of Immune Checkpoint Inhibitor Therapies. Vaccines (Basel) 2022; 10:vaccines10040540. [PMID: 35455289 PMCID: PMC9031363 DOI: 10.3390/vaccines10040540] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Adaptive immune response modulation has taken a central position in cancer therapy in recent decades. Treatment with immune checkpoint inhibitors (ICIs) is now indicated in many cancer types with exceptional results. The two major inhibitory pathways involved are cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and programmed cell death protein 1 (PD-1). Unfortunately, immune activation is not tumor-specific, and as a result, most patients will experience some form of adverse reaction. Most immune-related adverse events (IRAEs) involve the skin and gastrointestinal (GI) tract; however, any organ can be involved. Cardiotoxicity ranges from arrhythmias to life-threatening myocarditis with very high mortality rates. To date, most treatments of ICI cardiotoxicity include immune suppression, which is also not cardiac-specific and may result in hampering of tumor clearance. Understanding the mechanisms behind immune activation in the heart is crucial for the development of specific treatments. Histological data and other models have shown mainly CD4 and CD8 infiltration during ICI-induced cardiotoxicity. Inhibition of CTLA4 seems to result in the proliferation of more diverse T0cell populations, some of which with autoantigen recognition. Inhibition of PD-1 interaction with PD ligand 1/2 (PD-L1/PD-L2) results in release from inhibition of exhausted self-recognizing T cells. However, CTLA4, PD-1, and their ligands are expressed on a wide range of cells, indicating a much more intricate mechanism. This is further complicated by the identification of multiple co-stimulatory and co-inhibitory signals, as well as the association of myocarditis with antibody-driven myasthenia gravis and myositis IRAEs. In this review, we focus on the recent advances in unraveling the complexity of the mechanisms driving ICI cardiotoxicity and discuss novel therapeutic strategies for directly targeting specific underlying mechanisms to reduce IRAEs and improve outcomes.
Collapse
Affiliation(s)
- Daniel Ronen
- Department of Internal Medicine D, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Aseel Bsoul
- Cardiovascular Research Center, Heart Institute, Hadassah University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (A.B.); (S.A.); (O.A.)
| | - Michal Lotem
- Department of Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Suzan Abedat
- Cardiovascular Research Center, Heart Institute, Hadassah University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (A.B.); (S.A.); (O.A.)
| | - Merav Yarkoni
- Department of Cardiology, Heart Institute, Hadassah University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Offer Amir
- Cardiovascular Research Center, Heart Institute, Hadassah University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (A.B.); (S.A.); (O.A.)
- Department of Cardiology, Heart Institute, Hadassah University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Rabea Asleh
- Cardiovascular Research Center, Heart Institute, Hadassah University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (A.B.); (S.A.); (O.A.)
- Department of Cardiology, Heart Institute, Hadassah University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
- Correspondence: ; Tel.: +972-2-6776564; Fax: +972-2-6411028
| |
Collapse
|
29
|
Sun L, Zhang W, Zhao L, Zhao Y, Wang F, Lew AM, Xu Y. Self-Tolerance of Vascular Tissues Is Broken Down by Vascular Dendritic Cells in Response to Systemic Inflammation to Initiate Regional Autoinflammation. Front Immunol 2022; 13:823853. [PMID: 35154143 PMCID: PMC8825784 DOI: 10.3389/fimmu.2022.823853] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022] Open
Abstract
The correlation of infections with vascular autoinflammatory diseases such as vasculitis and atherosclerosis has been long recognized, and progressive inflammation with the formation of tertiary lymphoid organs in arterial adventitia intensively studied, the immunological basis of the nondiseased vasculatures that predispose to subsequent vascular autoimmunity during inflammation, however, is not well characterized. Here, we investigated the vascular immunity in situ of steady-state C57BL/6 mice and found that healthy vascular tissues contained a comprehensive set of immune cells with relatively higher proportion of innate components than lymphoid organs. Notably, a complete set of dendritic cell (DC) subsets was observed with monocyte-derived DCs (moDCs) constituting a major proportion; this is in contrast to moDCs being considered rare in the steady state. Interestingly, these vascular DCs constitutively expressed more suppressive factors with cDC1 for PD-L1 and moDCs for IL-10; this is concordant with the inhibitive phenotype of T cells in normal vascular tissues. The immunotolerant state of the vascular tissues, however, was readily eroded by systemic inflammation, demonstrated by the upregulation of proinflammatory cytokines and enhanced antigen presentation by vascular DCs to activate both cellular and humoral immunity in situ, which ultimately led to vascular destruction. Different vascular DC subsets elicited selective effects: moDCs were potent cytokine producers and B-cell activators, whereas cDCs, particularly, cDC1, were efficient at presenting antigens to stimulate T cells. Together, we unveil regional immunological features of vascular tissues to explain their dual facets under physiological versus pathological conditions for the better understanding and treatment of cardiovascular autoinflammation.
Collapse
Affiliation(s)
- Li Sun
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Wenjie Zhang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Lin Zhao
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Yanfang Zhao
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Fengge Wang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Andrew M Lew
- The Walter & Eliza Hall Institute of Medical Research and Dept of Microbiology & Immunology, University of Melbourne, Parkville, VIC, Australia
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| |
Collapse
|
30
|
Sauter M, Sauter RJ, Nording H, Lin C, Olbrich M, Autenrieth S, Gleissner C, Thunemann M, Otero N, Lutgens E, Aherrahrou Z, Wolf D, Zender L, Meuth S, Feil R, Langer HF. Apolipoprotein E derived from CD11c + cells ameliorates atherosclerosis. iScience 2022; 25:103677. [PMID: 35036868 PMCID: PMC8749187 DOI: 10.1016/j.isci.2021.103677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 11/24/2022] Open
Abstract
Atherosclerosis is studied in models with dysfunctional lipid homeostasis—predominantly the ApoE−/− mouse. The role of antigen-presenting cells (APCs) for lipid homeostasis is not clear. Using a LacZ reporter mouse, we showed that CD11c+ cells were enriched in aortae of ApoE−/− mice. Systemic long-term depletion of CD11c+ cells in ApoE−/− mice resulted in significantly increased plaque formation associated with reduced serum ApoE levels. In CD11ccre+ApoEfl/fl and Albumincre+ApoEfl/fl mice, we could show that ≈70% of ApoE is liver-derived and ≈25% originates from CD11c+ cells associated with significantly increased atherosclerotic plaque burden in both strains. Exposure to acLDL promoted cholesterol efflux from CD11c+ cells and cell-specific deletion of ApoE resulted in increased inflammation reflected by increased IL-1β serum levels. Our results determined for the first time the level of ApoE originating from CD11c+ cells and demonstrated that CD11c+ cells ameliorate atherosclerosis by the secretion of ApoE. CD11c+ cells are enriched in aortae of high cholesterol-fed ApoE−/- mice Depletion of CD11c+ cells increases plaque size in ApoE−/- mice ≈ 20% of serum ApoE derives from CD11c+ cells ApoE from CD11c+ cells contributes to protection from atherosclerosis
Collapse
Affiliation(s)
- Manuela Sauter
- Department of Cardiology, University Hospital, Medical Clinic II, University Heart Center Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
| | - Reinhard J Sauter
- Department of Cardiology, University Hospital, Medical Clinic II, University Heart Center Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
| | - Henry Nording
- Department of Cardiology, University Hospital, Medical Clinic II, University Heart Center Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Luebeck/Kiel, 23562 Luebeck, Germany
| | - Chaolan Lin
- Department of Cardiology, University Hospital, Medical Clinic II, University Heart Center Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
| | - Marcus Olbrich
- University Hospital, Department of Cardiology, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Stella Autenrieth
- University Hospital, Department of Hematology and Oncology, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Christian Gleissner
- University Hospital, Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Martin Thunemann
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Nadia Otero
- Philipps University Marburg, Faculty of Medicine, 35043 Marburg, Germany
| | - Esther Lutgens
- University Hospital Munich, Institute for Prophylaxis and Epidemiology of Circulatory Diseases, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Zouhair Aherrahrou
- University of Luebeck, Institute of Cardiogenetics, 23538 Luebeck, Germany
| | - Dennis Wolf
- University Hospital, Department of Cardiology and Angiology, University Heart Center Freiburg - Bad Krozingen, 79106 Freiburg, Germany
| | - Lars Zender
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, 72076 Tuebingen, Germany.,DFG Cluster of Excellence 2180 'Image-guided and Functional Instructed Tumor Therapy' (IFIT), University of Tuebingen, 72076 Tuebingen, Germany.,German Cancer Research Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sven Meuth
- University Hospital, Department of Neurology, University of Duesseldorf, 40225 Duesseldorf, Germany
| | - Robert Feil
- Interfaculty Institute of Biochemistry, University of Tuebingen, 72076 Tuebingen, Germany
| | - Harald F Langer
- Department of Cardiology, University Hospital, Medical Clinic II, University Heart Center Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
| |
Collapse
|
31
|
Zhou Q, Cao H, Hang X, Liang H, Zhu M, Fan Y, Shi J, Dong N, He X. Midkine Prevents Calcification of Aortic Valve Interstitial Cells via Intercellular Crosstalk. Front Cell Dev Biol 2022; 9:794058. [PMID: 34977035 PMCID: PMC8714929 DOI: 10.3389/fcell.2021.794058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022] Open
Abstract
Calcified aortic valve disease (CAVD), the most common valvular heart disease, lacks pharmaceutical treatment options because its pathogenesis remains unclear. This disease with a complex macroenvironment characterizes notable cellular heterogeneity. Therefore, a comprehensive understanding of cellular diversity and cell-to-cell communication are essential for elucidating the mechanisms driving CAVD progression and developing therapeutic targets. In this study, we used single-cell RNA sequencing (scRNA-seq) analysis to describe the comprehensive transcriptomic landscape and cell-to-cell interactions. The transitional valvular endothelial cells (tVECs), an intermediate state during the endothelial-to-mesenchymal transition (EndMT), could be a target to interfere with EndMT progression. Moreover, matrix valvular interstitial cells (mVICs) with high expression of midkine (MDK) interact with activated valvular interstitial cells (aVICs) and compliment-activated valvular interstitial cells (cVICs) through the MK pathway. Then, MDK inhibited calcification of VICs that calcification was validated by Alizarin Red S staining, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blotting assays in vitro. Therefore, we speculated that mVICs secreted MDK to prevent VICs’ calcification. Together, these findings delineate the aortic valve cells’ heterogeneity, underlining the importance of intercellular cross talk and MDK, which may offer a potential therapeutic strategy as a novel inhibitor of CAVD.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Cao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyi Hang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Huamin Liang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Miaomiao Zhu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Yixian Fan
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ximiao He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Langer HF. Chronic inflammation in atherosclerosis-The CD40L/CD40 axis belongs to dendritic cells and T cells, not platelets. J Thromb Haemost 2022; 20:3-5. [PMID: 34796641 DOI: 10.1111/jth.15591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Harald F Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| |
Collapse
|
33
|
Hernandez GE, Ma F, Martinez G, Firozabadi NB, Salvador J, Juang LJ, Leung J, Zhao P, López DA, Ardehali R, Beaudin AE, Kastrup CJ, Pellegrini M, Flick MJ, Iruela-Arispe ML. Aortic intimal resident macrophages are essential for maintenance of the non-thrombogenic intravascular state. NATURE CARDIOVASCULAR RESEARCH 2022; 1:67-84. [PMID: 35599984 PMCID: PMC9121812 DOI: 10.1038/s44161-021-00006-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 11/17/2021] [Indexed: 01/05/2023]
Abstract
Leukocytes and endothelial cells frequently cooperate to resolve inflammatory events. In most cases, these interactions are transient in nature and triggered by immunological insults. Here, we report that in areas of disturbed blood flow, aortic endothelial cells permanently and intimately associate with a population of specialized macrophages that are recruited at birth from the closing ductus arteriosus and share the luminal surface with the endothelium becoming interwoven in the tunica intima. Anatomical changes that affect hemodynamics, like in patent ductus arteriosus, alter macrophage seeding to coincide with regions of disturbed flow. Aortic resident macrophages expand in situ via direct cell renewal. Induced-depletion of intimal macrophages led to thrombin-mediated endothelial cell contraction, progressive fibrin accumulation and formation of microthrombi that, once dislodged, caused blockade of vessels in several organs. Together the findings revealed that intravascular resident macrophages are essential to regulate thrombin activity and clear fibrin deposits in regions of disturbed blood flow.
Collapse
Affiliation(s)
- Gloria E. Hernandez
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Cell and Development Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Feiyang Ma
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Guadalupe Martinez
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nadia B. Firozabadi
- Department of Cell and Development Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jocelynda Salvador
- Department of Cell and Development Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lih Jiin Juang
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T1Z4, Canada
| | - Jerry Leung
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T1Z4, Canada
| | - Peng Zhao
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Diego A. López
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Reza Ardehali
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anna E. Beaudin
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Christian J. Kastrup
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T1Z4, Canada
| | - Matteo Pellegrini
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew J. Flick
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599
| | - M. Luisa Iruela-Arispe
- Department of Cell and Development Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
34
|
Corker A, Neff LS, Broughton P, Bradshaw AD, DeLeon-Pennell KY. Organized Chaos: Deciphering Immune Cell Heterogeneity's Role in Inflammation in the Heart. Biomolecules 2021; 12:11. [PMID: 35053159 PMCID: PMC8773626 DOI: 10.3390/biom12010011] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/10/2021] [Accepted: 12/18/2021] [Indexed: 12/24/2022] Open
Abstract
During homeostasis, immune cells perform daily housekeeping functions to maintain heart health by acting as sentinels for tissue damage and foreign particles. Resident immune cells compose 5% of the cellular population in healthy human ventricular tissue. In response to injury, there is an increase in inflammation within the heart due to the influx of immune cells. Some of the most common immune cells recruited to the heart are macrophages, dendritic cells, neutrophils, and T-cells. In this review, we will discuss what is known about cardiac immune cell heterogeneity during homeostasis, how these cell populations change in response to a pathology such as myocardial infarction or pressure overload, and what stimuli are regulating these processes. In addition, we will summarize technologies used to evaluate cell heterogeneity in models of cardiovascular disease.
Collapse
Affiliation(s)
- Alexa Corker
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC 29425, USA; (A.C.); (L.S.N.); (P.B.); (A.D.B.)
| | - Lily S. Neff
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC 29425, USA; (A.C.); (L.S.N.); (P.B.); (A.D.B.)
| | - Philip Broughton
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC 29425, USA; (A.C.); (L.S.N.); (P.B.); (A.D.B.)
| | - Amy D. Bradshaw
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC 29425, USA; (A.C.); (L.S.N.); (P.B.); (A.D.B.)
- Ralph H. Johnson Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, SC 29401, USA
| | - Kristine Y. DeLeon-Pennell
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC 29425, USA; (A.C.); (L.S.N.); (P.B.); (A.D.B.)
- Ralph H. Johnson Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, SC 29401, USA
| |
Collapse
|
35
|
Gil-Pulido J, Amézaga N, Jorgacevic I, Manthey HD, Rösch M, Brand T, Cidlinsky P, Schäfer S, Beilhack A, Saliba AE, Lorenz K, Boon L, Prinz I, Waisman A, Korn T, Cochain C, Zernecke A. Interleukin-23 receptor expressing γδ T cells locally promote early atherosclerotic lesion formation and plaque necrosis in mice. Cardiovasc Res 2021; 118:2932-2945. [PMID: 34897380 DOI: 10.1093/cvr/cvab359] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
AIMS Atherosclerosis is a chronic inflammatory disease of the vessel wall controlled by local and systemic immune responses. The role of interleukin-23 receptor (IL-23R), expressed in adaptive immune cells (mainly T helper 17 cells) and γδ T cells, in atherosclerosis is only incompletely understood. Here we investigated the vascular cell types expressing IL-23R and addressed the function of IL-23R and γδ T cells in atherosclerosis. METHOD AND RESULTS IL-23R+ cells were frequently found in the aortic root in contrast to the aorta in low density lipoprotein receptor deficient IL-23R reporter mice (Ldlr-/-Il23rgfp/+), and mostly identified as γδ T cells that express IL-17 and GM-CSF. scRNA-seq confirmed γδ T cells as the main cell type expressing Il23r and Il17a in the aorta. Ldlr-/-Il23rgfp/gfp mice deficient in IL-23R showed a loss of IL-23R+ cells in the vasculature, and had reduced atherosclerotic lesion formation in the aortic root compared to Ldlr-/- controls after 6 weeks of high fat diet feeding. In contrast, Ldlr-/-Tcrδ-/- mice lacking all γδ T cells displayed unaltered early atherosclerotic lesion formation compared to Ldlr-/- mice. In both HFD-fed Ldlr-/-Il23rgfp/gfp and Ldlr-/-Tcrδ-/- mice a reduction in the plaque necrotic core area was noted as well as an expansion of splenic regulatory T cells. In vitro, exposure of bone marrow-derived macrophages to both IL-17A and GM-CSF induced cell necrosis, and necroptotic RIP3K and MLKL expression, as well as inflammatory mediators. CONCLUSIONS IL-23R+ γδ T cells are predominantly found in the aortic root rather than the aorta and promote early atherosclerotic lesion formation, plaque necrosis and inflammation at this site. Targeting IL-23R may thus be explored as a therapeutic approach to mitigate atherosclerotic lesion development. TRANSLATIONAL PERSPECTIVE The mechanisms and cell types contributing to early inflammation and lesion formation are incompletely understood. Here we demonstrate that the aortic root harbors a population of IL23R-dependent γδ T cells that can release IL-17 and GM-CSF, and both cytokines together induce macrophage inflammation and necroptosis. IL-23R+ γδ T cells locally promote early lesion formation in the aortic root and contribute to the expansion of the necrotic core, a hallmark of vulnerable atherosclerotic lesions. Targeting IL-23R or IL-23 itself could thus be further explored as a therapeutic option in early atherosclerosis.
Collapse
Affiliation(s)
- Jesus Gil-Pulido
- Institute of Experimental Biomedicine,University Hospital Würzburg, Würzburg, Germany
| | - Núria Amézaga
- Institute of Experimental Biomedicine,University Hospital Würzburg, Würzburg, Germany
| | - Ivana Jorgacevic
- Institute of Experimental Biomedicine,University Hospital Würzburg, Würzburg, Germany
| | - Helga D Manthey
- Institute of Experimental Biomedicine,University Hospital Würzburg, Würzburg, Germany
| | - Melanie Rösch
- Institute of Experimental Biomedicine,University Hospital Würzburg, Würzburg, Germany
| | - Theresa Brand
- Institute of Pharmacology and Toxicology,University of Würzburg, Würzburg, 97078 Germany
| | - Peter Cidlinsky
- Institute of Experimental Biomedicine,University Hospital Würzburg, Würzburg, Germany
| | - Sarah Schäfer
- Institute of Experimental Biomedicine,University Hospital Würzburg, Würzburg, Germany
| | - Andreas Beilhack
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology,University of Würzburg, Würzburg, 97078 Germany.,Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, 44139 Germany
| | - Louis Boon
- Polpharma Biologics, Utrecht, the Netherlands
| | - Immo Prinz
- Institute of Systems Immunology,University Medical Center Hamburg Eppendorf, Hamburg, Germany.,Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Korn
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Clément Cochain
- Institute of Experimental Biomedicine,University Hospital Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine,University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
36
|
Bartoli-Leonard F, Zimmer J, Aikawa E. Innate and adaptive immunity: the understudied driving force of heart valve disease. Cardiovasc Res 2021; 117:2506-2524. [PMID: 34432007 PMCID: PMC8783388 DOI: 10.1093/cvr/cvab273] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Calcific aortic valve disease (CAVD), and its clinical manifestation that is calcific aortic valve stenosis, is the leading cause for valve disease within the developed world, with no current pharmacological treatment available to delay or halt its progression. Characterized by progressive fibrotic remodelling and subsequent pathogenic mineralization of the valve leaflets, valve disease affects 2.5% of the western population, thus highlighting the need for urgent intervention. Whilst the pathobiology of valve disease is complex, involving genetic factors, lipid infiltration, and oxidative damage, the immune system is now being accepted to play a crucial role in pathogenesis and disease continuation. No longer considered a passive degenerative disease, CAVD is understood to be an active inflammatory process, involving a multitude of pro-inflammatory mechanisms, with both the adaptive and the innate immune system underpinning these complex mechanisms. Within the valve, 15% of cells evolve from haemopoietic origin, and this number greatly expands following inflammation, as macrophages, T lymphocytes, B lymphocytes, and innate immune cells infiltrate the valve, promoting further inflammation. Whether chronic immune infiltration or pathogenic clonal expansion of immune cells within the valve or a combination of the two is responsible for disease progression, it is clear that greater understanding of the immune systems role in valve disease is required to inform future treatment strategies for control of CAVD development.
Collapse
Affiliation(s)
- Francesca Bartoli-Leonard
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jonas Zimmer
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Elena Aikawa
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Department of Medicine, Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Human Pathology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
37
|
Tomas L, Prica F, Schulz C. Trafficking of Mononuclear Phagocytes in Healthy Arteries and Atherosclerosis. Front Immunol 2021; 12:718432. [PMID: 34759917 PMCID: PMC8573388 DOI: 10.3389/fimmu.2021.718432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Monocytes and macrophages play essential roles in all stages of atherosclerosis – from early precursor lesions to advanced stages of the disease. Intima-resident macrophages are among the first cells to be confronted with the influx and retention of apolipoprotein B-containing lipoproteins at the onset of hypercholesterolemia and atherosclerosis development. In this review, we outline the trafficking of monocytes and macrophages in and out of the healthy aorta, as well as the adaptation of their migratory behaviour during hypercholesterolemia. Furthermore, we discuss the functional and ontogenetic composition of the aortic pool of mononuclear phagocytes and its link to the atherosclerotic disease process. The development of mouse models of atherosclerosis regression in recent years, has enabled scientists to investigate the behaviour of monocytes and macrophages during the resolution of atherosclerosis. Herein, we describe the dynamics of these mononuclear phagocytes upon cessation of hypercholesterolemia and how they contribute to the restoration of tissue homeostasis. The aim of this review is to provide an insight into the trafficking, fate and disease-relevant dynamics of monocytes and macrophages during atherosclerosis, and to highlight remaining questions. We focus on the results of rodent studies, as analysis of cellular fates requires experimental manipulations that cannot be performed in humans but point out findings that could be replicated in human tissues. Understanding of the biology of macrophages in atherosclerosis provides an important basis for the development of therapeutic strategies to limit lesion formation and promote plaque regression.
Collapse
Affiliation(s)
- Lukas Tomas
- Department of Medicine I, University Hospital, Ludwig Maximilian University, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Filip Prica
- Department of Medicine I, University Hospital, Ludwig Maximilian University, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Schulz
- Department of Medicine I, University Hospital, Ludwig Maximilian University, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Macrophage accumulation within atherosclerotic plaque is a primary driver of disease progression. However, recent advances in both phenotypic and functional heterogeneity of these cells have allowed for improved insight into potential regulation of macrophage function within lesions. In this review, we will discuss recent insights on macrophage heterogeneity, lipid processing, metabolism, and proliferation in atherosclerosis. Furthermore, we will identify outstanding questions in the field that are pertinent to future studies. RECENT FINDINGS With the recent development of single-cell RNA sequencing, several studies have highlighted the diverse macrophage populations within plaques, including pro-inflammatory, anti-inflammatory, lipid loaded and tissue resident macrophages. Furthermore, new data has suggested that differential activation of metabolic pathways, including glycolysis and fatty acid oxidation, may play a key role in determining function. Recent works have highlighted that different populations retain varying capacity to undergo proliferation; regulating the proliferation pathway may be highly effective in reducing plaque in advanced lesions. SUMMARY Macrophage populations within atherosclerosis are highly heterogeneous; differences in cytokine production, lipid handling, metabolism, and proliferation are seen between subpopulations. Understanding the basic cellular mechanisms that drive this heterogeneity will allow for the development of highly specific disease modulating agents to combat atherosclerosis.
Collapse
Affiliation(s)
| | - Jesse W Williams
- Center for Immunology
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
39
|
Abstract
Conduction disorders and arrhythmias remain difficult to treat and are increasingly prevalent owing to the increasing age and body mass of the general population, because both are risk factors for arrhythmia. Many of the underlying conditions that give rise to arrhythmia - including atrial fibrillation and ventricular arrhythmia, which frequently occur in patients with acute myocardial ischaemia or heart failure - can have an inflammatory component. In the past, inflammation was viewed mostly as an epiphenomenon associated with arrhythmia; however, the recently discovered inflammatory and non-canonical functions of cardiac immune cells indicate that leukocytes can be arrhythmogenic either by altering tissue composition or by interacting with cardiomyocytes; for example, by changing their phenotype or perhaps even by directly interfering with conduction. In this Review, we discuss the electrophysiological properties of leukocytes and how these cells relate to conduction in the heart. Given the thematic parallels, we also summarize the interactions between immune cells and neural systems that influence information transfer, extrapolating findings from the field of neuroscience to the heart and defining common themes. We aim to bridge the knowledge gap between electrophysiology and immunology, to promote conceptual connections between these two fields and to explore promising opportunities for future research.
Collapse
|
40
|
Zhao Y, Zhang J, Zhang W, Xu Y. A myriad of roles of dendritic cells in atherosclerosis. Clin Exp Immunol 2021; 206:12-27. [PMID: 34109619 DOI: 10.1111/cei.13634] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022] Open
Abstract
Atherosclerosis is an inflammatory disease with break-down of homeostatic immune regulation of vascular tissues. As a critical initiator of host immunity, dendritic cells (DCs) have also been identified in the aorta of healthy individuals and atherosclerotic patients, whose roles in regulating arterial inflammation aroused great interest. Accumulating evidence has now pointed to the fundamental roles for DCs in every developmental stage of atherosclerosis due to their myriad of functions in immunity and tolerance induction, ranging from lipid uptake, efferocytosis and antigen presentation to pro- and anti-inflammatory cytokine or chemokine secretion. In this study we provide a timely summary of the published works in this field, and comprehensively discuss both the direct and indirect roles of DCs in atherogenesis. Understanding the pathogenic roles of DCs during the development of atherosclerosis in vascular tissues would certainly help to open therapeutic avenue to the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yanfang Zhao
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, China
| | - Jing Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenjie Zhang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, China
| |
Collapse
|
41
|
Sansonetti M, De Windt LJ. Non-coding RNAs in cardiac inflammation: key drivers in the pathophysiology of heart failure. Cardiovasc Res 2021; 118:2058-2073. [PMID: 34097013 DOI: 10.1093/cvr/cvab192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
Heart failure is among the most progressive diseases and a leading cause of morbidity. Despite several advances in cardiovascular therapies, pharmacological treatments are limited to relieve symptoms without curing cardiac injury. Multiple observations point to the involvement of immune cells as key drivers in the pathophysiology of heart failure. In particular, there is a growing recognition that heart failure is related to a prolonged and insufficiently repressed inflammatory response leading to molecular, cellular, and functional cardiac alterations. Over the last decades, non-coding RNAs are recognized as prominent mediators of the cardiac inflammation, affecting the function of several immune cells. In the current review, we explore the contribution of the diverse immune cells in the progression of heart failure, revealing mechanistic functions for non-coding RNAs in cardiac immune cells as a new and exciting field of investigation.
Collapse
Affiliation(s)
- Marida Sansonetti
- Department of Molecular Genetics, Faculty of Science and Engineering; Faculty of Health, Medicine and Life Sciences; Maastricht University, Maastricht, The Netherlands
| | - Leon J De Windt
- Department of Molecular Genetics, Faculty of Science and Engineering; Faculty of Health, Medicine and Life Sciences; Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
42
|
Assessment of medullary and extramedullary myelopoiesis in cardiovascular diseases. Pharmacol Res 2021; 169:105663. [PMID: 33979688 DOI: 10.1016/j.phrs.2021.105663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 05/04/2021] [Indexed: 11/23/2022]
Abstract
Recruitment of innate immune cells and their accumulation in the arterial wall and infarcted myocardium has been recognized as a central feature of atherosclerosis and cardiac ischemic injury, respectively. In both, steady state and under pathological conditions, majority of these cells have a finite life span and are continuously replenished from haematopoietic stem/progenitor cell pool residing in the bone marrow and extramedullary sites. While having a crucial role in the cardiovascular disease development, proliferation and differentiation of innate immune cells within haematopoietic compartments is greatly affected by the ongoing cardiovascular pathology. In the current review, we summarize key cells, processes and tissue compartments that are involved in myelopoiesis under the steady state, during atherosclerosis development and in myocardial infarction.
Collapse
|
43
|
Functional Role of B Cells in Atherosclerosis. Cells 2021; 10:cells10020270. [PMID: 33572939 PMCID: PMC7911276 DOI: 10.3390/cells10020270] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
Atherosclerosis is a lipid-driven inflammatory disease of blood vessels, and both innate and adaptive immune responses are involved in its development. The impact of B cells on atherosclerosis has been demonstrated in numerous studies and B cells have been found in close proximity to atherosclerotic plaques in humans and mice. B cells exert both atheroprotective and pro-atherogenic functions, which have been associated with their B cell subset attribution. While B1 cells and marginal zone B cells are considered to protect against atherosclerosis, follicular B cells and innate response activator B cells have been shown to promote atherosclerosis. In this review, we shed light on the role of B cells from a different, functional perspective and focus on the three major B cell functions: antibody production, antigen presentation/T cell interaction, and the release of cytokines. All of these functions have the potential to affect atherosclerosis by multiple ways and are dependent on the cellular milieu and the activation status of the B cell. Moreover, we discuss B cell receptor signaling and the mechanism of B cell activation under atherosclerosis-prone conditions. By summarizing current knowledge of B cells in and beyond atherosclerosis, we are pointing out open questions and enabling new perspectives.
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW The well recognized plasticity and diversity, typical of monocytes and macrophages have recently been expanded by the knowledge that additional macrophage lineages originated directly from embryonic progenitors, populate and establish residency in all tissues examined so far. This review aims to summarize our current understanding on the diversity of monocyte/macrophage subtypes associated with the vasculature, their specific origins, and nature of their cross-talk with the endothelium. RECENT FINDINGS Taking stock of the many interactions between the endothelium and monocytes/macrophages reveals a far more intricate and ever-growing depth. In addition to circulating and surveilling the endothelium, monocytes can specifically be differentiated into patrolling cells that crawl on the surface of the endothelium and promote homeostasis. The conversion of classical to patrolling is endothelium-dependent uncovering an important functional link. In addition to patrolling cells, the endothelium also recruits and harbor an intimal-resident myeloid population that resides in the tunica intima in the absence of pathological insults. Moreover, the adventitia is populated with resident macrophages that support blood vessel integrity and prevent fibrosis. SUMMARY The last few years have witnessed a significant expansion in our knowledge of the many subtypes of monocytes and macrophages and their corresponding functional interactions with the vascular wall. In addition to surveying the endothelium for opportunities of diapedeses, monocyte and macrophages take residence in both the intima (as patrolling or resident) and in the adventitia. Their contributions to vascular function are broad and critical to homeostasis, regeneration, and expansion.
Collapse
|
45
|
Kim KW, Ivanov S, Williams JW. Monocyte Recruitment, Specification, and Function in Atherosclerosis. Cells 2020; 10:E15. [PMID: 33374145 PMCID: PMC7823291 DOI: 10.3390/cells10010015] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022] Open
Abstract
Atherosclerotic lesions progress through the continued recruitment of circulating blood monocytes that differentiate into macrophages within plaque. Lesion-associated macrophages are the primary immune cells present in plaque, where they take up cholesterol and store lipids in the form of small droplets resulting in a unique morphology termed foam cell. Recent scientific advances have used single-cell gene expression profiling, live-cell imaging, and fate mapping approaches to describe macrophage and monocyte contributions to pro- or anti-inflammatory mechanisms, in addition to functions of motility and proliferation within lesions. Yet, many questions regarding tissue-specific regulation of monocyte-to-macrophage differentiation and the contribution of recruited monocytes at stages of atherosclerotic disease progression remain unknown. In this review, we highlight recent advances regarding the role of monocyte and macrophage dynamics in atherosclerotic disease and identify gaps in knowledge that we hope will allow for advancing therapeutic treatment or prevention strategies for cardiovascular disease.
Collapse
Affiliation(s)
- Ki-Wook Kim
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
| | - Stoyan Ivanov
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire C3M, Université Côte Azur, 06204 Nice, France;
| | - Jesse W. Williams
- Center for Immunology, Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
46
|
Williams JW, Zaitsev K, Kim KW, Ivanov S, Saunders BT, Schrank PR, Kim K, Elvington A, Kim SH, Tucker CG, Wohltmann M, Fife BT, Epelman S, Artyomov MN, Lavine KJ, Zinselmeyer BH, Choi JH, Randolph GJ. Limited proliferation capacity of aortic intima resident macrophages requires monocyte recruitment for atherosclerotic plaque progression. Nat Immunol 2020; 21:1194-1204. [PMID: 32895539 PMCID: PMC7502558 DOI: 10.1038/s41590-020-0768-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 07/24/2020] [Indexed: 12/20/2022]
Abstract
Early atherosclerosis depends upon responses by immune cells resident in the intimal aortic wall. Specifically, the healthy intima is thought to be populated by vascular dendritic cells (DCs) that, during hypercholesterolemia, initiate atherosclerosis by being the first to accumulate cholesterol. Whether these cells remain key players in later stages of disease is unknown. Using murine lineage-tracing models and gene expression profiling, we reveal that myeloid cells present in the intima of the aortic arch are not DCs but instead specialized aortic intima resident macrophages (MacAIR) that depend upon colony-stimulating factor 1 and are sustained by local proliferation. Although MacAIR comprise the earliest foam cells in plaques, their proliferation during plaque progression is limited. After months of hypercholesterolemia, their presence in plaques is overtaken by recruited monocytes, which induce MacAIR-defining genes. These data redefine the lineage of intimal phagocytes and suggest that proliferation is insufficient to sustain generations of macrophages during plaque progression.
Collapse
Affiliation(s)
- Jesse W Williams
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA.
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Konstantin Zaitsev
- Computer Technologies Department, ITMO University, Saint Petersburg, Russia
| | - Ki-Wook Kim
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Stoyan Ivanov
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Université Côte d'Azur, Nice, France
| | - Brian T Saunders
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Patricia R Schrank
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Kyeongdae Kim
- Department of Life Science, College of Natural Sciences, Research Institute of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Andrew Elvington
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Seung Hyeon Kim
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Christopher G Tucker
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Mary Wohltmann
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Brian T Fife
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Slava Epelman
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Cardiovascular Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kory J Lavine
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Bernd H Zinselmeyer
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jae-Hoon Choi
- Department of Life Science, College of Natural Sciences, Research Institute of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
47
|
Hume RD, Chong JJH. The Cardiac Injury Immune Response as a Target for Regenerative and Cellular Therapies. Clin Ther 2020; 42:1923-1943. [PMID: 33010930 DOI: 10.1016/j.clinthera.2020.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Despite modern reperfusion and pharmacologic therapies, myocardial infarction (MI) remains a leading cause of morbidity and mortality worldwide. Therefore, the development of further therapeutics affecting post-MI recovery poses significant benefits. This review focuses on the post-MI immune response and immunomodulatory therapeutics that could improve the wound-healing response. METHODS This narrative review used OVID versions of MEDLINE and EMBASE searching for clinical therapeutics targeting the immune system during MI. Preclinical models and clinical trials were included. Additional studies were sourced from the reference lists of relevant articles and other personal files. FINDINGS After MI, cardiomyocytes are starved of oxygen and undergo cell death via coagulative necrosis. This process activates the immune system and a multifaceted wound-healing response, comprising a number of complex and overlapping phases. Overactivation or persistence of one or more of these phases can have potentially lethal implications. This review describes the immune response post-MI and any adverse events that can occur during these different phases. Second, we describe immunomodulatory therapies that attempt to target these immune cell aberrations by mitigating or diminishing their effects on the wound-healing response. Also discussed are adult stem/progenitor cell therapies, exosomes, and regulatory T cells, and their immunomodulatory effects in the post-MI setting. IMPLICATIONS An updated understanding into the importance of various inflammatory cell phenotypes, coupled with new technologies, may hold promise for a new era of immunomodulatory therapeutics. The implications of such therapies could dramatically improve patients' quality of life post-MI and reduce the incidence of progressive heart failure.
Collapse
Affiliation(s)
- Robert D Hume
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Rd, Westmead, NSW 2145, Australia
| | - James J H Chong
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Rd, Westmead, NSW 2145, Australia; Department of Cardiology, Westmead Hospital, Hawkesbury Rd, Westmead, NSW 2145, Australia.
| |
Collapse
|
48
|
MacRitchie N, Grassia G, Noonan J, Cole JE, Hughes CE, Schroeder J, Benson RA, Cochain C, Zernecke A, Guzik TJ, Garside P, Monaco C, Maffia P. The aorta can act as a site of naïve CD4+ T-cell priming. Cardiovasc Res 2020; 116:306-316. [PMID: 30980670 DOI: 10.1093/cvr/cvz102] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/20/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022] Open
Abstract
AIMS Aortic adaptive immunity plays a role in atherosclerosis; however, the precise mechanisms leading to T-cell activation in the arterial wall remain poorly understood. METHODS AND RESULTS Here, we have identified naïve T cells in the aorta of wild-type and T-cell receptor transgenic mice and we demonstrate that naïve T cells can be primed directly in the vessel wall with both kinetics and frequency of T-cell activation found to be similar to splenic and lymphoid T cells. Aortic homing of naïve T cells is regulated at least in part by the P-selectin glycosylated ligand-1 receptor. In experimental atherosclerosis the aorta supports CD4+ T-cell activation selectively driving Th1 polarization. By contrast, secondary lymphoid organs display Treg expansion. CONCLUSION Our results demonstrate that the aorta can support T-cell priming and that naïve T cells traffic between the circulation and vessel wall. These data underpin the paradigm that local priming of T cells specific for plaque antigens contributes to atherosclerosis progression.
Collapse
Affiliation(s)
- Neil MacRitchie
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Gianluca Grassia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Jonathan Noonan
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Jennifer E Cole
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Catherine E Hughes
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Juliane Schroeder
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Robert A Benson
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Clement Cochain
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.,Department of Internal Medicine, Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Paul Garside
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Claudia Monaco
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK.,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.,Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
49
|
Sun L, Zhang W, Zhao Y, Wang F, Liu S, Liu L, Zhao L, Lu W, Li M, Xu Y. Dendritic Cells and T Cells, Partners in Atherogenesis and the Translating Road Ahead. Front Immunol 2020; 11:1456. [PMID: 32849502 PMCID: PMC7403484 DOI: 10.3389/fimmu.2020.01456] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a chronic process associated with arterial inflammation, the accumulation of lipids, plaque formation in vessel walls, and thrombosis with late mortal complications such as myocardial infarction and ischemic stroke. Immune and inflammatory responses have significant effects on every phase of atherosclerosis. Increasing evidence has shown that both innate and adaptive “arms” of the immune system play important roles in regulating the progression of atherosclerosis. Accumulating evidence suggests that a unique type of innate immune cell, termed dendritic cells (DCs), play an important role as central instigators, whereas adaptive immune cells, called T lymphocytes, are crucial as active executors of the DC immunity in atherogenesis. These two important immune cell types work in pairs to establish pro-atherogenic or atheroprotective immune responses in vascular tissues. Therefore, understanding the role of DCs and T cells in atherosclerosis is extremely important. Here, in this review, we will present a complete overview, based on existing knowledge of these two cell types in the atherosclerotic microenvironment, and discuss some of the novel means of targeting DCs and T cells as therapeutic tactics for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Li Sun
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Wenjie Zhang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Yanfang Zhao
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Fengge Wang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Shan Liu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Lei Liu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Lin Zhao
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Wei Lu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Minghui Li
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| |
Collapse
|
50
|
Sampaio-Pinto V, Ruiz-Villalba A, Nascimento DS, Pérez-Pomares JM. Bone marrow contribution to the heart from development to adulthood. Semin Cell Dev Biol 2020; 112:16-26. [PMID: 32591270 DOI: 10.1016/j.semcdb.2020.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
Cardiac chamber walls contain large numbers of non-contractile interstitial cells, including fibroblasts, endothelial cells, pericytes and significant populations of blood lineage-derived cells. Blood cells first colonize heart tissues a few days before birth, although their recruitment from the bloodstream to the cardiac interstitium is continuous and extends throughout adult life. The bone marrow, as the major hematopoietic site of adult individuals, is in charge of renewing all circulating cell types, and it therefore plays a pivotal role in the incorporation of blood cells to the heart. Bone marrow-derived cells are instrumental to tissue homeostasis in the steady-state heart, and are major effectors in cardiac disease progression. This review will provide a comprehensive approach to bone marrow-derived blood cell functions in the heart, and discuss aspects related to hot topics in the cardiovascular field like cell-based heart regeneration strategies.
Collapse
Affiliation(s)
- Vasco Sampaio-Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal; Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, the Netherlands
| | - Adrián Ruiz-Villalba
- Department of Animal Biology, Institute of Biomedicine of Málaga (IBIMA), Faculty of Sciences, University of Málaga, Málaga, Spain; Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Campanillas, Málaga, Spain
| | - Diana S Nascimento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal.
| | - José M Pérez-Pomares
- Department of Animal Biology, Institute of Biomedicine of Málaga (IBIMA), Faculty of Sciences, University of Málaga, Málaga, Spain; Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Campanillas, Málaga, Spain.
| |
Collapse
|