1
|
Masle-Farquhar E, Jeelall Y, White J, Bier J, Deenick EK, Brink R, Horikawa K, Goodnow CC. CARD11 gain-of-function mutation drives cell-autonomous accumulation of PD-1 + ICOS high activated T cells, T-follicular, T-regulatory and T-follicular regulatory cells. Front Immunol 2023; 14:1095257. [PMID: 36960072 PMCID: PMC10028194 DOI: 10.3389/fimmu.2023.1095257] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Germline CARD11 gain-of-function (GOF) mutations cause B cell Expansion with NF-κB and T cell Anergy (BENTA) disease, whilst somatic GOF CARD11 mutations recur in diffuse large B cell lymphoma (DLBCL) and in up to 30% of the peripheral T cell lymphomas (PTCL) adult T cell leukemia/lymphoma (ATL), cutaneous T cell lymphoma (CTCL) and Sezary Syndrome. Despite their frequent acquisition by PTCL, the T cell-intrinsic effects of CARD11 GOF mutations are poorly understood. Methods Here, we studied B and T lymphocytes in mice with a germline Nethyl-N-nitrosourea (ENU)-induced Card11M365K mutation identical to a mutation identified in DLBCL and modifying a conserved region of the CARD11 coiled-coil domain recurrently mutated in DLBCL and PTCL. Results and discussion Our results demonstrate that CARD11.M365K is a GOF protein that increases B and T lymphocyte activation and proliferation following antigen receptor stimulation. Germline Card11M365K mutation was insufficient alone to cause B or T-lymphoma, but increased accumulation of germinal center (GC) B cells in unimmunized and immunized mice. Card11M365K mutation caused cell-intrinsic over-accumulation of activated T cells, T regulatory (TREG), T follicular (TFH) and T follicular regulatory (TFR) cells expressing increased levels of ICOS, CTLA-4 and PD-1 checkpoint molecules. Our results reveal CARD11 as an important, cell-autonomous positive regulator of TFH, TREG and TFR cells. They highlight T cell-intrinsic effects of a GOF mutation in the CARD11 gene, which is recurrently mutated in T cell malignancies that are often aggressive and associated with variable clinical outcomes.
Collapse
Affiliation(s)
- Etienne Masle-Farquhar
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Etienne Masle-Farquhar, ; Yogesh Jeelall,
| | - Yogesh Jeelall
- John Curtin School of Medical Research, Immunology Department, The Australian National University, Canberra, ACT, Australia
- *Correspondence: Etienne Masle-Farquhar, ; Yogesh Jeelall,
| | - Jacqueline White
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Julia Bier
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Elissa K. Deenick
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Robert Brink
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Keisuke Horikawa
- John Curtin School of Medical Research, Immunology Department, The Australian National University, Canberra, ACT, Australia
| | - Christopher Carl Goodnow
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- Cellular Genomics Futures Institute, University of New South Wales, Sydney, Australia
| |
Collapse
|
2
|
Kanduc D. SARS-CoV-2-Induced Immunosuppression: A Molecular Mimicry Syndrome. Glob Med Genet 2022; 9:191-199. [PMID: 35846107 PMCID: PMC9282940 DOI: 10.1055/s-0042-1748170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background
Contrary to immunological expectations, decay of adaptive responses against severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) characterizes recovered patients compared with patients who had a severe disease course or died following SARS-CoV-2 infection. This raises the question of the causes of the virus-induced immune immunosuppression. Searching for molecular link(s) between SARS-CoV-2 immunization and the decay of the adaptive immune responses, SARS-CoV-2 proteome was analyzed for molecular mimicry with human proteins related to immunodeficiency. The aim was to verify the possibility of cross-reactions capable of destroying the adaptive immune response triggered by SARS-CoV-2.
Materials and Methods
Human immunodeficiency–related proteins were collected from UniProt database and analyzed for sharing of minimal immune determinants with the SARS-CoV-2 proteome.
Results
Molecular mimicry and consequent potential cross-reactivity exist between SARS-CoV-2 proteome and human immunoregulatory proteins such as nuclear factor kappa B (NFKB), and variable diversity joining V(D)J recombination-activating gene (RAG).
Conclusion
The data (1) support molecular mimicry and the associated potential cross-reactivity as a mechanism that can underlie self-reactivity against proteins involved in B- and T-cells activation/development, and (2) suggest that the extent of the immunosuppression is dictated by the extent of the immune responses themselves. The higher the titer of the immune responses triggered by SARS-CoV-2 immunization, the more severe can be the cross-reactions against the human immunodeficiency–related proteins, the more severe the immunosuppression. Hence, SARS-CoV-2-induced immunosuppression can be defined as a molecular mimicry syndrome. Clinically, the data imply that booster doses of SARS-CoV-2 vaccines may have opposite results to those expected.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
3
|
Reed JH. Transforming mutations in the development of pathogenic B cell clones and autoantibodies. Immunol Rev 2022; 307:101-115. [PMID: 35001403 DOI: 10.1111/imr.13064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 12/16/2022]
Abstract
Autoimmune diseases are characterized by serum autoantibodies, some of which are pathogenic, causing severe manifestations and organ injury. However, autoantibodies of the same antigenic reactivity are also present in the serum of asymptomatic people years before they develop any clinical signs of autoimmunity. Autoantibodies can arise during multiple stages of B cell development, and various genetic and environmental factors drive their production. However, what drives the development of pathogenic autoantibodies is poorly understood. Advances in single-cell technology have enabled the deep analysis of rare B cell clones producing pathogenic autoantibodies responsible for vasculitis in patients with primary Sjögren's syndrome complicated by mixed cryoglobulinaemia. These findings demonstrated a cascade of genetic events involving stereotypic immunoglobulin V(D)J recombination and transforming somatic mutations in lymphoma genes and V(D)J regions that disrupted antibody quality control mechanisms and decreased autoantibody solubility. Most studies consider V(D)J mutations that enhance autoantibody affinity to drive pathology; however, V(D)J mutations that increase autoantibody propensity to form insoluble complexes could be a major contributor to autoantibody pathogenicity. Defining the molecular characteristics of pathogenic autoantibodies and failed tolerance checkpoints driving their formation will improve prognostication, enabling early treatment to prevent escalating organ damage and B cell malignancy.
Collapse
Affiliation(s)
- Joanne H Reed
- Westmead Institute for Medical Research, Centre for Immunology and Allergy Research, Westmead, NSW, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Maybury BD, Saavedra-Torres Y, Snoeks TJA, Fitzgibbon J, Calado DP. Generation and Surgical Analysis of Genetic Mouse Models to Study NF-κB-Driven Pathogenesis of Diffuse Large B Cell Lymphoma. Methods Mol Biol 2021; 2366:321-342. [PMID: 34236648 DOI: 10.1007/978-1-0716-1669-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enforced activation of NF-κB signaling can be achieved by constitutive NF-κB-inducing kinases, IKK2 and NIK, or via lymphoma-associated mutants of MYD88, CARD11, and CD79B. In order to model Diffuse Large B Cell Lymphoma (DLBCL) in mice, conditional alleles for these proteins are combined with alleles targeting Cre recombinase expression in mature B cells. However, unopposed NF-κB signaling promotes plasmablast differentiation, and as a consequence the model system must be complemented with further mutations that block differentiation, such as Prdm1/BLIMP1 inactivation or overexpression of BCL6. Here, we describe the currently available tools for DLBCL models in mice and their relative advantages and drawbacks. Furthermore, we describe methods to monitor lymphomagenesis, using ultrasound tomography of the spleen, and the technique of partial splenectomy surgery with recovery. These powerful techniques allow paired comparison of individual lymphoma cases before and after interventions, including therapies, and to study the evolution of lymphoma over time. NF-κB activation also promotes widespread nodal involvement with lymphoma and we describe the post-mortem dissection of major nodal groups.
Collapse
Affiliation(s)
- Bernard D Maybury
- The Francis Crick Institute, London, UK.
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| | | | | | - Jude Fitzgibbon
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Dinis P Calado
- The Francis Crick Institute, London, UK.
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
5
|
Lu HY, Biggs CM, Blanchard-Rohner G, Fung SY, Sharma M, Turvey SE. Germline CBM-opathies: From immunodeficiency to atopy. J Allergy Clin Immunol 2020; 143:1661-1673. [PMID: 31060714 DOI: 10.1016/j.jaci.2019.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/09/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022]
Abstract
Caspase recruitment domain (CARD) protein-B cell CLL/lymphoma 10 (BCL10)-MALT1 paracaspase (MALT1) [CBM] complexes are critical signaling adaptors that facilitate immune and inflammatory responses downstream of both cell surface and intracellular receptors. Germline mutations that alter the function of members of this complex (termed CBM-opathies) cause a broad array of clinical phenotypes, ranging from profound combined immunodeficiency to B-cell lymphocytosis. With an increasing number of patients being described in recent years, the clinical spectrum of diseases associated with CBM-opathies is rapidly expanding and becoming unexpectedly heterogeneous. Here we review major discoveries that have shaped our understanding of CBM complex biology, and we provide an overview of the clinical presentation, diagnostic approach, and treatment options for those carrying germline mutations affecting CARD9, CARD11, CARD14, BCL10, and MALT1.
Collapse
Affiliation(s)
- Henry Y Lu
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine M Biggs
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Geraldine Blanchard-Rohner
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shan-Yu Fung
- Department of Immunology, Tianjin Medical University, Tianjin, China; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Mehul Sharma
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
6
|
Shree T, Li Q, Glaser SL, Brunson A, Maecker HT, Haile RW, Levy R, Keegan THM. Impaired Immune Health in Survivors of Diffuse Large B-Cell Lymphoma. J Clin Oncol 2020; 38:1664-1675. [PMID: 32083991 PMCID: PMC7238489 DOI: 10.1200/jco.19.01937] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2019] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Therapeutic advances for diffuse large B-cell lymphoma (DLBCL) have led to an increasing number of survivors. Both DLBCL and its treatments perturb the immune system, yet little is known about immune health during extended survivorship. METHODS In this retrospective cohort study, we compared 21,690 survivors of DLBCL from the California Cancer Registry (CCR) to survivors of breast, prostate, head and neck, and melanoma cancers. We linked their CCR records to a statewide database documenting hospital, emergency room, and ambulatory surgery visits and investigated the incidence of autoimmune conditions, immune deficiencies, and infections 1-10 years after cancer diagnosis. RESULTS We found elevated incidence rate ratios (IRRs) for many immune-related conditions in survivors of DLBCL compared with other cancer survivors, including significantly and consistently elevated IRRs for viral and fungal pneumonias (up to 10.8-fold), meningitis (up to 5.3-fold), as well as humoral deficiency (up to 17.6-fold) and autoimmune cytopenias (up to 12-fold). IRRs for most conditions remained high even in the late survivorship period (5-10 years after cancer diagnosis). The elevated risks could not be explained by exposure to chemotherapy, stem-cell transplantation, or rituximab, except for IRRs for humoral deficiency, which were consistently higher after the incorporation of rituximab into DLBCL treatments. CONCLUSION To our knowledge, this is the largest cohort study with extended follow-up to demonstrate impaired immune health in survivors of DLBCL. The observed persistent, elevated risks for autoimmune diseases, immune deficiencies, and infectious conditions may reflect persistent immune dysregulation caused by lymphoma or treatment and may lead to excess morbidity and mortality during survivorship. Improved understanding of these risks could meaningfully improve long-term care of patients with DLBCL.
Collapse
Affiliation(s)
- Tanaya Shree
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Qian Li
- Center for Oncology Hematology Outcomes Research and Training (COHORT) and Division of Hematology and Oncology, University of California Davis School of Medicine, Sacramento, CA
| | | | - Ann Brunson
- Center for Oncology Hematology Outcomes Research and Training (COHORT) and Division of Hematology and Oncology, University of California Davis School of Medicine, Sacramento, CA
| | - Holden T. Maecker
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA
| | - Robert W. Haile
- Center for Translational Population Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Ronald Levy
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Theresa H. M. Keegan
- Center for Oncology Hematology Outcomes Research and Training (COHORT) and Division of Hematology and Oncology, University of California Davis School of Medicine, Sacramento, CA
| |
Collapse
|
7
|
Abstract
Although outcomes for follicular lymphoma (FL) continue to improve, it remains incurable for the majority of patients. Through next generation sequencing (NGS) studies, we now recognize that the genomic landscape of FL is skewed toward highly recurrent mutations in genes that encode epigenetic regulators co-occurring with the pathognomonic t(14;18) translocation. Adopting these technologies to study longitudinal and spatially-derived lymphomas has provided unique insights into the tumoral heterogeneity, clonal evolution of the disease and supports the existence of a tumor-repopulating population, considered the Achilles' heel of this lymphoma. An in-depth understanding of the genomics and its contribution to the disease pathogenesis is identifying new biomarkers and therapeutic targets that can be translated into clinical practice and, in the not too distant future, enable us to start considering precision-based approaches to the management of FL.
Collapse
Affiliation(s)
- Lucy Pickard
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Giuseppe Palladino
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jessica Okosun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
8
|
Singh M, Jackson KJL, Wang JJ, Schofield P, Field MA, Koppstein D, Peters TJ, Burnett DL, Rizzetto S, Nevoltris D, Masle-Farquhar E, Faulks ML, Russell A, Gokal D, Hanioka A, Horikawa K, Colella AD, Chataway TK, Blackburn J, Mercer TR, Langley DB, Goodall DM, Jefferis R, Gangadharan Komala M, Kelleher AD, Suan D, Rischmueller M, Christ D, Brink R, Luciani F, Gordon TP, Goodnow CC, Reed JH. Lymphoma Driver Mutations in the Pathogenic Evolution of an Iconic Human Autoantibody. Cell 2020; 180:878-894.e19. [PMID: 32059783 DOI: 10.1016/j.cell.2020.01.029] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 11/11/2019] [Accepted: 01/22/2020] [Indexed: 12/26/2022]
Abstract
Pathogenic autoantibodies arise in many autoimmune diseases, but it is not understood how the cells making them evade immune checkpoints. Here, single-cell multi-omics analysis demonstrates a shared mechanism with lymphoid malignancy in the formation of public rheumatoid factor autoantibodies responsible for mixed cryoglobulinemic vasculitis. By combining single-cell DNA and RNA sequencing with serum antibody peptide sequencing and antibody synthesis, rare circulating B lymphocytes making pathogenic autoantibodies were found to comprise clonal trees accumulating mutations. Lymphoma driver mutations in genes regulating B cell proliferation and V(D)J mutation (CARD11, TNFAIP3, CCND3, ID3, BTG2, and KLHL6) were present in rogue B cells producing the pathogenic autoantibody. Antibody V(D)J mutations conferred pathogenicity by causing the antigen-bound autoantibodies to undergo phase transition to insoluble aggregates at lower temperatures. These results reveal a pre-neoplastic stage in human lymphomagenesis and a cascade of somatic mutations leading to an iconic pathogenic autoantibody.
Collapse
Affiliation(s)
- Mandeep Singh
- The Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | | | - Jing J Wang
- Department of Immunology, Flinders University and SA Pathology, Bedford Park, SA 5042, Australia
| | - Peter Schofield
- The Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Matt A Field
- Australian Institute of Tropical Health and Medicine and Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Smithfield, QLD 4878, Australia; The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - David Koppstein
- Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Timothy J Peters
- The Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Deborah L Burnett
- The Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Simone Rizzetto
- Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Damien Nevoltris
- The Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Etienne Masle-Farquhar
- The Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Megan L Faulks
- The Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Amanda Russell
- The Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Divya Gokal
- The Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Asami Hanioka
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia; Tokyo Medical and Dental University, Tokyo 113-851, Japan
| | - Keisuke Horikawa
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Alexander D Colella
- Department of Immunology, Flinders University and SA Pathology, Bedford Park, SA 5042, Australia; Flinders Proteomics Facility, Flinders University, Bedford Park, SA 5042, Australia
| | - Timothy K Chataway
- Flinders Proteomics Facility, Flinders University, Bedford Park, SA 5042, Australia
| | - James Blackburn
- The Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Tim R Mercer
- The Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia; Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - David B Langley
- The Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - D Margaret Goodall
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Roy Jefferis
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | - Anthony D Kelleher
- Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Dan Suan
- The Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; Westmead Clinical School, The University of Sydney, Westmead, NSW 2145, Australia
| | - Maureen Rischmueller
- Rheumatology Department, The Queen Elizabeth Hospital and Discipline of Medicine, University of Adelaide, Woodville South, SA 5011, Australia
| | - Daniel Christ
- The Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Robert Brink
- The Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Fabio Luciani
- Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, NSW 2052, Australia; School of Medical Sciences and Cellular Genomics Futures Institute, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Tom P Gordon
- Department of Immunology, Flinders University and SA Pathology, Bedford Park, SA 5042, Australia
| | - Christopher C Goodnow
- The Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; School of Medical Sciences and Cellular Genomics Futures Institute, UNSW Sydney, Sydney, NSW 2052, Australia.
| | - Joanne H Reed
- The Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|
9
|
Shields AM, Bauman BM, Hargreaves CE, Pollard AJ, Snow AL, Patel SY. A Novel, Heterozygous Three Base-Pair Deletion in CARD11 Results in B Cell Expansion with NF-κB and T Cell Anergy Disease. J Clin Immunol 2020; 40:406-411. [PMID: 31897776 DOI: 10.1007/s10875-019-00729-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022]
Abstract
Germline gain-of-function mutations in CARD11 lead to the primary immunodeficiency, B cell expansion with NF-κB, and T cell anergy (BENTA). Herein, we report the case of a girl, presenting at 2 years of age with lymphocytosis and splenomegaly in whom a novel, in-frame, three base pair deletion in CARD11 was identified resulting in the deletion of a single lysine residue (K215del) from the coiled-coil domain. In vitro functional assays demonstrated that this variant leads to a subtle increase in baseline NF-κB signaling and impaired proliferative responses following T cell receptor and mitogenic stimulation. Previously reported immunological defects associated with BENTA appear mild in our patient who is now 6 years of age; a B cell lymphocytosis and susceptibility to upper respiratory tract infections persist; however, she has broad, sustained responses to protein-polysaccharide conjugate vaccines and displays normal proliferative responses to ex vivo T cell stimulation.
Collapse
Affiliation(s)
- Adrian M Shields
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK.
| | - Bradly M Bauman
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Chantal E Hargreaves
- Department of Clinical Immunology, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Smita Y Patel
- Department of Clinical Immunology, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
10
|
Denisovan, modern human and mouse TNFAIP3 alleles tune A20 phosphorylation and immunity. Nat Immunol 2019; 20:1299-1310. [PMID: 31534238 DOI: 10.1038/s41590-019-0492-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
Resisting and tolerating microbes are alternative strategies to survive infection, but little is known about the evolutionary mechanisms controlling this balance. Here genomic analyses of anatomically modern humans, extinct Denisovan hominins and mice revealed a TNFAIP3 allelic series with alterations in the encoded immune response inhibitor A20. Each TNFAIP3 allele encoded substitutions at non-catalytic residues of the ubiquitin protease OTU domain that diminished IκB kinase-dependent phosphorylation and activation of A20. Two TNFAIP3 alleles encoding A20 proteins with partial phosphorylation deficits seemed to be beneficial by increasing immunity without causing spontaneous inflammatory disease: A20 T108A;I207L, originating in Denisovans and introgressed in modern humans throughout Oceania, and A20 I325N, from an N-ethyl-N-nitrosourea (ENU)-mutagenized mouse strain. By contrast, a rare human TNFAIP3 allele encoding an A20 protein with 95% loss of phosphorylation, C243Y, caused spontaneous inflammatory disease in humans and mice. Analysis of the partial-phosphorylation A20 I325N allele in mice revealed diminished tolerance of bacterial lipopolysaccharide and poxvirus inoculation as tradeoffs for enhanced immunity.
Collapse
|
11
|
Xu LS, Francis A, Turkistany S, Shukla D, Wong A, Batista CR, DeKoter RP. ETV6-RUNX1 interacts with a region in SPIB intron 1 to regulate gene expression in pre-B-cell acute lymphoblastic leukemia. Exp Hematol 2019; 73:50-63.e2. [PMID: 30986496 DOI: 10.1016/j.exphem.2019.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 11/19/2022]
Abstract
The most frequently occurring genetic abnormality in pediatric B-lymphocyte-lineage acute lymphoblastic leukemia is the t(12;21) chromosomal translocation that results in a ETV6-RUNX1 (also known as TEL-AML1) fusion gene. Expression of ETV6-RUNX1 induces a preleukemic condition leading to acquisition of secondary driver mutations, but the mechanism is poorly understood. SPI-B (encoded by SPIB) is an important transcriptional activator of B-cell development and differentiation. We hypothesized that SPIB is directly transcriptionally repressed by ETV6-RUNX1. Using chromatin immunoprecipitation, we identified a regulatory region in the first intron of SPIB that interacts with ETV6-RUNX1. Mutation of the RUNX1 binding site in SPIB intron 1 prevented transcriptional repression in transient transfection assays. Next, we sought to determine to what extent gene expression in REH cells can be altered by ectopic SPI-B expression. SPI-B expression was forced using CRISPR-mediated gene activation and also using a retroviral vector. Forced expression of SPI-B resulted in altered gene expression and, at high levels, impaired cell proliferation and induced apoptosis. Finally, we identified CARD11 and CDKN1A (encoding p21) as transcriptional targets of SPI-B involved in regulation of proliferation and apoptosis. Taken together, this study identifies SPIB as an important target of ETV6-RUNX1 in regulation of B-cell gene expression in t(12;21) leukemia.
Collapse
MESH Headings
- Apoptosis/genetics
- CARD Signaling Adaptor Proteins/biosynthesis
- CARD Signaling Adaptor Proteins/genetics
- Cell Line, Tumor
- Cell Proliferation/genetics
- Chromosomes, Human, Pair 12/genetics
- Chromosomes, Human, Pair 12/metabolism
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 21/metabolism
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Cyclin-Dependent Kinase Inhibitor p21/biosynthesis
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Gene Expression Regulation, Leukemic
- Guanylate Cyclase/biosynthesis
- Guanylate Cyclase/genetics
- Humans
- Introns
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Response Elements
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Li S Xu
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada; Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada
| | - Alyssa Francis
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | | | - Devanshi Shukla
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Alison Wong
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Carolina R Batista
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada; Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada
| | - Rodney P DeKoter
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada; Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada.
| |
Collapse
|
12
|
Lu HY, Bauman BM, Arjunaraja S, Dorjbal B, Milner JD, Snow AL, Turvey SE. The CBM-opathies-A Rapidly Expanding Spectrum of Human Inborn Errors of Immunity Caused by Mutations in the CARD11-BCL10-MALT1 Complex. Front Immunol 2018; 9:2078. [PMID: 30283440 PMCID: PMC6156466 DOI: 10.3389/fimmu.2018.02078] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 08/22/2018] [Indexed: 01/06/2023] Open
Abstract
The caspase recruitment domain family member 11 (CARD11 or CARMA1)-B cell CLL/lymphoma 10 (BCL10)-MALT1 paracaspase (MALT1) [CBM] signalosome complex serves as a molecular bridge between cell surface antigen receptor signaling and the activation of the NF-κB, JNK, and mTORC1 signaling axes. This positions the CBM complex as a critical regulator of lymphocyte activation, proliferation, survival, and metabolism. Inborn errors in each of the CBM components have now been linked to a diverse group of human primary immunodeficiency diseases termed "CBM-opathies." Clinical manifestations range from severe combined immunodeficiency to selective B cell lymphocytosis, atopic disease, and specific humoral defects. This surprisingly broad spectrum of phenotypes underscores the importance of "tuning" CBM signaling to preserve immune homeostasis. Here, we review the distinct clinical and immunological phenotypes associated with human CBM complex mutations and introduce new avenues for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Henry Y Lu
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Bradly M Bauman
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Swadhinya Arjunaraja
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Batsukh Dorjbal
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Wray-Dutra MN, Chawla R, Thomas KR, Seymour BJ, Arkatkar T, Sommer KM, Khim S, Trapnell C, James RG, Rawlings DJ. Activated CARD11 accelerates germinal center kinetics, promoting mTORC1 and terminal differentiation. J Exp Med 2018; 215:2445-2461. [PMID: 30127060 PMCID: PMC6122963 DOI: 10.1084/jem.20180230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/08/2018] [Accepted: 08/01/2018] [Indexed: 12/14/2022] Open
Abstract
B cell–intrinsic activated CARD11 (aCARD11) expression promotes rapid formation and premature collapse of the germinal center while enhancing terminal differentiation due to heightened NF-κB and mTORC1 signaling. Activating mutations in the adapter protein CARD11 associated with diffuse large B cell lymphomas (DLBCLs) are predicted to arise during germinal center (GC) responses, leading to inappropriate activation of NF-κB signaling. Here, we modeled the B cell–intrinsic impact of the L251P activating mutation in CARD11 (aCARD11) on the GC response. Global B cell aCARD11 expression led to a modest increase in splenic B cells and a severe reduction in B1 B cell numbers, respectively. Following T cell–dependent immunization, aCARD11 cells exhibited increased rates of GC formation, resolution, and differentiation. Restriction of aCARD11 to GC B cells similarly altered the GC response and B cell differentiation. In this model, aCARD11 promoted dark zone skewing along with increased cycling, AID levels, and class switch recombination. Furthermore, aCard11 GC B cells displayed increased biomass and mTORC1 signaling, suggesting a novel strategy for targeting aCARD11-driven DLBCL. While aCARD11 potently impacts GC responses, the rapid GC contraction suggests it requires collaboration with events that limit terminal differentiation to promote lymphoma.
Collapse
Affiliation(s)
- Michelle N Wray-Dutra
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA.,Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Raghav Chawla
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA.,Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA.,Fred Hutchinson Cancer Research Center, Seattle, WA.,University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Kerri R Thomas
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA.,Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Brenda J Seymour
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Tanvi Arkatkar
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Karen M Sommer
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Socheath Khim
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA
| | - Richard G James
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA.,Department of Pharmacology, University of Washington School of Medicine, Seattle, WA
| | - David J Rawlings
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA .,Department of Immunology, University of Washington School of Medicine, Seattle, WA.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
14
|
Wang JQ, Jeelall YS, Humburg P, Batchelor EL, Kaya SM, Yoo HM, Goodnow CC, Horikawa K. Synergistic cooperation and crosstalk between MYD88L265P and mutations that dysregulate CD79B and surface IgM. J Exp Med 2017; 214:2759-2776. [PMID: 28701369 PMCID: PMC5584117 DOI: 10.1084/jem.20161454] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 04/30/2017] [Accepted: 06/13/2017] [Indexed: 12/26/2022] Open
Abstract
Wang et al. show cooperation between MYD88L265P and CD79B mutations dysregulating B cell responses to self-antigen and differentiation into plasma cells. Their results reveal that CD79B and surface IgM constitute a rate-limiting checkpoint against MYD88L265P, explaining the co-occurrence of MYD88 and CD79B mutations in human lymphomas. CD79B and MYD88 mutations are frequently and simultaneously detected in B cell malignancies. It is not known if these mutations cooperate or how crosstalk occurs. Here we analyze the consequences of CD79B and MYD88L265P mutations individually and combined in normal activated mouse B lymphocytes. CD79B mutations alone increased surface IgM but did not enhance B cell survival, proliferation, or altered NF-κB responsive markers. Conversely, B cells expressing MYD88L265P decreased surface IgM coupled with accumulation of endoglycosidase H–sensitive IgM intracellularly, resembling the trafficking block in anergic B cells repeatedly stimulated by self-antigen. Mutation or overexpression of CD79B counteracted the effect of MYD88L265P. In B cells chronically stimulated by self-antigen, CD79B and MYD88L265P mutations in combination, but not individually, blocked peripheral deletion and triggered differentiation into autoantibody secreting plasmablasts. These results reveal that CD79B and surface IgM constitute a rate-limiting checkpoint against B cell dysregulation by MYD88L265P and provide an explanation for the co-occurrence of MYD88 and CD79B mutations in lymphomas.
Collapse
Affiliation(s)
- James Q Wang
- Australian Cancer Research Foundation Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Yogesh S Jeelall
- Australian Cancer Research Foundation Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Peter Humburg
- Garvan Institute of Medical Research, Sydney, Australia
| | - Emma L Batchelor
- Australian Cancer Research Foundation Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Sarp M Kaya
- Australian Cancer Research Foundation Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Hee Min Yoo
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | - Keisuke Horikawa
- Australian Cancer Research Foundation Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
15
|
Meininger I, Krappmann D. Lymphocyte signaling and activation by the CARMA1-BCL10-MALT1 signalosome. Biol Chem 2017; 397:1315-1333. [PMID: 27420898 DOI: 10.1515/hsz-2016-0216] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/10/2016] [Indexed: 12/16/2022]
Abstract
The CARMA1-BCL10-MALT1 (CBM) signalosome triggers canonical NF-κB signaling and lymphocyte activation upon antigen-receptor stimulation. Genetic studies in mice and the analysis of human immune pathologies unveiled a critical role of the CBM complex in adaptive immune responses. Great progress has been made in elucidating the fundamental mechanisms that dictate CBM assembly and disassembly. By bridging proximal antigen-receptor signaling to downstream signaling pathways, the CBM complex exerts a crucial scaffolding function. Moreover, the MALT1 subunit confers a unique proteolytic activity that is key for lymphocyte activation. Deregulated 'chronic' CBM signaling drives constitutive NF-κB signaling and MALT1 activation, which contribute to the development of autoimmune and inflammatory diseases as well as lymphomagenesis. Thus, the processes that govern CBM activation and function are promising targets for the treatment of immune disorders. Here, we summarize the current knowledge on the functions and mechanisms of CBM signaling in lymphocytes and how CBM deregulations contribute to aberrant signaling in malignant lymphomas.
Collapse
|
16
|
Takahara T, Matsuo K, Seto M, Nakamura S, Tsuzuki S. Synergistic activity of Card11 mutant and Bcl6 in the development of diffuse large B-cell lymphoma in a mouse model. Cancer Sci 2016; 107:1572-1580. [PMID: 27560392 PMCID: PMC5132338 DOI: 10.1111/cas.13057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 08/05/2016] [Accepted: 08/13/2016] [Indexed: 12/17/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of malignant lymphoma; it derives from germinal center B cells. Although DLBCL harbors many genetic alterations, synergistic roles between such alterations in the development of lymphoma are largely undefined. We previously established a mouse model of lymphoma by transplanting gene-transduced germinal center B cells into mice. Here, we chose one of the frequently mutated genes in DLBCL, Card11 mutant, to explore its possible synergy with other genes, using our lymphoma model. Given that BCL6 and BCL2 expression and/or function are often deregulated in human lymphoma, we examined the possible synergy between Card11, Bcl6, and Bcl2. Germinal center B cells were induced in vitro, transduced with Card11 mutant, Bcl6, and Bcl2, and transplanted. Mice rapidly developed lymphomas, with exogenously transduced Bcl2 being dispensable. Although some mice developed lymphoma in the absence of transduced Bcl6, the absence was compensated by elevated expression of endogenous Bcl6. Additionally, the synergy between Card11 mutant and Bcl6 in the development of lymphoma was confirmed by the fact that the combination of Card11 mutant and Bcl6 caused lymphoma or death significantly earlier and with higher penetrance than Card11 mutant or Bcl6 alone. Lymphoma cells expressed interferon regulatory factor 4 and PR domain 1, indicating their differentiation toward plasmablasts, which characterize activated B cell-like DLBCL that represents a clinically aggressive subtype in humans. Thus, our mouse model provides a versatile tool for studying the synergistic roles of altered genes underlying lymphoma development.
Collapse
Affiliation(s)
- Taishi Takahara
- Division of Molecular Medicine, Aichi Cancer Center, Research Institute, Nagoya, Japan.,Department of Pathology and Clinical Laboratory, Nagoya University Hospital, Nagoya, Japan.,Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Keitaro Matsuo
- Division of Molecular Medicine, Aichi Cancer Center, Research Institute, Nagoya, Japan
| | - Masao Seto
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Shigeo Nakamura
- Department of Pathology and Clinical Laboratory, Nagoya University Hospital, Nagoya, Japan
| | - Shinobu Tsuzuki
- Division of Molecular Medicine, Aichi Cancer Center, Research Institute, Nagoya, Japan.,Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| |
Collapse
|
17
|
Gain-of-function mutations and immunodeficiency: at a loss for proper tuning of lymphocyte signaling. Curr Opin Allergy Clin Immunol 2016; 15:533-8. [PMID: 26406182 DOI: 10.1097/aci.0000000000000217] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To present recent advances in the discovery and characterization of new immunodeficiency disorders linked to gain-of-function (GOF) mutations in immune signaling molecules. (Figure is included in full-text article.) RECENT FINDINGS In the past 2 years, extensive cellular and molecular studies have illuminated the root causes of pathogenesis for several new monogenic primary immunodeficiency disorders (PIDs) linked to GOF mutations in signaling molecules. Here we discuss on two disorders (BENTA and APDS/PASLI) featuring shared clinical presentation (e.g. lymphoproliferation, selective antibody deficiencies, recurrent sinopulmonary infections). These findings highlight an emerging theme: both loss-of-function and gain-of-function mutations in key molecules can disrupt finely tuned immunoreceptor signaling modalities, resulting in the dysregulation of lymphocyte differentiation and impaired adaptive immunity. SUMMARY Continued research on the molecular pathogenesis of PIDs defined by hyperactive signaling molecules will better distinguish these and related disorders, and pinpoint tailored therapeutic interventions for 'retuning' the immune response in these patients.
Collapse
|
18
|
Krappmann D, Vincendeau M. Mechanisms of NF-κB deregulation in lymphoid malignancies. Semin Cancer Biol 2016; 39:3-14. [DOI: 10.1016/j.semcancer.2016.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/17/2022]
|
19
|
Inhibiting TLR9 and other UNC93B1-dependent TLRs paradoxically increases accumulation of MYD88L265P plasmablasts in vivo. Blood 2016; 128:1604-8. [PMID: 27458005 DOI: 10.1182/blood-2016-03-708065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/17/2016] [Indexed: 12/25/2022] Open
Abstract
The MYD88(L265P) mutation is found in 2% to 10% of chronic lymphocytic leukemia, 29% of activated B-cell type diffuse large B-cell lymphoma and 90% of Waldenström macroglobulinemia, making it conceptually attractive to treat these malignancies with inhibitors of endosomal Toll-like receptors (TLR9, TLR7) that activate MYD88. Here we show that genetic inhibition of endosomal TLRs has the opposite effect on accumulation of MYD88(L265P) B cells in vitro and in vivo. Activated mature B cells from wild-type, Unc93b1(3d/3d)-mutant, or Tlr9-deficient mice were transduced with retrovirus encoding MYD88(L265P) and analyzed either in vitro or after transplantation into Rag1(-/-) recipient mice. Unc93b1(3d/3d) mutation, which blocks TLR9 and TLR7 signaling, or Tlr9 deficiency suppressed MYD88(L265P) B-cell growth in vitro but paradoxically increased in vivo accumulation of MYD88(L265P) B cells as CD19(low) plasmablasts by 10- to 100-fold. These results reveal an unexpected, powerful inhibitory effect of TLR9 on MYD88(L265P) B-cell proliferation and differentiation that appears independent of TLR7, and they provide a preclinical indicator for caution in clinical trials of TLR7/9 inhibitors for MYD88(L265P) B-cell malignancies.
Collapse
|
20
|
Oncogenic CARMA1 couples NF-κB and β-catenin signaling in diffuse large B-cell lymphomas. Oncogene 2016; 35:4269-81. [PMID: 26776161 PMCID: PMC4981874 DOI: 10.1038/onc.2015.493] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/26/2015] [Accepted: 11/27/2015] [Indexed: 02/06/2023]
Abstract
Constitutive activation of the antiapoptotic nuclear factor-κB (NF-κB) signaling pathway is a hallmark of the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphomas (DLBCL). Recurrent oncogenic mutations are found in the scaffold protein CARMA1 (CARD11) that connects B-cell receptor (BCR) signaling to the canonical NF-κB pathway. We asked how far additional downstream processes are activated and contribute to the oncogenic potential of DLBCL-derived CARMA1 mutants. To this end, we expressed oncogenic CARMA1 in the NF-κB negative DLBCL lymphoma cell line BJAB. By a proteomic approach we identified recruitment of β-catenin and its destruction complex consisting of APC, AXIN1, CK1α and GSK3β to oncogenic CARMA1. Recruitment of the β-catenin destruction complex was independent of CARMA1-BCL10-MALT1 complex formation or constitutive NF-κB activation and promoted the stabilization of β-catenin. The β-catenin destruction complex was also recruited to CARMA1 in ABC DLBCL cell lines, which coincided with elevated β-catenin expression. In line, β-catenin was frequently detected in non-GCB DLBCL biopsies that rely on chronic BCR signaling. Increased β-catenin amounts alone were not sufficient to induce classical WNT target gene signatures, but could augment TCF/LEF-dependent transcriptional activation in response to WNT signaling. In conjunction with NF-κB, β-catenin enhanced expression of immunosuppressive interleukin-10 and suppressed antitumoral CCL3, indicating that β-catenin can induce a favorable tumor microenvironment. Thus, parallel activation of NF-κB and β-catenin signaling by gain-of-function mutations in CARMA1 augments WNT stimulation and is required for regulating the expression of distinct NF-κB target genes to trigger cell-intrinsic and extrinsic processes that promote DLBCL lymphomagenesis.
Collapse
|
21
|
Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood 2015; 127:869-81. [PMID: 26702065 DOI: 10.1182/blood-2015-10-673236] [Citation(s) in RCA: 412] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 12/16/2015] [Indexed: 12/13/2022] Open
Abstract
Primary central nervous system lymphomas (PCNSLs) and primary testicular lymphomas (PTLs) are extranodal large B-cell lymphomas (LBCLs) with inferior responses to current empiric treatment regimens. To identify targetable genetic features of PCNSL and PTL, we characterized their recurrent somatic mutations, chromosomal rearrangements, copy number alterations (CNAs), and associated driver genes, and compared these comprehensive genetic signatures to those of diffuse LBCL and primary mediastinal large B-cell lymphoma (PMBL). These studies identify unique combinations of genetic alterations in discrete LBCL subtypes and subtype-selective bases for targeted therapy. PCNSLs and PTLs frequently exhibit genomic instability, and near-uniform, often biallelic, CDKN2A loss with rare TP53 mutations. PCNSLs and PTLs also use multiple genetic mechanisms to target key genes and pathways and exhibit near-uniform oncogenic Toll-like receptor signaling as a result of MYD88 mutation and/or NFKBIZ amplification, frequent concurrent B-cell receptor pathway activation, and deregulation of BCL6. Of great interest, PCNSLs and PTLs also have frequent 9p24.1/PD-L1/PD-L2 CNAs and additional translocations of these loci, structural bases of immune evasion that are shared with PMBL.
Collapse
|
22
|
Lymphomagenic CARD11/BCL10/MALT1 signaling drives malignant B-cell proliferation via cooperative NF-κB and JNK activation. Proc Natl Acad Sci U S A 2015; 112:E7230-8. [PMID: 26668357 DOI: 10.1073/pnas.1507459112] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The aggressive activated B cell-like subtype of diffuse large B-cell lymphoma is characterized by aberrant B-cell receptor (BCR) signaling and constitutive nuclear factor kappa-B (NF-κB) activation, which is required for tumor cell survival. BCR-induced NF-κB activation requires caspase recruitment domain-containing protein 11 (CARD11), and CARD11 gain-of-function mutations are recurrently detected in human diffuse large B-cell lymphoma (DLBCL). To investigate the consequences of dysregulated CARD11 signaling in vivo, we generated mice that conditionally express the human DLBCL-derived CARD11(L225LI) mutant. Surprisingly, CARD11(L225LI) was sufficient to trigger aggressive B-cell lymphoproliferation, leading to early postnatal lethality. CARD11(L225LI) constitutively associated with B-cell CLL/lymphoma 10 (BCL10) and mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1) to simultaneously activate the NF-κB and c-Jun N-terminal kinase (JNK) signaling cascades. Genetic deficiencies of either BCL10 or MALT1 completely rescued the phenotype, and pharmacological inhibition of JNK was, similar to NF-κB blockage, toxic to autonomously proliferating CARD11(L225LI)-expressing B cells. Moreover, constitutive JNK activity was observed in primary human activated B cell-like (ABC)-DLBCL specimens, and human ABC-DLBCL cells were also sensitive to JNK inhibitors. Thus, our results demonstrate that enforced activation of CARD11/BCL10/MALT1 signaling is sufficient to drive transformed B-cell expansion in vivo and identify the JNK pathway as a therapeutic target for ABC-DLBCL.
Collapse
|
23
|
T-cell development of resistance to apoptosis is driven by a metabolic shift in carbon source and altered activation of death pathways. Cell Death Differ 2015; 23:889-902. [PMID: 26658018 DOI: 10.1038/cdd.2015.156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/15/2015] [Accepted: 10/22/2015] [Indexed: 11/08/2022] Open
Abstract
We developed a model system to investigate apoptotic resistance in T cells using osmotic stress (OS) to drive selection of death-resistant cells. Exposure of S49 (Neo) T cells to multiple rounds of OS followed by recovery of surviving cells resulted in the selection of a population of T cells (S49 (OS 4-25)) that failed to die in response to a variety of intrinsic apoptotic stimuli including acute OS, but remained sensitive to extrinsic apoptotic initiators. Genome-wide microarray analysis comparing the S49 (OS 4-25) with the parent S49 (Neo) cells revealed over 8500 differentially regulated genes, with almost 90% of those identified being repressed. Surprisingly, our data revealed that apoptotic resistance is not associated with expected changes in pro- or antiapoptotic Bcl-2 family member genes. Rather, these cells lack several characteristics associated with the initial signaling or activation of the intrinsic apoptosis pathway, including failure to increase mitochondrial-derived reactive oxygen species, failure to increase intracellular calcium, failure to deplete glutathione, failure to release cytochrome c from the mitochondria, along with a lack of induced caspase activity. The S49 (OS 4-25) cells exhibit metabolic characteristics indicative of the Warburg effect, and, despite numerous changes in mitochondria gene expression, the mitochondria have a normal metabolic capacity. Interestingly, the S49 (OS 4-25) cells have developed a complete dependence on glucose for survival, and glucose withdrawal results in cell death with many of the essential characteristics of apoptosis. Furthermore, we show that other dietary sugars such as galactose support the viability of the S49 (OS 4-25) cells in the absence of glucose; however, this carbon source sensitizes these cells to die. Our findings suggest that carbon substrate reprogramming for energy production in the S49 (OS 4-25) cells results in stimulus-specific recognition defects in the activation of intrinsic apoptotic pathways.
Collapse
|
24
|
Omenn syndrome associated with a functional reversion due to a somatic second-site mutation in CARD11 deficiency. Blood 2015; 126:1658-69. [PMID: 26289640 DOI: 10.1182/blood-2015-03-631374] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 08/05/2015] [Indexed: 01/05/2023] Open
Abstract
Omenn syndrome (OS) is a severe immunodeficiency associated with erythroderma, lymphoproliferation, elevated IgE, and hyperactive oligoclonal T cells. A restricted T-cell repertoire caused by defective thymic T-cell development and selection, lymphopenia with homeostatic proliferation, and lack of regulatory T cells are considered key factors in OS pathogenesis. We report 2 siblings presenting with cytomegalovirus (CMV) and Pneumocystis jirovecii infections and recurrent sepsis; one developed all clinical features of OS. Both carried homozygous germline mutations in CARD11 (p.Cys150*), impairing NF-κB signaling and IL-2 production. A somatic second-site mutation reverting the stop codon to a missense mutation (p.Cys150Leu) was detected in tissue-infiltrating T cells of the OS patient. Expression of p.Cys150Leu in CARD11-deficient T cells largely reconstituted NF-κB signaling. The reversion likely occurred in a prethymic T-cell precursor, leading to a chimeric T-cell repertoire. We speculate that in our patient the functional advantage of the revertant T cells in the context of persistent CMV infection, combined with lack of regulatory T cells, may have been sufficient to favor OS. This first observation of OS in a patient with a T-cell activation defect suggests that severely defective T-cell development or homeostatic proliferation in a lymphopenic environment are not required for this severe immunopathology.
Collapse
|
25
|
Brohl AS, Stinson JR, Su HC, Badgett T, Jennings CD, Sukumar G, Sindiri S, Wang W, Kardava L, Moir S, Dalgard CL, Moscow JA, Khan J, Snow AL. Germline CARD11 Mutation in a Patient with Severe Congenital B Cell Lymphocytosis. J Clin Immunol 2014; 35:32-46. [PMID: 25352053 DOI: 10.1007/s10875-014-0106-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/30/2014] [Indexed: 01/03/2023]
Abstract
PURPOSE Activating germline mutations in CARD11 have recently been linked to a rare genetic disorder associated with congenital B cell lymphocytosis. We describe a patient with a similar clinical phenotype who had a de novo germline G123D CARD11 mutation. METHODS Whole exome sequencing was performed on DNA from the patient and his biological parents. Laboratory studies examined characteristics of the patient's B and T lymphocytes. A CARD11 cDNA containing the mutation was transfected into a lymphocyte cell line to gain an understanding of its function. RNA sequencing was performed on samples from the patient and from patients with alternate germline CARD11 mutations and differential gene expression analysis was performed. RESULTS The patient had a decade-long history of severe polyclonal B lymphocytosis in the 20,000-90,000 lymphocytes/mm(3) range, which was markedly exacerbated by EBV infection and splenectomy at different times. He had a heterozygous germline CARD11 mutation causing a G123D amino acid substitution, which was demonstrated to induce NF-κB activation in unstimulated lymphocytes. In contrast to previous patients with CARD11 mutations, this patient's B cells exhibited higher expression of several cell cycle progression genes, as well as enhanced proliferation and improved survival following B cell receptor stimulation. CONCLUSIONS This is the third reported germline and first de novo CARD11 mutation shown to cause congenital B cell lymphocytosis. The mutation was associated with a dramatically greater lymphocytosis than in previously described cases, disproportionate to the level of constitutive NF-κB activation. However, comparative review of the patient's clinical history, combined with additional genomic and functional analyses, underscore other important variables that may affect pathophysiology or regulate mutant CARD11 function in B cell proliferation and disease. We now refer to these patients as having BENTA disease (B cell Expansion with NF-κB and T cell Anergy).
Collapse
Affiliation(s)
- Andrew S Brohl
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Building 37, Room 2016B, Bethesda, MD, 20892, USA
| | - Jeffrey R Stinson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD, 20814, USA
| | - Helen C Su
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Badgett
- Department of Pediatrics and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Chester D Jennings
- Department of Pathology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Gauthaman Sukumar
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sivasish Sindiri
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Building 37, Room 2016B, Bethesda, MD, 20892, USA
| | - Wei Wang
- Immunopathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Lela Kardava
- Immunopathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Susan Moir
- Immunopathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jeffrey A Moscow
- Department of Pediatrics and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Javed Khan
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Building 37, Room 2016B, Bethesda, MD, 20892, USA.
| | - Andrew L Snow
- Department of Pharmacology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD, 20814, USA.
| |
Collapse
|
26
|
Bohers E, Mareschal S, Bertrand P, Viailly PJ, Dubois S, Maingonnat C, Ruminy P, Tilly H, Jardin F. Activating somatic mutations in diffuse large B-cell lymphomas: lessons from next generation sequencing and key elements in the precision medicine era. Leuk Lymphoma 2014; 56:1213-22. [DOI: 10.3109/10428194.2014.941836] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Scudiero I, Vito P, Stilo R. The three CARMA sisters: so different, so similar: a portrait of the three CARMA proteins and their involvement in human disorders. J Cell Physiol 2014; 229:990-7. [PMID: 24375035 DOI: 10.1002/jcp.24543] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 12/17/2013] [Indexed: 12/11/2022]
Abstract
Initially identified by their ability to modulate the functional activity of BCL10, the three CARMA proteins, CARMA1, -2, and -3, have recently themselves taken a leading role on the stage of molecular medicine. Although considered for some time as simple ancillary proteins, increasingly accumulating recent data evidently indicate a role of primary importance for these three proteins in the pathophysiology of several human tumors and inflammatory disorders. In fact, recent scientific literature clearly establishes that CARMA1 is one of the most mutated genes in a subtype of B-cell lymphoma and, at the same time, responsible for some rare human immunodeficiency conditions. On the other hand, mutations in CARMA2 are responsible for the hereditary transmission of some inflammatory disorders of the skin, including familial psoriasis and ptiriasis; whereas expression of CARMA3 appears to be deregulated in different human tumors. Here we describe and summarize the mutations found in the genes coding for the three CARMA proteins in these different human pathological conditions, and offer an interpretation of the molecular mechanisms from which arise the biological outcomes in which these proteins are involved.
Collapse
|
28
|
Wang H, Zhao J, Zhang H, Huang Y, Wang S, Tu Q, Yang N. CARD11 blockade suppresses murine collagen-induced arthritis via inhibiting CARD11/Bcl10 assembly and T helper type 17 response. Clin Exp Immunol 2014; 176:238-45. [PMID: 24443940 DOI: 10.1111/cei.12275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2013] [Indexed: 12/26/2022] Open
Abstract
The scaffold protein caspase recruitment domain-containing protein 11 (CARD11) is implicated in the regulation of inflammation and autoimmunity. The present study aimed to explore the role of CARD11 in the pathogenesis of rheumatoid arthritis (RA). Mice with collagen-induced arthritis (CIA) were treated with either CARD11-targeted interfering RNA (CARD11 siRNA) or control siRNA by intraperitoneal injection every 3 days after CIA establishment. The clinical score of arthritis was recorded every other day. Synovial inflammation and cartilage erosion were evaluated by histology and microcomputed tomography (micro-CT). Serum anti-type II collagen (anti-CII) antibodies and cytokines were measured by enzyme-linked immunosorbent assay (ELISA). The CARD11/Bcl10 formation and nuclear factor-kappa B (NF-κB) activation was assessed by immunoprecipitation and immunoblotting, and the percentage of T helper type 17 (Th17) cells was determined by flow cytometry. Systemic administration of CARD11 siRNA significantly reduced the clinical score of CIA severity. As indicated by the histology, joint inflammation and destruction were attenuated by CARD11 siRNA treatment. Micro-CT demonstrated less severe joint destruction in CARD11 siRNA-treated mice than in control mice. CARD11 siRNA treatment resulted in inhibition of CARD11/Bcl10 formation and the subsequent NF-κB activation. In addition, treatment with CARD11 siRNA resulted in a pronounced decrease in proinflammatory cytokines interleukin (IL)-1β, IL-6 and IL-17. Serum anti-CII antibody and the percentage of Th17 cells were also significantly reduced. CARD11 is involved in the pathogenesis of CIA by formation of the CARD11/Bcl10 complex and enhancement of the Th17 cell response. Targeting CARD11 provides a novel research direction in the development of therapeutic strategies for RA.
Collapse
Affiliation(s)
- H Wang
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Wang JQ, Jeelall YS, Beutler B, Horikawa K, Goodnow CC. Consequences of the recurrent MYD88(L265P) somatic mutation for B cell tolerance. ACTA ACUST UNITED AC 2014; 211:413-26. [PMID: 24534189 PMCID: PMC3949567 DOI: 10.1084/jem.20131424] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
B cells expressing the MYD88 L265P mutation undergo rapid TLR ligand-independent proliferation that is self-limiting unless apoptosis is opposed. MYD88L265P has recently been discovered as an extraordinarily frequent somatic mutation in benign monoclonal IgM gammopathy, Waldenström’s macroglobulinemia, and diffuse large B cell lymphoma. In this study, we analyze the consequences for antigen-activated primary B cells of acquiring MYD88L265P. The mutation induced rapid B cell division in the absence of exogenous TLR ligands and was inhibited by Unc93b13d mutation and chloroquine or TLR9 deficiency, indicating continued dependence on upstream TLR9 activation. Proliferation and NF-κB activation induced by MYD88L265P were nevertheless rapidly countered by the induction of TNFAIP3, an NF-κB inhibitor frequently inactivated in MYD88L265P–bearing lymphomas, and extinguished by Bim-dependent apoptosis. MYD88L265P caused self-reactive B cells to accumulate in vivo only when apoptosis was opposed by Bcl2 overexpression. These results reveal checkpoints that fortify TLR responses against aberrant B cell proliferation in response to ubiquitous TLR and BCR self-ligands and suggest that tolerance failure requires the accumulation of multiple somatic mutations.
Collapse
Affiliation(s)
- James Q Wang
- Department of Immunology, John Curtin School of Medical Research, 2 Australian Phenomics Facility, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | | | | | | | | |
Collapse
|
30
|
Mechanisms and consequences of constitutive NF-κB activation in B-cell lymphoid malignancies. Oncogene 2014; 33:5655-65. [DOI: 10.1038/onc.2013.565] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/09/2013] [Accepted: 12/09/2013] [Indexed: 12/13/2022]
|
31
|
Abstract
Immunodeficiencies with nonfunctional T cells comprise a heterogeneous group of conditions characterized by altered function of T lymphocytes in spite of largely preserved T cell development. Some of these forms are due to hypomorphic mutations in genes causing severe combined immunodeficiency. More recently, advances in human genome sequencing have facilitated the identification of novel genetic defects that do not affect T cell development, but alter T cell function and homeostasis. Along with increased susceptibility to infections, these conditions are characterized by autoimmunity and higher risk of malignancies. The study of these diseases, and of corresponding animal models, has provided fundamental insights on the mechanisms that govern immune homeostasis.
Collapse
|
32
|
Pieper K, Grimbacher B, Eibel H. B-cell biology and development. J Allergy Clin Immunol 2013; 131:959-71. [PMID: 23465663 DOI: 10.1016/j.jaci.2013.01.046] [Citation(s) in RCA: 326] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 02/06/2023]
Abstract
B cells develop from hematopoietic precursor cells in an ordered maturation and selection process. Extensive studies with many different mouse mutants provided fundamental insights into this process. However, the characterization of genetic defects causing primary immunodeficiencies was essential in understanding human B-cell biology. Defects in pre-B-cell receptor components or in downstream signaling proteins, such as Bruton tyrosine kinase and B-cell linker protein, arrest development at the pre-B-cell stage. Defects in survival-regulating proteins, such as B-cell activator of the TNF-α family receptor (BAFF-R) or caspase recruitment domain-containing protein 11 (CARD11), interrupt maturation and prevent differentiation of transitional B cells into marginal zone and follicular B cells. Mature B-cell subsets, immune responses, and memory B-cell and plasma cell development are disturbed by mutations affecting Toll-like receptor signaling, B-cell antigen receptor coreceptors (eg, CD19), or enzymes responsible for immunoglobulin class-switch recombination. Transgenic mouse models helped to identify key regulatory mechanisms, such as receptor editing and clonal anergy, preventing the activation of B cells expressing antibodies recognizing autoantigens. Nevertheless, the combination of susceptible genetic backgrounds with the rescue of self-reactive B cells by T cells allows the generation of autoreactive clones found in patients with many autoimmune diseases and even in those with primary immunodeficiencies. The rapid progress of functional genomic research is expected to foster the development of new tools that specifically target dysfunctional B lymphocytes to treat autoimmunity, B-cell malignancies, and immunodeficiency.
Collapse
Affiliation(s)
- Kathrin Pieper
- Centre of Chronic Immunodeficiency, University Medical Centre Freiburg, Faculty of Biology, Albert-Ludwigs-Universität, Freiburg, Germany
| | | | | |
Collapse
|