1
|
Iluta S, Nistor M, Buruiana S, Dima D. Notch and Hedgehog Signaling Unveiled: Crosstalk, Roles, and Breakthroughs in Cancer Stem Cell Research. Life (Basel) 2025; 15:228. [PMID: 40003637 PMCID: PMC11856057 DOI: 10.3390/life15020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
The development of therapies that target cancer stem cells (CSCs) and bulk tumors is both crucial and urgent. Several signaling pathways, like Notch and Hedgehog (Hh), have been strongly associated with CSC stemness maintenance and metastasis. However, the extensive crosstalk present between these two signaling networks complicates the development of long-term therapies that also minimize adverse effects on healthy tissues and are not overcome by therapy resistance from CSCs. The present work aims to overview the roles of Notch and Hh in cancer outburst and the intersection of the two pathways with one another, as well as with other networks, such as Wnt/β-catenin, TGF, and JAK/STAT3, and to explore the shaping of the tumor microenvironment (TME) with specific influence on CSC development and maintenance.
Collapse
Affiliation(s)
- Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania;
| | - Madalina Nistor
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania;
| | - Sanda Buruiana
- Department of Hematology, Nicolae Testemitanu University of Medicine and Pharmacy, MD-2004 Chisinau, Moldova;
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Oncology Institute, 400015 Cluj Napoca, Romania
| |
Collapse
|
2
|
Bonadeo N, Chimento A, Mejía ME, Dallard BE, Sorianello E, Becu-Villalobos D, Lacau-Mengido I, Cristina C. NOTCH and IGF1 signaling systems are involved in the effects exerted by anthelminthic treatment of heifers on the bovine mammary gland. Vet Parasitol 2025; 334:110390. [PMID: 39798247 DOI: 10.1016/j.vetpar.2025.110390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Dairy heifers with gastrointestinal nematodes have reduced growth rates, and delayed age at puberty and milk production onset related to late mammary gland development. IGF1 and Notch signaling systems are important in this process, and an altered profile of serum IGF1 has been associated with the detrimental effect of the nematodes on parenchymal development. In this context, we aimed to study the molecular mechanisms involved in bovine mammary gland development around pre and postpuberty, focusing on proliferative and angiogenic processes that involve the Notch and IGF1 pathways. We used mammary tissue samples from pre and pubertal heifers, treated or untreated with anthelmintics, and MAC-T bovine mammary epithelial cells in vitro. Anthelminthic treatment effectively lowered EPG in feces. Mammary glands from treated heifers had increased proliferation rate (measured by PCNA) and angiogenic marker expression (VEGF and CD34), as well as increased αSMA area compared to age-matched control parasitized heifers. These changes were preceded by increased expression of Notch targets at 20 wk of age (HES1, HEY2, and HEY1), indicating a possible interaction. Similarly, IGF1R expression was increased at 30 weeks of age. To study the crosstalk between systems, bovine MAC-T cells were treated with DAPT (50 μM) to inhibit Notch signaling. DAPT decreased the proliferation of cells as evidenced by a decrease in PCNA, pERK, CYCYLIN D1; and the wound healing capacity of HMEC cells was impaired in the presence of the supernatants of DAPT-treated cells. Furthermore, DAPT decreased IGF1 and increased IGF1R mRNA levels in MAC-T cells. On the other hand, cells treated with 10 ng/mL IGF1 Increased their proliferation (MTS assay), and induced a strong tendency to increase Notch target genes (HEY1, and HES1). Furthermore, IGF1 treatment tampered the decrease in the proliferation rate induced by DAPT. Finally, a positive correlation between the IGF1R and Notch target genes (HEY1, and HES1) further suggested a relation between these two signaling systems in the bovine mammary gland. In conclusion, pubertal delay related to parasitosis is counteracted by anthelminthic treatments, which increase serum IGF1, mammary cell proliferation, and angiogenesis. We postulate the Notch pathway, mainly through the HEY1 target gene, which is modulated by the IGF1 system, may regulate both proliferative and angiogenic processes favoring normal development of the bovine mammary gland during puberty. In addition, we demonstrate that the interaction between the Notch and the IGF1 pathways may affect cell proliferation.
Collapse
Affiliation(s)
- Nadia Bonadeo
- Centro de Investigaciones Básicas y Aplicadas, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires 6000, Argentina; Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA, UNNOBA - UNSAdA - CONICET, Monteagudo 2772, Pergamino, Buenos Aires 2700, Argentina
| | - Agustina Chimento
- Centro de Investigaciones Básicas y Aplicadas, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires 6000, Argentina; Comisión de Investigaciones Científicas, CIC, La Plata, Buenos Aires 1900, Argentina
| | - Miguel E Mejía
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Vuelta de Obligado 2490, CABA 1428, Argentina
| | - Bibiana E Dallard
- Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina; Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Cientí∼ficas y Tecnoló∼gicas, (UNL-CONICET), Argentina
| | - Eleonora Sorianello
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Vuelta de Obligado 2490, CABA 1428, Argentina
| | - Damasia Becu-Villalobos
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Vuelta de Obligado 2490, CABA 1428, Argentina
| | - Isabel Lacau-Mengido
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Vuelta de Obligado 2490, CABA 1428, Argentina
| | - Carolina Cristina
- Centro de Investigaciones Básicas y Aplicadas, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires 6000, Argentina; Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA, UNNOBA - UNSAdA - CONICET, Monteagudo 2772, Pergamino, Buenos Aires 2700, Argentina.
| |
Collapse
|
3
|
Sun Y, Weng X, Chen W, Ge J, Ding B, Ru J, Lei Y, Hu X, Man D, Cheng S, Duan R, Ren J, Yang B. MYBBP1A‑mediated IGFBP4 promoter methylation promotes epithelial‑mesenchymal transition and metastasis through activation of NOTCH pathway in liver cancer. Int J Oncol 2025; 66:4. [PMID: 39611481 PMCID: PMC11637501 DOI: 10.3892/ijo.2024.5710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024] Open
Abstract
Metastatic hepatocellular carcinoma (HCC) seriously threatens patients' prognosis. It was previously suggested that the insulin growth factor binding protein (IGFBP) family could serve as cancer suppressors in the development and metastasis of HCC. However, the role of IGFBP4 and its underlying molecular mechanism in HCC metastasis is elusive. In the present study, it was found that IGFBP4 is significantly downregulated in HCC, whose expression is positively correlated with the prognosis of patients with HCC. Overexpression of IGFBP4 restrained migration abilities and cancer metastasis of HCC cells both in vitro and in vivo. Furthermore, it was found that IGFBP4 represses HCC metastasis by inhibiting epithelial‑mesenchymal transition. Molecular mechanism studies showed that overexpression of IGFBP4 obviously suppresses NOTCH1 signaling in HCC. As for the upstream regulatory mechanism, it was revealed that downregulation of IGFBP4 in HCC was caused by CpG islands' hyper‑methylation‑dependent degradation mediated by MYBBP1A. Inhibition of MYBBP1A limited HCC metastatic ability and silence of IGFBP4 at the same time restored HCC metastatic potentials. Clinical data demonstrated that low expression of IGFBP4 was found in patients with HCC, especially with lymphatic metastasis. High MYBBP1A expression and low IGFBP4 expression in HCC were correlated with poor survival of patients with HCC. Summarily, in the present study, it was revealed that MYBBP1A/IGFBP4/NOTCH1 pathway could play a crucial role in the progression and metastasis of HCC, which stimulates novel therapeutic and diagnostic strategies against metastatic HCC.
Collapse
Affiliation(s)
- Yujing Sun
- Department of General Practice, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaoyu Weng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Wei Chen
- General Practice Department, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Jiangzhen Ge
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Bo Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Junnan Ru
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yunguo Lei
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Xin Hu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Da Man
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shaobing Cheng
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Ruoshu Duan
- Department of General Practice, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jingjing Ren
- Department of General Practice, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Beng Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
4
|
Kaur P, Sharma P, Bhatia P, Singh M. Recent advances on biogenesis, functions and therapeutic potential of long noncoding RNAs in T cell acute lymphoblastic leukemia. Discov Oncol 2024; 15:729. [PMID: 39612075 DOI: 10.1007/s12672-024-01618-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
T-cell Acute Lymphoblastic Leukemia (T-ALL) is a highly aggressive form of ALL with at least 25% relapse rates. The high relapse rates are often linked to poor prognoses. More detailed studies for novel therapeutic targets for the treatment of T-ALL are required as the genetic and transcriptomic data currently available on T-ALL pathophysiology is insufficient. Long non-coding RNAs are emerging as important players in the regulation of tumour proliferation and metastasis. Studies on various cancers have revealed their potential as biomarkers and therapeutic targets in treatment. This review describes the characterization, biosynthesis, and role of long non-coding RNA in T-ALL and highlights their potential as next generation molecule in development of promising diagnostic, prognostic and/or therapeutic markers.
Collapse
Affiliation(s)
- Parminder Kaur
- Haematology-Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pankaj Sharma
- Haematology-Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Prateek Bhatia
- Haematology-Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Minu Singh
- Haematology-Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
5
|
Lyu A, Nam SH, Humphrey RS, Horton TM, Ehrlich LIR. Cells and signals of the leukemic microenvironment that support progression of T-cell acute lymphoblastic leukemia (T-ALL). Exp Mol Med 2024; 56:2337-2347. [PMID: 39482533 PMCID: PMC11612169 DOI: 10.1038/s12276-024-01335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 11/03/2024] Open
Abstract
Current intensified chemotherapy regimens have significantly increased survival rates for pediatric patients with T-cell acute lymphoblastic leukemia (T-ALL), but these treatments can result in serious adverse effects; furthermore, patients who are resistant to chemotherapy or who relapse have inferior outcomes, together highlighting the need for improved therapeutic strategies. Despite recent advances in stratifying T-ALL into molecular subtypes with distinct driver mutations, efforts to target the tumor-intrinsic genomic alterations critical for T-ALL progression have yet to translate into more effective and less toxic therapies. Ample evidence now indicates that extrinsic factors in the leukemic microenvironment are critical for T-ALL growth, infiltration, and therapeutic resistance. Considering the diversity of organs infiltrated by T-ALL cells and the unique cellular components of the microenvironment encountered at each site, it is likely that there are both shared features of tumor-supportive niches across multiple organs and site-specific features that are key to leukemia cell survival. Therefore, elucidating the distinct microenvironmental cues supporting T-ALL in different anatomic locations could reveal novel therapeutic targets to improve therapies. This review summarizes the current understanding of the intricate interplay between leukemia cells and the diverse cells they encounter within their tumor microenvironments (TMEs), as well as opportunities to therapeutically target the leukemic microenvironment.
Collapse
Affiliation(s)
- Aram Lyu
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Seo Hee Nam
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ryan S Humphrey
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Terzah M Horton
- Department of Pediatrics, Baylor College of Medicine/Dan L. Duncan Cancer Center and Texas Children's Cancer Center, Houston, TX, USA
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
- Department of Oncology, Livestrong Cancer Institutes, The University of Texas at Austin Dell Medical School, Austin, TX, USA.
| |
Collapse
|
6
|
Le Maout C, Fahy L, Renou L, Devanand C, Duwat C, Barroca V, Le Gall M, Ballerini P, Petit A, Calvo J, Uzan B, Pflumio F, Petit V. T-cell acute lymphoblastic leukemia progression is supported by inflammatory molecules including hepatocyte growth factor. Biomed Pharmacother 2024; 177:117039. [PMID: 38955085 DOI: 10.1016/j.biopha.2024.117039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a malignant hematological disorder characterized by an increased proliferation of immature T lymphocytes precursors. T-ALL treatment includes chemotherapy with strong side effects, and patients that undergo relapse display poor prognosis. Although cell-intrinsic oncogenic pathways are well-studied, the tumor microenvironment, like inflammatory cellular and molecular components is less explored in T-ALL. We sought to determine the composition of the inflammatory microenvironment induced by T-ALL, and its role in T-ALL progression. We show in two mouse T-ALL cell models that T-ALLs enhance blood neutrophils and resident monocytes, accompanied with a plasmatic acute secretion of inflammatory molecules. Depleting neutrophils using anti-Ly6G treatment or resident monocytes by clodronate liposomes treatment does not modulate plasmatic inflammatory molecule secretion and mice survival. However, inhibiting the secretion of inflammatory molecules by microenvironment with NECA, an agonist of adenosine receptors, diminishes T-ALL progression enhancing mouse survival. We uncovered Hepatocyte Growth Factor (HGF), T-ALL-driven and the most decreased molecule with NECA, as a potential therapeutic target in T-ALL. Altogether, we identified a signature of inflammatory molecules that can potentially be involved in T-ALL evolution and uncovered HGF/cMET pathway as important to target for limiting T-ALL progression.
Collapse
Affiliation(s)
- Charly Le Maout
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Fontenay-aux-Roses F-92260, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Fontenay-aux-Roses F-92260, France
| | - Lucine Fahy
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Fontenay-aux-Roses F-92260, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Fontenay-aux-Roses F-92260, France
| | - Laurent Renou
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Fontenay-aux-Roses F-92260, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Fontenay-aux-Roses F-92260, France
| | - Caroline Devanand
- CEA, Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Plateforme d'expérimentation animale, Fontenay-aux-Roses, France
| | - Charlotte Duwat
- CEA, Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Plateforme d'expérimentation animale, Fontenay-aux-Roses, France
| | - Vilma Barroca
- CEA, Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Plateforme d'expérimentation animale, Fontenay-aux-Roses, France
| | - Morgane Le Gall
- Proteom'IC facility, Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris F-75014, France
| | - Paola Ballerini
- Service D'hématologie Pédiatrique, Assistance Publique - Hôpitaux de Paris, Hôpital A. Trousseau, Paris, France
| | - Arnaud Petit
- Service D'hématologie Pédiatrique, Assistance Publique - Hôpitaux de Paris, Hôpital A. Trousseau, Paris, France
| | - Julien Calvo
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Fontenay-aux-Roses F-92260, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Fontenay-aux-Roses F-92260, France; Institut Carnot OPALE, Hôpital Saint Louis, Paris F-75020, France
| | - Benjamin Uzan
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Fontenay-aux-Roses F-92260, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Fontenay-aux-Roses F-92260, France; Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris F-75013, France
| | - Françoise Pflumio
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Fontenay-aux-Roses F-92260, France; CEA, Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Plateforme d'expérimentation animale, Fontenay-aux-Roses, France; Institut Carnot OPALE, Hôpital Saint Louis, Paris F-75020, France.
| | - Vanessa Petit
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Fontenay-aux-Roses F-92260, France; Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire Réparation et Transcription dans les cellules Souches (LRTS), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), France.
| |
Collapse
|
7
|
Tsilingiris D, Vallianou NG, Spyrou N, Kounatidis D, Christodoulatos GS, Karampela I, Dalamaga M. Obesity and Leukemia: Biological Mechanisms, Perspectives, and Challenges. Curr Obes Rep 2024; 13:1-34. [PMID: 38159164 PMCID: PMC10933194 DOI: 10.1007/s13679-023-00542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW To examine the epidemiological data on obesity and leukemia; evaluate the effect of obesity on leukemia outcomes in childhood acute lymphoblastic leukemia (ALL) survivors; assess the potential mechanisms through which obesity may increase the risk of leukemia; and provide the effects of obesity management on leukemia. Preventive (diet, physical exercise, obesity pharmacotherapy, bariatric surgery) measures, repurposing drugs, candidate therapeutic agents targeting oncogenic pathways of obesity and insulin resistance in leukemia as well as challenges of the COVID-19 pandemic are also discussed. RECENT FINDINGS Obesity has been implicated in the development of 13 cancers, such as breast, endometrial, colon, renal, esophageal cancers, and multiple myeloma. Leukemia is estimated to account for approximately 2.5% and 3.1% of all new cancer incidence and mortality, respectively, while it represents the most frequent cancer in children younger than 5 years. Current evidence indicates that obesity may have an impact on the risk of leukemia. Increased birthweight may be associated with the development of childhood leukemia. Obesity is also associated with worse outcomes and increased mortality in leukemic patients. However, there are several limitations and challenges in meta-analyses and epidemiological studies. In addition, weight gain may occur in a substantial number of childhood ALL survivors while the majority of studies have documented an increased risk of relapse and mortality among patients with childhood ALL and obesity. The main pathophysiological pathways linking obesity to leukemia include bone marrow adipose tissue; hormones such as insulin and the insulin-like growth factor system as well as sex hormones; pro-inflammatory cytokines, such as IL-6 and TNF-α; adipocytokines, such as adiponectin, leptin, resistin, and visfatin; dyslipidemia and lipid signaling; chronic low-grade inflammation and oxidative stress; and other emerging mechanisms. Obesity represents a risk factor for leukemia, being among the only known risk factors that could be prevented or modified through weight loss, healthy diet, and physical exercise. Pharmacological interventions, repurposing drugs used for cardiometabolic comorbidities, and bariatric surgery may be recommended for leukemia and obesity-related cancer prevention.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Dragana, 68100, Alexandroupolis, Greece
| | - Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | - Nikolaos Spyrou
- Tisch Cancer Institute Icahn School of Medicine at Mount Sinai, 1190 One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Dimitris Kounatidis
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | | | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Str, 12462, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str, 11527, Athens, Greece.
| |
Collapse
|
8
|
Mahato RK, Bhattacharya S, Khullar N, Sidhu IS, Reddy PH, Bhatti GK, Bhatti JS. Targeting long non-coding RNAs in cancer therapy using CRISPR-Cas9 technology: A novel paradigm for precision oncology. J Biotechnol 2024; 379:98-119. [PMID: 38065367 DOI: 10.1016/j.jbiotec.2023.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/25/2023]
Abstract
Cancer is the second leading cause of death worldwide, despite recent advances in its identification and management. To improve cancer patient diagnosis and care, it is necessary to identify new biomarkers and molecular targets. In recent years, long non-coding RNAs (lncRNAs) have surfaced as important contributors to various cellular activities, with growing proof indicating their substantial role in the genesis, development, and spread of cancer. Their unique expression profiles within specific tissues and their wide-ranging functionalities make lncRNAs excellent candidates for potential therapeutic intervention in cancer management. They are implicated in multiple hallmarks of cancer, such as uncontrolled proliferation, angiogenesis, and immune evasion. This review article explores the innovative application of CRISPR-Cas9 technology in targeting lncRNAs as a cancer therapeutic strategy. The CRISPR-Cas9 system has been widely applied in functional genomics, gene therapy, and cancer research, offering a versatile platform for lncRNA targeting. CRISPR-Cas9-mediated targeting of lncRNAs can be achieved through CRISPR interference, activation or the complete knockout of lncRNA loci. Combining CRISPR-Cas9 technology with high-throughput functional genomics makes it possible to identify lncRNAs critical for the survival of specific cancer subtypes, opening the door for tailored treatments and personalised cancer therapies. CRISPR-Cas9-mediated lncRNA targeting with other cutting-edge cancer therapies, such as immunotherapy and targeted molecular therapeutics can be used to overcome the drug resistance in cancer. The synergy of lncRNA research and CRISPR-Cas9 technology presents immense potential for individualized cancer treatment, offering renewed hope in the battle against this disease.
Collapse
Affiliation(s)
- Rahul Kumar Mahato
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Srinjan Bhattacharya
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Inderpal Singh Sidhu
- Department of Zoology, Sri Guru Gobind Singh College, Sector 26, Chandigarh, India
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Departments of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
9
|
Lyu A, Humphrey RS, Nam SH, Durham TA, Hu Z, Arasappan D, Horton TM, Ehrlich LIR. Integrin signaling is critical for myeloid-mediated support of T-cell acute lymphoblastic leukemia. Nat Commun 2023; 14:6270. [PMID: 37805579 PMCID: PMC10560206 DOI: 10.1038/s41467-023-41925-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/21/2023] [Indexed: 10/09/2023] Open
Abstract
We previously found that T-cell acute lymphoblastic leukemia (T-ALL) requires support from tumor-associated myeloid cells, which activate Insulin Like Growth Factor 1 Receptor (IGF1R) signaling in leukemic blasts. However, IGF1 is not sufficient to sustain T-ALL in vitro, implicating additional myeloid-mediated signals in leukemia progression. Here, we find that T-ALL cells require close contact with myeloid cells to survive. Transcriptional profiling and in vitro assays demonstrate that integrin-mediated cell adhesion activates downstream focal adhesion kinase (FAK)/ proline-rich tyrosine kinase 2 (PYK2), which are required for myeloid-mediated T-ALL support, partly through activation of IGF1R. Blocking integrin ligands or inhibiting FAK/PYK2 signaling diminishes leukemia burden in multiple organs and confers a survival advantage in a mouse model of T-ALL. Inhibiting integrin-mediated adhesion or FAK/PYK2 also reduces survival of primary patient T-ALL cells co-cultured with myeloid cells. Furthermore, elevated integrin pathway gene signatures correlate with higher FAK signaling and myeloid gene signatures and are associated with an inferior prognosis in pediatric T-ALL patients. Together, these findings demonstrate that integrin activation and downstream FAK/PYK2 signaling are important mechanisms underlying myeloid-mediated support of T-ALL progression.
Collapse
Affiliation(s)
- Aram Lyu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ryan S Humphrey
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Seo Hee Nam
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Tyler A Durham
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Zicheng Hu
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Dhivya Arasappan
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, TX, USA
| | - Terzah M Horton
- Department of Pediatrics, Baylor College of Medicine/Dan L. Duncan Cancer Center and Texas Children's Cancer Center, Houston, TX, USA
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
- Department of Oncology, Livestrong Cancer Institutes, The University of Texas at Austin Dell Medical School, Austin, TX, USA.
| |
Collapse
|
10
|
Fischer J, Erkner E, Fitzel R, Radszuweit P, Keppeler H, Korkmaz F, Roti G, Lengerke C, Schneidawind D, Schneidawind C. Uncovering NOTCH1 as a Promising Target in the Treatment of MLL-Rearranged Leukemia. Int J Mol Sci 2023; 24:14466. [PMID: 37833915 PMCID: PMC10572120 DOI: 10.3390/ijms241914466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
MLL rearrangement (MLLr) is responsible for the development of acute leukemias with poor outcomes. Therefore, new therapeutic approaches are urgently needed. The NOTCH1 pathway plays a critical role in the pathogenesis of many cancers including acute leukemia. Using a CRISPR/Cas9 MLL-AF4/-AF9 translocation model, the newly developed NOTCH1 inhibitor CAD204520 with less toxic side effects allowed us to unravel the impact of NOTCH1 as a pathogenic driver and potential therapeutic target in MLLr leukemia. RNA sequencing (RNA-seq) and RT-qPCR of our MLLr model and MLLr cell lines showed the NOTCH1 pathway was overexpressed and activated. Strikingly, we confirmed this elevated expression level in leukemia patients. We also demonstrated that CAD204520 treatment of MLLr cells significantly reduces NOTCH1 and its target genes as well as NOTCH1 receptor expression. This was not observed with a comparable cytarabine treatment, indicating the specificity of the small molecule. Accordingly, treatment with CAD204520 resulted in dose-dependent reduced proliferation and viability, increased apoptosis, and the induction of cell cycle arrest via the downregulation of MLL and NOTCH1 target genes. In conclusion, our findings uncover the oncogenic relevance of the NOTCH1 pathway in MLLr leukemia. Its inhibition leads to specific anti-leukemic effects and paves the way for further evaluation in clinical settings.
Collapse
Affiliation(s)
- Jacqueline Fischer
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72076 Tuebingen, Germany; (J.F.); (D.S.)
| | - Estelle Erkner
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72076 Tuebingen, Germany; (J.F.); (D.S.)
| | - Rahel Fitzel
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72076 Tuebingen, Germany; (J.F.); (D.S.)
| | - Pia Radszuweit
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72076 Tuebingen, Germany; (J.F.); (D.S.)
| | - Hildegard Keppeler
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72076 Tuebingen, Germany; (J.F.); (D.S.)
| | - Fulya Korkmaz
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72076 Tuebingen, Germany; (J.F.); (D.S.)
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Claudia Lengerke
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72076 Tuebingen, Germany; (J.F.); (D.S.)
| | - Dominik Schneidawind
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72076 Tuebingen, Germany; (J.F.); (D.S.)
- Department of Medical Oncology and Hematology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Corina Schneidawind
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72076 Tuebingen, Germany; (J.F.); (D.S.)
- Department of Medical Oncology and Hematology, University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
11
|
Bastone AL, Dziadek V, John-Neek P, Mansel F, Fleischauer J, Agyeman-Duah E, Schaudien D, Dittrich-Breiholz O, Schwarzer A, Schambach A, Rothe M. Development of an in vitro genotoxicity assay to detect retroviral vector-induced lymphoid insertional mutants. Mol Ther Methods Clin Dev 2023; 30:515-533. [PMID: 37693949 PMCID: PMC10491817 DOI: 10.1016/j.omtm.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
Safety assessment in retroviral vector-mediated gene therapy remains challenging. In clinical trials for different blood and immune disorders, insertional mutagenesis led to myeloid and lymphoid leukemia. We previously developed the In Vitro Immortalization Assay (IVIM) and Surrogate Assay for Genotoxicity Assessment (SAGA) for pre-clinical genotoxicity prediction of integrating vectors. Murine hematopoietic stem and progenitor cells (mHSPCs) transduced with mutagenic vectors acquire a proliferation advantage under limiting dilution (IVIM) and activate stem cell- and cancer-related transcriptional programs (SAGA). However, both assays present an intrinsic myeloid bias due to culture conditions. To detect lymphoid mutants, we differentiated mHSPCs to mature T cells and analyzed their phenotype, insertion site pattern, and gene expression changes after transduction with retroviral vectors. Mutagenic vectors induced a block in differentiation at an early progenitor stage (double-negative 2) compared to fully differentiated untransduced mock cultures. Arrested samples harbored high-risk insertions close to Lmo2, frequently observed in clinical trials with severe adverse events. Lymphoid insertional mutants displayed a unique gene expression signature identified by SAGA. The gene expression-based highly sensitive molecular readout will broaden our understanding of vector-induced oncogenicity and help in pre-clinical prediction of retroviral genotoxicity.
Collapse
Affiliation(s)
- Antonella L. Bastone
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Violetta Dziadek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Philipp John-Neek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Friederike Mansel
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Jenni Fleischauer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Eric Agyeman-Duah
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | | | - Adrian Schwarzer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
12
|
Zhao Y, Guo R, Cao X, Zhang Y, Sun R, Lu W, Zhao M. Role of chemokines in T-cell acute lymphoblastic Leukemia: From pathogenesis to therapeutic options. Int Immunopharmacol 2023; 121:110396. [PMID: 37295031 DOI: 10.1016/j.intimp.2023.110396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/11/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a highly heterogeneous and aggressive subtype of hematologic malignancy, with limited therapeutic options due to the complexity of its pathogenesis. Although high-dose chemotherapy and allogeneic hematopoietic stem cell transplantation have improved outcomes for T-ALL patients, there remains an urgent need for novel treatments in cases of refractory or relapsed disease. Recent research has demonstrated the potential of targeted therapies aimed at specific molecular pathways to improve patient outcomes. Chemokine-related signals, both upstream and downstream, modulate the composition of distinct tumor microenvironments, thereby regulating a multitude of intricate cellular processes such as proliferation, migration, invasion and homing. Furthermore, the progress in research has made significant contributions to precision medicine by targeting chemokine-related pathways. This review article summarizes the crucial roles of chemokines and their receptors in T-ALL pathogenesis. Moreover, it explores the advantages and disadvantages of current and potential therapeutic options that target chemokine axes, including small molecule antagonists, monoclonal antibodies, and chimeric antigen receptor T-cells.
Collapse
Affiliation(s)
- YiFan Zhao
- First Center Clinic College of Tianjin Medical University, Tianjin 300192, China
| | - RuiTing Guo
- First Center Clinic College of Tianjin Medical University, Tianjin 300192, China
| | - XinPing Cao
- First Center Clinic College of Tianjin Medical University, Tianjin 300192, China
| | - Yi Zhang
- First Center Clinic College of Tianjin Medical University, Tianjin 300192, China
| | - Rui Sun
- School of Medicine, Nankai University, Tianjin 300192, China
| | - WenYi Lu
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - MingFeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China.
| |
Collapse
|
13
|
Abolhasani S, Hejazian SS, Karpisheh V, Khodakarami A, Mohammadi H, Gholizadeh Navashenaq J, Hojjat-Farsangi M, Jadidi-Niaragh F. The role of SF3B1 and NOTCH1 in the pathogenesis of leukemia. IUBMB Life 2023; 75:257-278. [PMID: 35848163 DOI: 10.1002/iub.2660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/18/2022] [Indexed: 11/09/2022]
Abstract
The discovery of new genes/pathways improves our knowledge of cancer pathogenesis and presents novel potential therapeutic options. For instance, splicing factor 3b subunit 1 (SF3B1) and NOTCH1 genetic alterations have been identified at a high frequency in hematological malignancies, such as leukemia, and may be related to the prognosis of involved patients because they change the nature of malignancies in different ways like mediating therapeutic resistance; therefore, studying these gene/pathways is essential. This review aims to discuss SF3B1 and NOTCH1 roles in the pathogenesis of various types of leukemia and the therapeutic potential of targeting these genes or their mutations to provide a foundation for leukemia treatment.
Collapse
Affiliation(s)
- Shiva Abolhasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Khodakarami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.,The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Toribio ML, González-García S. Notch Partners in the Long Journey of T-ALL Pathogenesis. Int J Mol Sci 2023; 24:1383. [PMID: 36674902 PMCID: PMC9866461 DOI: 10.3390/ijms24021383] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological disease that arises from the oncogenic transformation of developing T cells during T-lymphopoiesis. Although T-ALL prognosis has improved markedly in recent years, relapsing and refractory patients with dismal outcomes still represent a major clinical issue. Consequently, understanding the pathological mechanisms that lead to the appearance of this malignancy and developing novel and more effective targeted therapies is an urgent need. Since the discovery in 2004 that a major proportion of T-ALL patients carry activating mutations that turn NOTCH1 into an oncogene, great efforts have been made to decipher the mechanisms underlying constitutive NOTCH1 activation, with the aim of understanding how NOTCH1 dysregulation converts the physiological NOTCH1-dependent T-cell developmental program into a pathological T-cell transformation process. Several molecular players have so far been shown to cooperate with NOTCH1 in this oncogenic process, and different therapeutic strategies have been developed to specifically target NOTCH1-dependent T-ALLs. Here, we comprehensively analyze the molecular bases of the cross-talk between NOTCH1 and cooperating partners critically involved in the generation and/or maintenance and progression of T-ALL and discuss novel opportunities and therapeutic approaches that current knowledge may open for future treatment of T-ALL patients.
Collapse
Affiliation(s)
- María Luisa Toribio
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | | |
Collapse
|
15
|
Zhang Z, Yang K, Zhang H. Targeting Leukemia-Initiating Cells and Leukemic Niches: The Next Therapy Station for T-Cell Acute Lymphoblastic Leukemia? Cancers (Basel) 2022; 14:cancers14225655. [PMID: 36428753 PMCID: PMC9688677 DOI: 10.3390/cancers14225655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive subtype of hematological malignancy characterized by its high heterogeneity and potentially life-threatening clinical features. Despite the advances in risk stratification and therapeutic management of T-ALL, patients often suffer from treatment failure and chemotherapy-induced toxicity, calling for greater efforts to improve therapeutic efficacy and safety in the treatment of T-ALL. During the past decades, increasing evidence has shown the indispensable effects of leukemia-initiating cells (LICs) and leukemic niches on T-ALL initiation and progression. These milestones greatly facilitate precision medicine by interfering with the pathways that are associated with LICs and leukemic niches or by targeting themselves directly. Most of these novel agents, either alone or in combination with conventional chemotherapy, have shown promising preclinical results, facilitating them to be further evaluated under clinical trials. In this review, we summarize the latest discoveries in LICs and leukemic niches in terms of T-ALL, with a particular highlight on the current precision medicine. The challenges and future prospects are also discussed.
Collapse
Affiliation(s)
- Ziting Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Kun Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
- Correspondence: ; Tel.: +86-158-7796-3252
| |
Collapse
|
16
|
Ballav S, Biswas B, Sahu VK, Ranjan A, Basu S. PPAR-γ Partial Agonists in Disease-Fate Decision with Special Reference to Cancer. Cells 2022; 11:3215. [PMID: 36291082 PMCID: PMC9601205 DOI: 10.3390/cells11203215] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPAR-γ) has emerged as one of the most extensively studied transcription factors since its discovery in 1990, highlighting its importance in the etiology and treatment of numerous diseases involving various types of cancer, type 2 diabetes mellitus, autoimmune, dermatological and cardiovascular disorders. Ligands are regarded as the key determinant for the tissue-specific activation of PPAR-γ. However, the mechanism governing this process is merely a contradictory debate which is yet to be systematically researched. Either these receptors get weakly activated by endogenous or natural ligands or leads to a direct over-activation process by synthetic ligands, serving as complete full agonists. Therefore, fine-tuning on the action of PPAR-γ and more subtle modulation can be a rewarding approach which might open new avenues for the treatment of several diseases. In the recent era, researchers have sought to develop safer partial PPAR-γ agonists in order to dodge the toxicity induced by full agonists, akin to a balanced activation. With a particular reference to cancer, this review concentrates on the therapeutic role of partial agonists, especially in cancer treatment. Additionally, a timely examination of their efficacy on various other disease-fate decisions has been also discussed.
Collapse
Affiliation(s)
- Sangeeta Ballav
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Bini Biswas
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Vishal Kumar Sahu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Amit Ranjan
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Soumya Basu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| |
Collapse
|
17
|
Nadhan R, Isidoro C, Song YS, Dhanasekaran DN. Signaling by LncRNAs: Structure, Cellular Homeostasis, and Disease Pathology. Cells 2022; 11:2517. [PMID: 36010595 PMCID: PMC9406440 DOI: 10.3390/cells11162517] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/11/2022] Open
Abstract
The cellular signaling network involves co-ordinated regulation of numerous signaling molecules that aid the maintenance of cellular as well as organismal homeostasis. Aberrant signaling plays a major role in the pathophysiology of many diseases. Recent studies have unraveled the superfamily of long non-coding RNAs (lncRNAs) as critical signaling nodes in diverse signaling networks. Defective signaling by lncRNAs is emerging as a causative factor underlying the pathophysiology of many diseases. LncRNAs have been shown to be involved in the multiplexed regulation of diverse pathways through both genetic and epigenetic mechanisms. They can serve as decoys, guides, scaffolds, and effector molecules to regulate cell signaling. In comparison with the other classes of RNAs, lncRNAs possess unique structural modifications that contribute to their diversity in modes of action within the nucleus and cytoplasm. In this review, we summarize the structure and function of lncRNAs as well as their vivid mechanisms of action. Further, we provide insights into the role of lncRNAs in the pathogenesis of four major disease paradigms, namely cardiovascular diseases, neurological disorders, cancers, and the metabolic disease, diabetes mellitus. This review serves as a succinct treatise that could open windows to investigate the role of lncRNAs as novel therapeutic targets.
Collapse
Affiliation(s)
- Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul 151-921, Korea
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
18
|
Long non-coding RNA signatures and related signaling pathway in T-cell acute lymphoblastic leukemia. Clin Transl Oncol 2022; 24:2081-2089. [DOI: 10.1007/s12094-022-02886-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
|
19
|
Leitner BP, Siebel S, Akingbesote ND, Zhang X, Perry RJ. Insulin and cancer: a tangled web. Biochem J 2022; 479:583-607. [PMID: 35244142 PMCID: PMC9022985 DOI: 10.1042/bcj20210134] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 12/13/2022]
Abstract
For a century, since the pioneering work of Otto Warburg, the interwoven relationship between metabolism and cancer has been appreciated. More recently, with obesity rates rising in the U.S. and worldwide, epidemiologic evidence has supported a link between obesity and cancer. A substantial body of work seeks to mechanistically unpack the association between obesity, altered metabolism, and cancer. Without question, these relationships are multifactorial and cannot be distilled to a single obesity- and metabolism-altering hormone, substrate, or factor. However, it is important to understand the hormone-specific associations between metabolism and cancer. Here, we review the links between obesity, metabolic dysregulation, insulin, and cancer, with an emphasis on current investigational metabolic adjuncts to standard-of-care cancer treatment.
Collapse
Affiliation(s)
- Brooks P. Leitner
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
| | - Stephan Siebel
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Pediatrics, Yale School of Medicine, New Haven, CT, U.S.A
| | - Ngozi D. Akingbesote
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
| | - Xinyi Zhang
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
| | - Rachel J. Perry
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
| |
Collapse
|
20
|
Thandapani P, Kloetgen A, Witkowski MT, Glytsou C, Lee AK, Wang E, Wang J, LeBoeuf SE, Avrampou K, Papagiannakopoulos T, Tsirigos A, Aifantis I. Valine tRNA levels and availability regulate complex I assembly in leukaemia. Nature 2022; 601:428-433. [PMID: 34937946 PMCID: PMC9116157 DOI: 10.1038/s41586-021-04244-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023]
Abstract
Although deregulation of transfer RNA (tRNA) biogenesis promotes the translation of pro-tumorigenic mRNAs in cancers1,2, the mechanisms and consequences of tRNA deregulation in tumorigenesis are poorly understood. Here we use a CRISPR-Cas9 screen to focus on genes that have been implicated in tRNA biogenesis, and identify a mechanism by which altered valine tRNA biogenesis enhances mitochondrial bioenergetics in T cell acute lymphoblastic leukaemia (T-ALL). Expression of valine aminoacyl tRNA synthetase is transcriptionally upregulated by NOTCH1, a key oncogene in T-ALL, underlining a role for oncogenic transcriptional programs in coordinating tRNA supply and demand. Limiting valine bioavailability through restriction of dietary valine intake disrupted this balance in mice, resulting in decreased leukaemic burden and increased survival in vivo. Mechanistically, valine restriction reduced translation rates of mRNAs that encode subunits of mitochondrial complex I, leading to defective assembly of complex I and impaired oxidative phosphorylation. Finally, a genome-wide CRISPR-Cas9 loss-of-function screen in differential valine conditions identified several genes, including SLC7A5 and BCL2, whose genetic ablation or pharmacological inhibition synergized with valine restriction to reduce T-ALL growth. Our findings identify tRNA deregulation as a critical adaptation in the pathogenesis of T-ALL and provide a molecular basis for the use of dietary approaches to target tRNA biogenesis in blood malignancies.
Collapse
Affiliation(s)
- Palaniraja Thandapani
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA.
| | - Andreas Kloetgen
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
- Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Matthew T Witkowski
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Christina Glytsou
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Anna K Lee
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Eric Wang
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Jingjing Wang
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Sarah E LeBoeuf
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Kleopatra Avrampou
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Thales Papagiannakopoulos
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY, USA
- Institute for Computational Medicine, NYU School of Medicine, New York, NY, USA
| | - Iannis Aifantis
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
21
|
El-Khazragy N, Abdel Aziz MA, Hesham M, Matbouly S, Mostafa SA, Bakkar A, Abouelnile M, Noufal Y, Mahran NA, Abd Elkhalek MA, Abdelmaksoud MF. Upregulation of leukemia-induced non-coding activator RNA (LUNAR1) predicts poor outcome in pediatric T-acute lymphoblastic leukemia. Immunobiology 2021; 226:152149. [PMID: 34735923 DOI: 10.1016/j.imbio.2021.152149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 12/20/2022]
Abstract
T-cell Acute Lymphoblastic Leukemia (T-ALL) accounts for around 10-15% of all lymphoblastic leukemia in children. Previous studies have proven that dysregulation of Leukemia-induced non-coding activator RNA-1 (LUNAR1) expression promotes T-ALL cell growth by enhancing the NOTCH1/IGF-1R signaling pathway. We aimed to investigate the prognostic value of LUNAR1 in pediatric T-ALL, in addition, to find out its association with NOTCH1 and IGF-1R. The LUNAR1, NOTCH1, and IGF-IR gene expression were measured in peripheral blood (PB) samples of l85 children with T-ALL and forty non-leukemic samples as a control group. Cox regression analysis revealed that overexpression of LUNAR1, NOTCH1, and IGF-IR was significantly correlated with poor prognosis, short overall survival, and progression-free survival. We concluded that LUNAR1 could serve as an independent prognostic biomarker for T-ALL in children.
Collapse
Affiliation(s)
- Nashwa El-Khazragy
- Department of Clinical Pathology-Hematology and Ain Shams Medical Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | | | - Manar Hesham
- Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
| | - Safa Matbouly
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sally Abdallah Mostafa
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ashraf Bakkar
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
| | - Mariam Abouelnile
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
| | - Yassmin Noufal
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
| | - Nievin Ahmed Mahran
- Biochemistry Department, Faculty of Dentistry, Sinai University, Kanatra, Egypt
| | - Marwa Ali Abd Elkhalek
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
22
|
Zhdanovskaya N, Firrincieli M, Lazzari S, Pace E, Scribani Rossi P, Felli MP, Talora C, Screpanti I, Palermo R. Targeting Notch to Maximize Chemotherapeutic Benefits: Rationale, Advanced Strategies, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13205106. [PMID: 34680255 PMCID: PMC8533696 DOI: 10.3390/cancers13205106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Notch signaling pathway regulates cell proliferation, apoptosis, stem cell self-renewal, and differentiation in a context-dependent fashion both during embryonic development and in adult tissue homeostasis. Consistent with its pleiotropic physiological role, unproper activation of the signaling promotes or counteracts tumor pathogenesis and therapy response in distinct tissues. In the last twenty years, a wide number of studies have highlighted the anti-cancer potential of Notch-modulating agents as single treatment and in combination with the existent therapies. However, most of these strategies have failed in the clinical exploration due to dose-limiting toxicity and low efficacy, encouraging the development of novel agents and the design of more appropriate combinations between Notch signaling inhibitors and chemotherapeutic drugs with improved safety and effectiveness for distinct types of cancer. Abstract Notch signaling guides cell fate decisions by affecting proliferation, apoptosis, stem cell self-renewal, and differentiation depending on cell and tissue context. Given its multifaceted function during tissue development, both overactivation and loss of Notch signaling have been linked to tumorigenesis in ways that are either oncogenic or oncosuppressive, but always context-dependent. Notch signaling is critical for several mechanisms of chemoresistance including cancer stem cell maintenance, epithelial-mesenchymal transition, tumor-stroma interaction, and malignant neovascularization that makes its targeting an appealing strategy against tumor growth and recurrence. During the last decades, numerous Notch-interfering agents have been developed, and the abundant preclinical evidence has been transformed in orphan drug approval for few rare diseases. However, the majority of Notch-dependent malignancies remain untargeted, even if the application of Notch inhibitors alone or in combination with common chemotherapeutic drugs is being evaluated in clinical trials. The modest clinical success of current Notch-targeting strategies is mostly due to their limited efficacy and severe on-target toxicity in Notch-controlled healthy tissues. Here, we review the available preclinical and clinical evidence on combinatorial treatment between different Notch signaling inhibitors and existent chemotherapeutic drugs, providing a comprehensive picture of molecular mechanisms explaining the potential or lacking success of these combinations.
Collapse
Affiliation(s)
- Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Mariarosaria Firrincieli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Pietro Scribani Rossi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Correspondence: (I.S.); (R.P.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Correspondence: (I.S.); (R.P.)
| |
Collapse
|
23
|
Artico LL, Laranjeira ABA, Campos LW, Corrêa JR, Zenatti PP, Carvalheira JBC, Brambilla SR, Nowill AE, Brandalise SR, Yunes JA. Physiologic IGFBP7 levels prolong IGF1R activation in acute lymphoblastic leukemia. Blood Adv 2021; 5:3633-3646. [PMID: 34438446 PMCID: PMC8945593 DOI: 10.1182/bloodadvances.2020003627] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Insulin and insulin-like growth factors (IGFs) are mitogenic and prosurvival factors to many different cell types, including acute lymphoblastic leukemia (ALL). Circulating IGFs are bound by IGF binding proteins (IGFBPs) that regulate their action. IGFBP7 is an IGFBP-related protein (IGFBP-rP) that in contrast to other IGFBPs/IGFBP-rPs features higher affinity for insulin than IGFs and was shown to bind the IGF1 receptor (IGF1R) as well. The role of IGFBP7 in cancer is controversial: on some tumors, it functions as an oncogene, whereas in others, it functions as a tumor suppressor. In childhood ALL, higher IGFBP7 expression levels were associated with worse prognosis. Here we show that IGFBP7 exerts mitogenic and prosurvival autocrine effects on ALL cells that were dependent on insulin/IGF. IGFBP7 knockdown or antibody-mediated neutralization resulted in significant attenuation of ALL cell viability in vitro and leukemia progression in vivo. IGFBP7 was shown to prolong the surface retention of the IGF1R under insulin/IGF1 stimulation, resulting in sustained IGF1R, insulin receptor substrate 1 (IRS-1), protein kinase B (AKT), and extracellular signal-regulated kinase (ERK) phosphorylation. Conversely, the insulin receptor was readily internalized and dephosphorylated on insulin stimulation, despite IGFBP7 addition. The affinity of homodimeric IGF1R for insulin is reportedly >100 times lower than for IGF1. In the presence of IGFBP7, however, 25 ng/mL insulin resulted in IGF1R activation levels equivalent to that of 5 ng/mL IGF1. In conclusion, IGFBP7 plays an oncogenic role in ALL by promoting the perdurance of IGF1R at the cell surface, prolonging insulin/IGF stimulation. Preclinical data demonstrate that IGFBP7 is a valid target for antibody-based therapeutic interventions in ALL.
Collapse
Affiliation(s)
- Leonardo Luís Artico
- Centro Infantil Boldrini, Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, Biology Institute, State University of Capinas
| | | | - Livia Weijenborg Campos
- Centro Infantil Boldrini, Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, Biology Institute, State University of Capinas
| | - Juliana Ronchi Corrêa
- Centro Infantil Boldrini, Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, Biology Institute, State University of Capinas
| | | | | | | | | | | | - José Andrés Yunes
- Centro Infantil Boldrini, Campinas, Brazil
- Departamento de Genética Médica, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| |
Collapse
|
24
|
Huang HS, Chu SC, Chen PC, Lee MH, Huang CY, Chou HM, Chu TY. Insuline-Like Growth Factor-2 (IGF2) and Hepatocyte Growth Factor (HGF) Promote Lymphomagenesis in p53-null Mice in Tissue-specific and Estrogen-signaling Dependent Manners. J Cancer 2021; 12:6021-6030. [PMID: 34539876 PMCID: PMC8425200 DOI: 10.7150/jca.60120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/31/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Trp53-/- mice are prone to develop lymphomas at old ages. Factors promoting this tumorigenesis are unknown. Here, we showed human ovulatory follicular fluid (FF) largely promotes lymphomagenesis in Trp53-/- mice at earlier ages. Meanwhile, we clarified that IGF2 and HGF are important cell transforming factors within FF. Methods: To induce tumor formation, 5% FFs, 100 ng/ml IGF2, 20 ng/ml HGF, or both IGF2 and HGF in a volume of 200 µl PBS, was injected into 8-wk-old female Trp53 -/- mice at the mammary fat pad. The injection was repeated weekly for up to 7 weeks or extending to 13 weeks to observe the accumulative incidence of lymphomagenesis. Immunohistochemistry staining and gene rearrangement analysis were used to identify the tumor type. Results: By injecting FF into the mammary fat pad weekly, lymphomas developed in 8/16 (50%) of mice by seven weeks. We identified IGF2 and HGF in FF is largely responsible for this activity. The same weekly injection of IGF2, HGF, and their combination induced lymphomas in 4/11 (36%), 3/8 (38%), and 6/9 (67%) mice, respectively. Interestingly, tumorigenesis was induced only when those were injected into the adipose tissues in the mammary gland, but not when injected into non-adipose sites. We also found this tumor-promoting activity is estradiol (E2)-dependent and relies on estrogen receptor (ER) α expression in the adipose stroma. No tumor or only tiny tumor was yielded when the ovaries were resected or when ER is antagonized. Finally, an extension of the weekly FF-injection to 13 weeks did not further increase the lymphomagenesis rate, suggesting an effect on pre-initiated cancer cells. Conclusions: Taken together, the study disclosed a robust tumor-promoting effect of IGF2 and HGF in the p53 loss-initiated lymphomagenesis depending on an adipose microenvironment in the presence of E2. In light of the clarity of this spontaneous tumor promotion model, we provide a new tool for studying p53-mediated lymphomagenesis and suggest that, as a chemoprevention test, this is a practical model to perform.
Collapse
Affiliation(s)
- Hsuan-Shun Huang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC
| | - Sung-Chao Chu
- Department of Hematology and Oncology, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC.,School of Medicine, College of Medicine, Tzu Chi University, Hualien 970, Taiwan, ROC
| | - Pao-Chu Chen
- Department of Obstetrics & Gynecology, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC
| | - Ming-Hsun Lee
- Department of Pathology, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC
| | - Chi-Ya Huang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC
| | - Hsien-Ming Chou
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC
| | - Tang-Yuan Chu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC.,Department of Obstetrics & Gynecology, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC.,Department of Life Science, Tzu Chi University, Hualien 970, Taiwan, ROC
| |
Collapse
|
25
|
Sottoriva K, Pajcini KV. Notch Signaling in the Bone Marrow Lymphopoietic Niche. Front Immunol 2021; 12:723055. [PMID: 34394130 PMCID: PMC8355626 DOI: 10.3389/fimmu.2021.723055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Lifelong mammalian hematopoiesis requires continuous generation of mature blood cells that originate from Hematopoietic Stem and Progenitor Cells (HSPCs) situated in the post-natal Bone Marrow (BM). The BM microenvironment is inherently complex and extensive studies have been devoted to identifying the niche that maintains HSPC homeostasis and supports hematopoietic potential. The Notch signaling pathway is required for the emergence of the definitive Hematopoietic Stem Cell (HSC) during embryonic development, but its role in BM HSC homeostasis is convoluted. Recent work has begun to explore novel roles for the Notch signaling pathway in downstream progenitor populations. In this review, we will focus an important role for Notch signaling in the establishment of a T cell primed sub-population of Common Lymphoid Progenitors (CLPs). Given that its activation mechanism relies primarily on cell-to-cell contact, Notch signaling is an ideal means to investigate and define a novel BM lymphopoietic niche. We will discuss how new genetic model systems indicate a pre-thymic, BM-specific role for Notch activation in early T cell development and what this means to the paradigm of lymphoid lineage commitment. Lastly, we will examine how leukemic T-cell acute lymphoblastic leukemia (T-ALL) blasts take advantage of Notch and downstream lymphoid signals in the pathological BM niche.
Collapse
Affiliation(s)
- Kilian Sottoriva
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Kostandin V Pajcini
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| |
Collapse
|
26
|
Fang-Fang Z, You Y, Wen-Jun L. Progress in research on childhood T-cell acute lymphocytic leukemia, Notch1 signaling pathway, and its inhibitors: A review. Bosn J Basic Med Sci 2021; 21:136-144. [PMID: 32415821 PMCID: PMC7982061 DOI: 10.17305/bjbms.2020.4687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023] Open
Abstract
Childhood leukemia is cancer that seriously threatens the life of children in China. Poor sensitivity to chemotherapy and susceptibility to drug resistance are the reasons for the treatment of T-cell acute lymphocytic leukemia (T-ALL) being extremely difficult. Moreover, traditional intensive chemotherapy regimens cause great damage to children. Therefore, it is highly important to search for targeted drugs and develop a precise individualized treatment for child patients. There are activating mutations in the NOTCH1 gene in more than 50% of human T-ALLs and the Notch signaling pathway is involved in the pathogenesis of T-ALL. In this review, we summarize the progress in research on T-ALL and Notch1 signaling pathway inhibitors to provide a theoretical basis for the clinical treatment of T-ALL.
Collapse
Affiliation(s)
- Zhong Fang-Fang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, China
| | - Yang You
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, China
| | - Liu Wen-Jun
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, China
| |
Collapse
|
27
|
Tamiro F, Weng AP, Giambra V. Targeting Leukemia-Initiating Cells in Acute Lymphoblastic Leukemia. Cancer Res 2021; 81:4165-4173. [PMID: 33414170 DOI: 10.1158/0008-5472.can-20-2571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/02/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022]
Abstract
The concept that different leukemias are developmentally distinct and, like in normal hematopoiesis, generated by restricted populations of cells named leukemia-initiating cells (LIC), is becoming more established. These cancer stem-like cells have been assumed to have unique properties, including the capability of self-renewing and giving rise to "differentiated" or non-LICs that make up the whole tumor. Cell populations enriched with LIC activity have been characterized in different hematopoietic malignancies, including human acute lymphoblastic leukemia (ALL). Related studies have also demonstrated that LICs are functionally distinct from bulk cells and modulated by distinct molecular signaling pathways and epigenetic mechanisms. Here we review several biological and clinical aspects related to LICs in ALL, including (i) immunophenotypic characterization of LIC-enriched subsets in human and mouse models of ALL, (ii) emerging therapeutics against regulatory signaling pathways involved in LIC progression and maintenance in T- and B-cell leukemias, (iii) novel epigenetic and age-related mechanisms of LIC propagation, and (iv) ongoing efforts in immunotherapy to eradicate LIC-enriched cell subsets in relapsed and refractory ALL cases. Current conventional treatments do not efficiently eliminate LICs. Therefore, innovative therapeutics that exclusively target LICs hold great promise for developing an effective cure for ALL.
Collapse
Affiliation(s)
- Francesco Tamiro
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Andrew P Weng
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Vincenzo Giambra
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| |
Collapse
|
28
|
Abstract
Long noncoding RNAs (lncRNAs) have recently been discovered and are increasingly recognized as vital components of modern molecular biology. Accumulating evidence shows that lncRNAs have emerged as important mediators in diverse biological processes such as cell differentiation, pluripotency, and tumorigenesis, while the function of lncRNAs in the field of normal and malignant hematopoiesis remains to be further elucidated. Here, we widely reviewed recent advances and summarize the characteristics and basic mechanisms of lncRNAs and keep abreast of developments of lncRNAs within the field of normal and malignant hematopoiesis. Based on gene regulatory networks at different levels of lncRNAs participation, lncRNAs have been shown to regulate gene expression from epigenetics, transcription and post transcription. The expression of lncRNAs is highly cell-specific and critical for the development and activation of hematopoiesis. Moreover, we also summarized the role of lncRNAs involved in hematological malignancies in recent years. LncRNAs have been found to play an emerging role in normal and malignant hematopoiesis, which may provide novel ideas for the diagnosis and therapeutic targets of hematological diseases in the foreseeable future.
Collapse
|
29
|
Aprile M, Katopodi V, Leucci E, Costa V. LncRNAs in Cancer: From garbage to Junk. Cancers (Basel) 2020; 12:E3220. [PMID: 33142861 PMCID: PMC7692075 DOI: 10.3390/cancers12113220] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Sequencing-based transcriptomics has significantly redefined the concept of genome complexity, leading to the identification of thousands of lncRNA genes identification of thousands of lncRNA genes whose products possess transcriptional and/or post-transcriptional regulatory functions that help to shape cell functionality and fate. Indeed, it is well-established now that lncRNAs play a key role in the regulation of gene expression through epigenetic and posttranscriptional mechanims. The rapid increase of studies reporting lncRNAs alteration in cancers has also highlighted their relevance for tumorigenesis. Herein we describe the most prominent examples of well-established lncRNAs having oncogenic and/or tumor suppressive activity. We also discuss how technical advances have provided new therapeutic strategies based on their targeting, and also report the challenges towards their use in the clinical settings.
Collapse
Affiliation(s)
- Marianna Aprile
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy;
| | - Vicky Katopodi
- Laboratory for RNA Cancer Biology, Department of Oncology, KULeuven, LKI, Herestraat 49, 3000 Leuven, Belgium; (V.K.); (E.L.)
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, KULeuven, LKI, Herestraat 49, 3000 Leuven, Belgium; (V.K.); (E.L.)
| | - Valerio Costa
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy;
| |
Collapse
|
30
|
Dushnicky MJ, Nazarali S, Mir A, Portwine C, Samaan MC. Is There A Causal Relationship between Childhood Obesity and Acute Lymphoblastic Leukemia? A Review. Cancers (Basel) 2020; 12:E3082. [PMID: 33105727 PMCID: PMC7690432 DOI: 10.3390/cancers12113082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022] Open
Abstract
Childhood obesity is a growing epidemic with numerous global health implications. Over the past few years, novel insights have emerged about the contribution of adult obesity to cancer risk, but the evidence base is far more limited in children. While pediatric patients with acute lymphoblastic leukemia (ALL) are at risk of obesity, it is unclear if there are potential causal mechanisms by which obesity leads to ALL development. This review explores the endocrine, metabolic and immune dysregulation triggered by obesity and its potential role in pediatric ALL's genesis. We describe possible mechanisms, including adipose tissue attraction and protection of lymphoblasts, and their impact on ALL chemotherapies' pharmacokinetics. We also explore the potential contribution of cytokines, growth factors, natural killer cells and adipose stem cells to ALL initiation and propagation. While there are no current definite causal links between obesity and ALL, critical questions persist as to whether the adipose tissue microenvironment and endocrine actions can play a causal role in childhood ALL, and there is a need for more research to address these questions.
Collapse
Affiliation(s)
- Molly J. Dushnicky
- Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.J.D.); (S.N.); (A.M.); (C.P.)
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
| | - Samina Nazarali
- Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.J.D.); (S.N.); (A.M.); (C.P.)
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
- Michael G. De Groote School of Medicine, McMaster University, Hamilton, ON L8S4L8, Canada
| | - Adhora Mir
- Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.J.D.); (S.N.); (A.M.); (C.P.)
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
- Michael G. De Groote School of Medicine, McMaster University, Hamilton, ON L8S4L8, Canada
| | - Carol Portwine
- Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.J.D.); (S.N.); (A.M.); (C.P.)
- Division of Pediatric Hematology/Oncology, McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
| | - Muder Constantine Samaan
- Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.J.D.); (S.N.); (A.M.); (C.P.)
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
- Michael G. De Groote School of Medicine, McMaster University, Hamilton, ON L8S4L8, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
31
|
|
32
|
Solanki A, Yánez DC, Lau CI, Rowell J, Barbarulo A, Ross S, Sahni H, Crompton T. The transcriptional repressor Bcl6 promotes pre-TCR-induced thymocyte differentiation and attenuates Notch1 activation. Development 2020; 147:dev.192203. [PMID: 32907850 DOI: 10.1242/dev.192203] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
Pre-T-cell receptor (TCR) signal transduction is required for developing thymocytes to differentiate from CD4-CD8- double-negative (DN) cell to CD4+CD8+ double-positive (DP) cell. Notch signalling is required for T-cell fate specification and must be maintained throughout β-selection, but inappropriate Notch activation in DN4 and DP cells is oncogenic. Here, we show that pre-TCR signalling leads to increased expression of the transcriptional repressor Bcl6 and that Bcl6 is required for differentiation to DP. Conditional deletion of Bcl6 from thymocytes reduced pre-TCR-induced differentiation to DP cells, disrupted expansion and enrichment of intracellular TCRβ+ cells within the DN population and increased DN4 cell death. Deletion also increased Notch1 activation and Notch-mediated transcription in the DP population. Thus, Bcl6 is required in thymocyte development for efficient differentiation from DN3 to DP and to attenuate Notch1 activation in DP cells. Given the importance of inappropriate NOTCH1 signalling in T-cell acute lymphoblastic leukaemia (T-ALL), and the involvement of BCL6 in other types of leukaemia, this study is important to our understanding of T-ALL.
Collapse
Affiliation(s)
- Anisha Solanki
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Diana C Yánez
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Ching-In Lau
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Jasmine Rowell
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Alessandro Barbarulo
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Susan Ross
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Hemant Sahni
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Tessa Crompton
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
33
|
Cheng YY, Ding YX, Bian GL, Chen LW, Yao XY, Lin YB, Wang Z, Chen BY. Reactive Astrocytes Display Pro-inflammatory Adaptability with Modulation of Notch-PI3K-AKT Signaling Pathway Under Inflammatory Stimulation. Neuroscience 2020; 440:130-145. [PMID: 32450294 DOI: 10.1016/j.neuroscience.2020.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 01/25/2023]
Abstract
Astrocytes are major glial cells critical in assisting the function of the central nervous system (CNS), but the functional changes and regulation mechanism of reactive astrocytes are still poorly understood in CNS diseases. In this study, mouse primary astrocytes were cultured, and inflammatory insult was performed to observe functional changes in astrocytes and the involvement of Notch-PI3K-AKT signaling activation through immunofluorescence, PCR, Western blot, CCK-8, and inhibition experiments. Notch downstream signal Hes-1 was clearly observed in the astrocytes, and Notch signal inhibitor GSI dose-dependently decreased the cleaved Notch-l level without an influence on cell viability. Inflammatory insult of lipopolysaccharide plus interferon-γ (LPS+IFNγ) induced an increase in pro-inflammatory cytokines, that is, iNOS, IL-1β, IL-6, and TNF, at the protein and mRNA levels in activated astrocytes, which was reduced or blocked by GSI treatment. The cell viability of the astrocytes did not show significant differences among different groups. While an increase in MyD88, NF-кB, and phosphor-NF-кB was confirmed, upregulation of PI3K, AKT, and phosphor-AKT was observed in the activated astrocytes with LPS+IFNγ insult and was reduced by GSI treatment. Inhibitor experiments showed that inhibition of Notch-PI3K-AKT signaling activation reduced the pro-inflammatory cytokine production triggered by LPS+IFNγ inflammatory insult. This study showed that the reactive astrocytes displayed pro-inflammatory adaptability through Notch-PI3K-AKT signaling activation in response to inflammatory stimulation, suggesting that the Notch-PI3K-AKT pathway in reactive astrocytes may serve as a promising target against CNS inflammatory disorders.
Collapse
Affiliation(s)
- Ying-Ying Cheng
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China; Department of Anatomy, Histology and Embryology, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yin-Xiu Ding
- Department of Anatomy, Histology and Embryology, Ningxia Medical University, Yinchuan 750004, PR China
| | - Gan-Lan Bian
- Institute of Neurosciences, Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, PR China
| | - Liang-Wei Chen
- Institute of Neurosciences, Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, PR China; Department of Histology and Embryology, School of Medicine, College of Life Science, Northwest University, Xi'an 710069, PR China.
| | - Xin-Yi Yao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China; Institute of Neurosciences, Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, PR China
| | - Ye-Bin Lin
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China; Institute of Neurosciences, Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, PR China
| | - Zhe Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Bei-Yu Chen
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
34
|
miR-22-3p Negatively Affects Tumor Progression in T-Cell Acute Lymphoblastic Leukemia. Cells 2020; 9:cells9071726. [PMID: 32708470 PMCID: PMC7408026 DOI: 10.3390/cells9071726] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 01/03/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a rare, aggressive disease arising from T-cell precursors. NOTCH1 plays an important role both in T-cell development and leukemia progression, and more than 60% of human T-ALLs harbor mutations in components of the NOTCH1 signaling pathway, leading to deregulated cell growth and contributing to cell transformation. Besides multiple NOTCH1 target genes, microRNAs have also been shown to regulate T-ALL initiation and progression. Using an established mouse model of T-ALL induced by NOTCH1 activation, we identified several microRNAs downstream of NOTCH1 activation. In particular, we found that NOTCH1 inhibition can induce miR-22-3p in NOTCH1-dependent tumors and that this regulation is also conserved in human samples. Importantly, miR-22-3p overexpression in T-ALL cells can inhibit colony formation in vitro and leukemia progression in vivo. In addition, miR-22-3p was found to be downregulated in T-ALL specimens, both T-ALL cell lines and primary samples, relative to immature T-cells. Our results suggest that miR-22-3p is a functionally relevant microRNA in T-ALL whose modulation can be exploited for therapeutic purposes to inhibit T-ALL progression.
Collapse
|
35
|
Orgel E, Sea JL, Mittelman SD. Mechanisms by Which Obesity Impacts Survival from Acute Lymphoblastic Leukemia. J Natl Cancer Inst Monogr 2020; 2019:152-156. [PMID: 31532535 DOI: 10.1093/jncimonographs/lgz020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/22/2019] [Accepted: 07/01/2019] [Indexed: 01/29/2023] Open
Abstract
The prevalence of obesity has steadily risen over the past decades, even doubling in more than 70 countries. High levels of body fat (adiposity) and obesity are associated with endocrine and hormonal dysregulation, cardiovascular compromise, hepatic dysfunction, pancreatitis, changes in drug metabolism and clearance, inflammation, and metabolic stress. It is thus unsurprising that obesity can affect the development of and survival from a wide variety of malignancies. This review focuses on acute lymphoblastic leukemia, the most common malignancy in children, to explore the multiple mechanisms connecting acute lymphoblastic leukemia, obesity, and adipocytes, and the implications for leukemia therapy.
Collapse
Affiliation(s)
- Etan Orgel
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA Department of Pediatrics, Keck School of Medicine, University of Southern California
| | - Jessica L Sea
- Division of Pediatric Endocrinology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine UCLA, Los Angeles, CA
| | - Steven D Mittelman
- Division of Pediatric Endocrinology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine UCLA, Los Angeles, CA
| |
Collapse
|
36
|
Hua H, Kong Q, Yin J, Zhang J, Jiang Y. Insulin-like growth factor receptor signaling in tumorigenesis and drug resistance: a challenge for cancer therapy. J Hematol Oncol 2020; 13:64. [PMID: 32493414 PMCID: PMC7268628 DOI: 10.1186/s13045-020-00904-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Insulin-like growth factors (IGFs) play important roles in mammalian growth, development, aging, and diseases. Aberrant IGFs signaling may lead to malignant transformation and tumor progression, thus providing the rationale for targeting IGF axis in cancer. However, clinical trials of the type I IGF receptor (IGF-IR)-targeted agents have been largely disappointing. Accumulating evidence demonstrates that the IGF axis not only promotes tumorigenesis, but also confers resistance to standard treatments. Furthermore, there are diverse pathways leading to the resistance to IGF-IR-targeted therapy. Recent studies characterizing the complex IGFs signaling in cancer have raised hope to refine the strategies for targeting the IGF axis. This review highlights the biological activities of IGF-IR signaling in cancer and the contribution of IGF-IR to cytotoxic, endocrine, and molecular targeted therapies resistance. Moreover, we update the diverse mechanisms underlying resistance to IGF-IR-targeted agents and discuss the strategies for future development of the IGF axis-targeted agents.
Collapse
Affiliation(s)
- Hui Hua
- State Key Laboratory of Biotherapy, Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qingbin Kong
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Yin
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangfu Jiang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
37
|
张 佳, 舒 逸, 张 虹, 蒋 婷, 宫 茂, 朱 丹, 王 皓, 邹 琳. [β-arrestin1 overexpression suppresses progression of human T-cell acute lymphatic leukemia Molt-4 cell xenograft in mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:654-660. [PMID: 32897219 PMCID: PMC7277325 DOI: 10.12122/j.issn.1673-4254.2020.05.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of β-arrestin1 overexpression on tumor progression in a NCG mouse model bearing T-cell acute lymphocytic leukemia (T-ALL) Molt-4 cell xenograft. METHODS Molt-4 cells were tagged with firefly-luciferase (F-Luc) by lentiviral infection, and fluorescence intensity of the cells was detected using a luminescence detector. Molt-4 cell lines with β-arrestin1 overexpression or knockdown were constructed by lentivirus infection and injected via the tail vein in sub-lethal irradiated NCG mice. Body weight changes and survival time of the xenografted mice were observed, and the progression of T-ALL in the mice was evaluated using an in vivo fluorescence imaging system. Sixteen days after xenografting, the mice were euthanatized and tumor cell infiltration was observed in the slices of the liver and spleen. RESULTS We successfully tagged Molt-4 cells with F-Luc and overexpressed or knocked down β-arrestin1 in the tagged cells. Bioluminescent imaging showed obvious luminescence catalyzed by F-Luc in Molt-4 cells. After injection of Molt-4-Luc cells into irradiated NCG mice, a gradual enhancement of luminescence in the xenografted mice was observed over time, while the body weight of the mice decreased. Compared with the control mice, the mice xenografted with β-arrestin1-overexpressing Molt-4 cells had significantly prolonged survival time (P < 0.001), while the survival time of the mice xenografted with Molt-4 cells with β- arrestin1 knockdown was significantly shortened (P < 0.001). Histological examination revealed fewer infiltrating tumor cells in the liver and spleen of the mice xenografted with β-arrestin1-overexpressing Molt-4 cells in comparison with the mice bearing parental Molt-4 cell xenografts. CONCLUSIONS β-arrestin1 overexpression suppresses tumor progression in mice bearing Molt-4 cell xenograft.
Collapse
Affiliation(s)
- 佳 张
- />重庆医科大学附属儿童医院临床分子医学中心//儿童发育疾病研究教育部重点实验室//国家儿童健康与疾病 临床医学研究中心//儿童发育重大疾病国家国际科技合作基地//重庆市干细胞治疗工程技术研究中心,重庆 400014Center for Clinical Molecular Medicine, Children's Hospital, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| | - 逸 舒
- />重庆医科大学附属儿童医院临床分子医学中心//儿童发育疾病研究教育部重点实验室//国家儿童健康与疾病 临床医学研究中心//儿童发育重大疾病国家国际科技合作基地//重庆市干细胞治疗工程技术研究中心,重庆 400014Center for Clinical Molecular Medicine, Children's Hospital, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| | - 虹洋 张
- />重庆医科大学附属儿童医院临床分子医学中心//儿童发育疾病研究教育部重点实验室//国家儿童健康与疾病 临床医学研究中心//儿童发育重大疾病国家国际科技合作基地//重庆市干细胞治疗工程技术研究中心,重庆 400014Center for Clinical Molecular Medicine, Children's Hospital, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| | - 婷婷 蒋
- />重庆医科大学附属儿童医院临床分子医学中心//儿童发育疾病研究教育部重点实验室//国家儿童健康与疾病 临床医学研究中心//儿童发育重大疾病国家国际科技合作基地//重庆市干细胞治疗工程技术研究中心,重庆 400014Center for Clinical Molecular Medicine, Children's Hospital, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| | - 茂源 宫
- />重庆医科大学附属儿童医院临床分子医学中心//儿童发育疾病研究教育部重点实验室//国家儿童健康与疾病 临床医学研究中心//儿童发育重大疾病国家国际科技合作基地//重庆市干细胞治疗工程技术研究中心,重庆 400014Center for Clinical Molecular Medicine, Children's Hospital, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| | - 丹 朱
- />重庆医科大学附属儿童医院临床分子医学中心//儿童发育疾病研究教育部重点实验室//国家儿童健康与疾病 临床医学研究中心//儿童发育重大疾病国家国际科技合作基地//重庆市干细胞治疗工程技术研究中心,重庆 400014Center for Clinical Molecular Medicine, Children's Hospital, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| | - 皓飚 王
- />重庆医科大学附属儿童医院临床分子医学中心//儿童发育疾病研究教育部重点实验室//国家儿童健康与疾病 临床医学研究中心//儿童发育重大疾病国家国际科技合作基地//重庆市干细胞治疗工程技术研究中心,重庆 400014Center for Clinical Molecular Medicine, Children's Hospital, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| | - 琳 邹
- />重庆医科大学附属儿童医院临床分子医学中心//儿童发育疾病研究教育部重点实验室//国家儿童健康与疾病 临床医学研究中心//儿童发育重大疾病国家国际科技合作基地//重庆市干细胞治疗工程技术研究中心,重庆 400014Center for Clinical Molecular Medicine, Children's Hospital, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| |
Collapse
|
38
|
Wendorff AA, Ferrando AA. Modeling NOTCH1 driven T-cell Acute Lymphoblastic Leukemia in Mice. Bio Protoc 2020; 10:e3620. [PMID: 33659293 DOI: 10.21769/bioprotoc.3620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/13/2019] [Accepted: 03/10/2020] [Indexed: 12/15/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy that arises from transformation of T-cell primed hematopoietic progenitors. Although T-ALL is a heterogenous and molecularly complex disease, more than 65% of T-ALL patients carry activating mutations in the NOTCH1 gene. The majority of T-ALL-associated NOTCH1 mutations either disrupt the negative regulatory region, allowing signal activation in the absence of ligand binding, or result in truncation of the C-terminal PEST domain involved in the termination of NOTCH1 signaling by proteasomal degradation. To date, retroviral transduction models have relied heavily on the overexpression of aggressively truncated variants of NOTCH1 (such as ICN1 or ΔE-NOTCH1), which result in supraphysiological levels of signaling activity and are rarely found in human T-ALL. The current protocol describes the method for mouse bone marrow isolation, hematopoietic stem and progenitor cell (HSC) enrichment, followed by retroviral transduction with an oncogenic mutant form of the NOTCH1 receptor (NOTCH1-L1601P-ΔP) that closely resembles the gain-of-function mutations most commonly found in patient samples. A hallmark of this forced expression of constitutively active NOTCH1 is a transient wave of extrathymic immature T-cell development, which precedes oncogenic transformation to T-ALL. Furthermore, this approach models leukemic transformation and progression in vivo by allowing for crosstalk between leukemia cells and the microenvironment, an aspect unaccounted for in cell-line based in vitro studies. Thus, the HSC transduction and transplantation model more faithfully recapitulates development of the human disease, providing a highly comprehensive and versatile tool for further in vivo and ex vivo functional studies.
Collapse
Affiliation(s)
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, USA.,Department of Pediatrics, Columbia University Medical Center, New York, USA.,Department of Systems Biology, Columbia University, New York, USA.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, USA
| |
Collapse
|
39
|
Kloetgen A, Thandapani P, Ntziachristos P, Ghebrechristos Y, Nomikou S, Lazaris C, Chen X, Hu H, Bakogianni S, Wang J, Fu Y, Boccalatte F, Zhong H, Paietta E, Trimarchi T, Zhu Y, Van Vlierberghe P, Inghirami GG, Lionnet T, Aifantis I, Tsirigos A. Three-dimensional chromatin landscapes in T cell acute lymphoblastic leukemia. Nat Genet 2020; 52:388-400. [PMID: 32203470 PMCID: PMC7138649 DOI: 10.1038/s41588-020-0602-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/25/2020] [Indexed: 01/04/2023]
Abstract
Differences in three-dimensional (3D) chromatin architecture can influence the integrity of topologically associating domains (TADs) and rewire specific enhancer-promoter interactions, impacting gene expression and leading to human disease. Here we investigate the 3D chromatin architecture in T cell acute lymphoblastic leukemia (T-ALL) by using primary human leukemia specimens and examine the dynamic responses of this architecture to pharmacological agents. Systematic integration of matched in situ Hi-C, RNA-seq and CTCF ChIP-seq datasets revealed widespread differences in intra-TAD chromatin interactions and TAD boundary insulation in T-ALL. Our studies identify and focus on a TAD 'fusion' event associated with absence of CTCF-mediated insulation, enabling direct interactions between the MYC promoter and a distal super-enhancer. Moreover, our data also demonstrate that small-molecule inhibitors targeting either oncogenic signal transduction or epigenetic regulation can alter specific 3D interactions found in leukemia. Overall, our study highlights the impact, complexity and dynamic nature of 3D chromatin architecture in human acute leukemia.
Collapse
Affiliation(s)
- Andreas Kloetgen
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Palaniraja Thandapani
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Panagiotis Ntziachristos
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Yohana Ghebrechristos
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Sofia Nomikou
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Charalampos Lazaris
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Xufeng Chen
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Hai Hu
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Sofia Bakogianni
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Sciences, New York, NY, USA
| | - Jingjing Wang
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Yi Fu
- Department of Cell Biology, Institute for Systems Genetics, New York University, New York, NY, USA
| | - Francesco Boccalatte
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Hua Zhong
- Division of Biostatistics, Department of Population Health, New York University School of Medicine, New York, NY, USA
| | | | - Thomas Trimarchi
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.,BridgeBio Pharma, Palo Alto, CA, USA
| | - Yixing Zhu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Giorgio G Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Timothee Lionnet
- Department of Cell Biology, Institute for Systems Genetics, New York University, New York, NY, USA
| | - Iannis Aifantis
- Department of Pathology, New York University School of Medicine, New York, NY, USA. .,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.
| | - Aristotelis Tsirigos
- Department of Pathology, New York University School of Medicine, New York, NY, USA. .,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA. .,Applied Bioinformatics Laboratories, Office of Science and Research, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
40
|
Gianni F, Belver L, Ferrando A. The Genetics and Mechanisms of T-Cell Acute Lymphoblastic Leukemia. Cold Spring Harb Perspect Med 2020; 10:a035246. [PMID: 31570389 PMCID: PMC7050584 DOI: 10.1101/cshperspect.a035246] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy derived from early T-cell progenitors. The recognition of clinical, genetic, transcriptional, and biological heterogeneity in this disease has already translated into new prognostic biomarkers, improved leukemia animal models, and emerging targeted therapies. This work reviews our current understanding of the molecular mechanisms of T-ALL.
Collapse
Affiliation(s)
- Francesca Gianni
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
| | - Laura Belver
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
| | - Adolfo Ferrando
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
- Department of Pathology, Columbia University Medical Center, New York, New York 10032, USA
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10032, USA
| |
Collapse
|
41
|
Phase I Study of IGF-Methotrexate Conjugate in the Treatment of Advanced Tumors Expressing IGF-1R. Am J Clin Oncol 2019; 42:862-869. [DOI: 10.1097/coc.0000000000000611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
42
|
Gusscott S, Tamiro F, Giambra V, Weng AP. Insulin-like growth factor (IGF) signaling in T-cell acute lymphoblastic leukemia. Adv Biol Regul 2019; 74:100652. [PMID: 31543360 DOI: 10.1016/j.jbior.2019.100652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer, characterized by an uncontrolled expansion and accumulation of T-cell progenitors. During leukemic progression, immature T cells grow abnormally and occupy the bone marrow compartment, thereby interfering with the production of normal blood cells. Pediatric T-ALL is curable with intensive chemotherapy, but there are significant, long-term side effects and ~20% of patients suffer relapse for which there are limited treatment options. Adult T-ALL in contrast is largely incurable and refractory/relapsed disease is common despite multi-agent chemotherapy (5-year overall survival of ~40%), and thus new therapeutic targets are needed. We have reported previously on the role of insulin-like growth factor (IGF) signaling in T-ALL, and shown that it exerts potent phenotypes in both leukemia stem cell and bulk tumor cell populations. Modulators of IGF signaling may thus prove useful in improving outcomes in patients with T-ALL. In this review, we summarize the most recent findings relating to IGF signaling in T-ALL and outline therapeutic options using clinically relevant IGF signaling modulators.
Collapse
Affiliation(s)
- Samuel Gusscott
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada
| | - Francesco Tamiro
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada; Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, FG, Italy
| | - Vincenzo Giambra
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada; Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, FG, Italy
| | - Andrew P Weng
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada.
| |
Collapse
|
43
|
Rodrigues Alves APN, Fernandes JC, Fenerich BA, Coelho-Silva JL, Scheucher PS, Simões BP, Rego EM, Ridley AJ, Machado-Neto JA, Traina F. IGF1R/IRS1 targeting has cytotoxic activity and inhibits PI3K/AKT/mTOR and MAPK signaling in acute lymphoblastic leukemia cells. Cancer Lett 2019; 456:59-68. [PMID: 31042587 DOI: 10.1016/j.canlet.2019.04.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/20/2019] [Accepted: 04/25/2019] [Indexed: 02/08/2023]
Abstract
The IGF1R/IRS1 signaling is activated in acute lymphoblastic leukemia (ALL) and can be targeted by the pharmacological inhibitors NT157 (IGF1R-IRS1/2 inhibitor) and OSI-906 (IGF1R/IR inhibitor). Here we investigate the cellular and molecular effects of NT157 and OSI-906 in ALL cells. NT157 and OSI-906 treatment reduced viability, proliferation and cell cycle progression in ALL cell lines. Similarly, in primary samples of patients with ALL, both OSI-906 and NT157 reduced viability, but only NT157 induced apoptosis. NT157 and OSI-906 did not show cytotoxicity in primary samples from healthy donor. NT157 and OSI-906 significantly decreased Jurkat cell migration, but did not modulate Namalwa migration. Consistent with the more potent effect of NT157 on cells, NT157 significantly modulated expression of 25 genes related to the MAPK signaling pathway in Jurkat cells, including oncogenes and tumor suppressor genes. Both compounds inhibited mTOR and p70S6K activity, but only NT157 inhibited AKT and 4-EBP1 activation. In summary, in ALL cells, NT157 has cytotoxic activity, whereas OSI-906 is cytostatic. NT157 has a stronger effect on ALL cells, and thus the direct inhibition of IRS1 may be a potential therapeutic target in ALL.
Collapse
Affiliation(s)
| | - Jaqueline Cristina Fernandes
- Department of Internal Medicine, University of Sao Paulo at Ribeirao Preto Medical School, Ribeirao Preto, Brazil
| | - Bruna Alves Fenerich
- Department of Internal Medicine, University of Sao Paulo at Ribeirao Preto Medical School, Ribeirao Preto, Brazil
| | - Juan Luiz Coelho-Silva
- Department of Internal Medicine, University of Sao Paulo at Ribeirao Preto Medical School, Ribeirao Preto, Brazil
| | - Priscila Santos Scheucher
- Department of Internal Medicine, University of Sao Paulo at Ribeirao Preto Medical School, Ribeirao Preto, Brazil
| | - Belinda Pinto Simões
- Department of Internal Medicine, University of Sao Paulo at Ribeirao Preto Medical School, Ribeirao Preto, Brazil
| | - Eduardo Magalhães Rego
- Department of Internal Medicine, University of Sao Paulo at Ribeirao Preto Medical School, Ribeirao Preto, Brazil
| | - Anne J Ridley
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom; School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - João Agostinho Machado-Neto
- Department of Internal Medicine, University of Sao Paulo at Ribeirao Preto Medical School, Ribeirao Preto, Brazil
| | - Fabiola Traina
- Department of Internal Medicine, University of Sao Paulo at Ribeirao Preto Medical School, Ribeirao Preto, Brazil.
| |
Collapse
|
44
|
Calvo J, Fahy L, Uzan B, Pflumio F. Desperately seeking a home marrow niche for T-cell acute lymphoblastic leukaemia. Adv Biol Regul 2019; 74:100640. [PMID: 31378700 DOI: 10.1016/j.jbior.2019.100640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023]
Abstract
T-cell acute leukemia is a hematologic malignancy that results from the progressive acquisition of genomic abnormalities in T-cell progenitors/precursors. T-ALL is commonly thought to originate from the thymus albeit recent literature describes the possible acquisition of the first oncogenic hits in hematopoietic progenitor cells of the bone marrow (BM). The journey of T-ALL from its arising to full blown expansion meets different microenvironments, including the BM in which leukemic cells settle down early after the disease spreading. We take advantage of recent literature to give an overview of important cells and factors that participate in T-ALL, especially in the BM, arguing in favor of a home marrow niche for this rare leukemia.
Collapse
Affiliation(s)
- Julien Calvo
- UMRE008 Stabilité Génétique Cellules Souches et Radiations, U1274 Inserm, Université de Paris, Université Paris-Saclay, CEA, F-92260 Fontenay-aux-Roses, France; Laboratory of Hematopoietic Stem Cells and Leukemia, Team Niche and Cancer in Hematopoiesis, U1274, Inserm, CEA, 18 route du panorama, 92260, Fontenay-aux-Roses, France; Laboratoire labellisé par l'Association pour la Recherche sur le Cancer, France
| | - Lucine Fahy
- UMRE008 Stabilité Génétique Cellules Souches et Radiations, U1274 Inserm, Université de Paris, Université Paris-Saclay, CEA, F-92260 Fontenay-aux-Roses, France; Laboratory of Hematopoietic Stem Cells and Leukemia, Team Niche and Cancer in Hematopoiesis, U1274, Inserm, CEA, 18 route du panorama, 92260, Fontenay-aux-Roses, France; Laboratoire labellisé par l'Association pour la Recherche sur le Cancer, France
| | - Benjamin Uzan
- UMRE008 Stabilité Génétique Cellules Souches et Radiations, U1274 Inserm, Université de Paris, Université Paris-Saclay, CEA, F-92260 Fontenay-aux-Roses, France; Laboratory of Hematopoietic Stem Cells and Leukemia, Team Niche and Cancer in Hematopoiesis, U1274, Inserm, CEA, 18 route du panorama, 92260, Fontenay-aux-Roses, France; Laboratoire labellisé par l'Association pour la Recherche sur le Cancer, France
| | - Françoise Pflumio
- UMRE008 Stabilité Génétique Cellules Souches et Radiations, U1274 Inserm, Université de Paris, Université Paris-Saclay, CEA, F-92260 Fontenay-aux-Roses, France; Laboratory of Hematopoietic Stem Cells and Leukemia, Team Niche and Cancer in Hematopoiesis, U1274, Inserm, CEA, 18 route du panorama, 92260, Fontenay-aux-Roses, France; Laboratoire labellisé par l'Association pour la Recherche sur le Cancer, France.
| |
Collapse
|
45
|
Synthetic modeling reveals HOXB genes are critical for the initiation and maintenance of human leukemia. Nat Commun 2019; 10:2913. [PMID: 31266935 PMCID: PMC6606637 DOI: 10.1038/s41467-019-10510-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 05/15/2019] [Indexed: 12/23/2022] Open
Abstract
Mechanistic studies in human cancer have relied heavily on cell lines and mouse models, but are limited by in vitro adaptation and species context issues, respectively. More recent efforts have utilized patient-derived xenografts; however, these are hampered by variable genetic background, inability to study early events, and practical issues with availability/reproducibility. We report here an efficient, reproducible model of T-cell leukemia in which lentiviral transduction of normal human cord blood yields aggressive leukemia that appears indistinguishable from natural disease. We utilize this synthetic model to uncover a role for oncogene-induced HOXB activation which is operative in leukemia cells-of-origin and persists in established tumors where it defines a novel subset of patients distinct from other known genetic subtypes and with poor clinical outcome. We show further that anterior HOXB genes are specifically activated in human T-ALL by an epigenetic mechanism and confer growth advantage in both pre-leukemia cells and established clones.
Collapse
|
46
|
Yang J, Wang X. Role of long non-coding RNAs in lymphoma: A systematic review and clinical perspectives. Crit Rev Oncol Hematol 2019; 141:13-22. [PMID: 31202125 DOI: 10.1016/j.critrevonc.2019.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 05/04/2019] [Accepted: 05/10/2019] [Indexed: 12/26/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), are over 200 nucleotides in length, and they rarely act as templates for protein synthesis. Mounting studies have shown that lncRNAs play a crucial regulatory role in various processes that sustain life, such as epigenetic regulation, cell cycle control, splicing, and post-transcriptional regulation. LncRNAs were aberrantly expressed in most hematological malignancies including lymphoma, participating in tumor suppression or promoting oncogenesis and modulating key genes in different pathways. The specific expression patterns of lncRNAs in lymphoma make them good candidates to be used as diagnostic biomarkers or as therapeutic targets. LncRNAs can be targeted by multiple approaches including nucleic acid therapeutics, CRISPR/Cas genome editing techniques, small molecule inhibitors, and gene therapy. Efforts are made to develop therapeutic strategies aimed at targeting lncRNAs, but there are still some avenues to be covered before they can be applied to the clinical treatment of lymphoma.
Collapse
Affiliation(s)
- Juan Yang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China; School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China; School of Medicine, Shandong University, Jinan, Shandong, 250012, China; Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, 250021, China; Key Laboratory for Kidney Regeneration of Shandong Province, Jinan, Shandong, 250021, China.
| |
Collapse
|
47
|
Evaluation of Insulin-mediated Regulation of AKT Signaling in Childhood Acute Lymphoblastic Leukemia. J Pediatr Hematol Oncol 2019; 41:96-104. [PMID: 30688831 DOI: 10.1097/mph.0000000000001425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Hyperglycemia increases the risk of early recurrence and high mortality in some adult blood cancers. In response to increased glucose levels, insulin is secreted, and several studies have shown that insulin-induced AKT signaling can regulate tumor cell proliferation and apoptosis. The AKT pathway is aberrantly activated in adult acute lymphoblastic leukemia (ALL), but the mechanisms underlying this activation and its impact in pediatric patients with ALL are unclear. MATERIALS AND METHODS We evaluated the insulin-induced chemoresistance and AKT pathway activation by measuring cell proliferation, apoptosis, and other parameters in ALL cell lines (Jurkat and Reh cells), as well as in primary pediatric leukemic cell samples, after culture with insulin, the chemotherapeutic drugs daunorubicin (DNR), vincristine (VCR), and L-asparaginase (L-Asp), or anti-insulin-like growth factor-1 receptor (IGF-1R) monoclonal antibody. RESULTS DNR, VCR, and L-Asp-induced toxicity in Jurkat and Reh cells was reduced in the presence of insulin. DNR promoted cell proliferation, whereas DNR, VCR, and L-Asp all reduced apoptosis in both cell lines cotreated with insulin compared with that in cell lines treated with chemotherapeutics alone (P<0.05). Furthermore, addition of an anti-IGF-1R monoclonal antibody promoted apoptosis, downregulated IGF-1R expression, and decreased the phosphorylation of AKT, P70S6K, and mTOR intracellular signaling pathway proteins in both cell lines, as well as in primary cultures (P<0.05). CONCLUSIONS Our results suggest that insulin-induced chemoresistance and activation of the AKT signaling pathway in pediatric ALL cells.
Collapse
|
48
|
Tomé M, Tchorz J, Gassmann M, Bettler B. Constitutive activation of Notch2 signalling confers chemoresistance to neural stem cells via transactivation of fibroblast growth factor receptor-1. Stem Cell Res 2019; 35:101390. [PMID: 30763736 DOI: 10.1016/j.scr.2019.101390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/28/2018] [Accepted: 01/23/2019] [Indexed: 12/01/2022] Open
Abstract
Notch signalling regulates neural stem cell (NSC) proliferation, differentiation and survival for the correct development and functioning of the central nervous system. Overactive Notch2 signalling has been associated with poor prognosis of aggressive brain tumours, such as glioblastoma multiforme (GBM). We recently reported that constitutive expression of the Notch2 intracellular domain (N2ICD) enhances proliferation and gliogenesis in NSCs. Here, we investigated the mechanism by which Notch2 promotes resistance to apoptosis of NSCs to cytotoxic insults. We performed ex vivo studies using NSC cultures from transgenic mice constitutively expressing N2ICD. These NSCs expressed increased levels of pro-survival factors and lack an apoptotic response to the topoisomerase inhibitor etoposide, not showing neither mitochondrial damage nor caspase activation. Interestingly, Notch2 signalling also regulated chemoresistance of human GBM cells to etoposide. We also identified a signalling crosstalk with FGF signalling pathway involved in this resistance to apoptosis of NSCs. Aberrant Notch2 expression enhances fibroblast growth factor receptor-1 (FGFR1) activity to specifically target the AKT-GSK3 signalling pathway to block apoptosis. These results have implications for understanding molecular changes involved in both tumorigenesis and therapy resistance.
Collapse
Affiliation(s)
- Mercedes Tomé
- Department of Biomedicine, Pharmazentrum, University of Basel, 4056 Basel, Switzerland.
| | - Jan Tchorz
- Department of Biomedicine, Pharmazentrum, University of Basel, 4056 Basel, Switzerland
| | - Martin Gassmann
- Department of Biomedicine, Pharmazentrum, University of Basel, 4056 Basel, Switzerland
| | - Bernhard Bettler
- Department of Biomedicine, Pharmazentrum, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
49
|
Huang XB, Yang CM, Han QM, Ye XJ, Lei W, Qian WB. MNK1 inhibitor CGP57380 overcomes mTOR inhibitor-induced activation of eIF4E: the mechanism of synergic killing of human T-ALL cells. Acta Pharmacol Sin 2018; 39:1894-1901. [PMID: 30297804 DOI: 10.1038/s41401-018-0161-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/30/2018] [Indexed: 01/05/2023]
Abstract
Although the treatment of adult T-cell acute lymphoblastic leukemia (T-ALL) has been significantly improved, the heterogeneous genetic landscape of the disease often causes relapse. Aberrant activation of mammalian target of rapamycin (mTOR) pathway in T-ALL is responsible for treatment failure and relapse, suggesting that mTOR inhibition may represents a new therapeutic strategy. In this study, we investigated whether the mTOR complex 1 (mTORC1) inhibitor everolimus could be used as a therapeutic agent against human T-ALL. We showed that rapamycin and its analog RAD001 (everolimus) exerted only mild inhibition on the viability of Jurkat, CEM and Molt-4 cell lines (for everolimus the maximum inhibition was <40% at 100 nM), but greatly enhanced the phosphorylation of eIF4E, a downstream substrate of MAPK-interacting kinase (MNK) that was involved in promoting cell survival. Furthermore, we demonstrated in Jurkat cells that mTOR inhibitor-induced eIF4E phosphorylation was independent of insulin-like growth factor-1/insulin-like growth factor-1 receptor axis, but was secondary to mTOR inhibition. Then we examined the antileukemia effects of CGP57380, a MNK1 inhibitor, and we found that CGP57380 (4-16 μM) dose-dependently suppressed the expression of both phosphor-MNK1 and phosphor-eIF4E, thereby inhibiting downstream targets such as c-Myc and survivin in T-ALL cells. Importantly, CGP57380 produced a synergistic growth inhibitory effect with everolimus in T-ALL cells, and treatment with this targeted therapy overcame everolimus-induced eIF4E phosphorylation. In conclusion, our results suggest that dual-targeting of mTOR and MNK1/eIF4E signaling pathways may represent a novel therapeutic strategy for the treatment of human T-ALL.
Collapse
|
50
|
Giambra V, Gusscott S, Gracias D, Song R, Lam SH, Panelli P, Tyshchenko K, Jenkins CE, Hoofd C, Lorzadeh A, Carles A, Hirst M, Eaves CJ, Weng AP. Epigenetic Restoration of Fetal-like IGF1 Signaling Inhibits Leukemia Stem Cell Activity. Cell Stem Cell 2018; 23:714-726.e7. [PMID: 30269902 DOI: 10.1016/j.stem.2018.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 06/15/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022]
Abstract
Acute leukemias are aggressive malignancies of developmentally arrested hematopoietic progenitors. We sought here to explore the possibility that changes in hematopoietic stem/progenitor cells during development might alter the biology of leukemias arising from this tissue compartment. Using a mouse model of acute T cell leukemia, we found that leukemias generated from fetal liver (FL) and adult bone marrow (BM) differed dramatically in their leukemia stem cell activity with FL leukemias showing markedly reduced serial transplantability as compared to BM leukemias. We present evidence that this difference is due to NOTCH1-driven autocrine IGF1 signaling, which is active in FL cells but restrained in BM cells by EZH2-dependent H3K27 trimethylation. Further, we confirmed this mechanism is operative in human disease and show that enforced IGF1 signaling effectively limits leukemia stem cell activity. These findings demonstrate that resurrecting dormant fetal programs in adult cells may represent an alternate therapeutic approach in human cancer.
Collapse
Affiliation(s)
- Vincenzo Giambra
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy.
| | - Samuel Gusscott
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Deanne Gracias
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Raymond Song
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Sonya H Lam
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Patrizio Panelli
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy
| | | | | | - Catherine Hoofd
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Alireza Lorzadeh
- Michael Smith Laboratories and Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Annaick Carles
- Michael Smith Laboratories and Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Martin Hirst
- Michael Smith Laboratories and Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Connie J Eaves
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Andrew P Weng
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada.
| |
Collapse
|