1
|
Piro MC, Pecorari R, Smirnov A, Cappello A, Foffi E, Lena AM, Shi Y, Melino G, Candi E. p63 affects distinct metabolic pathways during keratinocyte senescence, evaluated by metabolomic profile and gene expression analysis. Cell Death Dis 2024; 15:830. [PMID: 39543093 PMCID: PMC11564703 DOI: 10.1038/s41419-024-07159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/21/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
Unraveling the molecular nature of skin aging and keratinocyte senescence represents a challenging research project in epithelial biology. In this regard, depletion of p63, a p53 family transcription factor prominently expressed in human and mouse epidermis, accelerates both aging and the onset of senescence markers in vivo animal models as well as in ex vivo keratinocytes. Nonetheless, the biochemical link between p63 action and senescence phenotype remains largely unexplored. In the present study, through ultrahigh performance liquid chromatography-tandem mass spectroscopy (UPLC-MS/MS) and gas chromatography/mass spectrometry (GC/MS) metabolomic analysis, we uncover interesting pathways linking replicative senescence to metabolic alterations during p63 silencing in human keratinocytes. Integration of our metabolomic profiling data with targeted transcriptomic investigation empowered us to demonstrate that absence of p63 and senescence share similar modulation profiles of oxidative stress markers, pentose phosphate pathway metabolites and lyso-glycerophospholipids, the latter due to enhanced phospholipases gene expression profile often under p63 direct/indirect gene control. Additional biochemical features identified in deranged keratinocytes include a relevant increase in lipids production, glucose and pyruvate levels as confirmed by upregulation of gene expression of key lipid synthesis and glycolytic enzymes, which, together with improved vitamins uptake, characterize senescence phenotype. Silencing of p63 in keratinocytes instead, translates into a blunted flux of metabolites through both glycolysis and the Krebs cycle, likely due to a p63-dependent reduction of hexokinase 2 and citrate synthase gene expression. Our findings highlight the potential role of p63 in counteracting keratinocyte senescence also through fine regulation of metabolite levels and relevant biochemical pathways. We believe that our research might contribute significantly to the discovery of new implications of p63 in keratinocyte senescence and related diseases.
Collapse
Affiliation(s)
- Maria Cristina Piro
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
| | | | - Artem Smirnov
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
- IDI-IRCCS, Rome, Italy
| | - Angela Cappello
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Erica Foffi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Anna Maria Lena
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Yufang Shi
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Soochow University, Suzhou, China
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy.
- IDI-IRCCS, Rome, Italy.
| |
Collapse
|
2
|
Elgendy DI, Elmahy RA, Amer AIM, Ibrahim HA, Eltantawy AF, Mansour FR, Salama AM. Efficacy of artemether against toxocariasis in mice: parasitological and immunopathological changes in brain, liver, and lung. Pathog Glob Health 2024; 118:47-64. [PMID: 37978995 PMCID: PMC10769145 DOI: 10.1080/20477724.2023.2285182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Toxocariasis is a zoonosis that represents a serious threat to public health particularly in tropical and subtropical areas. Currently, albendazole, the most effective drug for treating visceral toxocariasis, shows moderate efficacy against the larvae in tissues and has some adverse effects. Artemether is an antiparasitic drug mainly used in the treatment of malaria and showed effectiveness against numerous helminthic infections. Besides, it possesses potent anti-inflammatory, antiapoptotic, antifibrotic, and neuroprotective properties. Thus, the study's aim was to investigate artemether's effects in comparison with albendazole on the therapeutic outcome of experimental toxocariasis. For this aim, 140 laboratory-bred mice were divided into four main groups: uninfected control, treatment control, albendazole-treated, and artemether-treated groups. The treatment regimens were started at the 15th dpi (early treatment), and at the 35th dpi (late treatment). The effectiveness of treatment was determined by brain larval count, histopathological, immunohistochemical, and biochemical examination. Artemether showed more effectiveness than albendazole in reducing brain larval counts, markers of brain injury including NF-κB, GFAP, and caspase-3, the diameter and number of hepatic granulomas, hepatic oxidative stress, hepatic IL-6, and TG2 mRNA, and pulmonary inflammation and fibrosis. The efficacy of artemether was the same when administered early or late in the infection. Finally, our findings illustrated that artemether might be a promising therapy for T. canis infection and it could be a good substitution for albendazole in toxocariasis treatment.
Collapse
Affiliation(s)
- Dina I. Elgendy
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rasha A. Elmahy
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | | | - Hoda A. Ibrahim
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Asmaa Fawzy Eltantawy
- Medical Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Fotouh Rashed Mansour
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Amina M. Salama
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Diwan R, Bhatt HN, Beaven E, Nurunnabi M. Emerging delivery approaches for targeted pulmonary fibrosis treatment. Adv Drug Deliv Rev 2024; 204:115147. [PMID: 38065244 PMCID: PMC10787600 DOI: 10.1016/j.addr.2023.115147] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/02/2023] [Accepted: 11/29/2023] [Indexed: 01/01/2024]
Abstract
Pulmonary fibrosis (PF) is a progressive, and life-threatening interstitial lung disease which causes scarring in the lung parenchyma and thereby affects architecture and functioning of lung. It is an irreversible damage to lung functioning which is related to epithelial cell injury, immense accumulation of immune cells and inflammatory cytokines, and irregular recruitment of extracellular matrix. The inflammatory cytokines trigger the differentiation of fibroblasts into activated fibroblasts, also known as myofibroblasts, which further increase the production and deposition of collagen at the injury sites in the lung. Despite the significant morbidity and mortality associated with PF, there is no available treatment that efficiently and effectively treats the disease by reversing their underlying pathologies. In recent years, many therapeutic regimens, for instance, rho kinase inhibitors, Smad signaling pathway inhibitors, p38, BCL-xL/ BCL-2 and JNK pathway inhibitors, have been found to be potent and effective in treating PF, in preclinical stages. However, due to non-selectivity and non-specificity, the therapeutic molecules also result in toxicity mediated severe side effects. Hence, this review demonstrates recent advances on PF pathology, mechanism and targets related to PF, development of various drug delivery systems based on small molecules, RNAs, oligonucleotides, peptides, antibodies, exosomes, and stem cells for the treatment of PF and the progress of various therapeutic treatments in clinical trials to advance PF treatment.
Collapse
Affiliation(s)
- Rimpy Diwan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Himanshu N Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Elfa Beaven
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX 79968, United States; The Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, United States.
| |
Collapse
|
4
|
Lee SJ, Shin JW, Kwon MA, Lee KB, Kim HJ, Lee JH, Kang HS, Jun JK, Cho SY, Kim IG. Transglutaminase 2 Prevents Premature Senescence and Promotes Osteoblastic Differentiation of Mesenchymal Stem Cells through NRF2 Activation. Stem Cells Int 2023; 2023:8815888. [PMID: 37900967 PMCID: PMC10611545 DOI: 10.1155/2023/8815888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/31/2023] [Accepted: 09/12/2023] [Indexed: 10/31/2023] Open
Abstract
Transglutaminase 2 (TG2) is a multifunctional enzyme that exhibits transamidase, GTPase, kinase, and protein disulfide isomerase (PDI) activities. Of these, transamidase-mediated modification of proteins regulates apoptosis, differentiation, inflammation, and fibrosis. TG2 is highly expressed in mesenchymal stem cells (MSCs) compared with differentiated cells, suggesting a role of TG2 specific for MSC characteristics. In this study, we report a new function of TG2 in the regulation of MSC redox homeostasis. During in vitro MSC expansion, TG2 is required for cell proliferation and self-renewal by preventing premature senescence but has no effect on the expression of surface antigens and oxidative stress-induced cell death. Moreover, induction of differentiation upregulates TG2 that promotes osteoblastic differentiation. Molecular analyses revealed that TG2 mediates tert-butylhydroquinone, but not sulforaphane, -induced nuclear factor erythroid 2-related factor 2 (NRF2) activation in a transamidase activity-independent manner. Differences in the mechanism of action between two NRF2 activators suggest that PDI activity of TG2 may be implicated in the stabilization of NRF2. The role of TG2 in the regulation of antioxidant response was further supported by transcriptomic analysis of MSC. These results indicate that TG2 is a critical enzyme in eliciting antioxidant response in MSC through NRF2 activation, providing a target for optimizing MSC manufacturing processes to prevent premature senescence.
Collapse
Affiliation(s)
- Soo-Jin Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji-Woong Shin
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Mee-Ae Kwon
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ki Baek Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory for Cellular Response to Oxidative Stress, Cell2in, Inc., Seoul, Republic of Korea
| | - Hyo-Jun Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin-Haeng Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Heun-Soo Kang
- Laboratory for Cellular Response to Oxidative Stress, Cell2in, Inc., Seoul, Republic of Korea
| | - Jong Kwan Jun
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Yup Cho
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - In-Gyu Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Fraser-Pitt D, Mercer DK, Francis ML, Toledo-Aparicio D, Smith DW, O'Neil DA. Cysteamine-mediated blockade of the glycine cleavage system modulates epithelial cell inflammatory and innate immune responses to viral infection. Biochem Biophys Res Commun 2023; 677:168-181. [PMID: 37597441 DOI: 10.1016/j.bbrc.2023.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Transient blockade of glycine decarboxylase (GLDC) can restrict de novo pyrimidine synthesis, which is a well-described strategy for enhancing the host interferon response to viral infection and a target pathway for some licenced anti-inflammatory therapies. The aminothiol, cysteamine, is produced endogenously during the metabolism of coenzyme A, and is currently being investigated in a clinical trial as an intervention in community acquired pneumonia resulting from viral (influenza and SARS-CoV-2) and bacterial respiratory infection. Cysteamine is known to inhibit both bacterial and the eukaryotic host glycine cleavage systems via competitive inhibition of GLDC at concentrations, lower than those required for direct antimicrobial or antiviral activity. Here, we demonstrate for the first time that therapeutically achievable concentrations of cysteamine can inhibit glycine utilisation by epithelial cells and improve cell-mediated responses to infection with respiratory viruses, including human coronavirus 229E and Influenza A. Cysteamine reduces interleukin-6 (IL-6) and increases the interferon-λ (IFN-λ) response to viral challenge and in response to liposomal polyinosinic:polycytidylic acid (poly I:C) simulant of RNA viral infection.
Collapse
Affiliation(s)
- Douglas Fraser-Pitt
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom.
| | - Derry K Mercer
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom; Bioaster, LYON (headquarters) 40, Avenue Tony Garnier, 69007, Lyon, France
| | - Marie-Louise Francis
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom
| | - David Toledo-Aparicio
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom
| | - Daniel W Smith
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom
| | - Deborah A O'Neil
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom
| |
Collapse
|
6
|
She Y, Xu X, Yu Q, Yang X, He J, Tang XX. Elevated expression of macrophage MERTK exhibits profibrotic effects and results in defective regulation of efferocytosis function in pulmonary fibrosis. Respir Res 2023; 24:118. [PMID: 37120511 PMCID: PMC10148433 DOI: 10.1186/s12931-023-02424-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/08/2023] [Indexed: 05/01/2023] Open
Abstract
Increased apoptosis of alveolar epithelial cells is a prominent feature of pulmonary fibrosis. Macrophage efferocytosis, phagocytosis of apoptotic cells by macrophages, is crucial for maintaining tissue homeostasis. Expression of Mer tyrosine kinase (MERTK, an important recognition receptor in efferocytosis) in macrophages is thought to be associated with fibrosis. However, how macrophage MERTK affects pulmonary fibrosis and whether it depends on efferocytosis are not yet clear. Here, we found elevated MERTK expression in lung macrophages from IPF patients and mice with bleomycin-induced pulmonary fibrosis. In vitro experiments showed that macrophages overexpressing MERTK exhibit profibrotic effects and that macrophage efferocytosis abrogates the profibrotic effect of MERTK by downregulating MERTK, forming a negative regulatory loop. In pulmonary fibrosis, this negative regulation is defective, and MERTK mainly exhibits profibrotic effects. Our study reveals a previously unsuspected profibrotic effect of elevated macrophage MERTK in pulmonary fibrosis and defective regulation of efferocytosis function as a result of that elevation, suggesting that targeting MERTK in macrophages may help to attenuate pulmonary fibrosis.
Collapse
Affiliation(s)
- Yixin She
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xin Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingyang Yu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangsheng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianxing He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Xiao Xiao Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou Laboratory, Bio-Island, Guangzhou, China.
| |
Collapse
|
7
|
Fertala J, Wang ML, Rivlin M, Beredjiklian PK, Abboud J, Arnold WV, Fertala A. Extracellular Targets to Reduce Excessive Scarring in Response to Tissue Injury. Biomolecules 2023; 13:biom13050758. [PMID: 37238628 DOI: 10.3390/biom13050758] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Excessive scar formation is a hallmark of localized and systemic fibrotic disorders. Despite extensive studies to define valid anti-fibrotic targets and develop effective therapeutics, progressive fibrosis remains a significant medical problem. Regardless of the injury type or location of wounded tissue, excessive production and accumulation of collagen-rich extracellular matrix is the common denominator of all fibrotic disorders. A long-standing dogma was that anti-fibrotic approaches should focus on overall intracellular processes that drive fibrotic scarring. Because of the poor outcomes of these approaches, scientific efforts now focus on regulating the extracellular components of fibrotic tissues. Crucial extracellular players include cellular receptors of matrix components, macromolecules that form the matrix architecture, auxiliary proteins that facilitate the formation of stiff scar tissue, matricellular proteins, and extracellular vesicles that modulate matrix homeostasis. This review summarizes studies targeting the extracellular aspects of fibrotic tissue synthesis, presents the rationale for these studies, and discusses the progress and limitations of current extracellular approaches to limit fibrotic healing.
Collapse
Affiliation(s)
- Jolanta Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mark L Wang
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Michael Rivlin
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Pedro K Beredjiklian
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Joseph Abboud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - William V Arnold
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
8
|
Guo T, He C, Venado A, Zhou Y. Extracellular Matrix Stiffness in Lung Health and Disease. Compr Physiol 2022; 12:3523-3558. [PMID: 35766837 PMCID: PMC10088466 DOI: 10.1002/cphy.c210032] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The extracellular matrix (ECM) provides structural support and imparts a wide variety of environmental cues to cells. In the past decade, a growing body of work revealed that the mechanical properties of the ECM, commonly known as matrix stiffness, regulate the fundamental cellular processes of the lung. There is growing appreciation that mechanical interplays between cells and associated ECM are essential to maintain lung homeostasis. Dysregulation of ECM-derived mechanical signaling via altered mechanosensing and mechanotransduction pathways is associated with many common lung diseases. Matrix stiffening is a hallmark of lung fibrosis. The stiffened ECM is not merely a sequelae of lung fibrosis but can actively drive the progression of fibrotic lung disease. In this article, we provide a comprehensive view on the role of matrix stiffness in lung health and disease. We begin by summarizing the effects of matrix stiffness on the function and behavior of various lung cell types and on regulation of biomolecule activity and key physiological processes, including host immune response and cellular metabolism. We discuss the potential mechanisms by which cells probe matrix stiffness and convert mechanical signals to regulate gene expression. We highlight the factors that govern matrix stiffness and outline the role of matrix stiffness in lung development and the pathogenesis of pulmonary fibrosis, pulmonary hypertension, asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. We envision targeting of deleterious matrix mechanical cues for treatment of fibrotic lung disease. Advances in technologies for matrix stiffness measurements and design of stiffness-tunable matrix substrates are also explored. © 2022 American Physiological Society. Compr Physiol 12:3523-3558, 2022.
Collapse
Affiliation(s)
- Ting Guo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA.,Department of Respiratory Medicine, the Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Chao He
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| | - Aida Venado
- Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
9
|
Sima LE, Matei D, Condello S. The Outside-In Journey of Tissue Transglutaminase in Cancer. Cells 2022; 11:cells11111779. [PMID: 35681474 PMCID: PMC9179582 DOI: 10.3390/cells11111779] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Tissue transglutaminase (TG2) is a member of the transglutaminase family that catalyzes Ca2+-dependent protein crosslinks and hydrolyzes guanosine 5′-triphosphate (GTP). The conformation and functions of TG2 are regulated by Ca2+ and GTP levels; the TG2 enzymatically active open conformation is modulated by high Ca2+ concentrations, while high intracellular GTP promotes the closed conformation, with inhibition of the TG-ase activity. TG2’s unique characteristics and its ubiquitous distribution in the intracellular compartment, coupled with its secretion in the extracellular matrix, contribute to modulate the functions of the protein. Its aberrant expression has been observed in several cancer types where it was linked to metastatic progression, resistance to chemotherapy, stemness, and worse clinical outcomes. The N-terminal domain of TG2 binds to the 42 kDa gelatin-binding domain of fibronectin with high affinity, facilitating the formation of a complex with β-integrins, essential for cellular adhesion to the matrix. This mechanism allows TG2 to interact with key matrix proteins and to regulate epithelial to mesenchymal transition and stemness. Here, we highlight the current knowledge on TG2 involvement in cancer, focusing on its roles translating extracellular cues into activation of oncogenic programs. Improved understanding of these mechanisms could lead to new therapeutic strategies targeting this multi-functional protein.
Collapse
Affiliation(s)
- Livia Elena Sima
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania;
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Salvatore Condello
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence:
| |
Collapse
|
10
|
Al-U'datt DGF, Tranchant CC, Al-Dwairi A, AlQudah M, Al-Shboul O, Hiram R, Allen BG, Jaradat S, Alqbelat J, Abu-Zaiton AS. Implications of enigmatic transglutaminase 2 (TG2) in cardiac diseases and therapeutic developments. Biochem Pharmacol 2022; 201:115104. [PMID: 35617996 DOI: 10.1016/j.bcp.2022.115104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 01/07/2023]
Abstract
Cardiac diseases are the leading cause of mortality and morbidity worldwide. Mounting evidence suggests that transglutaminases (TGs), tissue TG (TG2) in particular, are involved in numerous molecular responses underlying the pathogenesis of cardiac diseases. The TG family has several intra- and extracellular functions in the human body, including collagen cross-linking, angiogenesis, cell growth, differentiation, migration, adhesion as well as survival. TGs are thiol- and calcium-dependent acyl transferases that catalyze the formation of a covalent bond between the γ-carboxamide group of a glutamine residue and an amine group, thus increasing the stability, rigidity, and stiffness of the myocardial extracellular matrix (ECM). Excessive accumulation of cross-linked collagen leads to increase myocardial stiffness and fibrosis. Beyond TG2 extracellular protein cross-linking action, mounting evidence suggests that this pleiotropic TG isozyme may also promote fibrotic diseases through cell survival and profibrotic pathway activation at the signaling, transcriptional and translational levels. Due to its multiple functions and localizations, TG2 fulfils critical yet incompletely understood roles in myocardial fibrosis and associated heart diseases, such as cardiac hypertrophy, heart failure, and age-related myocardial stiffness under several conditions. This review summarizes current knowledge and existing gaps regarding the ECM-dependent and ECM-independent roles of TG2 and highlights the therapeutic prospects of targeting TG2 to treat cardiac diseases.
Collapse
Affiliation(s)
- Doa'a G F Al-U'datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Carole C Tranchant
- School of Food Science, Nutrition and Family Studies, Faculty of Health Sciences and Community Services, Université de Moncton, New Brunswick, Canada
| | - Ahmed Al-Dwairi
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohammad AlQudah
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Othman Al-Shboul
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Roddy Hiram
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Bruce G Allen
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal, Quebec, Canada; Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Saied Jaradat
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Jenan Alqbelat
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ahmed S Abu-Zaiton
- Department of Biological Sciences, Al al-bayt University, Al-Mafraq, Jordan
| |
Collapse
|
11
|
Hong AY, Lee SJ, Lee KB, Shin JW, Jeong EM, Kim IG. Double-Stranded RNA Enhances Matrix Metalloproteinase-1 and -13 Expressions through TLR3-Dependent Activation of Transglutaminase 2 in Dermal Fibroblasts. Int J Mol Sci 2022; 23:ijms23052709. [PMID: 35269849 PMCID: PMC8911030 DOI: 10.3390/ijms23052709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
UV-irradiation induces the secretion of double-stranded RNA (dsRNA) derived from damaged noncoding RNAs in keratinocytes, which enhance the expression of matrix metalloproteinases (MMP) in non-irradiated dermal fibroblasts, leading to dysregulation of extracellular matrix homeostasis. However, the signaling pathway responsible for dsRNA-induced MMP expression has not been fully understood. Transglutaminase 2 (TG2) is an enzyme that modifies substrate proteins by incorporating polyamine or crosslinking of proteins, thereby regulating their functions. In this study, we showed that TG2 mediates dsRNA-induced MMP-1 expression through NF-κB activation. Treatment of poly(I:C), a synthetic dsRNA analogue binding to toll-like receptor 3 (TLR3), generates ROS, which in turn activates TG2 in dermal fibroblast. Subsequently, TG2 activity enhances translocation of p65 into the nucleus, where it augments transcription of MMP. We confirmed these results by assessing the level of MMP expression in Tlr3−/−, TG2-knockdowned and Tgm2−/− dermal fibroblasts after poly(I:C)-treatment. Moreover, treatment with quercetin showed dose-dependent suppression of poly(I:C)-induced MMP expression. Furthermore, ex vivo cultured skin from Tgm2−/− mice exhibited a significantly reduced level of MMP mRNA compared with those from wild-type mice. Our results indicate that TG2 is a critical regulator in dsRNA-induced MMP expression, providing a new target and molecular basis for antioxidant therapy in preventing collagen degradation.
Collapse
Affiliation(s)
- Ah-Young Hong
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (A.-Y.H.); (S.-J.L.); (K.B.L.); (J.-W.S.)
| | - Seok-Jin Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (A.-Y.H.); (S.-J.L.); (K.B.L.); (J.-W.S.)
| | - Ki Baek Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (A.-Y.H.); (S.-J.L.); (K.B.L.); (J.-W.S.)
- Laboratory for Cellular Response to Oxidative Stress, Cell2in, Inc., Seoul 03127, Korea
| | - Ji-Woong Shin
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (A.-Y.H.); (S.-J.L.); (K.B.L.); (J.-W.S.)
| | - Eui Man Jeong
- Department of Pharmacy, College of Pharmacy, Jeju National University, Jeju 63243, Korea;
| | - In-Gyu Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (A.-Y.H.); (S.-J.L.); (K.B.L.); (J.-W.S.)
- Laboratory for Cellular Response to Oxidative Stress, Cell2in, Inc., Seoul 03127, Korea
- Department of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence:
| |
Collapse
|
12
|
Rayavara K, Kurosky A, Hosakote YM. Respiratory syncytial virus infection induces the release of transglutaminase 2 from human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2022; 322:L1-L12. [PMID: 34704843 PMCID: PMC8721898 DOI: 10.1152/ajplung.00013.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Respiratory syncytial virus (RSV) is an important human pathogen that causes severe lower respiratory tract infections in young children, the elderly, and the immunocompromised, yet no effective treatments or vaccines are available. The precise mechanism underlying RSV-induced acute airway disease and associated sequelae are not fully understood; however, early lung inflammatory and immune events are thought to play a major role in the outcome of the disease. Moreover, oxidative stress responses in the airways play a key role in the pathogenesis of RSV. Oxidative stress has been shown to elevate cytosolic calcium (Ca2+) levels, which in turn activate Ca2+-dependent enzymes, including transglutaminase 2 (TG2). Transglutaminase 2 is a multifunctional cross-linking enzyme implicated in various physiological and pathological conditions; however, its involvement in respiratory virus-induced airway inflammation is largely unknown. In this study, we demonstrated that RSV-induced oxidative stress promotes enhanced activation and release of TG2 from human lung epithelial cells as a result of its translocation from the cytoplasm and subsequent release into the extracellular space, which was mediated by Toll-like receptor (TLR)-4 and NF-κB pathways. Antioxidant treatment significantly inhibited RSV-induced TG2 extracellular release and activation via blocking viral replication. Also, treatment of RSV-infected lung epithelial cells with TG2 inhibitor significantly reduced RSV-induced matrix metalloprotease activities. These results suggested that RSV-induced oxidative stress activates innate immune receptors in the airways, such as TLRs, that can activate TG2 via the NF-κB pathway to promote cross-linking of extracellular matrix proteins, resulting in enhanced inflammation.
Collapse
Affiliation(s)
- Kempaiah Rayavara
- 1Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas
| | - Alexander Kurosky
- 2Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas
| | - Yashoda M. Hosakote
- 1Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
13
|
Kim YC, Kim J, Kim S, Bae B, Kim RL, Jeong EM, Cho SH, Kang HR. Transglutaminase 2 mediates lung inflammation and remodeling by transforming growth factor beta 1 via alveolar macrophage modulation. Exp Lung Res 2021; 47:465-475. [PMID: 34818962 DOI: 10.1080/01902148.2021.1998733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Transforming growth factor beta 1 (TGF-β1) induces pulmonary fibrosis by enhancing epithelial apoptosis and affects the enzymatic activity of transglutaminase 2 (TG2). The aim of this study was to determine the role of TG2 in TGF-β1-induced lung remodeling and alveolar macrophage modulation. We characterized the in vivo effects of TGF-β1 and TG2 on lung inflammation, fibrosis, and macrophage activity using transgenic C57BL/6 mice with wild and null TG2 loci. The effect of TG2 inhibition on in vitro TGF-β1-stimulated alveolar macrophages was assessed through mRNA analysis. TG2 was remarkably upregulated in the lungs of TGF-β1 transgenic (TGF-β1 Tg) mice, especially in alveolar macrophages and epithelial cells. In the absence of TG2, TGF-β1-induced inflammation was suppressed, decreasing the number of macrophages in the bronchoalveolar lavage fluid. In addition, the alveolar destruction and peribronchial fibrosis induced by TGF-β1 overexpression were significantly reduced, which correlated with decreases in the expression of fibroblast growth factor and matrix metallopeptidase 12, respectively. However, TG2 deficiency did not compromise the phagocytic activity of alveolar macrophages in TGF-β1 Tg mice. At the same time, TG2 contributed to the regulation of TGF-β1-induced macrophage activation. Inhibition of TG2 did not affect the TGF-β1-induced expression of CD86, an M1 marker, in macrophages, but it did reverse the TGF-β1-induced expression of CD206. This result suggests that TG2 mediates TGF-β1-induced M2-like polarization but does not contribute to TGF-β1-induced M1 polarization. In conclusion, TG2 regulates macrophage modulation and plays an important role in TGF-β1-induced lung inflammation, destruction, and fibrosis.
Collapse
Affiliation(s)
- Young Chan Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Jeonghyeon Kim
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Subin Kim
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Boram Bae
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Ruth Lee Kim
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Eui-Man Jeong
- Department of Pharmacy, Jeju National University College of Pharmacy, Jeju, Korea
| | - Sang-Heon Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Hye-Ryun Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
14
|
Deleterious Role of Th9 Cells in Pulmonary Fibrosis. Cells 2021; 10:cells10113209. [PMID: 34831433 PMCID: PMC8621886 DOI: 10.3390/cells10113209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/05/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease of unknown etiology. Immune disorders play an important role in IPF pathogenesis. Here, we show that Th9 cells differentiate and activate in the lung tissue of patients with IPF and bleomycin (BLM)-induced lung fibrosis mice. Moreover, we found that Th9 cells promote pulmonary fibrosis in two ways. On the one hand, Th9 cells promote fibroblast differentiation, activation, and collagen secretion by secreting IL-9. On the other hand, they promote differentiation of Th0 cells into Th2 cells by secreting IL-4. Th9 cells and Th2 cells can promote each other, accelerating the Th1/Th2 imbalance and eventually forming a positive feedback of pulmonary fibrosis. In addition, we found that neutralizing IL-9 in both preventive and therapeutic settings ameliorates bleomycin-induced pulmonary fibrosis. Furthermore, we identified several critical signaling pathways involved in the effect of neutralizing IL-9 on pulmonary fibrosis by proteomics study. From an immunological perspective, we elucidated the novel role and underlying mechanism of Th9 cells in pulmonary fibrosis. Our study suggested that Th9-based immunotherapy may be employed as a treatment strategy for IPF.
Collapse
|
15
|
Tatsukawa H, Hitomi K. Role of Transglutaminase 2 in Cell Death, Survival, and Fibrosis. Cells 2021; 10:cells10071842. [PMID: 34360011 PMCID: PMC8307792 DOI: 10.3390/cells10071842] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022] Open
Abstract
Transglutaminase 2 (TG2) is a ubiquitously expressed enzyme catalyzing the crosslinking between Gln and Lys residues and involved in various pathophysiological events. Besides this crosslinking activity, TG2 functions as a deamidase, GTPase, isopeptidase, adapter/scaffold, protein disulfide isomerase, and kinase. It also plays a role in the regulation of hypusination and serotonylation. Through these activities, TG2 is involved in cell growth, differentiation, cell death, inflammation, tissue repair, and fibrosis. Depending on the cell type and stimulus, TG2 changes its subcellular localization and biological activity, leading to cell death or survival. In normal unstressed cells, intracellular TG2 exhibits a GTP-bound closed conformation, exerting prosurvival functions. However, upon cell stimulation with Ca2+ or other factors, TG2 adopts a Ca2+-bound open conformation, demonstrating a transamidase activity involved in cell death or survival. These functional discrepancies of TG2 open form might be caused by its multifunctional nature, the existence of splicing variants, the cell type and stimulus, and the genetic backgrounds and variations of the mouse models used. TG2 is also involved in the phagocytosis of dead cells by macrophages and in fibrosis during tissue repair. Here, we summarize and discuss the multifunctional and controversial roles of TG2, focusing on cell death/survival and fibrosis.
Collapse
|
16
|
Takeuchi T, Tatsukawa H, Shinoda Y, Kuwata K, Nishiga M, Takahashi H, Hase N, Hitomi K. Spatially Resolved Identification of Transglutaminase Substrates by Proteomics in Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2021; 65:319-330. [PMID: 34264172 DOI: 10.1165/rcmb.2021-0012oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by the invariably progressive deposition of fibrotic tissue in the lungs and overall poor prognosis. Transglutaminase 2 (TG2) is an enzyme that crosslinks glutamine and lysine residues and is involved in IPF pathogenesis. Despite the accumulating evidence implicating TG2 as a critical enzyme, the causative function and direct target of TG2 relating to this pathogenesis remain unelucidated. Here, we clarified the distributions of TG2 protein/activity and conducted quantitative proteomics analyses of possible substrates crosslinked by TG2 on unfixed lung sections in a mouse pulmonary fibrosis model. We identified 126 possible substrates as markedly increased TG2-dependently in fibrotic lung. Gene ontology analysis revealed that these identified proteins were mostly enriched in the lipid metabolic process, immune system process, and protein transport. In addition, these proteins enriched in the 21 pathways including phagosome, lipid metabolism, several immune responses, and protein processing in endoplasmic reticulum. Furthermore, the network analyses screened out the 6 clusters and top 20 hub proteins with higher scores, which are related to ER stress and peroxisome proliferator-activated receptor signals. Several enriched pathways and categories were identified, and some of which were the same terms based on transcription analysis in IPF. Our results provide novel pathological molecular networks driven by protein crosslinking via TG2, which can lead to the development of new therapeutic targets for IPF.
Collapse
Affiliation(s)
- Taishu Takeuchi
- Tokai National Higher Education and Research System, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hideki Tatsukawa
- Tokai National Higher Education and Research System, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan;
| | - Yoshiki Shinoda
- Tokai National Higher Education and Research System, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Keiko Kuwata
- Tokai National Higher Education and Research System, Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
| | | | | | | | - Kiyotaka Hitomi
- Tokai National Higher Education and Research System, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
17
|
Pan J, Li X, Wang X, Yang L, Chen H, Su N, Wu C, Hao Y, Jin S, Li H. MCTR1 Intervention Reverses Experimental Lung Fibrosis in Mice. J Inflamm Res 2021; 14:1873-1881. [PMID: 34007201 PMCID: PMC8123946 DOI: 10.2147/jir.s304811] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Pulmonary fibrosis (PF) is a progressing lethal disease, effective curative therapies remain elusive and mortality remains high. Maresin conjugates in tissue regeneration 1 (MCTR1) is a DHA-derived lipid mediator promoting inflammation resolution produced in macrophage. However, the effect of MCTR1 on PF remains unknown. Material and Methods We established a lung fibrosis model in mice induced by intratracheal administration of bleomycin (BLM). On day 7 after lung fibrosis model establishment, treatment with MCTR1 up to day 21. The body weight of each mouse was recorded every day and survival curves were plotted. Histological staining was used to detect pulmonary inflammation and fibrosis. Lung sections were examined with transmission electron microscope to evaluate the ultrastructure of cells and deposit of collagen. Inflammatory cytokines in lung tissues were tested by ELISA. q-PCR and Western blot were used to evaluate the mRNA and the protein levels of EMT-related markers. Results We found that MCTR1 intervention attenuated BLM-induced lung inflammatory and fibrotic response. Furthermore, MCTR1 protected BLM-induced epithelial cell destroy and reversed epithelial-to-mesenchymal transition phenotype into an epithelial one in lung fibrosis mice. Most importantly, post-treatment with MCTR1 restored BLM-induced lung dysfunction and enhanced survival rate significantly. Conclusion Posttreatment with MCTR1 attenuated BLM-induced inflammation and fibrosis changes in mice, suggested MCTR1 may serve as a novel therapeutic strategy for fibrosis-related diseases.
Collapse
Affiliation(s)
- Jingyi Pan
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xinyu Li
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xinyang Wang
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Lili Yang
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Houlin Chen
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Nana Su
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Chenghua Wu
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yu Hao
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Shengwei Jin
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Hui Li
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
18
|
Lee HS, Park DE, Bae B, Oh K, Jung JW, Lee DS, Kim IG, Cho SH, Kang HR. Tranglutaminase 2 contributes to the asthmatic inflammation by modulating activation of alveolar macrophages. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:871-882. [PMID: 33945658 PMCID: PMC8342203 DOI: 10.1002/iid3.442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 03/23/2021] [Accepted: 04/03/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Transglutaminase 2 (TG2), a multifunctional calcium-dependent acyltransferase, is upregulated in asthmatic airways and reported to play a role in the pathogenesis of allergic asthma. However, the underlying mechanism is not fully understood. OBJECTIVE To investigate the role of TG2 in alternative activation of alveolar macrophages by using murine asthma model. METHODS TG2 expression was assessed in induced sputum of 21 asthma patients and 19 healthy controls, and lung tissue of ovalbumin (OVA)-induced murine asthma model. To evaluate the role of TG2 in asthma, we developed an OVA asthma model in both TG2 null and wild-type mice. The expression of M2 macrophage markers was measured by fluorescence-activated cell sorting (FACS) after OVA sensitization and challenge. To evaluate the effect of TG2 inhibition in vitro, interleukin 4 (IL-4) or IL-13-stimulated expression of M2 macrophage markers was measured in CRL-2456 cells in the presence and absence of a TG2 inhibitor. RESULTS The expression of both TG2 and M2 markers was increased in the sputum of asthmatics compared with that of healthy controls. The expression of TG2 was increased in macrophages of OVA mice. Airway hyperresponsiveness, and the number of inflammatory cells, including eosinophils, was significantly reduced in TG2 null mice compared with wild-type mice. Enhanced expression of M2 markers in OVA mice was normalized by TG2 knockout. IL-4 or IL-13-stimulated expression of M2 markers in alveolar macrophages was also attenuated by TG2 inhibitor treatment in vitro. CONCLUSION Our results suggest that TG2-mediated modulation of alveolar macrophage polarization plays important roles in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Hyun Seung Lee
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Da-Eun Park
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Boram Bae
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Keunhee Oh
- Department of Biomedical Sciences, Laboratory of Immunology and Cancer Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Woo Jung
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Dong-Sup Lee
- Department of Biomedical Sciences, Laboratory of Immunology and Cancer Biology, Seoul National University College of Medicine, Seoul, Korea
| | - In-Gyu Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Sang-Heon Cho
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hye-Ryun Kang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Markvardsen LK, Sønderskov LD, Wandall-Frostholm C, Pinilla E, Prat-Duran J, Aalling M, Mogensen S, Andersen CU, Simonsen U. Cystamine Treatment Fails to Prevent the Development of Pulmonary Hypertension in Chronic Hypoxic Rats. J Vasc Res 2021; 58:237-251. [PMID: 33910208 DOI: 10.1159/000515511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 02/04/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Pulmonary hypertension is characterized by vasoconstriction and remodeling of pulmonary arteries, leading to right ventricular hypertrophy and failure. We have previously found upregulation of transglutaminase 2 (TG2) in the right ventricle of chronic hypoxic rats. The hypothesis of the present study was that treatment with the transglutaminase inhibitor, cystamine, would inhibit the development of pulmonary arterial remodeling, pulmonary hypertension, and right ventricular hypertrophy. METHODS Effect of cystamine on transamidase activity was investigated in tissue homogenates. Wistar rats were exposed to chronic hypoxia and treated with vehicle, cystamine (40 mg/kg/day in mini-osmotic pumps), sildenafil (25 mg/kg/day), or the combination for 2 weeks. RESULTS Cystamine concentration-dependently inhibited TG2 transamidase activity in liver and lung homogenates. In contrast to cystamine, sildenafil reduced right ventricular systolic pressure and hypertrophy and decreased pulmonary vascular resistance and muscularization in chronic hypoxic rats. Fibrosis in the lung tissue decreased in chronic hypoxic rats treated with cystamine. TG2 expression was similar in the right ventricle and lung tissue of drug and vehicle-treated hypoxic rats. DISCUSSION/CONCLUSIONS Cystamine inhibited TG2 transamidase activity, but cystamine failed to prevent pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial muscularization in the chronic hypoxic rat.
Collapse
MESH Headings
- Animals
- Arterial Pressure/drug effects
- Cystamine/pharmacology
- Disease Models, Animal
- Enzyme Inhibitors/pharmacology
- Female
- Hypertension, Pulmonary/enzymology
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/prevention & control
- Hypertrophy, Right Ventricular/enzymology
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/prevention & control
- Hypoxia/complications
- Hypoxia/drug therapy
- Hypoxia/enzymology
- Hypoxia/physiopathology
- Male
- Mice, Inbred C57BL
- Protein Glutamine gamma Glutamyltransferase 2/antagonists & inhibitors
- Protein Glutamine gamma Glutamyltransferase 2/metabolism
- Pulmonary Artery/drug effects
- Pulmonary Artery/enzymology
- Pulmonary Artery/physiopathology
- Pulmonary Fibrosis/enzymology
- Pulmonary Fibrosis/etiology
- Pulmonary Fibrosis/physiopathology
- Pulmonary Fibrosis/prevention & control
- Rats, Wistar
- Vascular Remodeling/drug effects
- Ventricular Function, Right/drug effects
- Ventricular Remodeling/drug effects
- Mice
- Rats
Collapse
Affiliation(s)
- Lars K Markvardsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Lene D Sønderskov
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Christine Wandall-Frostholm
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Estéfano Pinilla
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Judit Prat-Duran
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Mathilde Aalling
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Susie Mogensen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Charlotte U Andersen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
20
|
Transglutaminase 2 as a Marker for Inflammation and Therapeutic Target in Sepsis. Int J Mol Sci 2021; 22:ijms22041897. [PMID: 33672962 PMCID: PMC7918628 DOI: 10.3390/ijms22041897] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Sepsis results in lethal organ malfunction due to dysregulated host response to infection, which is a condition with increasing prevalence worldwide. Transglutaminase 2 (TG2) is a crosslinking enzyme that forms a covalent bond between lysine and glutamine. TG2 plays important roles in diverse cellular processes, including extracellular matrix stabilization, cytoskeletal function, cell motility, adhesion, signal transduction, apoptosis, and cell survival. We have shown that the co-culture of Candida albicans and hepatocytes activates and induces the translocation of TG2 into the nucleus. In addition, the expression and activation of TG2 in liver macrophages was dramatically induced in the lipopolysaccharide-injected and cecal ligation puncture-operated mouse models of sepsis. Based on these findings and recently published research, we have reviewed the current understanding of the relationship between TG2 and sepsis. Following the genetic and pharmacological inhibition of TG2, we also assessed the evidence regarding the use of TG2 as a potential marker and therapeutic target in inflammation and sepsis.
Collapse
|
21
|
Fell S, Wang Z, Blanchard A, Nanthakumar C, Griffin M. Transglutaminase 2: a novel therapeutic target for idiopathic pulmonary fibrosis using selective small molecule inhibitors. Amino Acids 2021; 53:205-217. [PMID: 33474654 PMCID: PMC7910249 DOI: 10.1007/s00726-020-02938-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/26/2020] [Indexed: 01/29/2023]
Abstract
This study investigates the effects of a site-directed TG2-selective inhibitor on the lung myofibroblast phenotype and ECM deposition to elucidate TG2 as a novel therapeutic target in idiopathic pulmonary fibrosis (IPF)-an incurable progressive fibrotic disease. IPF fibroblasts showed increased expression of TG2, α smooth muscle actin (αSMA) and fibronectin (FN) with increased extracellular TG2 and transforming growth factor β1 (TGFβ1) compared to normal human lung fibroblasts (NHLFs) which do not express αSMA and express lower levels of FN. The myofibroblast phenotype shown by IPF fibroblasts could be reversed by selective TG2 inhibition with a reduction in matrix FN and TGFβ1 deposition. TG2 transduction or TGFβ1 treatment of NHLFs led to a comparable phenotype to that of IPF fibroblasts which was reversible following selective TG2 inhibition. Addition of exogenous TG2 to NHLFs also induced the myofibroblast phenotype by a mechanism involving TGFβ1 activation which could be ameliorated by selective TG2 inhibition. SMAD3-deleted IPF fibroblasts via CRISPR-cas9 genome editing, showed reduced TG2 protein levels following TGFβ1 stimulation. This study demonstrates a key role for TG2 in the induction of the myofibroblast phenotype and shows the potential for TG2-selective inhibitors as therapeutic agents for the treatment of fibrotic lung diseases like IPF.
Collapse
Affiliation(s)
- Shaun Fell
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Zhuo Wang
- School of Life and Health Sciences, Aston University, Birmingham, UK.
| | - Andy Blanchard
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R and D, Stevenage, UK
| | - Carmel Nanthakumar
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R and D, Stevenage, UK
| | - Martin Griffin
- School of Life and Health Sciences, Aston University, Birmingham, UK.
| |
Collapse
|
22
|
Kim HJ, Lee JH, Lee KB, Shin JW, Kwon MA, Lee S, Jeong EM, Cho SY, Kim IG. Transglutaminase 2 crosslinks the glutathione S-transferase tag, impeding protein-protein interactions of the fused protein. Exp Mol Med 2021; 53:115-124. [PMID: 33441971 PMCID: PMC8080825 DOI: 10.1038/s12276-020-00549-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 01/29/2023] Open
Abstract
Glutathione S-transferase (GST) from Schistosoma japonicum has been widely used as a tag for affinity purification and pulldown of fusion proteins to detect protein-protein interactions. However, the reliability of this technique is undermined by the formation of GST-fused protein aggregates after incubation with cell lysates. It remains unknown why this aggregation occurs. Here, we demonstrate that the GST tag is a substrate of transglutaminase 2 (TG2), which is a calcium-dependent enzyme that polyaminates or crosslinks substrate proteins. Mutation analysis identified four glutamine residues in the GST tag as polyamination sites. TG2-mediated modification of the GST tag caused aggregate formation but did not affect its glutathione binding affinity. When incubated with cell lysates, GST tag aggregation was dependent on cellular TG2 expression levels. A GST mutant in which four glutamine residues were replaced with asparagine (GST4QN) exhibited a glutathione binding affinity similar to that of wild-type GST and could be purified by glutathione affinity chromatography. Moreover, the use of GST4QN as a tag reduced fused p53 aggregation and enhanced the induction of p21 transcription and apoptosis in cells treated with 5-fluorouracil (5-FU). These results indicated that TG2 interferes with the protein-protein interactions of GST-fused proteins by crosslinking the GST tag; therefore, a GST4QN tag could improve the reproducibility and reliability of GST pulldown experiments.
Collapse
Affiliation(s)
- Hyo-Jun Kim
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Jin-Haeng Lee
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Ki Baek Lee
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Ji-Woong Shin
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Mee-ae Kwon
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Soojin Lee
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Eui Man Jeong
- grid.411277.60000 0001 0725 5207Department of Pharmacy, College of Pharmacy, Jeju National University, Jeju Special Self-Governing Province, Korea
| | - Sung-Yup Cho
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea ,grid.31501.360000 0004 0470 5905Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - In-Gyu Kim
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea ,grid.31501.360000 0004 0470 5905Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea ,grid.31501.360000 0004 0470 5905Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Lee DS, Oh K. Cancer Stem Cells in the Immune Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1187:245-266. [PMID: 33983582 DOI: 10.1007/978-981-32-9620-6_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cancer stem cells are a subpopulation of cancer cells responsible for the most demanding and aggressive cancer cell phenotypes: therapy resistance, a self-protective feature of stem cells; distant metastasis, requiring anchorage independence for survival in the circulation; and recurrence, which is related to the dormant-active cycling of stem cells. Normal tissues are composed of parenchymal cells, supportive connective components, and cellular disposal systems for removing the products of physiological wear and tear. Cancer stem cells develop from normal counterparts and progressively interact with their microenvironments, modifying and conditioning the cancer microenvironment. Cancer-associated myeloid cells constitute a major element of the cancer microenvironment. During the process of carcinogenesis, cancer stem cells and their intimately associated myeloid cells mutually interact and evolve, such that the cancer cells potentiate the activity of the myeloid cells and, in return, the myeloid cells increase cancer stem cell characteristics. Normal myeloid cells function as key accessory cells to maintain homeostasis in normal tissues and organs; in cancers, these cells co-evolve with the malignant parenchymal cells and are involved in every aspect of cancer cell biology, including proliferation, invasion, distant metastasis, and the development of resistance to therapy. In this way, cancer-associated myeloid cells provide two of the key hallmarks of cancer: evasion of immune destruction and cancer-promoting inflammation.
Collapse
Affiliation(s)
- Dong-Sup Lee
- Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Keunhee Oh
- SillaJen, Inc., Seoul, Republic of Korea
| |
Collapse
|
24
|
Henderson NC, Rieder F, Wynn TA. Fibrosis: from mechanisms to medicines. Nature 2020; 587:555-566. [PMID: 33239795 DOI: 10.1038/s41586-020-2938-9] [Citation(s) in RCA: 1050] [Impact Index Per Article: 210.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
Fibrosis can affect any organ and is responsible for up to 45% of all deaths in the industrialized world. It has long been thought to be relentlessly progressive and irreversible, but both preclinical models and clinical trials in various organ systems have shown that fibrosis is a highly dynamic process. This has clear implications for therapeutic interventions that are designed to capitalize on this inherent plasticity. However, despite substantial progress in our understanding of the pathobiology of fibrosis, a translational gap remains between the identification of putative antifibrotic targets and conversion of this knowledge into effective treatments in humans. Here we discuss the transformative experimental strategies that are being leveraged to dissect the key cellular and molecular mechanisms that regulate fibrosis, and the translational approaches that are enabling the emergence of precision medicine-based therapies for patients with fibrosis.
Collapse
Affiliation(s)
- Neil C Henderson
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Thomas A Wynn
- Inflammation & Immunology Research Unit, Pfizer Worldwide Research, Development & Medical, Cambridge, MA, USA.
| |
Collapse
|
25
|
Gupta G, Singh Y, Tiwari J, Raizaday A, Alharbi KS, Al-Abbasi FA, Kazmi I, Satija S, Tambuwala MM, Devkota HP, Krishnan A, Chellappan DK, Dua K. Beta-catenin non-canonical pathway: A potential target for inflammatory and hyperproliferative state via expression of transglutaminase 2 in psoriatic skin keratinocyte. Dermatol Ther 2020; 33:e14209. [PMID: 32816372 DOI: 10.1111/dth.14209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/29/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022]
Abstract
Psoriasis is a chronic, local as well as a systemic, inflammatory skin condition. Psoriasis influences the quality of life up to 3.8% of the population and occurs often between 15 and 30 years of age. Specific causes are linked to psoriasis, including the interleukin IL-23/IL-17 Axis, human antigen leucocyte (HLA), and tumor necrosis factor-α (TNF-α). Secukinumab is a monoclonal antibody that specifically binds and neutralizes IL-17A required in the treatment of Psoriasis. The signaling pathways of Wnt govern multiple functions of cell-like fate specification, proliferation, polarity, migration, differentiation with their signaling controlled rigorously, given that dysregulation caused by various stimuli, can lead to alterations in cell proliferation, apoptosis, and human inflammatory disease. Current data has supported non-canonical Wnt signaling pathways in psoriasis development, particularly Wnt5a activated signaling cascades. These interconnected factors are significant in interactions between immune cells, keratinocytes, and inflammatory factors due to a higher degree of transglutaminase 2, mediated by activation of the keratinocyte hyperproliferation of the psoriatic patient's epidermis. This study discusses the pathology of Wnt5a signaling and its involvement in the epidermal inflammatory effects of psoriasis with other related pathways.
Collapse
Affiliation(s)
- Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
| | - Yogendra Singh
- Mahatma Gandhi College of Pharmaceutical Sciences, Jaipur, India
| | | | - Abhay Raizaday
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, COLERAINE, Northern Ireland, United Kingdom
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Anand Krishnan
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| |
Collapse
|
26
|
Tschumperlin DJ, Lagares D. Mechano-therapeutics: Targeting Mechanical Signaling in Fibrosis and Tumor Stroma. Pharmacol Ther 2020; 212:107575. [PMID: 32437826 DOI: 10.1016/j.pharmthera.2020.107575] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
Pathological remodeling of the extracellular matrix (ECM) by activated myofibroblasts is a hallmark of fibrotic diseases and desmoplastic tumors. Activation of myofibroblasts occurs in response to fibrogenic tissue injury as well as in tumor-associated fibrotic reactions. The molecular determinants of myofibroblast activation in fibrosis and tumor stroma have traditionally been viewed to include biochemical agents, such as dysregulated growth factor and cytokine signaling, which profoundly alter the biology of fibroblasts, ultimately leading to overexuberant matrix deposition and fibrosis. More recently, compelling evidence has shown that altered mechanical properties of the ECM such as matrix stiffness are major drivers of tissue fibrogenesis by promoting mechano-activation of fibroblasts. In this Review, we discuss new insights into the role of the biophysical microenvironment in the amplified activation of fibrogenic myofibroblasts during the development and progression of fibrotic diseases and desmoplastic tumors. We also summarize novel therapeutic targets for anti-fibrotic therapy based on the mechanobiology of tissue fibrosis and tumor stroma, a class of drugs known as "mechano-therapeutics".
Collapse
Affiliation(s)
- Daniel J Tschumperlin
- Tissue Repair and Mechanobiology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1(st) St SW, Rochester, MN 55905, USA.
| | - David Lagares
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Keratinocyte transglutaminase 2 promotes CCR6 + γδT-cell recruitment by upregulating CCL20 in psoriatic inflammation. Cell Death Dis 2020; 11:301. [PMID: 32355189 PMCID: PMC7193648 DOI: 10.1038/s41419-020-2495-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
Keratinocyte-derived cytokines and chemokines amplify psoriatic inflammation by recruiting IL-17-producing CCR6+ γδT-cells and neutrophils. The expression of these cytokines and chemokines mainly depends on NF-κB activity; however, the pathway that activates NF-κB in response to triggering factors is poorly defined. Here, we show that transglutaminase 2 (TG2), previously reported to elicit a TH17 response by increasing IL-6 expression in a mouse model of lung fibrosis, mediates the upregulation of cytokines and chemokines by activating NF-κB in imiquimod (IMQ)-treated keratinocytes. TG2-deficient mice exhibited reduced psoriatic inflammation in skin treated with IMQ but showed systemic immune responses similar to wild-type mice. Experiments in bone marrow (BM) chimeric mice revealed that TG2 is responsible for promoting psoriatic inflammation in non-BM-derived cells. In keratinocytes, IMQ treatment activated TG2, which in turn activated NF-κB signaling, leading to the upregulation of IL-6, CCL20, and CXCL8 and increased leukocyte migration, in vitro. Consequently, TG2-deficient mice showed markedly decreased CCR6+ γδT-cell and neutrophil infiltration in IMQ-treated skin. Moreover, TG2 levels were higher in psoriatic skin than in normal skin and correlated with IL-6, CXCL8, and CCL20 levels. Therefore, these results indicate that keratinocyte TG2 acts as a critical mediator in the amplification of psoriatic inflammation.
Collapse
|
28
|
A Precision Strategy to Cure Renal Cell Carcinoma by Targeting Transglutaminase 2. Int J Mol Sci 2020; 21:ijms21072493. [PMID: 32260198 PMCID: PMC7177245 DOI: 10.3390/ijms21072493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
In a recent report, no significance of transglutaminase 2 (TGase 2) was noted in the analyses of expression differences between normal and clear cell renal cell carcinoma (ccRCC), although we found that knock down of TGase 2 induced significant p53-mediated cell death in ccRCC. Generally, to find effective therapeutic targets, we need to identify targets that belong specifically to a cancer phenotype that can be differentiated from a normal phenotype. Here, we offer precise reasons why TGase 2 may be the first therapeutic target for ccRCC, according to several lines of evidence. TGase 2 is negatively regulated by von Hippel-Lindau tumor suppressor protein (pVHL) and positively regulated by hypoxia-inducible factor 1-α (HIF-1α) in renal cell carcinoma (RCC). Therefore, most of ccRCC presents high level expression of TGase 2 because over 90% of ccRCC showed VHL inactivity through mutation and methylation. Cell death, angiogenesis and drug resistance were specifically regulated by TGase 2 through p53 depletion in ccRCC because over 90% of ccRCC express wild type p53, which is a cell death inducer as well as a HIF-1α suppressor. Although there have been no detailed studies of the physiological role of TGase 2 in multi-omics analyses of ccRCC, a life-long study of the physiological roles of TGase 2 led to the discovery of the first target as well as the first therapeutic treatment for ccRCC in the clinical field.
Collapse
|
29
|
Wee YM, Go H, Choi MY, Jung HR, Cho YM, Kim YH, Han DJ, Shin S. Tissue-resident natural killer cells exacerbate tubulointerstitial fibrosis by activating transglutaminase 2 and syndecan-4 in a model of aristolochic acid-induced nephropathy. BMB Rep 2020. [PMID: 31072444 PMCID: PMC6774424 DOI: 10.5483/bmbrep.2019.52.9.193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Despite reports suggesting that tissue-resident natural killer (trNK) cells cause ischemic kidney injury, their contribution to the development of tubulointerstitial fibrosis has not been determined. This study hypothesized that the depletion of trNK cells may ameliorate renal fibrosis by affecting transglutaminase 2/syndecan-4 interactions. Aristolochic acid nephropathy (AAN) was induced in C57BL/6 mice as an experimental model of kidney fibrosis. The mice were treated with anti-asialo GM1 (ASGM1) or anti-NK1.1 antibodies to deplete NK cells. Although both ASGM1 and NK1.1 antibodies suppressed renal NKp46+DX5+ NK cells, renal NKp46+DX5− cells were resistant to suppression by ASGM1 or NK1.1 antibodies during the development of tubulointerstitial fibrosis in the AAN-induced mouse model. Western blot analysis showed that both antibodies increased the expression of fibronectin, transglutaminase 2, and syndecan-4. These findings indicate that trNK cells played an exacerbating role in tubulointerstitial fibrosis by activating transglutaminase 2 and syndecan-4 in the AAN-induced mouse model.
Collapse
Affiliation(s)
- Yu Mee Wee
- Department of Asan Institute for Life Science, Asan Medical Center, Seoul 05535, Korea
| | - Heounjeong Go
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05535, Korea
| | - Monica Young Choi
- Department of Asan Institute for Life Science, Asan Medical Center, Seoul 05535, Korea
| | - Hey Rim Jung
- Department of Asan Institute for Life Science, Asan Medical Center, Seoul 05535, Korea
| | - Yong Mee Cho
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05535, Korea
| | - Young Hoon Kim
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05535, Korea
| | - Duck Jong Han
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05535, Korea
| | - Sung Shin
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05535, Korea
| |
Collapse
|
30
|
Piro MC, Ventura A, Smirnov A, Saggini A, Lena AM, Mauriello A, Bianchi L, Melino G, Candi E. Transglutaminase 3 Reduces the Severity of Psoriasis in Imiquimod-Treated Mouse Skin. Int J Mol Sci 2020; 21:ijms21051566. [PMID: 32106600 PMCID: PMC7084269 DOI: 10.3390/ijms21051566] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/26/2022] Open
Abstract
Four transglutaminase (TG) isoforms have been detected in epidermal keratinocytes: TG1, TG2, TG3, and TG5. Except for TG1 and TG3, their contribution to keratinocyte development and structure remains undefined. In this paper, we focused on the roles of TG2 and TG3 in imiquimod-induced psoriasis in mouse skin. We evaluated the severity of psoriasis markers in the skin of imiquimod-treated TG3 null and TG2 null mice. Our results showed that compromised TG3KO mouse skin was more responsive than WT or TG2KO mouse skin to the action of the pro-inflammatory drug imiquimod.
Collapse
Affiliation(s)
- Maria Cristina Piro
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.C.P.); (A.S.); (A.S.); (A.M.L.); (A.M.)
| | - Alessandra Ventura
- Dermatology Unit, Department of Biotechnological and Applied Clinical Science, University of L’Aquila, IT-67100 L’Aquila, Italy;
| | - Artem Smirnov
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.C.P.); (A.S.); (A.S.); (A.M.L.); (A.M.)
| | - Andrea Saggini
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.C.P.); (A.S.); (A.S.); (A.M.L.); (A.M.)
| | - Anna Maria Lena
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.C.P.); (A.S.); (A.S.); (A.M.L.); (A.M.)
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.C.P.); (A.S.); (A.S.); (A.M.L.); (A.M.)
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.C.P.); (A.S.); (A.S.); (A.M.L.); (A.M.)
- Medical Research Council, University of Cambridge, Cambridge CB21QP, UK
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.C.P.); (A.S.); (A.S.); (A.M.L.); (A.M.)
- IDI-IRCCS, Biochemistry laboratory, 00167 Rome, Italy
- Correspondence: ; Tel.: +39-06-72596976
| |
Collapse
|
31
|
Kim DY, Lee SH, Fu Y, Jing F, Kim WY, Hong SB, Song JA, Choe H, Ryu HJ, Kim M, Lim D, Kim MS, Yun CO, Lee T, Hyun H, Choi EY. Del-1, an Endogenous Inhibitor of TGF-β Activation, Attenuates Fibrosis. Front Immunol 2020; 11:68. [PMID: 32117240 PMCID: PMC7018852 DOI: 10.3389/fimmu.2020.00068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
Uncontrolled activation of transforming growth factor (TGF)-β results in a wide range of pathologic conditions. Therapeutic interventions to regulate TGF-β signaling during fibrosis have been developed but the effectiveness is still limited. Here, we show that developmental endothelial locus-1 (Del-1) ameliorates fibrosis in mice by inhibiting αv integrin-mediated activation of TGF-β. Del-1 bound to αvβ6 integrin, an important activator of TGF-β, and inhibited the binding of αvβ6 integrin to the latency-associated peptide (LAP), thereby suppressing αv integrin-mediated activation of TGF-β. Lack of Del-1 increased colocalization of αv integrin and LAP in the lungs, which was reversed by Del-1 supplementation. The crucial role of Del-1 in regulating TGF-β activity was recapitulated in a mouse model of fibrosis using an adenovirus expressing inactive TGF-β1. Del-1 supplementation improved the pathological characteristics of the mice and reduced mortality. Thus, we propose that Del-1 is a negative regulator of TGF-β activation and a potential anti-fibrotic factor.
Collapse
Affiliation(s)
- Dong-Young Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seung-Hwan Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yan Fu
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Feifeng Jing
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Won-Young Kim
- Division of Critical Care Medicine, Department of Internal Medicine, Chung-Ang University Hospital, Seoul, South Korea
| | - Sang-Bum Hong
- Division of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jung-A Song
- Department of Physiology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Han Choe
- Department of Physiology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyun Jin Ryu
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Minjung Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Dahae Lim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
| | - Taewon Lee
- Division of Applied Mathematical Sciences, College of Science and Technology, Korea University, Sejong, South Korea
| | - Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, South Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
32
|
Competitive Binding of Magnesium to Calcium Binding Sites Reciprocally Regulates Transamidase and GTP Hydrolysis Activity of Transglutaminase 2. Int J Mol Sci 2020; 21:ijms21030791. [PMID: 31991788 PMCID: PMC7037829 DOI: 10.3390/ijms21030791] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023] Open
Abstract
Transglutaminase 2 (TG2) is a Ca2+-dependent enzyme, which regulates various cellular processes by catalyzing protein crosslinking or polyamination. Intracellular TG2 is activated and inhibited by Ca2+ and GTP binding, respectively. Although aberrant TG2 activation has been implicated in the pathogenesis of diverse diseases, including cancer and degenerative and fibrotic diseases, the structural basis for the regulation of TG2 by Ca2+ and GTP binding is not fully understood. Here, we produced and analyzed a Ca2+-containing TG2 crystal, and identified two glutamate residues, E437 and E539, as Ca2+-binding sites. The enzymatic analysis of the mutants revealed that Ca2+ binding to these sites is required for the transamidase activity of TG2. Interestingly, we found that magnesium (Mg2+) competitively binds to the E437 and E539 residues. The Mg2+ binding to these allosteric sites enhances the GTP binding/hydrolysis activity but inhibits transamidase activity. Furthermore, HEK293 cells transfected with mutant TG2 exhibited higher transamidase activity than cells with wild-type TG2. Cells with wild-type TG2 showed an increase in transamidase activity under Mg2+-depleted conditions, whereas cells with mutant TG2 were unaffected. These results indicate that E437 and E539 are Ca2+-binding sites contributing to the reciprocal regulation of transamidase and GTP binding/hydrolysis activities of TG2 through competitive Mg2+ binding.
Collapse
|
33
|
Abstract
Acute lung injury (ALI) is characterized by acute inflammation and tissue injury results in dysfunction of the alveolar epithelial membrane. If the epithelial injury is severe, a fibroproliferative phase of ALI can develop. During this phase, the activated fibroblast and myofibroblasts synthesize excessive collagenous extracellular matrix that leads to a condition called pulmonary fibrosis. Lung injury can be caused by several ways; however, the present review focus on bleomycin (BLM)-mediated changes in the pathology of lungs. BLM is a chemotherapeutic agent and has toxic effects on lungs, which leads to oxidative damage and elaboration of inflammatory cytokines. In response to the injury, the inflammatory cytokines will be activated to defend the system from injury. These cytokines along with growth factors stimulate the proliferation of myofibroblasts and secretion of pathologic extracellular matrix. During BLM injury, the pro-inflammatory cytokine such as IL-17A will be up-regulated and mediates the inflammation in the alveolar epithelial cell and also brings about recruitment of certain inflammatory cells in the alveolar surface. These cytokines probably help in up-regulating the expression of p53 and fibrinolytic system molecules during the alveolar epithelial cells apoptosis. Here, our key concern is to provide the adequate knowledge about IL-17A-mediated p53 fibrinolytic system and their pathogenic progression to pulmonary fibrosis. The present review focuses mainly on IL-17A-mediated p53-fibrinolytic aspects and how curcumin is involved in the regulation of pathogenic progression of ALI and pulmonary fibrosis.
Collapse
|
34
|
Kim M, Yu HY, Ju H, Shin JH, Kim A, Lee J, Ryu CM, Yun H, Lee S, Lim J, Heo J, Shin DM, Choo MS. Induction of detrusor underactivity by extensive vascular endothelial damages of iliac arteries in a rat model and its pathophysiology in the genetic levels. Sci Rep 2019; 9:16328. [PMID: 31705030 PMCID: PMC6841737 DOI: 10.1038/s41598-019-52811-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 10/21/2019] [Indexed: 12/24/2022] Open
Abstract
We tried to establish a reliable detrusor underactivity (DUA) rat model and to investigate pathophysiology of chronic bladder ischemia (CBI) on voiding behavior and bladder function. Adult male rats were divided into five groups. The arterial injury (AI) groups (AI-10, AI-20, AI-30) underwent vascular endothelial damage (VED) of bilateral iliac arteries (with 10, 20, and 30 bilateral repetitions of injury, respectively) and received a 1.25% cholesterol diet. The sham group underwent sham operation and received the same diet. Controls received a regular diet. After 8 weeks, all rats underwent unanesthetized cystometrogram. Bladder tissues were processed for organ bath investigation, immunohistochemistry staining, and genome-wide gene expression analysis. Awake cystometry analysis showed that frequency of voiding contractions and micturition pressure were lower in the AI-30 group than in sham group (p < 0.01). Contractile responses to various stimuli were lower in AI-20 and AI-30 groups (both p < 0.001). In the AI-20 and AI-30 groups, atherosclerotic occlusion in the iliac arteries, tissue inflammation, fibrosis, denervation, and apoptosis of bladder muscle were prominent compared to the sham. Mechanistically, the expression of purinergic receptor P2X-1 was reduced in the AI-30 group, and the genome-wide gene expression analysis revealed that genes related to IL-17 and HIF-1 signaling pathways including INF-γ receptor-1 and C-X-C motif chemokine ligand-2 were upregulated in the CBI-induced DUA rat model. A rat model of progressive VED successfully induced DUA. Abnormal tissue inflammation, fibrosis, denervation, and bladder muscle tissue apoptosis may be involved in CBI-induced DUA pathophysiology.
Collapse
Affiliation(s)
- Myong Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Hwan Yeul Yu
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Hyein Ju
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Jung Hyun Shin
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Aram Kim
- Department of Urology, Konkuk University Hospital, Konkuk University School of Medicine, Seoul, 05030, Republic of Korea
| | - Jaehoon Lee
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Chae-Min Ryu
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - HongDuck Yun
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Seungun Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Jisun Lim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Jinbeom Heo
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Dong-Myung Shin
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea. .,Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Myung-Soo Choo
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
35
|
E3 ligase carboxyl-terminus of Hsp70-interacting protein (CHIP) suppresses fibrotic properties in oral mucosa. J Formos Med Assoc 2019; 119:595-600. [PMID: 31653576 DOI: 10.1016/j.jfma.2019.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/28/2019] [Accepted: 09/24/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND/PURPOSE Oral submucous fibrosis (OSF) represents a precancerous lesion of oral mucosa that may progress into oral cancer and its major etiological factor is areca nut chewing. Carboxyl-terminus of Hsp70-interacting protein (CHIP) functions as an ubiquitin E3 ligase and is associated with fibrosis diseases. In the current study, we sought to investigate whether CHIP participated in the areca nut-mediated OSF development. METHODS The mRNA expression of CHIP in arecoline-stimulated buccal mucosal fibroblasts (BMFs) and OSF tissues was determined by qRT-PCR. Collagen gel contraction, migration and invasion assays were carried out to evaluate the myofibroblast activation. The protein expression levels of α-SMA and transglutaminase 2 (TGM2) were assessed by Western blot. RESULTS The expression level of CHIP was reduced in BMFs following arecoline treatment in a dose-dependent manner, which was consistent with the observation of lower CHIP expression in OSF specimen compared to the normal counterparts. Ectopic expression of CHIP mitigated the myofibroblast activities, including elevated collagen gel contractility and cell motility. In addition, we showed that overexpression of CHIP downregulated the α-SMA and TGM-2 expression, which may lead to less fibrosis alteration. CONCLUSION CHIP may not only function as a key regulator of protein quality control but also a critical deciding factor to oral fibrogenesis. Our findings suggested that CHIP possesses the anti-fibrotic effect, which may be mediated by TGM2 regulation. Restoration of CHIP could be a therapeutic direction to help OSF patients.
Collapse
|
36
|
Kim JY, Wee YM, Choi MY, Jung HR, Choi JY, Kwon HW, Jung JH, Cho YM, Go H, Han M, Kim YH, Han DJ, Shin S. Urinary transglutaminase 2 as a potent biomarker to predict interstitial fibrosis and tubular atrophy of kidney allograft during early posttransplant period in deceased donor kidney transplantation. Ann Surg Treat Res 2019; 97:27-35. [PMID: 31297350 PMCID: PMC6609414 DOI: 10.4174/astr.2019.97.1.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/26/2019] [Accepted: 05/14/2019] [Indexed: 11/30/2022] Open
Abstract
Purpose Transglutaminase type 2 (TG2) is an extracellular matrix crosslinking enzyme with a pivotal role in kidney fibrosis. We tested whether quantification of urinary TG2 may represent a noninvasive method to estimate the severity of kidney allograft fibrosis. Methods We prospectively collected urine specimens from 18 deceased donor kidney transplant recipients at 1-day, 7-day, 1-month, 3-month, and 6-month posttransplant. In addition, kidney allograft tissue specimens at 0-day and 6-month posttransplant were sampled to analyze the correlation of urinary TG2 and kidney allograft fibrosis. Results Thirteen recipients had increased interstitial fibrosis and tubular atrophy (IFTA) scores at the 6-month protocol biopsy (IFTA group). The mean level of urinary TG2 in the IFTA group was higher compared to that of 5 other recipients without IFTA (no IFTA group). Conversely, the mean level of urinary syndecan-4 in the IFTA group was lower than levels in patients without IFTA. In the IFTA group, double immunofluorescent staining revealed that TG2 intensity was significantly upregulated and colocalizations of TG2/heparin sulfate proteoglycan and nuclear syndecan-4 were prominent, usually around tubular structures. Conclusion Urinary TG2 in early posttransplant periods is a potent biomarker for kidney allograft inflammation or fibrosis.
Collapse
Affiliation(s)
- Jee Yeon Kim
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yu-Mee Wee
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Monica Young Choi
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hey Rim Jung
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji Yoon Choi
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun Wook Kwon
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Joo Hee Jung
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Mee Cho
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Heounjeong Go
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Minkyu Han
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, Seoul, Korea
| | - Young Hoon Kim
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Duck Jong Han
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Shin
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
37
|
Li J, Mao R, Kurada S, Wang J, Lin S, Chandra J, Rieder F. Pathogenesis of fibrostenosing Crohn's disease. Transl Res 2019; 209:39-54. [PMID: 30981697 DOI: 10.1016/j.trsl.2019.03.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
Crohn's disease (CD) is a chronic inflammatory disease, which could affect any part of the gastrointestinal tract. A severe complication of CD is fibrosis-associated strictures, which can cause bowel obstruction. Unfortunately, there is no specific antifibrotic therapy available. More than 80% of the patients with CD will have to undergo at least 1 surgery in their life and recurrence of strictures after surgery is common. Investigations on the mechanism of fibrostenosing CD have revealed that fibrosis is mainly driven by expansion of mesenchymal cells including fibroblasts, myofibroblasts, and smooth muscle cells. Being exposed to a pro-fibrotic milieu, these cells increase the secretion of extracellular matrix, as well as crosslinking enzymes, which drive tissue stiffness and remodeling. Fibrogenesis can become independent of inflammation in later stages of disease, which offers unique therapeutic potential. Exciting new evidence suggests smooth muscle cell hyperplasia as a strong contributor to luminal narrowing in fibrostenotic CD. Approval of new drugs in other fibrotic diseases, such as idiopathic pulmonary fibrosis, as well as new targets associated with fibrosis found in CD, such as cadherins or specific integrins, shed light on the development of novel antifibrotic approaches in CD.
Collapse
Affiliation(s)
- Jiannan Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Ren Mao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Satya Kurada
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio; School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Sinan Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jyotsna Chandra
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio.
| |
Collapse
|
38
|
Ramani K, Biswas PS. Interleukin-17: Friend or foe in organ fibrosis. Cytokine 2019; 120:282-288. [PMID: 30772195 DOI: 10.1016/j.cyto.2018.11.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023]
Abstract
Fibrosis affects all vital organs accounting for a staggering 45% of deaths worldwide and no effective therapies are currently available. Unresolved inflammation triggers downstream signaling events that lead to organ fibrosis. In recent years, proinflammatory cytokine Interleukin-17 (IL-17) has been implicated in several chronic inflammatory diseases that often culminate in organ damage followed by impaired wound healing and fibrosis. In this review, we outline the contribution of the IL-17 in mediating fibrotic diseases in various organs. A comprehensive understanding of the inflammatory events, and particularly the details of IL-17 signaling in vivo, could be beneficial in designing new therapeutic or preventive approaches to treat fibrosis. Additionally, understanding organ-specific differences in IL-17 activity could lead to targeted therapies and help spare other organs from unwanted side effects.
Collapse
Affiliation(s)
- Kritika Ramani
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Partha S Biswas
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
39
|
Biocatalysis by Transglutaminases: A Review of Biotechnological Applications. MICROMACHINES 2018; 9:mi9110562. [PMID: 30715061 PMCID: PMC6265872 DOI: 10.3390/mi9110562] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/23/2018] [Indexed: 02/08/2023]
Abstract
The biocatalytic activity of transglutaminases (TGs) leads to the synthesis of new covalent isopeptide bonds (crosslinks) between peptide-bound glutamine and lysine residues, but also the transamidation of primary amines to glutamine residues, which ultimately can result into protein polymerisation. Operating with a cysteine/histidine/aspartic acid (Cys/His/Asp) catalytic triad, TGs induce the post-translational modification of proteins at both physiological and pathological conditions (e.g., accumulation of matrices in tissue fibrosis). Because of the disparate biotechnological applications, this large family of protein-remodelling enzymes have stimulated an escalation of interest. In the past 50 years, both mammalian and microbial TGs polymerising activity has been exploited in the food industry for the improvement of aliments' quality, texture, and nutritive value, other than to enhance the food appearance and increased marketability. At the same time, the ability of TGs to crosslink extracellular matrix proteins, like collagen, as well as synthetic biopolymers, has led to multiple applications in biomedicine, such as the production of biocompatible scaffolds and hydrogels for tissue engineering and drug delivery, or DNA-protein bio-conjugation and antibody functionalisation. Here, we summarise the most recent advances in the field, focusing on the utilisation of TGs-mediated protein multimerisation in biotechnological and bioengineering applications.
Collapse
|
40
|
Hewlett JC, Kropski JA, Blackwell TS. Idiopathic pulmonary fibrosis: Epithelial-mesenchymal interactions and emerging therapeutic targets. Matrix Biol 2018; 71-72:112-127. [PMID: 29625182 PMCID: PMC6146058 DOI: 10.1016/j.matbio.2018.03.021] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/11/2018] [Accepted: 03/29/2018] [Indexed: 12/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic disease of the lung that is marked by progressive decline in pulmonary function and ultimately respiratory failure. Genetic and environmental risk factors have been identified that indicate injury to, and dysfunction of the lung epithelium is central to initiating the pathogenic process. Following injury to the lung epithelium, growth factors, matrikines and extracellular matrix driven signaling together activate a variety of repair pathways that lead to inflammatory cell recruitment, fibroblast proliferation and expansion of the extracellular matrix, culminating in tissue fibrosis. This tissue fibrosis then leads to changes in the biochemical and biomechanical properties of the extracellular matrix, which potentiate profibrotic mechanisms through a "feed-forward cycle." This review provides an overview of the interactions of the pathogenic mechanisms of IPF with a focus on epithelial-mesenchymal crosstalk and the extracellular matrix as a therapeutic target for idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Justin C Hewlett
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jonathan A Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Veterans Affairs Medical Center, Nashville, TN, United States.
| | - Timothy S Blackwell
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Veterans Affairs Medical Center, Nashville, TN, United States; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|
41
|
Shinde AV, Dobaczewski M, de Haan JJ, Saxena A, Lee KK, Xia Y, Chen W, Su Y, Hanif W, Kaur Madahar I, Paulino VM, Melino G, Frangogiannis NG. Tissue transglutaminase induction in the pressure-overloaded myocardium regulates matrix remodelling. Cardiovasc Res 2018; 113:892-905. [PMID: 28371893 DOI: 10.1093/cvr/cvx053] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 03/16/2017] [Indexed: 11/14/2022] Open
Abstract
Aims Tissue transglutaminase (tTG) is induced in injured and remodelling tissues, and modulates cellular phenotype, while contributing to matrix cross-linking. Our study tested the hypothesis that tTG may be expressed in the pressure-overloaded myocardium, and may regulate cardiac function, myocardial fibrosis and chamber remodelling. Methods and results In order to test the hypothesis, wild-type and tTG null mice were subjected to pressure overload induced through transverse aortic constriction. Moreover, we used isolated cardiac fibroblasts and macrophages to dissect the mechanisms of tTG-mediated actions. tTG expression was upregulated in the pressure-overloaded mouse heart and was localized in cardiomyocytes, interstitial cells, and in the extracellular matrix. In contrast, expression of transglutaminases 1, 3, 4, 5, 6, 7 and FXIII was not induced in the remodelling myocardium. In vitro, transforming growth factor (TGF)-β1 stimulated tTG synthesis in cardiac fibroblasts and in macrophages through distinct signalling pathways. tTG null mice had increased mortality and enhanced ventricular dilation following pressure overload, but were protected from diastolic dysfunction. tTG loss was associated with a hypercellular cardiac interstitium, reduced collagen cross-linking, and with accentuated matrix metalloproteinase (MMP)2 activity in the pressure-overloaded myocardium. In vitro, tTG did not modulate TGF-β-mediated responses in cardiac fibroblasts; however, tTG loss was associated with accentuated proliferative activity. Moreover, when bound to the matrix, recombinant tTG induced synthesis of tissue inhibitor of metalloproteinases (TIMP)-1 through transamidase-independent actions. Conclusions Following pressure overload, endogenous tTG mediates matrix cross-linking, while protecting the remodelling myocardium from dilation by exerting matrix-preserving actions.
Collapse
Affiliation(s)
- Arti V Shinde
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, NY 10021, USA
| | - Marcin Dobaczewski
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, NY 10021, USA
| | - Judith J de Haan
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, NY 10021, USA
| | - Amit Saxena
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, NY 10021, USA
| | - Kang-Kon Lee
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, NY 10021, USA
| | - Ying Xia
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wei Chen
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, NY 10021, USA
| | - Ya Su
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, NY 10021, USA
| | - Waqas Hanif
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, NY 10021, USA
| | - Inderpreet Kaur Madahar
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, NY 10021, USA
| | - Victor M Paulino
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, NY 10021, USA
| | - Gerry Melino
- Biochemistry IDI-IRCCS Laboratory, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, NY 10021, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
42
|
Mertens TCJ, Hanmandlu A, Tu L, Phan C, Collum SD, Chen NY, Weng T, Davies J, Liu C, Eltzschig HK, Jyothula SSK, Rajagopal K, Xia Y, Guha A, Bruckner BA, Blackburn MR, Guignabert C, Karmouty-Quintana H. Switching-Off Adora2b in Vascular Smooth Muscle Cells Halts the Development of Pulmonary Hypertension. Front Physiol 2018; 9:555. [PMID: 29910735 PMCID: PMC5992271 DOI: 10.3389/fphys.2018.00555] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/30/2018] [Indexed: 11/26/2022] Open
Abstract
Background: Pulmonary hypertension (PH) is a devastating and progressive disease characterized by excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) and remodeling of the lung vasculature. Adenosine signaling through the ADORA2B receptor has previously been implicated in disease progression and tissue remodeling in chronic lung disease. In experimental models of PH associated with chronic lung injury, pharmacological or genetic inhibition of ADORA2B improved markers of chronic lung injury and hallmarks of PH. However, the contribution of ADORA2B expression in the PASMC was not fully evaluated. Hypothesis: We hypothesized that adenosine signaling through the ADORA2B receptor in PASMC mediates the development of PH. Methods: PASMCs from controls and patients with idiopathic pulmonary arterial hypertension (iPAH) were characterized for expression levels of all adenosine receptors. Next, we evaluated the development of PH in ADORA2Bf/f-Transgelin (Tagln)cre mice. These mice or adequate controls were exposed to a combination of SUGEN (SU5416, 20 mg/kg/b.w. IP) and hypoxia (10% O2) for 28 days (HX-SU) or to chronic low doses of bleomycin (BLM, 0.035U/kg/b.w. IP). Cardiovascular readouts including right ventricle systolic pressures (RVSPs), Fulton indices and vascular remodeling were determined. Using PASMCs we identified ADORA2B-dependent mediators involved in vascular remodeling. These mediators: IL-6, hyaluronan synthase 2 (HAS2) and tissue transglutaminase (Tgm2) were determined by RT-PCR and validated in our HX-SU and BLM models. Results: Increased levels of ADORA2B were observed in PASMC from iPAH patients. ADORA2Bf/f-Taglncre mice were protected from the development of PH following HX-SU or BLM exposure. In the BLM model of PH, ADORA2Bf/f- Taglncre mice were not protected from the development of fibrosis. Increased expression of IL-6, HAS2 and Tgm2 was observed in PASMC in an ADORA2B-dependent manner. These mediators were also reduced in ADORA2Bf/f- Taglncre mice exposed to HX-SU or BLM. Conclusions: Our studies revealed ADORA2B-dependent increased levels of IL-6, hyaluronan and Tgm2 in PASMC, consistent with reduced levels in ADORA2Bf/f- Taglncre mice exposed to HX-SU or BLM. Taken together, our data indicates that ADORA2B on PASMC mediates the development of PH through the induction of IL-6, hyaluronan and Tgm2. These studies point at ADORA2B as a therapeutic target to treat PH.
Collapse
Affiliation(s)
- Tinne C J Mertens
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ankit Hanmandlu
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ly Tu
- Institut National de la Santé et de la Recherche Médicale UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Sud and Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Carole Phan
- Institut National de la Santé et de la Recherche Médicale UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Sud and Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Scott D Collum
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ning-Yuan Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tingting Weng
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jonathan Davies
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Chen Liu
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Soma S K Jyothula
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Keshava Rajagopal
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ashrith Guha
- Methodist Debakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX, United States
| | - Brian A Bruckner
- Methodist Debakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX, United States
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Christophe Guignabert
- Institut National de la Santé et de la Recherche Médicale UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Sud and Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
43
|
Gouda MM, Bhandary YP. Curcumin down-regulates IL-17A mediated p53-fibrinolytic system in bleomycin induced acute lung injury in vivo. J Cell Biochem 2018; 119:7285-7299. [PMID: 29775223 DOI: 10.1002/jcb.27026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/05/2018] [Indexed: 12/18/2022]
Abstract
Bleomycin (BLM) induced cellular damage causes inflammation in the alveolar compartment and impairment of fibrinolytic system leads to alveolar epithelial cell apoptosis. Here, we describe novel inflammatory pathway associated with p53-fibrinolytic system and apoptosis of alveolar epithelial cells and pharmacological efficiency of curcumin against this action. In the present study we used C57BL/6 mice. The specific dose and time interval of curcumin were analyzed to assess the intervention. Experiments were designed to investigate the IL-17A mediated modulation in the alveolar epithelial cell apoptosis and injury. Various techniques such as Western blot, RT-PCR, Immunohistochemistry were used for this study. We observed that the BLM-induced lung injury and its progression were successfully regulated by the effective dose and time intervention of curcumin. There was also decreased expression of chemokines, p53, and fibrinolytic components such as PAI-1 and increased uPA, uPAR expression, and decreased alveolar epithelial cell apoptosis, which indicates the IL-17A mediated novel inflammatory pathway. It is confirmed that the IL-17A involved in the modulation of p53-fibrinolytic system and epithelial cell apoptosis in BLM induced mice. The cross-talk between the inflammatory, fibrinolytic, and apoptotic pathways were resolved by curcumin intervention. This pathway and intervention could serve as a modern therapy to resolve the complications to cure the lung injury and its progression.
Collapse
Affiliation(s)
- Mahesh M Gouda
- Yenepoya Research Centre, Yenepoya University, Mangalore, Karnataka, India
| | | |
Collapse
|
44
|
Metwally DM, Al-Olayan EM, Alanazi M, Alzahrany SB, Semlali A. Antischistosomal and anti-inflammatory activity of garlic and allicin compared with that of praziquantel in vivo. Altern Ther Health Med 2018; 18:135. [PMID: 29703259 PMCID: PMC5921551 DOI: 10.1186/s12906-018-2191-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 03/27/2018] [Indexed: 01/22/2023]
Abstract
Background Schistosomiasis is an acute and chronic zoonotic parasitic disease caused by trematode worms. The host inflammatory response to schistosome eggs leads to perioval granulomata formation, mainly in the liver and intestine. This study investigated the potential antischistosomal and anti-inflammatory activity of both garlic extract and allicin on liver fibrotic markers in BALB/c mice with schistosomiasis (S. mansoni infection) compared with that of the commonly used drug, praziquantel (PZQ). Methods In this study, 140 female BALB/c mice (7-weeks old) were divided into seven groups with 20 mice each. Six groups were infected with S. mansoni cercariae and treated with garlic, allicin, or PZQ. The seventh group was the negative control. Twenty-four hours after the final treatment, the mice were euthanised and perfused for worm recovery. The liver and intestines were harvested for parasitological and histological assessment and to analyse the proinflammatory cytokine mRNA expression. Results Prophylactic administration of garlic and allicin to the infected mice significantly reduced the worm burden. Serum concentrations of liver fibrosis markers and proinflammatory cytokines were also reduced. PZQ was the most efficacious for reduction in the number of worms. These results are similar to those normally obtained using PZQ. Conclusions Crushed garlic homogenate and allicin are potential complementary treatments that may be used with PZQ.
Collapse
|
45
|
Kárpáti S, Sárdy M, Németh K, Mayer B, Smyth N, Paulsson M, Traupe H. Transglutaminases in autoimmune and inherited skin diseases: The phenomena of epitope spreading and functional compensation. Exp Dermatol 2018; 27:807-814. [PMID: 28940785 DOI: 10.1111/exd.13449] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2017] [Indexed: 02/06/2023]
Abstract
Transglutaminases (TGs) are structurally and functionally related enzymes that modify the post-translational structure and activity of proteins or peptides, and thus are able to turn on or switch off their function. Depending on location and activities, TGs are able to modify the signalling, the function and the fate of cells and extracellular connective tissues. Besides mouse models, human diseases enable us to appreciate the function of various TGs. In this study, skin diseases induced by genetic damages or autoimmune targeting of these enzymes will be discussed. TG1, TG3 and TG5 contribute to the cutaneous barrier and thus to the integrity and function of epidermis. TGM1 mutations related to autosomal recessive ichthyosis subtypes, TGM5 mutations to a mild epidermolysis bullosa phenotype and as novelty TGM3 mutation to uncombable hair syndrome will be discussed. Autoimmunity to TG2, TG3 and TG6 may develop in a few of those genetically determined individuals who lost tolerance to gluten, and manifest as coeliac disease, dermatitis herpetiformis or gluten-dependent neurological symptoms, respectively. These gluten responder diseases commonly occur in combination. In autoimmune diseases, the epitope spreading is remarkable, while in some inherited pathologies, a unique compensation of the lost enzyme function is noted.
Collapse
Affiliation(s)
- Sarolta Kárpáti
- Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Miklós Sárdy
- Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Krisztián Németh
- Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Balázs Mayer
- Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Neil Smyth
- Biological Sciences, University of Southampton, Southampton, UK
| | - Mats Paulsson
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Heiko Traupe
- Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Organ fibrosis is a lethal component of scleroderma. The hallmark of scleroderma fibrosis is extensive extracellular matrix (ECM) deposition by activated myofibroblasts, specialized hyper-contractile cells that promote ECM remodeling and matrix stiffening. The purpose of this review is to discuss novel mechanistic insight into myofibroblast activation in scleroderma. RECENT FINDINGS Matrix stiffness, traditionally viewed as an end point of organ fibrosis, is now recognized as a critical regulator of tissue fibrogenesis that hijacks the normal physiologic wound-healing program to promote organ fibrosis. Here, we discuss how matrix stiffness orchestrates fibrosis by controlling three fundamental pro-fibrotic mechanisms: (a) mechanoactivation of myofibroblasts, (b) integrin-mediated latent transforming growth factor beta 1 (TGF-β1) activation, and (c) activation of non-canonical TGF-β1 signaling pathways. We also summarize novel therapeutic targets for anti-fibrotic therapy based on the mechanobiology of scleroderma. Future research on mechanobiology of scleroderma may lead to important clinical applications such as improved diagnosis and treatment of patients with scleroderma and other fibrotic-related diseases.
Collapse
|
47
|
Hoffman SM, Qian X, Nolin JD, Chapman DG, Chia SB, Lahue KG, Schneider R, Ather JL, Randall MJ, McMillan DH, Jones JT, Taatjes DJ, Aliyeva M, Daphtary N, Abdalla S, Lundblad LKA, Ho YS, Anathy V, Irvin CG, Wouters EFM, Reynaert NL, Dixon AE, van der Vliet A, Poynter ME, Janssen-Heininger YMW. Ablation of Glutaredoxin-1 Modulates House Dust Mite-Induced Allergic Airways Disease in Mice. Am J Respir Cell Mol Biol 2017; 55:377-86. [PMID: 27035878 DOI: 10.1165/rcmb.2015-0401oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein S-glutathionylation (PSSG) is an oxidant-induced post-translational modification of protein cysteines that impacts structure and function. The oxidoreductase glutaredoxin-1 (Glrx1) under physiological conditions catalyzes deglutathionylation and restores the protein thiol group. The involvement of Glrx1/PSSG in allergic inflammation induced by asthma-relevant allergens remains unknown. In the present study, we examined the impact of genetic ablation of Glrx1 in the pathogenesis of house dust mite (HDM)-induced allergic airways disease in mice. Wild-type (WT) or Glrx1(-/-) mice were instilled intranasally with HDM on 5 consecutive days for 3 weeks. As expected, overall PSSG was increased in Glrx1(-/-) HDM mice as compared with WT animals. Total cells in bronchoalveolar lavage fluid were similarly increased in HDM-treated WT and Glrx1(-/-) mice. However, in response to HDM, mice lacking Glrx1 demonstrated significantly more neutrophils and macrophages but fewer eosinophils as compared with HDM-exposed WT mice. mRNA expression of the Th2-associated cytokines IL-13 and IL-6, as well as mucin-5AC (Muc5ac), was significantly attenuated in Glrx1(-/-) HDM-treated mice. Conversely, mRNA expression of IFN-γ and IL-17A was increased in Glrx1(-/-) HDM mice compared with WT littermates. Restimulation of single-cell suspensions isolated from lungs or spleens with HDM resulted in enhanced IL-17A and decreased IL-5 production in cells derived from inflamed Glrx1(-/-) mice compared with WT animals. Finally, HDM-induced tissue damping and elastance were significantly attenuated in Glrx1(-/-) mice compared with WT littermates. These results demonstrate that the Glrx1-PSSG axis plays a pivotal role in HDM-induced allergic airways disease in association with enhanced type 2 inflammation and restriction of IFN-γ and IL-17A.
Collapse
Affiliation(s)
| | - Xi Qian
- Departments of 1 Pathology and Laboratory Medicine and
| | - James D Nolin
- Departments of 1 Pathology and Laboratory Medicine and
| | | | - Shi Biao Chia
- Departments of 1 Pathology and Laboratory Medicine and
| | | | | | | | | | | | - Jane T Jones
- Departments of 1 Pathology and Laboratory Medicine and
| | | | | | | | - Sarah Abdalla
- Departments of 1 Pathology and Laboratory Medicine and
| | | | - Ye-Shih Ho
- 3 Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; and
| | - Vikas Anathy
- Departments of 1 Pathology and Laboratory Medicine and
| | | | - Emiel F M Wouters
- 4 Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Niki L Reynaert
- 4 Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Anne E Dixon
- 2 Medicine, University of Vermont, Burlington, Vermont
| | | | | | | |
Collapse
|
48
|
Bodas M, Vij N. Augmenting autophagy for prognosis based intervention of COPD-pathophysiology. Respir Res 2017; 18:83. [PMID: 28472967 PMCID: PMC5418861 DOI: 10.1186/s12931-017-0560-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/20/2017] [Indexed: 12/15/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is foremost among the non-reversible fatal ailments where exposure to tobacco/biomass-smoke and aging are the major risk factors for the initiation and progression of the obstructive lung disease. The role of smoke-induced inflammatory-oxidative stress, apoptosis and cellular senescence in driving the alveolar damage that mediates the emphysema progression and severe lung function decline is apparent, although the central mechanism that regulates these processes was unknown. To fill in this gap in knowledge, the central role of proteostasis and autophagy in regulating chronic lung disease causing mechanisms has been recently described. Recent studies demonstrate that cigarette/nicotine exposure induces proteostasis/autophagy-impairment that leads to perinuclear accumulation of polyubiquitinated proteins as aggresome-bodies, indicative of emphysema severity. In support of this concept, autophagy inducing FDA-approved anti-oxidant drugs control tobacco-smoke induced inflammatory-oxidative stress, apoptosis, cellular senescence and COPD-emphysema progression in variety of preclinical models. Hence, we propose that precise and early detection of aggresome-pathology can allow the timely assessment of disease severity in COPD-emphysema subjects for prognosis-based intervention. While intervention with autophagy-inducing drugs is anticipated to reduce alveolar damage and lung function decline, resulting in a decrease in the current mortality rates in COPD-emphysema subjects.
Collapse
Affiliation(s)
- Manish Bodas
- Molecular & Cell Biology, College of Medicine, Central Michigan University, Mt Pleasant, 2630 Denison Drive, Room# 120 (Office) & 126-127 (Lab), College of Medicine Research Building, Mt. Pleasant, MI 48859 USA
| | - Neeraj Vij
- Molecular & Cell Biology, College of Medicine, Central Michigan University, Mt Pleasant, 2630 Denison Drive, Room# 120 (Office) & 126-127 (Lab), College of Medicine Research Building, Mt. Pleasant, MI 48859 USA
- Department of Pediatrics and Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| |
Collapse
|
49
|
Adamczyk M. Transglutaminase 2 in cartilage homoeostasis: novel links with inflammatory osteoarthritis. Amino Acids 2017; 49:625-633. [PMID: 27510997 PMCID: PMC5332500 DOI: 10.1007/s00726-016-2305-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/28/2016] [Indexed: 12/26/2022]
Abstract
Transglutaminase 2 (TG2) is highly expressed during chondrocyte maturation and contributes to the formation of a mineralised scaffold by introducing crosslinks between extracellular matrix (ECM) proteins. In healthy cartilage, TG2 stabilises integrity of ECM and likely influences cartilage stiffness and mechanistic properties. At the same time, the abnormal accumulation of TG2 in the ECM promotes chondrocyte hypertrophy and cartilage calcification, which might be an important aspect of osteoarthritis (OA) initiation. Although excessive joint loading and injuries are one of the main causes leading to OA development, it is now being recognised that the presence of inflammatory mediators accelerates OA progression. Inflammatory signalling is known to stimulate the extracellular TG2 activity in cartilage and promote TG2-catalysed crosslinking of molecules that promote chondrocyte osteoarthritic differentiation. It is, however, unclear whether TG2 activity aims to resolve or aggravate damages within the arthritic joint. Better understanding of the complex signalling pathways linking inflammation with TG2 activities is needed to identify the role of TG2 in OA and to define possible avenues for therapeutic interventions.
Collapse
Affiliation(s)
- M Adamczyk
- Matrix Biology and Tissue Repair Research Unit, Oral and Biomedical Sciences, College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Heath Park, Cardiff, CF14 4XY, UK.
- Academic Unit of Bone Biology, Department of Oncology and Metabolism, Mellanby Centre For Bone Research, Medical School, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
| |
Collapse
|
50
|
Nowarski R, Jackson R, Flavell RA. The Stromal Intervention: Regulation of Immunity and Inflammation at the Epithelial-Mesenchymal Barrier. Cell 2017; 168:362-375. [DOI: 10.1016/j.cell.2016.11.040] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/25/2016] [Accepted: 11/22/2016] [Indexed: 12/24/2022]
|