1
|
Hermans D, van Beers L, Broux B. Nectin Family Ligands Trigger Immune Effector Functions in Health and Autoimmunity. BIOLOGY 2023; 12:452. [PMID: 36979144 PMCID: PMC10045777 DOI: 10.3390/biology12030452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
The superfamily of immunoglobulin cell-adhesion molecules (IgCAMs) is a well-known family of cell-adhesion molecules used for immune-cell extravasation and cell-cell interaction. Amongst others, this family includes DNAX accessory molecule 1 (DNAM-1/CD226), class-I-restricted T-cell-associated molecule (CRTAM/CD355), T-cell-activated increased late expression (Tactile/CD96), T-cell immunoreceptor with Ig and ITIM domains (TIGIT), Nectins and Nectin-like molecules (Necls). Besides using these molecules to migrate towards inflammatory sites, their interactions within the immune system can support the immunological synapse with antigen-presenting cells or target cells for cytotoxicity, and trigger diverse effector functions. Although their role is generally described in oncoimmunity, this review emphasizes recent advances in the (dys)function of Nectin-family ligands in health, chronic inflammatory conditions and autoimmune diseases. In addition, this review provides a detailed overview on the expression pattern of Nectins and Necls and their ligands on different immune-cell types by focusing on human cell systems.
Collapse
Affiliation(s)
- Doryssa Hermans
- University MS Center, Campus Diepenbeek, 3590 Diepenbeek, Belgium; (D.H.); (L.v.B.)
- Department of Immunology and Infection, Biomedical Research Institute, University of Hasselt, 3590 Diepenbeek, Belgium
| | - Lisa van Beers
- University MS Center, Campus Diepenbeek, 3590 Diepenbeek, Belgium; (D.H.); (L.v.B.)
- Department of Immunology and Infection, Biomedical Research Institute, University of Hasselt, 3590 Diepenbeek, Belgium
| | - Bieke Broux
- University MS Center, Campus Diepenbeek, 3590 Diepenbeek, Belgium; (D.H.); (L.v.B.)
- Department of Immunology and Infection, Biomedical Research Institute, University of Hasselt, 3590 Diepenbeek, Belgium
| |
Collapse
|
2
|
Lee HS, Kim EN, Jeong GS. Oral administration of Helianthus annuus leaf extract ameliorates atopic dermatitis by modulation of T cell activity in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154443. [PMID: 36108372 DOI: 10.1016/j.phymed.2022.154443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/08/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is multifactorial disease that is highly involved in the activity of T cells from the skin lesion. Seeds of Helianthus annuus extract have been traditionally used as anti-inflammatory reagent but few studies have been reported on leaf of H. annuus that are discarded uselessly as an immunomodulator. PURPOSE Therefore, here, the regulatory effect of Helianthus annuus extract (HAE) on AD via suppression of T cell activity was investigated. METHODS The efficacy of HAE was evaluated in T cells stimulated with CD3/CD28 antibody and PMA/A23187. And demonstration of the alleviating effect of HAE on AD in the ears of Balb/c female mice stimulated with mite extract and DNCB. RESULTS Pre-treatment with HAE abrogates IL-2 production from activated T cells. It was also found that HAE suppresses the expression of surface molecules in activated T cells. Cell viability results demonstrated that HAE is not associated with cytotoxicity in resting and activated T cells. Besides, we exhibited that regulated phosphorylation of MAPK through TAK1-IKKα-NFκB by pre-treatment with HAE leads to the suppressive effect of HAE on T cell activation. Oral administration of HAE attenuates manifestations of AD including reduced thickness of dermis and epidermis, decreased IgE level in serum, and declined mRNA levels of atopic cytokines on ear tissues. The ameliorative effect of HAE on AD was found to be associated with suppressed activity of T cells from draining lymph nodes. CONCLUSION Therefore, our results provide that HAE alleviates AD symptoms via modulation of T cell activity. In addition, these results suggest the immunomodulatory effect of HAE on T-cell mediated diseases.
Collapse
Affiliation(s)
- Hyun-Su Lee
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu, Republic of Korea
| | - Eun-Nam Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Chrysophanol Attenuates Manifestations of Immune Bowel Diseases by Regulation of Colorectal Cells and T Cells Activation In Vivo. Molecules 2021; 26:molecules26061682. [PMID: 33802855 PMCID: PMC8002617 DOI: 10.3390/molecules26061682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 01/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an immune disorder that develops due to chronic inflammation in several cells. It is known that colorectal and T cells are mainly involved in the pathogenesis of IBD. Chrysophanol is an anthraquinone family member that possesses several bioactivities, including anti-diabetic, anti-tumor, and inhibitory effects on T cell activation. However, it is unknown whether chrysophanol suppresses the activity of colorectal cells. In this study, we found that chrysophanol did not induce cytotoxicity in HT-29 colorectal cells. Pre-treatment with chrysophanol inhibited the mRNA levels of pro-inflammatory cytokines in tumor necrosis factor-α (TNF-α)-stimulated HT-29 cells. Western blot analysis revealed that pre-treatment with chrysophanol mitigates p65 translocation and the mitogen-activated protein kinase (MAPK) pathway in activated HT-29 cells. Results from the in vivo experiment confirmed that oral administration of chrysophanol protects mice from dextran sulfate sodium (DSS)-induced IBD. Chrysophanol administration attenuates the expression of pro-inflammatory cytokines in colon tissues of the DSS-induced IBD model. In addition, we found that oral administration of chrysophanol systemically decreased the expression of effector cytokines from mesenteric lymph nodes. Therefore, these data suggest that chrysophanol has a potent modulatory effect on colorectal cells as well as exhibiting a beneficial potential for curing IBD in vivo.
Collapse
|
4
|
Kim HR, Park JS, Fatima Y, Kausar M, Park JH, Jun CD. Potentiating the Antitumor Activity of Cytotoxic T Cells via the Transmembrane Domain of IGSF4 That Increases TCR Avidity. Front Immunol 2021; 11:591054. [PMID: 33597944 PMCID: PMC7882689 DOI: 10.3389/fimmu.2020.591054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/14/2020] [Indexed: 01/25/2023] Open
Abstract
A robust T-cell response is an important component of sustained antitumor immunity. In this respect, the avidity of TCR in the antigen-targeting of tumors is crucial for the quality of the T-cell response. This study reports that the transmembrane (TM) domain of immunoglobulin superfamily member 4 (IGSF4) binds to the TM of the CD3 ζ-chain through an interaction between His177 and Asp36, which results in IGSF4-CD3 ζ dimers. IGSF4 also forms homo-dimers through the GxxVA motif in the TM domain, thereby constituting large TCR clusters. Overexpression of IGSF4 lacking the extracellular (IG4ΔEXT) domain potentiates the OTI CD8+ T cells to release IFN-γ and TNF-α and to kill OVA+-B16F10 melanoma cells. In animal models, IG4ΔEXT significantly reduces B16F10 tumor metastasis as well as tumor growth. Collectively, the results indicate that the TM domain of IGSF4 can regulate TCR avidity, and they further demonstrate that TCR avidity regulation is critical for improving the antitumor activity of cytotoxic T cells.
Collapse
MESH Headings
- Animals
- Cell Adhesion Molecule-1/genetics
- Cell Adhesion Molecule-1/immunology
- Cell Line, Tumor
- Humans
- Immunotherapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice, Inbred C57BL
- Mice, Transgenic
- Protein Domains
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- T-Lymphocytes/immunology
- Mice
Collapse
Affiliation(s)
- Hye-Ran Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Jeong-Su Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Yasmin Fatima
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Maiza Kausar
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Jin-Hwa Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| |
Collapse
|
5
|
Zhang S, Wang T, Liu Y. CADM1: A molecule worth investigating in mycosis fungoides and Sézary syndrome. J Am Acad Dermatol 2019; 82:e141-e142. [PMID: 31857109 DOI: 10.1016/j.jaad.2019.11.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Shiyu Zhang
- Department of Dermatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Wang
- Department of Dermatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| | - Yuehua Liu
- Department of Dermatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
CHOI EJ, SO WY. Change of Immunoglobulin Superfamily Member 4 Gene Expression in the Digestive System after Swimming Exercise in BALB/c Mice. IRANIAN JOURNAL OF PUBLIC HEALTH 2018; 47:1771-1772. [PMID: 30581798 PMCID: PMC6294853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Eun-Ju CHOI
- Dept. of Physical Education, Daegu Catholic University, Gyeongsan, Korea
| | - Wi-Young SO
- Sports and Health Care Major, Korea National University of Transportation, Chungju-si, Korea,Corresponding Author:
| |
Collapse
|
7
|
Hunte R, Alonso P, Thomas R, Bazile CA, Ramos JC, van der Weyden L, Dominguez-Bendala J, Khan WN, Shembade N. CADM1 is essential for KSHV-encoded vGPCR-and vFLIP-mediated chronic NF-κB activation. PLoS Pathog 2018; 14:e1006968. [PMID: 29698475 PMCID: PMC5919438 DOI: 10.1371/journal.ppat.1006968] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
Approximately 12% of all human cancers worldwide are caused by infections with oncogenic viruses. Kaposi's sarcoma herpesvirus/human herpesvirus 8 (KSHV/HHV8) is one of the oncogenic viruses responsible for human cancers, including Kaposi's sarcoma (KS), Primary Effusion Lymphoma (PEL), and the lymphoproliferative disorder multicentric Castleman's disease (MCD). Chronic inflammation mediated by KSHV infection plays a decisive role in the development and survival of these cancers. NF-κB, a family of transcription factors regulating inflammation, cell survival, and proliferation, is persistently activated in KSHV-infected cells. The KSHV latent and lytic expressing oncogenes involved in NF-κB activation are vFLIP/K13 and vGPCR, respectively. However, the mechanisms by which NF-κB is activated by vFLIP and vGPCR are poorly understood. In this study, we have found that a host molecule, Cell Adhesion Molecule 1 (CADM1), is robustly upregulated in KSHV-infected PBMCs and KSHV-associated PEL cells. Further investigation determined that both vFLIP and vGPCR interacted with CADM1. The PDZ binding motif localized at the carboxyl terminus of CADM1 is essential for both vGPCR and vFLIP to maintain chronic NF-κB activation. Membrane lipid raft associated CADM1 interaction with vFLIP is critical for the initiation of IKK kinase complex and NF-κB activation in the PEL cells. In addition, CADM1 played essential roles in the survival of KSHV-associated PEL cells. These data indicate that CADM1 plays key roles in the activation of NF-κB pathways during latent and lytic phases of the KSHV life cycle and the survival of KSHV-infected cells.
Collapse
MESH Headings
- Cell Adhesion Molecule-1/genetics
- Cell Adhesion Molecule-1/metabolism
- Herpesvirus 8, Human/pathogenicity
- Humans
- Lymphoma, Primary Effusion/genetics
- Lymphoma, Primary Effusion/metabolism
- Lymphoma, Primary Effusion/virology
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/virology
- Tumor Cells, Cultured
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Richard Hunte
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Patricia Alonso
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Remy Thomas
- Qatar Biomedical Research Institute, Doha, Qatar
| | - Cassandra Alexandria Bazile
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Juan Carlos Ramos
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, and Center for AIDS Research and Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Louise van der Weyden
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Wasif Noor Khan
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Noula Shembade
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| |
Collapse
|
8
|
Kato T, Miyoshi H, Kobayashi S, Yoshida N, Imaizumi Y, Seto M, Uchimaru K, Miyazaki Y, Ohshima K. Clinicopathological analysis in PTCL-NOS with CADM1 expression. Virchows Arch 2017; 471:659-666. [DOI: 10.1007/s00428-017-2233-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 08/24/2017] [Accepted: 09/13/2017] [Indexed: 01/09/2023]
|
9
|
Crk adaptor proteins regulate CD3ζ chain phosphorylation and TCR/CD3 down-modulation in activated T cells. Cell Signal 2017; 36:117-126. [PMID: 28465009 DOI: 10.1016/j.cellsig.2017.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/15/2017] [Accepted: 04/26/2017] [Indexed: 01/06/2023]
Abstract
T cell receptor (TCR) recognition of a peptide antigen in the context of MHC molecules initiates positive and negative cascades that regulate T cell activation, proliferation and differentiation, and culminate in the acquisition of effector T cell functions. These processes are a prerequisite for the induction of specific T cell-mediated adaptive immune responses. A key event in the activation of TCR-coupled signaling pathways is the phosphorylation of tyrosine residues within the cytoplasmic tails of the CD3 subunits, predominantly CD3ζ. These transiently formed phosphotyrosyl epitopes serve as docking sites for SH2-domain containing effector molecules, predominantly the ZAP70 protein tyrosine kinase, which is critical for signal propagation. We found that CrkI and CrkII adaptor proteins also interact with CD3ζ in TCR activated-, but not in resting-, T cells. Crk binding to CD3ζ was independent of ZAP70 and also occurred in ZAP70-deficient T cells. Binding was mediated by Crk-SH2 domain interaction with phosphotyrosine-containing motifs on CD3ζ, via a direct physical interaction, as demonstrated by Far-Western blot. CrkII binding to CD3ζ could also be demonstrated in a heterologous system, where coexpression of a catalytically active Lck was used to phosphorylate the CD3ζ chain. TCR activation-induced Crk binding to CD3ζ resulted in increased and prolonged phosphorylation of CD3ζ, as well as ZAP70 and LAT, suggesting a positive role for CrkI/II binding to CD3ζ in regulation of TCR-coupled signaling pathways. Furthermore, Crk-dependent increased phosphorylation of CD3ζ coincided with inhibition of TCR downmodulation, supporting a positive role for Crk adaptor proteins in TCR-mediated signal amplification.
Collapse
|
10
|
Fowler DK, Peters JH, Williams C, Washbourne P. Redundant Postsynaptic Functions of SynCAMs 1-3 during Synapse Formation. Front Mol Neurosci 2017; 10:24. [PMID: 28197078 PMCID: PMC5281628 DOI: 10.3389/fnmol.2017.00024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/17/2017] [Indexed: 01/13/2023] Open
Abstract
Investigating the roles of synaptogenic adhesion molecules during synapse formation has proven challenging, often due to compensatory functions between additional family members. The synaptic cell adhesion molecules 1–3 (SynCAM1–3) are expressed both pre- and postsynaptically, share highly homologous domains and are synaptogenic when ectopically presented to neurons; yet their endogenous functions during synaptogenesis are unclear. Here we report that SynCAM1–3 are functionally redundant and collectively necessary for synapse formation in cultured hippocampal neurons. Only triple knockdown (KD) of SynCAM1–3 using highly efficient, chained artificial microRNAs (amiRNAs) reduced synapse density and increased synapse area. Electrophysiological recordings of quantal release events supported an increase in synapse size caused by SynCAM1–3 depletion. Furthermore, a combinatorial, mosaic lentiviral approach comparing wild type (WT) and SynCAM1–3 KD neurons in the same culture demonstrate that SynCAM1–3 set synapse number and size through postsynaptic mechanisms. The results demonstrate that the redundancy between SynCAM1–3 has concealed their synaptogenic function at the postsynaptic terminal.
Collapse
Affiliation(s)
- Daniel K Fowler
- Department of Biology, Institute of Neuroscience, University of OregonEugene, OR, USA; Department of Integrative Physiology and Neuroscience, Washington State UniversityPullman, WA, USA
| | - James H Peters
- Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| | - Carly Williams
- Department of Biology, Institute of Neuroscience, University of Oregon Eugene, OR, USA
| | - Philip Washbourne
- Department of Biology, Institute of Neuroscience, University of Oregon Eugene, OR, USA
| |
Collapse
|
11
|
Takeuchi A, Badr MESG, Miyauchi K, Ishihara C, Onishi R, Guo Z, Sasaki Y, Ike H, Takumi A, Tsuji NM, Murakami Y, Katakai T, Kubo M, Saito T. CRTAM determines the CD4+ cytotoxic T lymphocyte lineage. J Exp Med 2015; 213:123-38. [PMID: 26694968 PMCID: PMC4710199 DOI: 10.1084/jem.20150519] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 11/13/2015] [Indexed: 12/16/2022] Open
Abstract
Naive T cells differentiate into various effector T cells, including CD4(+) helper T cell subsets and CD8(+) cytotoxic T cells (CTL). Although cytotoxic CD4(+) T cells (CD4 +: CTL) also develop from naive T cells, the mechanism of development is elusive. We found that a small fraction of CD4(+) T cells that express class I-restricted T cell-associated molecule (CRTAM) upon activation possesses the characteristics of both CD4(+) and CD8(+) T cells. CRTAM(+) CD4(+) T cells secrete IFN-γ, express CTL-related genes, such as eomesodermin (Eomes), Granzyme B, and perforin, after cultivation, and exhibit cytotoxic function, suggesting that CRTAM(+) T cells are the precursor of CD4(+)CTL. Indeed, ectopic expression of CRTAM in T cells induced the production of IFN-γ, expression of CTL-related genes, and cytotoxic activity. The induction of CD4(+)CTL and IFN-γ production requires CRTAM-mediated intracellular signaling. CRTAM(+) T cells traffic to mucosal tissues and inflammatory sites and developed into CD4(+)CTL, which are involved in mediating protection against infection as well as inducing inflammatory response, depending on the circumstances, through IFN-γ secretion and cytotoxic activity. These results reveal that CRTAM is critical to instruct the differentiation of CD4(+)CTL through the induction of Eomes and CTL-related gene.
Collapse
Affiliation(s)
- Arata Takeuchi
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan Department of Immunology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Mohamed El Sherif Gadelhaq Badr
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kosuke Miyauchi
- Laboratory for Cytokine Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Chitose Ishihara
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Reiko Onishi
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Zijin Guo
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshiteru Sasaki
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Kyoto 606-8501, Japan
| | - Hiroshi Ike
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Akiko Takumi
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Noriko M Tsuji
- Immune Homeostasis Lab, Biomedial Research Institute, National Institute for Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Tomoya Katakai
- Department of Immunology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Masato Kubo
- Laboratory for Cytokine Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Chiba 278-0022, Japan
| | - Takashi Saito
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Liu Y, Gu Y, Cao X. The exosomes in tumor immunity. Oncoimmunology 2015; 4:e1027472. [PMID: 26405598 DOI: 10.1080/2162402x.2015.1027472] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 02/08/2023] Open
Abstract
Exosomes are a kind of nanometric membrane vesicles and can be released by almost all kinds of cells, including cancer cells. As the important mediators in intercellular communications, exosomes mediate exchange of protein and genetic material derived from parental cells. Emerging evidences show that exosomes secreted by either host cells or cancer cells are involved in tumor initiation, growth, invasion and metastasis. Moreover, communications between immune cells and cancer cells via exosomes play dual roles in modulating tumor immunity. In this review, we focus on exosome-mediated immunosuppression via inhibition of antitumor responses elicited by immune cells (DCs, NK cells, CD4+ and CD8+ T cells, etc.) and induction of immunosuppressive or regulatory cell populations (MDSCs, Tregs and Bregs). Transfer of cytokines, microRNAs (miRNAs) and functional mRNAs by tumor-derived exosomes (TEXs) is crucial in the immune escape. Furthermore, exosomes secreted from several kinds of immune cells (DCs, CD4+ and CD8+ Tregs) also participate in immunosuppression. On the other hand, we summarize the current application of DC-derived and modified tumor-derived exosomes as tumor vaccines. The potential challenges about exosome-based vaccines for clinical application are also discussed.
Collapse
Affiliation(s)
- Yanfang Liu
- National Key Laboratory of Medical Immunology & Institute of Immunology; Second Military Medical University ; Shanghai, China
| | - Yan Gu
- National Key Laboratory of Medical Immunology & Institute of Immunology; Second Military Medical University ; Shanghai, China
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology & Institute of Immunology; Second Military Medical University ; Shanghai, China
| |
Collapse
|
13
|
Human T-cell leukemia virus type 1 (HTLV-1) tax requires CADM1/TSLC1 for inactivation of the NF-κB inhibitor A20 and constitutive NF-κB signaling. PLoS Pathog 2015; 11:e1004721. [PMID: 25774694 PMCID: PMC4361615 DOI: 10.1371/journal.ppat.1004721] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/31/2015] [Indexed: 02/07/2023] Open
Abstract
Persistent activation of NF-κB by the Human T-cell leukemia virus type 1 (HTLV-1) oncoprotein, Tax, is vital for the development and pathogenesis of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). K63-linked polyubiquitinated Tax activates the IKK complex in the plasma membrane-associated lipid raft microdomain. Tax also interacts with TAX1BP1 to inactivate the NF-κB negative regulatory ubiquitin-editing A20 enzyme complex. However, the molecular mechanisms of Tax-mediated IKK activation and A20 protein complex inactivation are poorly understood. Here, we demonstrated that membrane associated CADM1 (Cell adhesion molecule1) recruits Ubc13 to Tax, causing K63-linked polyubiquitination of Tax, and IKK complex activation in the membrane lipid raft. The c-terminal cytoplasmic tail containing PDZ binding motif of CADM1 is critical for Tax to maintain persistent NF-κB activation. Finally, Tax failed to inactivate the NF-κB negative regulator ubiquitin-editing enzyme A20 complex, and activate the IKK complex in the lipid raft in absence of CADM1. Our results thus indicate that CADM1 functions as a critical scaffold molecule for Tax and Ubc13 to form a cellular complex with NEMO, TAX1BP1 and NRP, to activate the IKK complex in the plasma membrane-associated lipid rafts, to inactivate NF-κB negative regulators, and maintain persistent NF-κB activation in HTLV-1 infected cells. HTLV-1 infection leads to the development of Adult T-cell Leukemia (ATL) or HTLV-1 associated myelopathy/ tropical spastic paraparesis (HAM/TSP). One of the major causes responsible for the development of HTLV-1 associated diseases is chronic inflammation directed by NF-kappaB (NF-κB). NF-κB activation in response to a wide variety of signals is transient and tightly controlled by ubiquitin-editing enzyme A20. One of the mechanisms of persistent NF-κB activation in HTLV-1 infected cells is inactivation of NF-κB negative regulators; however, the precise mechanism is unknown. Here, we focused on host tumor suppressor Cell adhesion molecule 1 (CADM1) that is robustly upregulated in HTLV-1 infected cells. The expression of CADM1 is frequently silenced in several cancers; however, it is critical for HTLV-1 associated ATL tumor cell survival. We characterized the role of CADM1 in persistent NF-κB activation in HTLV-1 infected cells. We found that CADM1 is required for the HTLV-1 oncoprotein, Tax, to form a cellular complex with Ubc13, TAX1BP1, NRP and NEMO in the membrane lipid rafts micorodomain. We further demonstrated that Tax requires CADM1 to inactivate NF-κB negative regulator and maintain persistent NF-κB activation. Our study reveals a novel mechanism of chronic NF-κB activation by CADM1 in HTLV-1 infected cells.
Collapse
|
14
|
Mishima E, Inoue C, Saigusa D, Inoue R, Ito K, Suzuki Y, Jinno D, Tsukui Y, Akamatsu Y, Araki M, Araki K, Shimizu R, Shinke H, Suzuki T, Takeuchi Y, Shima H, Akiyama Y, Toyohara T, Suzuki C, Saiki Y, Tominaga T, Miyagi S, Kawagisihi N, Soga T, Ohkubo T, Yamamura K, Imai Y, Masuda S, Sabbisetti V, Ichimura T, Mount DB, Bonventre JV, Ito S, Tomioka Y, Itoh K, Abe T. Conformational change in transfer RNA is an early indicator of acute cellular damage. J Am Soc Nephrol 2014; 25:2316-26. [PMID: 24833129 DOI: 10.1681/asn.2013091001] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Tissue damage by oxidative stress is a key pathogenic mechanism in various diseases, including AKI and CKD. Thus, early detection of oxidative tissue damage is important. Using a tRNA-specific modified nucleoside 1-methyladenosine (m1A) antibody, we show that oxidative stress induces a direct conformational change in tRNA structure that promotes subsequent tRNA fragmentation and occurs much earlier than DNA damage. In various models of tissue damage (ischemic reperfusion, toxic injury, and irradiation), the levels of circulating tRNA derivatives increased rapidly. In humans, the levels of circulating tRNA derivatives also increased under conditions of acute renal ischemia, even before levels of other known tissue damage markers increased. Notably, the level of circulating free m1A correlated with mortality in the general population (n=1033) over a mean follow-up of 6.7 years. Compared with healthy controls, patients with CKD had higher levels of circulating free m1A, which were reduced by treatment with pitavastatin (2 mg/d; n=29). Therefore, tRNA damage reflects early oxidative stress damage, and detection of tRNA damage may be a useful tool for identifying organ damage and forming a clinical prognosis.
Collapse
Affiliation(s)
- Eikan Mishima
- Division of Nephrology, Endocrinology, and Vascular Medicine
| | - Chisako Inoue
- Department of Clinical Pharmacology and Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | | | - Ryusuke Inoue
- Medical Informatics Center of Tohoku University Hospital, Sendai, Japan
| | - Koki Ito
- Division of Cardiovascular Surgery
| | | | - Daisuke Jinno
- Laboratory of Oncology, Pharmacy Practice and Sciences and
| | - Yuri Tsukui
- Laboratory of Oncology, Pharmacy Practice and Sciences and
| | | | - Masatake Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | | | - Haruka Shinke
- Department of Pharmacy, Kyoto University Hospital, Kyoto, Japan
| | - Takehiro Suzuki
- Division of Nephrology, Endocrinology, and Vascular Medicine
| | - Yoichi Takeuchi
- Division of Nephrology, Endocrinology, and Vascular Medicine
| | - Hisato Shima
- Division of Nephrology, Endocrinology, and Vascular Medicine
| | | | | | - Chitose Suzuki
- Division of Nephrology, Endocrinology, and Vascular Medicine
| | | | | | - Shigehito Miyagi
- Division of Transplantation, Reconstruction and Endoscopic Surgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Naoki Kawagisihi
- Division of Transplantation, Reconstruction and Endoscopic Surgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Takayoshi Ohkubo
- Hygiene and Public Health, Teikyo University School of Medicine, Tokyo, Japan
| | - Kenichi Yamamura
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Yutaka Imai
- Department of Planning for Drug Development and Clinical Evaluation, Tohoku University Graduate School of Pharmaceutical Sciences, Aoba-ku, Sendai, Japan
| | - Satohiro Masuda
- Department of Pharmacy, Kyoto University Hospital, Kyoto, Japan
| | - Venkata Sabbisetti
- Renal Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Takaharu Ichimura
- Renal Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - David B Mount
- Renal Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Joseph V Bonventre
- Renal Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology, and Vascular Medicine
| | | | - Kunihiko Itoh
- Department of Clinical Pharmacology and Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Takaaki Abe
- Division of Nephrology, Endocrinology, and Vascular Medicine, Department of Clinical Biology and Hormonal Regulation, and Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| |
Collapse
|
15
|
Araki M, Nakahara M, Muta M, Itou M, Yanai C, Yamazoe F, Miyake M, Morita A, Araki M, Okamoto Y, Nakagata N, Yoshinobu K, Yamamura KI, Araki K. Database for exchangeable gene trap clones: pathway and gene ontology analysis of exchangeable gene trap clone mouse lines. Dev Growth Differ 2014; 56:161-74. [PMID: 24444128 DOI: 10.1111/dgd.12116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/30/2013] [Accepted: 12/01/2013] [Indexed: 01/13/2023]
Abstract
Gene trapping in embryonic stem (ES) cells is a proven method for large-scale random insertional mutagenesis in the mouse genome. We have established an exchangeable gene trap system, in which a reporter gene can be exchanged for any other DNA of interest through Cre/mutant lox-mediated recombination. We isolated trap clones, analyzed trapped genes, and constructed the database for Exchangeable Gene Trap Clones (EGTC) [http://egtc.jp]. The number of registered ES cell lines was 1162 on 31 August 2013. We also established 454 mouse lines from trap ES clones and deposited them in the mouse embryo bank at the Center for Animal Resources and Development, Kumamoto University, Japan. The EGTC database is the most extensive academic resource for gene-trap mouse lines. Because we used a promoter-trap strategy, all trapped genes were expressed in ES cells. To understand the general characteristics of the trapped genes in the EGTC library, we used Kyoto Encyclopedia of Genes and Genomes (KEGG) for pathway analysis and found that the EGTC ES clones covered a broad range of pathways. We also used Gene Ontology (GO) classification data provided by Mouse Genome Informatics (MGI) to compare the functional distribution of genes in each GO term between trapped genes in the EGTC mouse lines and total genes annotated in MGI. We found the functional distributions for the trapped genes in the EGTC mouse lines and for the RefSeq genes for the whole mouse genome were similar, indicating that the EGTC mouse lines had trapped a wide range of mouse genes.
Collapse
Affiliation(s)
- Masatake Araki
- Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kwon MS, Park KR, Kim YD, Na BR, Kim HR, Choi HJ, Piragyte I, Jeon H, Chung KH, Song WK, Eom SH, Jun CD. Swiprosin-1 is a novel actin bundling protein that regulates cell spreading and migration. PLoS One 2013; 8:e71626. [PMID: 23977092 PMCID: PMC3744483 DOI: 10.1371/journal.pone.0071626] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/28/2013] [Indexed: 11/18/2022] Open
Abstract
Protein functions are often revealed by their localization to specialized cellular sites. Recent reports demonstrated that swiprosin-1 is found together with actin and actin-binding proteins in the cytoskeleton fraction of human mast cells and NK-like cells. However, direct evidence of whether swiprosin-1 regulates actin dynamics is currently lacking. We found that swiprosin-1 localizes to microvilli-like membrane protrusions and lamellipodia and exhibits actin-binding activity. Overexpression of swiprosin-1 enhanced lamellipodia formation and cell spreading. In contrast, swiprosin-1 knockdown showed reduced cell spreading and migration. Swiprosin-1 induced actin bundling in the presence of Ca(2+), and deletion of the EF-hand motifs partially reduced bundling activity. Swiprosin-1 dimerized in the presence of Ca(2+) via its coiled-coil domain, and a lysine (Lys)-rich region in the coiled-coil domain was essential for regulation of actin bundling. Consistent with these observations, mutations of the EF-hand motifs and coiled-coil region significantly reduced cell spreading and lamellipodia formation. We provide new evidence of how swiprosin-1 influences cytoskeleton reorganization and cell spreading.
Collapse
Affiliation(s)
- Min-Sung Kwon
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Kyoung Ryoung Park
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Young-Dae Kim
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Bo-Ra Na
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Hye-Ran Kim
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Hak-Jong Choi
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Indre Piragyte
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Hyesung Jeon
- Biomedical Research Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, Korea
| | - Kyung Hwun Chung
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Woo Keun Song
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Soo Hyun Eom
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Chang-Duk Jun
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
17
|
Joustra SD, van Trotsenburg ASP, Sun Y, Losekoot M, Bernard DJ, Biermasz NR, Oostdijk W, Wit JM. IGSF1 deficiency syndrome: A newly uncovered endocrinopathy. ACTA ACUST UNITED AC 2013; 1:e24883. [PMID: 25002994 PMCID: PMC3915563 DOI: 10.4161/rdis.24883] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/15/2013] [Accepted: 04/30/2013] [Indexed: 01/29/2023]
Abstract
A recently uncovered X-linked syndrome, caused by loss-of-function of IGSF1, is characterized by congenital central hypothyroidism and macroorchidism, variable prolactin deficiency, occasional growth hormone deficiency, delayed pubertal testosterone secretion and obesity. We propose to call this endocrinopathy “IGSF1 deficiency syndrome.” Based on an estimated incidence of isolated congenital central hypothyroidism of 1:65,000, we predict that the incidence of IGSF1 deficiency related hypothyroidism is approximately 1:100,000. IGSF1 encodes a plasma membrane immunoglobulin superfamily glycoprotein that is highly expressed in pituitary and testis, but is of unknown function. The variable profile of pituitary dysfunction suggests that IGSF1 may play a role in pituitary paracrine regulation. The clinical significance of the syndrome, particularly the clinical consequences of untreated hypothyroidism, justifies screening family members of patients with IGSF1 mutations for carriership and to study potential carriers of IGSF1 mutations, including patients with idiopathic central hypothyroidism, combined GH and TSH deficiency, macroorchidism or delayed puberty.
Collapse
Affiliation(s)
- Sjoerd D Joustra
- Department of Pediatrics; Leiden University Medical Center; Leiden, The Netherlands ; Department of Endocrinology and Metabolic Disorders; Leiden University Medical Center; Leiden, The Netherlands
| | - A S Paul van Trotsenburg
- Department of Pediatric Endocrinology; Emma Children's Hospital; Academic Medical Center; University of Amsterdam; Amsterdam, The Netherlands
| | - Yu Sun
- Center for Human and Clinical Genetics; Leiden University Medical Center; Leiden, The Netherlands
| | - Monique Losekoot
- Center for Human and Clinical Genetics; Leiden University Medical Center; Leiden, The Netherlands
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics; McGill University; Montreal, QC Canada
| | - Nienke R Biermasz
- Department of Endocrinology and Metabolic Disorders; Leiden University Medical Center; Leiden, The Netherlands
| | - Wilma Oostdijk
- Department of Pediatrics; Leiden University Medical Center; Leiden, The Netherlands
| | - Jan M Wit
- Department of Pediatrics; Leiden University Medical Center; Leiden, The Netherlands
| |
Collapse
|
18
|
Systems model of T cell receptor proximal signaling reveals emergent ultrasensitivity. PLoS Comput Biol 2013; 9:e1003004. [PMID: 23555234 PMCID: PMC3610635 DOI: 10.1371/journal.pcbi.1003004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/05/2013] [Indexed: 01/25/2023] Open
Abstract
Receptor phosphorylation is thought to be tightly regulated because phosphorylated receptors initiate signaling cascades leading to cellular activation. The T cell antigen receptor (TCR) on the surface of T cells is phosphorylated by the kinase Lck and dephosphorylated by the phosphatase CD45 on multiple immunoreceptor tyrosine-based activation motifs (ITAMs). Intriguingly, Lck sequentially phosphorylates ITAMs and ZAP-70, a cytosolic kinase, binds to phosphorylated ITAMs with differential affinities. The purpose of multiple ITAMs, their sequential phosphorylation, and the differential ZAP-70 affinities are unknown. Here, we use a systems model to show that this signaling architecture produces emergent ultrasensitivity resulting in switch-like responses at the scale of individual TCRs. Importantly, this switch-like response is an emergent property, so that removal of multiple ITAMs, sequential phosphorylation, or differential affinities abolishes the switch. We propose that highly regulated TCR phosphorylation is achieved by an emergent switch-like response and use the systems model to design novel chimeric antigen receptors for therapy. Recognition of antigen by the T cell antigen receptor (TCR) is a central event in the initiation of adaptive immune responses and for this reason the TCR has been extensively studied. Multiple studies performed over the past 20 years have revealed intriguing findings that include the observation that the TCR has multiple phosphorylation sites that are sequentially phosphorylated by the kinase Lck and that ZAP-70, a cytosolic kinase, binds to these sites with different affinities. The purpose of multiple sites, their sequential phosphorylation by Lck, and the differential binding affinities of ZAP-70 are unknown. Using a novel mechanistic model that incorporates a high level of molecular detail, we find, unexpectedly, that all factors are critical for producing ultrasensitivity (switch-like response) and therefore this signaling architecture exhibits systems-level emergent ultrasensitivity. We use the model to study existing therapeutic chimeric antigen receptors and in the design of novel ones. The work also has direct implications to the study of many other immune receptors.
Collapse
|
19
|
Giangreco A, Hoste E, Takai Y, Rosewell I, Watt FM. Epidermal Cadm1 Expression Promotes Autoimmune Alopecia via Enhanced T Cell Adhesion and Cytotoxicity. THE JOURNAL OF IMMUNOLOGY 2011; 188:1514-22. [DOI: 10.4049/jimmunol.1003342] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|