1
|
Takamori H, Huang YJ, Fukushima H, Yokoyama K, Huang TY, Kuo MC, Ogawa S, Nannya Y, Shih LY. Whole-genome sequencing of myeloproliferative neoplasms revealed dynamic clonal changes in the fibrotic or leukemic transformation and novel FOXP1 mutations in the fibrotic transformation. Leukemia 2025; 39:1218-1227. [PMID: 40164719 DOI: 10.1038/s41375-025-02576-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/18/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Myeloproliferative neoplasms (MPNs) are characterized by clonal proliferation of hematopoietic stem cells, which can lead to secondary myelofibrosis or acute myeloid leukemia. We explored the changes in genomic alterations during MPN transformation using whole-genome sequencing of samples from both the chronic and fibrotic or leukemic phases of 20 patients. We identified FOXP1 mutations in 3 of 14 (21.4%) patients with secondary myelofibrosis. This novel mutation was identified in another 5 of the 35 patients (14.3%) in an independent cohort. All these 8 patients with FOXP1 mutations did not experience leukemic transformation after a median follow-up of 5.1 years. The acquisition of non-canonical MPLY591 mutations was detected in the fibrotic or leukemic phase. Clonal expansion, involving both known and unknown driver genes (in 18 and 2 patients, respectively), was observed in all patients. We determined the patterns of clonal evolution based on myeloid driver mutations in 18 patients: linear clonal evolution in 11 patients and branched clonal evolution in 7 patients. Our results suggested that MPN patients carrying FOXP1 mutations are unlikely to have leukemia transformation and emphasized that the acquisition of specific genetic mutations and dynamic changes in clonal architecture underlie the pathogenesis in patients undergoing MPN transformation.
Collapse
Affiliation(s)
- Hiroyuki Takamori
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ying-Jung Huang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hidehito Fukushima
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuaki Yokoyama
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ting-Yu Huang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ming-Chung Kuo
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Lee-Yung Shih
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
- School of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Martín Castillo I, Villamón E, Calabuig M, Pastor I, Ferrer-Lores B, Amat P, Mas E, Castillo I, Blanco S, Solano C, Hernández-Boluda JC, Tormo M. Incidence and clinical correlates of NFE2 mutations in myeloid neoplasms. Br J Haematol 2024; 205:733-737. [PMID: 38840560 DOI: 10.1111/bjh.19579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Affiliation(s)
- Iván Martín Castillo
- Hematology Department, Instituto de Investigación Sanitaria INCLIVA, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Eva Villamón
- Hematology Department, Instituto de Investigación Sanitaria INCLIVA, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Marisa Calabuig
- Hematology Department, Instituto de Investigación Sanitaria INCLIVA, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Irene Pastor
- Hematology Department, Instituto de Investigación Sanitaria INCLIVA, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Blanca Ferrer-Lores
- Hematology Department, Instituto de Investigación Sanitaria INCLIVA, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Paula Amat
- Hematology Department, Instituto de Investigación Sanitaria INCLIVA, Hospital Clínico Universitario de Valencia, Valencia, Spain
- Department of Medicine, University of Valencia, Valencia, Spain
| | - Eva Mas
- Hematology Department, Hospital Universitario de La Plana de Vila-Real, Villarreal, Spain
| | - Inma Castillo
- Hematology Department, Hospital Universitario de La Plana de Vila-Real, Villarreal, Spain
| | - Sara Blanco
- Hematology Department, Hospital Comarcal Francesc De Borja de Gandía, Valencia, Spain
| | - Carlos Solano
- Hematology Department, Instituto de Investigación Sanitaria INCLIVA, Hospital Clínico Universitario de Valencia, Valencia, Spain
- Department of Medicine, University of Valencia, Valencia, Spain
| | - Juan Carlos Hernández-Boluda
- Hematology Department, Instituto de Investigación Sanitaria INCLIVA, Hospital Clínico Universitario de Valencia, Valencia, Spain
- Department of Medicine, University of Valencia, Valencia, Spain
| | - Mar Tormo
- Hematology Department, Instituto de Investigación Sanitaria INCLIVA, Hospital Clínico Universitario de Valencia, Valencia, Spain
- Department of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
3
|
Sato T, Yoshida K, Toki T, Kanezaki R, Terui K, Saiki R, Ojima M, Ochi Y, Mizuno S, Yoshihara M, Uechi T, Kenmochi N, Tanaka S, Matsubayashi J, Kisai K, Kudo K, Yuzawa K, Takahashi Y, Tanaka T, Yamamoto Y, Kobayashi A, Kamio T, Sasaki S, Shiraishi Y, Chiba K, Tanaka H, Muramatsu H, Hama A, Hasegawa D, Sato A, Koh K, Karakawa S, Kobayashi M, Hara J, Taneyama Y, Imai C, Hasegawa D, Fujita N, Yoshitomi M, Iwamoto S, Yamato G, Saida S, Kiyokawa N, Deguchi T, Ito M, Matsuo H, Adachi S, Hayashi Y, Taga T, Saito AM, Horibe K, Watanabe K, Tomizawa D, Miyano S, Takahashi S, Ogawa S, Ito E. Landscape of driver mutations and their clinical effects on Down syndrome-related myeloid neoplasms. Blood 2024; 143:2627-2643. [PMID: 38513239 DOI: 10.1182/blood.2023022247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
ABSTRACT Transient abnormal myelopoiesis (TAM) is a common complication in newborns with Down syndrome (DS). It commonly progresses to myeloid leukemia (ML-DS) after spontaneous regression. In contrast to the favorable prognosis of primary ML-DS, patients with refractory/relapsed ML-DS have poor outcomes. However, the molecular basis for refractoriness and relapse and the full spectrum of driver mutations in ML-DS remain largely unknown. We conducted a genomic profiling study of 143 TAM, 204 ML-DS, and 34 non-DS acute megakaryoblastic leukemia cases, including 39 ML-DS cases analyzed by exome sequencing. Sixteen novel mutational targets were identified in ML-DS samples. Of these, inactivations of IRX1 (16.2%) and ZBTB7A (13.2%) were commonly implicated in the upregulation of the MYC pathway and were potential targets for ML-DS treatment with bromodomain-containing protein 4 inhibitors. Partial tandem duplications of RUNX1 on chromosome 21 were also found, specifically in ML-DS samples (13.7%), presenting its essential role in DS leukemia progression. Finally, in 177 patients with ML-DS treated following the same ML-DS protocol (the Japanese Pediatric Leukemia and Lymphoma Study Group acute myeloid leukemia -D05/D11), CDKN2A, TP53, ZBTB7A, and JAK2 alterations were associated with a poor prognosis. Patients with CDKN2A deletions (n = 7) or TP53 mutations (n = 4) had substantially lower 3-year event-free survival (28.6% vs 90.5%; P < .001; 25.0% vs 89.5%; P < .001) than those without these mutations. These findings considerably change the mutational landscape of ML-DS, provide new insights into the mechanisms of progression from TAM to ML-DS, and help identify new therapeutic targets and strategies for ML-DS.
Collapse
Affiliation(s)
- Tomohiko Sato
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Cancer Evolution, National Cancer Center Research Institute, Tokyo, Japan
| | - Tsutomu Toki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Rika Kanezaki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kiminori Terui
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ryunosuke Saiki
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masami Ojima
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yotaro Ochi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center and Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Masaharu Yoshihara
- Laboratory Animal Resource Center and Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Tamayo Uechi
- Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Naoya Kenmochi
- Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shiro Tanaka
- Department of Clinical Biostatistics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jun Matsubayashi
- Center for Clinical Research and Advanced Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Kenta Kisai
- Department of Clinical Biostatistics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ko Kudo
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kentaro Yuzawa
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuka Takahashi
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tatsuhiko Tanaka
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yohei Yamamoto
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akie Kobayashi
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takuya Kamio
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shinya Sasaki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroko Tanaka
- M and D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Asahito Hama
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Nagoya, Japan
| | - Daisuke Hasegawa
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
| | - Atsushi Sato
- Department of Hematology and Oncology, Miyagi Children's Hospital, Sendai, Japan
| | - Katsuyoshi Koh
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Junichi Hara
- Department of Hematology and Oncology, Osaka City General Hospital, Osaka, Japan
| | - Yuichi Taneyama
- Department of Hematology/Oncology, Chiba Children's Hospital, Chiba, Japan
| | - Chihaya Imai
- Department of Pediatrics, Niigata University Graduate School Medical and Dental Sciences, Niigata, Japan
| | - Daiichiro Hasegawa
- Department of Hematology and Oncology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Naoto Fujita
- Department of Pediatrics, Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Masahiro Yoshitomi
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shotaro Iwamoto
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Genki Yamato
- Department of pediatrics, Gunma University Graduate School of Medicine, Maebashi City, Japan
| | - Satoshi Saida
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Takao Deguchi
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Masafumi Ito
- Department of Pathology, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Nagoya, Japan
| | - Hidemasa Matsuo
- Department of Human Health Sciences, Kyoto University, Kyoto, Japan
| | - Souichi Adachi
- Department of Human Health Sciences, Kyoto University, Kyoto, Japan
| | - Yasuhide Hayashi
- Department of Hematology and Oncology, Gunma Children's Medical Center, Gunma, Japan
- Institute of Physiology and Medicine, Jobu University, Takasaki, Japan
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | - Akiko M Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Kenichiro Watanabe
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Satoru Miyano
- M and D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of Community Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
4
|
Liang D, Wang Q, Zhang W, Tang H, Song C, Yan Z, Liang Y, Wang H. JAK/STAT in leukemia: a clinical update. Mol Cancer 2024; 23:25. [PMID: 38273387 PMCID: PMC10811937 DOI: 10.1186/s12943-023-01929-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Over the past three decades, considerable efforts have been expended on understanding the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway in leukemia, following the identification of the JAK2V617F mutation in myeloproliferative neoplasms (MPNs). The aim of this review is to summarize the latest progress in our understanding of the involvement of the JAK/STAT signaling pathway in the development of leukemia. We also attempt to provide insights into the current use of JAK/STAT inhibitors in leukemia therapy and explore pertinent clinical trials in this field.
Collapse
Affiliation(s)
- Dong Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qiaoli Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wenbiao Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Cailu Song
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhimin Yan
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| | - Yang Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Hua Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
5
|
Greenfield G, McMullin MF. Epigenetics in myeloproliferative neoplasms. Front Oncol 2023; 13:1206965. [PMID: 37519812 PMCID: PMC10373880 DOI: 10.3389/fonc.2023.1206965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
The myeloproliferative neoplasms (MPNs) are a group of acquired clonal disorders where mutations drive proliferative disease resulting in increased blood counts and in some cases end-stage myelofibrosis. Epigenetic changes are the reversible modifications to DNA- and RNA-associated proteins that impact gene activity without changing the DNA sequence. This review summarizes mechanisms of epigenetic changes and the nucleosome. The drivers and epigenetic regulators in MPNs are outlined. In MPNs, distinct patterns of epigenetic dysregulation have been seen in chronic and in advanced phases. Methylation age and histone modification are altered in MPNs and by further treatment. The alterations found in methylation age in MPNs and with treatment are discussed, and the changes in histone modification with Janus kinase (JAK) inhibition are evaluated. Currently available therapeutic areas where the epigenome can be altered are outlined. Thus, we review the current knowledge and understanding of epigenetics in MPN and consider further management options. Understanding the epigenome and its alteration in MPNs and epigenetic changes associated with the progression of disease will lead to advances in therapeutic options.
Collapse
|
6
|
Andrews C, Conneally E, Langabeer SE. Molecular diagnostic criteria of myeloproliferative neoplasms. Expert Rev Mol Diagn 2023; 23:1077-1090. [PMID: 37999991 DOI: 10.1080/14737159.2023.2277370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/26/2023] [Indexed: 11/26/2023]
Abstract
INTRODUCTION Myeloproliferative neoplasms (MPN) are a heterogeneous group of clonal hematopoietic stem cell neoplasms characterized by the driver mutations JAK2, CALR, and MPL. These mutations cause constitutive activation of JAK-STAT signaling, which is central to pathogenesis of MPNs. Next-generation sequencing has further expanded the molecular landscape allowing for improved diagnostics, prognostication, and targeted therapy. AREAS COVERED This review aims to address current understanding of the molecular diagnosis of MPN not only through improved awareness of the driver mutations but also the disease modifying mutations. In addition, other genetic factors such as clonal hematopoiesis of indeterminate potential (CHIP), order of mutation, and mutation co-occurrence are discussed and how these factors influence disease initiation and ultimately progression. How this molecular information is incorporated into risk stratification models allowing for earlier intervention and targeted therapy in the future will be addressed further. EXPERT OPINION The genomic landscape of the MPN has evolved in the last 15 years with integration of next-generation sequencing becoming the gold standard of MPN management. Although diagnostics and prognostication have become more personalized, additional studies are required to translate these molecular findings into targeted therapy therefore improving patient outcomes.
Collapse
Affiliation(s)
- Claire Andrews
- Department of Haematology, St. Vincent's University Hospital, Dublin, Ireland
| | | | | |
Collapse
|
7
|
Gialesaki S, Bräuer-Hartmann D, Issa H, Bhayadia R, Alejo-Valle O, Verboon L, Schmell AL, Laszig S, Regényi E, Schuschel K, Labuhn M, Ng M, Winkler R, Ihling C, Sinz A, Glaß M, Hüttelmaier S, Matzk S, Schmid L, Strüwe FJ, Kadel SK, Reinhardt D, Yaspo ML, Heckl D, Klusmann JH. RUNX1 isoform disequilibrium promotes the development of trisomy 21-associated myeloid leukemia. Blood 2023; 141:1105-1118. [PMID: 36493345 PMCID: PMC10023736 DOI: 10.1182/blood.2022017619] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Gain of chromosome 21 (Hsa21) is among the most frequent aneuploidies in leukemia. However, it remains unclear how partial or complete amplifications of Hsa21 promote leukemogenesis and why children with Down syndrome (DS) (ie, trisomy 21) are particularly at risk of leukemia development. Here, we propose that RUNX1 isoform disequilibrium with RUNX1A bias is key to DS-associated myeloid leukemia (ML-DS). Starting with Hsa21-focused CRISPR-CRISPR-associated protein 9 screens, we uncovered a strong and specific RUNX1 dependency in ML-DS cells. Expression of the RUNX1A isoform is elevated in patients with ML-DS, and mechanistic studies using murine ML-DS models and patient-derived xenografts revealed that excess RUNX1A synergizes with the pathognomonic Gata1s mutation during leukemogenesis by displacing RUNX1C from its endogenous binding sites and inducing oncogenic programs in complex with the MYC cofactor MAX. These effects were reversed by restoring the RUNX1A:RUNX1C equilibrium in patient-derived xenografts in vitro and in vivo. Moreover, pharmacological interference with MYC:MAX dimerization using MYCi361 exerted strong antileukemic effects. Thus, our study highlights the importance of alternative splicing in leukemogenesis, even on a background of aneuploidy, and paves the way for the development of specific and targeted therapies for ML-DS, as well as for other leukemias with Hsa21 aneuploidy or RUNX1 isoform disequilibrium.
Collapse
Affiliation(s)
- Sofia Gialesaki
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Daniela Bräuer-Hartmann
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Hasan Issa
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Raj Bhayadia
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Oriol Alejo-Valle
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Lonneke Verboon
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anna-Lena Schmell
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stephanie Laszig
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Enikő Regényi
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Konstantin Schuschel
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maurice Labuhn
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Michelle Ng
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Robert Winkler
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sören Matzk
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lena Schmid
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | - Sofie-Katrin Kadel
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Dirk Reinhardt
- Pediatric Hematology and Oncology, Pediatrics III, University Hospital Essen, Essen, Germany
| | | | - Dirk Heckl
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Dirk Heckl, Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany;
| | - Jan-Henning Klusmann
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Correspondence: Jan-Henning Klusmann, Department of Pediatrics, Goethe University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt, Germany;
| |
Collapse
|
8
|
Mascarenhas J, Gleitz HFE, Chifotides HT, Harrison CN, Verstovsek S, Vannucchi AM, Rampal RK, Kiladjian JJ, Vainchenker W, Hoffman R, Schneider RK, List AF. Biological drivers of clinical phenotype in myelofibrosis. Leukemia 2023; 37:255-264. [PMID: 36434065 PMCID: PMC9898039 DOI: 10.1038/s41375-022-01767-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022]
Abstract
Myelofibrosis (MF) is a myeloproliferative disorder that exhibits considerable biological and clinical heterogeneity. At the two ends of the disease spectrum are the myelodepletive or cytopenic phenotype and the myeloproliferative phenotype. The cytopenic phenotype has a high prevalence in primary MF (PMF) and is characterized by low blood counts. The myeloproliferative phenotype is typically associated with secondary MF (SMF), mild anemia, minimal need for transfusion support, and normal to mild thrombocytopenia. Differences in somatic driver mutations and allelic burden, as well as the acquisition of non-driver mutations further influences these phenotypic differences, prognosis, and response to therapies such as JAK2 inhibitors. The outcome of patients with the cytopenic phenotype are comparatively worse and frequently pose a challenge to treat given the inherent exacerbation of cytopenias. Recent data indicate that an innate immune deregulated state that hinges on the myddosome-IRAK-NFκB axis favors the cytopenic myelofibrosis phenotype and offers opportunity for novel treatment approaches. We will review the biological and clinical features of the MF disease spectrum and associated treatment considerations.
Collapse
Affiliation(s)
- John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Hélène F E Gleitz
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Helen T Chifotides
- Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Srdan Verstovsek
- Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Raajit K Rampal
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | | | - Ronald Hoffman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rebekka K Schneider
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Institute of Cell and Tumor Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | | |
Collapse
|
9
|
The histone demethylase JMJD2C constitutes a novel NFE2 target gene that is required for the survival of JAK2 V617F mutated cells. Leukemia 2023; 37:919-923. [PMID: 36709354 PMCID: PMC10079541 DOI: 10.1038/s41375-023-01826-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/29/2023]
Abstract
The transcription factor NFE2 is overexpressed in most patients with myeloproliferative neoplasms (MPN). Moreover, mutations in NFE2, found in a subset of MPN patients, strongly predispose for transformation to acute leukemia. Transgenic mice overexpressing NFE2 as well as mice harboring NFE2 mutations display an MPN phenotype and spontaneously develop leukemia. However, the molecular mechanisms effecting NFE2-driven leukemic transformation remain incompletely understood. Here we show that the pro-leukemic histone demethylase JMJD2C constitutes a novel NFE2 target gene. JMJD2C expression is elevated in MPN patients as well as in NFE2 transgenic mice. Moreover, we show that loss of JMJD2C selectively impairs proliferation of JAK2V617F mutated cells. Our data suggest that JMJD2C represents a promising drug target in MPN and provide a rationale for further investigation in preclinical and clinical settings.
Collapse
|
10
|
Abbou N, Piazzola P, Gabert J, Ernest V, Arcani R, Couderc AL, Tichadou A, Roche P, Farnault L, Colle J, Ouafik L, Morange P, Costello R, Venton G. Impact of Molecular Biology in Diagnosis, Prognosis, and Therapeutic Management of BCR::ABL1-Negative Myeloproliferative Neoplasm. Cells 2022; 12:cells12010105. [PMID: 36611899 PMCID: PMC9818322 DOI: 10.3390/cells12010105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
BCR::ABL1-negative myeloproliferative neoplasms (MPNs) include three major subgroups-polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF)-which are characterized by aberrant hematopoietic proliferation with an increased risk of leukemic transformation. Besides the driver mutations, which are JAK2, CALR, and MPL, more than twenty additional mutations have been identified through the use of next-generation sequencing (NGS), which can be involved with pathways that regulate epigenetic modifications, RNA splicing, or DNA repair. The aim of this short review is to highlight the impact of molecular biology on the diagnosis, prognosis, and therapeutic management of patients with PV, ET, and PMF.
Collapse
Affiliation(s)
- Norman Abbou
- Molecular Biology Laboratory, North University Hospital, 13015 Marseille, France
- INSERM, INRAE, C2VN, Aix-Marseille University, 13005 Marseille, France
| | - Pauline Piazzola
- Hematology and Cellular Therapy Department, Conception University Hospital, 13005 Marseille, France
| | - Jean Gabert
- Molecular Biology Laboratory, North University Hospital, 13015 Marseille, France
- INSERM, INRAE, C2VN, Aix-Marseille University, 13005 Marseille, France
| | - Vincent Ernest
- Hematology Laboratory, Timone University Hospital, 13005 Marseille, France
| | - Robin Arcani
- INSERM, INRAE, C2VN, Aix-Marseille University, 13005 Marseille, France
- Department of Internal Medicine, Timone University Hospital, 13005 Marseille, France
| | - Anne-Laure Couderc
- Department of Geriatrics, South University Hospital, 13005 Marseille, France
| | - Antoine Tichadou
- Hematology and Cellular Therapy Department, Conception University Hospital, 13005 Marseille, France
| | - Pauline Roche
- Hematology and Cellular Therapy Department, Conception University Hospital, 13005 Marseille, France
| | - Laure Farnault
- Hematology and Cellular Therapy Department, Conception University Hospital, 13005 Marseille, France
| | - Julien Colle
- INSERM, INRAE, C2VN, Aix-Marseille University, 13005 Marseille, France
- Hematology and Cellular Therapy Department, Conception University Hospital, 13005 Marseille, France
| | - L’houcine Ouafik
- CNRS, INP, Institute of Neurophysiopathol, Aix-Marseille Université, 13005 Marseille, France
- APHM, CHU Nord, Service d’Onco-Biologie, Aix-Marseille Université, 13005 Marseille, France
| | - Pierre Morange
- INSERM, INRAE, C2VN, Aix-Marseille University, 13005 Marseille, France
- Hematology Laboratory, Timone University Hospital, 13005 Marseille, France
| | - Régis Costello
- INSERM, INRAE, C2VN, Aix-Marseille University, 13005 Marseille, France
- Hematology and Cellular Therapy Department, Conception University Hospital, 13005 Marseille, France
- TAGC, INSERM, UMR1090, Aix-Marseille University, 13005 Marseille, France
| | - Geoffroy Venton
- INSERM, INRAE, C2VN, Aix-Marseille University, 13005 Marseille, France
- Hematology and Cellular Therapy Department, Conception University Hospital, 13005 Marseille, France
- TAGC, INSERM, UMR1090, Aix-Marseille University, 13005 Marseille, France
- Correspondence: ; Tel.: +33-4-91-38-41-52
| |
Collapse
|
11
|
Mughal TI, Pemmaraju N, Bejar R, Gale RP, Bose P, Kiladjian JJ, Prchal J, Royston D, Pollyea D, Valent P, Brümmendorf TH, Skorski T, Patnaik M, Santini V, Fenaux P, Kucine N, Verstovsek S, Mesa R, Barbui T, Saglio G, Van Etten RA. Perspective: Pivotal translational hematology and therapeutic insights in chronic myeloid hematopoietic stem cell malignancies. Hematol Oncol 2022; 40:491-504. [PMID: 35368098 DOI: 10.1002/hon.2987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 11/10/2022]
Abstract
Despite much of the past 2 years being engulfed by the devastating consequences of the SAR-CoV-2 pandemic, significant progress, even breathtaking, occurred in the field of chronic myeloid malignancies. Some of this was show-cased at the 15th Post-American Society of Hematology (ASH) and the 25th John Goldman workshops on myeloproliferative neoplasms (MPN) held on 9th-10th December 2020 and 7th-10th October 2021, respectively. The inaugural Post-ASH MPN workshop was set out in 2006 by John Goldman (deceased) and Tariq Mughal to answer emerging translational hematology and therapeutics of patients with these malignancies. Rather than present a resume of the discussions, this perspective focuses on some of the pivotal translational hematology and therapeutic insights in these diseases.
Collapse
Affiliation(s)
- Tariq I Mughal
- Tufts University School of Medicine, Boston, Massachusetts, USA
- University of Buckingham, Buckingham, UK
| | - Naveen Pemmaraju
- MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Rafael Bejar
- University of California San Diego, La Jolla, California, USA
| | | | - Prithviraj Bose
- MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | | | - Josef Prchal
- Huntsman Cancer Center, Salt Lake City, Utah, USA
| | - Daniel Royston
- John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Daniel Pollyea
- University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Peter Valent
- Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | | | - Tomasz Skorski
- Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Valeria Santini
- Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy
| | - Pierre Fenaux
- Hospital St Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | | | - Srdan Verstovsek
- MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Ruben Mesa
- Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, Texas, USA
| | - Tiziano Barbui
- Fondazione per la Ricerca Ospedale Maggiore di Bergamo, Bergamo, Italy
| | | | - Richard A Van Etten
- Chao Family Comprehensive Cancer Center, University of California, Irvine, California, USA
| |
Collapse
|
12
|
Kim WR, Park EG, Lee HE, Park SJ, Huh JW, Kim JN, Kim HS. Hsa-miR-422a Originated from Short Interspersed Nuclear Element Increases ARID5B Expression by Collaborating with NF-E2. Mol Cells 2022; 45:465-478. [PMID: 35444070 PMCID: PMC9260135 DOI: 10.14348/molcells.2022.2158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/13/2021] [Accepted: 12/27/2021] [Indexed: 12/03/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate the expression of target messenger RNA (mRNA) complementary to the 3' untranslated region (UTR) at the post-transcriptional level. Hsa-miR-422a, which is commonly known as miRNA derived from transposable element (MDTE), was derived from short interspersed nuclear element (SINE). Through expression analysis, hsa-miR-422a was found to be highly expressed in both the small intestine and liver of crab-eating monkey. AT-Rich Interaction Domain 5 B (ARID5B) was selected as the target gene of hsa-miR-422a, which has two binding sites in both the exon and 3'UTR of ARID5B. To identify the interaction between hsa-miR-422a and ARID5B, a dual luciferase assay was conducted in HepG2 cell line. The luciferase activity of cells treated with the hsa-miR-422a mimic was upregulated and inversely downregulated when both the hsa-miR-422a mimic and inhibitor were administered. Nuclear factor erythroid-2 (NF-E2) was selected as the core transcription factor (TF) via feed forward loop analysis. The luciferase expression was downregulated when both the hsa-miR-422a mimic and siRNA of NF-E2 were treated, compared to the treatment of the hsa-miR-422a mimic alone. The present study suggests that hsa-miR-422a derived from SINE could bind to the exon region as well as the 3'UTR of ARID5B. Additionally, hsa-miR-422a was found to share binding sites in ARID5Bwith several TFs, including NF-E2. The hsa-miR-422a might thus interact with TF to regulate the expression of ARID5B, as demonstrated experimentally. Altogether, hsa-miR-422a acts as a super enhancer miRNA of ARID5Bby collaborating with TF and NF-E2.
Collapse
Affiliation(s)
- Woo Ryung Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Eun Gyung Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Hee-Eun Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28199, Korea
| | - Sang-Je Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28199, Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28199, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Jeong Nam Kim
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| |
Collapse
|
13
|
Genetic Background of Polycythemia Vera. Genes (Basel) 2022; 13:genes13040637. [PMID: 35456443 PMCID: PMC9027017 DOI: 10.3390/genes13040637] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
Polycythemia vera belongs to myeloproliferative neoplasms, essentially by affecting the erythroblastic lineage. JAK2 alterations have emerged as major driver mutations triggering PV-phenotype with the V617F mutation detected in nearly 98% of cases. That’s why JAK2 targeting therapeutic strategies have rapidly emerged to counter the aggravation of the disease. Over decades of research, to go further in the understanding of the disease and its evolution, a wide panel of genetic alterations affecting multiple genes has been highlighted. These are mainly involved in alternative splicing, epigenetic, miRNA regulation, intracellular signaling, and transcription factors expression. If JAK2 mutation, irrespective of the nature of the alteration, is known to be a crucial event for the disease to initiate, additional mutations seem to be markers of progression and poor prognosis. These discoveries have helped to characterize the complex genomic landscape of PV, resulting in potentially new adapted therapeutic strategies for patients concerning all the genetic interferences.
Collapse
|
14
|
Staehle HF, Pahl HL, Jutzi JS. The Cross Marks the Spot: The Emerging Role of JmjC Domain-Containing Proteins in Myeloid Malignancies. Biomolecules 2021; 11:biom11121911. [PMID: 34944554 PMCID: PMC8699298 DOI: 10.3390/biom11121911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
Histone methylation tightly regulates chromatin accessibility, transcription, proliferation, and cell differentiation, and its perturbation contributes to oncogenic reprogramming of cells. In particular, many myeloid malignancies show evidence of epigenetic dysregulation. Jumonji C (JmjC) domain-containing proteins comprise a large and diverse group of histone demethylases (KDMs), which remove methyl groups from lysines in histone tails and other proteins. Cumulating evidence suggests an emerging role for these demethylases in myeloid malignancies, rendering them attractive targets for drug interventions. In this review, we summarize the known functions of Jumonji C (JmjC) domain-containing proteins in myeloid malignancies. We highlight challenges in understanding the context-dependent mechanisms of these proteins and explore potential future pharmacological targeting.
Collapse
Affiliation(s)
- Hans Felix Staehle
- Division of Molecular Hematology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany; (H.F.S.); (H.L.P.)
| | - Heike Luise Pahl
- Division of Molecular Hematology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany; (H.F.S.); (H.L.P.)
| | - Jonas Samuel Jutzi
- Division of Molecular Hematology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany; (H.F.S.); (H.L.P.)
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02115, MA, USA
- Correspondence:
| |
Collapse
|
15
|
In a multi-institutional cohort of myeloid sarcomas, NFE2 mutation prevalence is lower than previously reported. Blood Adv 2021; 5:5057-5059. [PMID: 34559205 PMCID: PMC9152993 DOI: 10.1182/bloodadvances.2021004983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/25/2021] [Indexed: 11/20/2022] Open
|
16
|
Sentinel mutations: the roses in the vineyard. Blood 2021; 138:2019-2020. [PMID: 34821937 DOI: 10.1182/blood.2021012345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 11/20/2022] Open
|
17
|
Coltro G, Loscocco GG, Vannucchi AM. Classical Philadelphia-negative myeloproliferative neoplasms (MPNs): A continuum of different disease entities. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 365:1-69. [PMID: 34756241 DOI: 10.1016/bs.ircmb.2021.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Classical Philadelphia-negative myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell-derived disorders characterized by uncontrolled proliferation of differentiated myeloid cells and close pathobiologic and clinical features. According to the 2016 World Health Organization (WHO) classification, MPNs include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The 2016 revision aimed in particular at strengthening the distinction between masked PV and JAK2-mutated ET, and between prefibrotic/early (pre-PMF) and overt PMF. Clinical manifestations in MPNs include constitutional symptoms, microvascular disorders, thrombosis and bleeding, splenomegaly secondary to extramedullary hematopoiesis, cytopenia-related symptoms, and progression to overt MF and acute leukemia. A dysregulation of the JAK/STAT pathway is the unifying mechanistic hallmark of MPNs, and is guided by somatic mutations in driver genes including JAK2, CALR and MPL. Additional mutations in myeloid neoplasm-associated genes have been also identified, with established prognostic relevance, particularly in PMF. Prognostication of MPN patients relies on disease-specific clinical models. The increasing knowledge of MPN biology led to the development of integrated clinical and molecular prognostic scores that allow a more refined stratification. Recently, the therapeutic landscape of MPNs has been revolutionized by the introduction of potent, selective JAK inhibitors (ruxolitinib, fedratinib), that proved effective in controlling disease-related symptoms and splenomegaly, yet leaving unmet critical needs, owing the lack of disease-modifying activity. In this review, we will deal with molecular, clinical, and therapeutic aspects of the three classical MPNs aiming at highlighting either shared characteristics, that overall define a continuum within a single disease family, and uniqueness, at the same time.
Collapse
Affiliation(s)
- Giacomo Coltro
- CRIMM, Center for Research and Innovation of Myeloproliferative Neoplasms, AOU Careggi, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giuseppe G Loscocco
- CRIMM, Center for Research and Innovation of Myeloproliferative Neoplasms, AOU Careggi, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandro M Vannucchi
- CRIMM, Center for Research and Innovation of Myeloproliferative Neoplasms, AOU Careggi, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
18
|
Integration of Molecular Information in Risk Assessment of Patients with Myeloproliferative Neoplasms. Cells 2021; 10:cells10081962. [PMID: 34440731 PMCID: PMC8391705 DOI: 10.3390/cells10081962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022] Open
Abstract
Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) are clonal disorders of a hematopoietic stem cell, characterized by an abnormal proliferation of largely mature cells driven by mutations in JAK2, CALR, and MPL. All these mutations lead to a constitutive activation of the JAK-STAT signaling, which represents a target for therapy. Beyond driver ones, most patients, especially with myelofibrosis, harbor mutations in an array of "myeloid neoplasm-associated" genes that encode for proteins involved in chromatin modification and DNA methylation, RNA splicing, transcription regulation, and oncogenes. These additional mutations often arise in the context of clonal hematopoiesis of indeterminate potential (CHIP). The extensive characterization of the pathologic genome associated with MPN highlighted selected driver and non-driver mutations for their clinical informativeness. First, driver mutations are enlisted in the WHO classification as major diagnostic criteria and may be used for monitoring of residual disease after transplantation and response to treatment. Second, mutation profile can be used, eventually in combination with cytogenetic, histopathologic, hematologic, and clinical variables, to risk stratify patients regarding thrombosis, overall survival, and rate of transformation to secondary leukemia. This review outlines the molecular landscape of MPN and critically interprets current information for their potential impact on patient management.
Collapse
|
19
|
Impact of NFE2 mutations on AML transformation and overall survival in patients with myeloproliferative neoplasms (MPN). Blood 2021; 138:2142-2148. [PMID: 33945619 DOI: 10.1182/blood.2020010402] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/23/2021] [Indexed: 11/20/2022] Open
|
20
|
Nintedanib targets KIT D816V neoplastic cells derived from induced pluripotent stem cells of systemic mastocytosis. Blood 2021; 137:2070-2084. [PMID: 33512435 DOI: 10.1182/blood.2019004509] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/08/2020] [Indexed: 01/10/2023] Open
Abstract
The KIT D816V mutation is found in >80% of patients with systemic mastocytosis (SM) and is key to neoplastic mast cell (MC) expansion and accumulation in affected organs. Therefore, KIT D816V represents a prime therapeutic target for SM. Here, we generated a panel of patient-specific KIT D816V induced pluripotent stem cells (iPSCs) from patients with aggressive SM and mast cell leukemia to develop a patient-specific SM disease model for mechanistic and drug-discovery studies. KIT D816V iPSCs differentiated into neoplastic hematopoietic progenitor cells and MCs with patient-specific phenotypic features, thereby reflecting the heterogeneity of the disease. CRISPR/Cas9n-engineered KIT D816V human embryonic stem cells (ESCs), when differentiated into hematopoietic cells, recapitulated the phenotype observed for KIT D816V iPSC hematopoiesis. KIT D816V causes constitutive activation of the KIT tyrosine kinase receptor, and we exploited our iPSCs and ESCs to investigate new tyrosine kinase inhibitors targeting KIT D816V. Our study identified nintedanib, a US Food and Drug Administration-approved angiokinase inhibitor that targets vascular endothelial growth factor receptor, platelet-derived growth factor receptor, and fibroblast growth factor receptor, as a novel KIT D816V inhibitor. Nintedanib selectively reduced the viability of iPSC-derived KIT D816V hematopoietic progenitor cells and MCs in the nanomolar range. Nintedanib was also active on primary samples of KIT D816V SM patients. Molecular docking studies show that nintedanib binds to the adenosine triphosphate binding pocket of inactive KIT D816V. Our results suggest nintedanib as a new drug candidate for KIT D816V-targeted therapy of advanced SM.
Collapse
|
21
|
Clemens Böckelmann L, Basu T, Gründer A, Wang W, Breucker J, Kaiser S, Pichler A, Pahl HL. Concomitant constitutive LNK and NFE2 mutation with loss of sumoylation in a case of hereditary thrombocythemia. Haematologica 2021; 106:1158-1162. [PMID: 32554556 PMCID: PMC8018143 DOI: 10.3324/haematol.2020.246587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 11/23/2022] Open
Affiliation(s)
| | - Titiksha Basu
- Department of Hematology and Oncology, University Medical Center Freiburg, Germany
| | - Albert Gründer
- Department of Hematology and Oncology, University Medical Center Freiburg, Germany
| | - Wei Wang
- Department of Hematology and Oncology, University Medical Center Freiburg, Germany
| | - Jan Breucker
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Sandra Kaiser
- Department of Hematology and Oncology, University Medical Center Freiburg, Germany
| | - Andrea Pichler
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Heike Luise Pahl
- Department of Hematology and Oncology, University Medical Center Freiburg, Germany
| |
Collapse
|
22
|
Murine Modeling of Myeloproliferative Neoplasms. Hematol Oncol Clin North Am 2021; 35:253-265. [PMID: 33641867 DOI: 10.1016/j.hoc.2020.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myeloproliferative neoplasms, such as polycythemia vera, essential thrombocythemia, and primary myelofibrosis, are bone marrow disorders that result in the overproduction of mature clonal myeloid elements. Identification of recurrent genetic mutations has been described and aid in diagnosis and prognostic determination. Mouse models of these mutations have confirmed the biologic significance of these mutations in myeloproliferative neoplasm disease biology and provided greater insights on the pathways that are dysregulated with each mutation. The models are useful tools that have led to preclinical testing and provided data as validation for future myeloproliferative neoplasm clinical trials.
Collapse
|
23
|
Guijarro-Hernández A, Vizmanos JL. A Broad Overview of Signaling in Ph-Negative Classic Myeloproliferative Neoplasms. Cancers (Basel) 2021; 13:cancers13050984. [PMID: 33652860 PMCID: PMC7956519 DOI: 10.3390/cancers13050984] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary There is growing evidence that Ph-negative myeloproliferative neoplasms are disorders in which multiple signaling pathways are significantly disturbed. The heterogeneous phenotypes observed among patients have highlighted the importance of having a comprehensive knowledge of the molecular mechanisms behind these diseases. This review aims to show a broad overview of the signaling involved in myeloproliferative neoplasms (MPNs) and other processes that can modify them, which could be helpful to better understand these diseases and develop more effective targeted treatments. Abstract Ph-negative myeloproliferative neoplasms (polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF)) are infrequent blood cancers characterized by signaling aberrations. Shortly after the discovery of the somatic mutations in JAK2, MPL, and CALR that cause these diseases, researchers extensively studied the aberrant functions of their mutant products. In all three cases, the main pathogenic mechanism appears to be the constitutive activation of JAK2/STAT signaling and JAK2-related pathways (MAPK/ERK, PI3K/AKT). However, some other non-canonical aberrant mechanisms derived from mutant JAK2 and CALR have also been described. Moreover, additional somatic mutations have been identified in other genes that affect epigenetic regulation, tumor suppression, transcription regulation, splicing and other signaling pathways, leading to the modification of some disease features and adding a layer of complexity to their molecular pathogenesis. All of these factors have highlighted the wide variety of cellular processes and pathways involved in the pathogenesis of MPNs. This review presents an overview of the complex signaling behind these diseases which could explain, at least in part, their phenotypic heterogeneity.
Collapse
Affiliation(s)
- Ana Guijarro-Hernández
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain;
| | - José Luis Vizmanos
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Correspondence:
| |
Collapse
|
24
|
Loscocco GG, Guglielmelli P, Vannucchi AM. Impact of Mutational Profile on the Management of Myeloproliferative Neoplasms: A Short Review of the Emerging Data. Onco Targets Ther 2020; 13:12367-12382. [PMID: 33293830 PMCID: PMC7718985 DOI: 10.2147/ott.s287944] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Philadelphia-chromosome negative myeloproliferative neoplasms (MPN) are a heterogeneous group of clonal hematopoietic stem cell disorders characterized by an increased risk of thrombosis and progression to acute myeloid leukemia. MPN are associated with driver mutations in JAK2, CALR and MPL which are crucial for the diagnosis and lead to a constitutive activation of the JAK-STAT signaling, independent of cytokine regulation. Moreover, most patients have concomitant mutations in genes involved in DNA methylation, chromatin modification, messenger RNA splicing, transcription regulation and signal transduction. These additional mutations may arise before, in the context of clonal hematopoiesis of indeterminate potential (CHIP), or after the acquisition of the driver mutation. The clinical phenotype of MPN results from complex interactions between mutations and host factors. The increased application of next-generation sequencing (NGS) techniques to a large series of patients with MPN has expanded the knowledge of mutational landscape and contributed to define the clinical significance of mutations. This molecular information is being increasingly used to refine diagnosis, risk stratification, monitoring of residual disease and response to treatment. ASXL1, SRSF2, EZH2, IDH1/IDH2 and U2AF1 mutations are associated with a more advanced disease and reduced overall survival in primary myelofibrosis (PMF), whereas spliceosome mutations in Polycythemia vera (PV) and essential thrombocythemia (ET) adversely affect both overall (SF3B1, SRSF2 in ET and SRSF2 in PV) and myelofibrosis-free (U2AF1, SF3B1 in ET) survival. This review discusses current knowledge of the molecular landscape of MPN, and how the availability of those molecular information may impact patient management.
Collapse
Affiliation(s)
- Giuseppe G Loscocco
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliero-Universitaria Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paola Guglielmelli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliero-Universitaria Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandro M Vannucchi
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliero-Universitaria Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
25
|
Zhang D, Iwabuchi S, Baba T, Hashimoto SI, Mukaida N, Sasaki SI. Involvement of a Transcription factor, Nfe2, in Breast Cancer Metastasis to Bone. Cancers (Basel) 2020; 12:3003. [PMID: 33081224 PMCID: PMC7602858 DOI: 10.3390/cancers12103003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Patients with triple negative breast cancer (TNBC) is frequently complicated by bone metastasis, which deteriorates the life expectancy of this patient cohort. In order to develop a novel type of therapy for bone metastasis, we established 4T1.3 clone with a high capacity to metastasize to bone after orthotopic injection, from a murine TNBC cell line, 4T1.0. To elucidate the molecular mechanism underlying a high growth ability of 4T1.3 in a bone cavity, we searched for a novel candidate molecule with a focus on a transcription factor whose expression was selectively enhanced in a bone cavity. Comprehensive gene expression analysis detected enhanced Nfe2 mRNA expression in 4T1.3 grown in a bone cavity, compared with in vitro culture conditions. Moreover, Nfe2 gene transduction into 4T1.0 cells enhanced their capability to form intraosseous tumors. Moreover, Nfe2 shRNA treatment reduced tumor formation arising from intraosseous injection of 4T1.3 clone as well as another mouse TNBC-derived TS/A.3 clone with an augmented intraosseous tumor formation ability. Furthermore, NFE2 expression was associated with in vitro growth advantages of these TNBC cell lines under hypoxic condition, which mimics the bone microenvironment, as well as Wnt pathway activation. These observations suggest that NFE2 can potentially contribute to breast cancer cell survival in the bone microenvironment.
Collapse
Affiliation(s)
- Di Zhang
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa 920-1192, Japan; (D.Z.); (T.B.); (N.M.)
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan; (S.I.); (S.-i.H.)
| | - Tomohisa Baba
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa 920-1192, Japan; (D.Z.); (T.B.); (N.M.)
| | - Shin-ichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan; (S.I.); (S.-i.H.)
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa 920-1192, Japan; (D.Z.); (T.B.); (N.M.)
| | - So-ichiro Sasaki
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa 920-1192, Japan; (D.Z.); (T.B.); (N.M.)
| |
Collapse
|
26
|
Wan Z, Han B. Comparison and Implications of Mutational Profiles of Myelodysplastic Syndromes, Myeloproliferative Neoplasms, and Myelodysplastic/Myeloproliferative Neoplasms: A Meta-Analysis. Front Oncol 2020; 10:579221. [PMID: 33117717 PMCID: PMC7575718 DOI: 10.3389/fonc.2020.579221] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Dysplasia and proliferation are histological properties that can be used to diagnose and categorize myeloid tumors in myelodysplastic syndromes (MDS) and myeloproliferative neoplasms (MPN). However, these conditions are not exclusive, and overlap between them leads to another classification, MDS/MPN. As well as phenotype continuity, these three conditions may have genetic relationships that have not yet been identified. This study aimed to obtain their mutational profiles by meta-analysis and explore possible similarities and differences. We reviewed screening studies of gene mutations, published from January 2000 to March 2020, from PubMed and Web of Science. Fifty-three articles were eligible for the meta-analysis, and at most 9,809 cases were involved for any gene. The top mutant genes and their pooled mutation rates were as follows: SF3B1 (20.2% [95% CI 11.6-30.5%]) in MDS, TET2 (39.2% [95% CI 21.7-52.0%]) in MDS/MPN, and JAK2 (67.9% [95% CI 64.1-71.6%]) in MPN. Subgroup analysis revealed that leukemic transformation-related genes were more commonly mutated in high-risk MDS (MDS with multilineage dysplasia and MDS with excess blasts) than that in other MDS entities. Thirteen genes including ASXL1, U2AF1, SRSF2, SF3B1, and ZRSR2 had significantly higher mutation frequencies in primary myelofibrosis (PMF) compared with essential thrombocythemia and polycythemia vera; this difference distinguished PMF from MPN and likened it to MDS. Chronic myelomonocytic leukemia and atypical chronic myeloid leukemia were similar entities but showed several mutational differences. A heat map demonstrated that juvenile myelomonocytic leukemia and MDS/MPN with ring sideroblasts and thrombocytosis were two distinct entities, whereas MDS/MPN-unclassifiable was closest to high-risk MDS. Such genetic closeness or difference reflected features in the pathogenesis, diagnosis, treatment, and progression of these conditions, and could inspire future genetic studies.
Collapse
Affiliation(s)
- Ziqi Wan
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Bing Han
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
27
|
Kjær L. Clonal Hematopoiesis and Mutations of Myeloproliferative Neoplasms. Cancers (Basel) 2020; 12:cancers12082100. [PMID: 32731609 PMCID: PMC7464548 DOI: 10.3390/cancers12082100] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are associated with the fewest number of mutations among known cancers. The mutations propelling these malignancies are phenotypic drivers providing an important implement for diagnosis, treatment response monitoring, and gaining insight into the disease biology. The phenotypic drivers of Philadelphia chromosome negative MPN include mutations in JAK2, CALR, and MPL. The most prevalent driver mutation JAK2V617F can cause disease entities such as essential thrombocythemia (ET) and polycythemia vera (PV). The divergent development is considered to be influenced by the acquisition order of the phenotypic driver mutation relative to other MPN-related mutations such as TET2 and DNMT3A. Advances in molecular biology revealed emergence of clonal hematopoiesis (CH) to be inevitable with aging and associated with risk factors beyond the development of blood cancers. In addition to its well-established role in thrombosis, the JAK2V617F mutation is particularly connected to the risk of developing cardiovascular disease (CVD), a pertinent issue, as deep molecular screening has revealed the prevalence of the mutation to be much higher in the background population than previously anticipated. Recent findings suggest a profound under-diagnosis of MPNs, and considering the impact of CVD on society, this calls for early detection of phenotypic driver mutations and clinical intervention.
Collapse
Affiliation(s)
- Lasse Kjær
- Department of Hematology, Zealand University Hospital, Vestermarksvej 7-9, DK-4000 Roskilde, Denmark
| |
Collapse
|
28
|
Zebrafish for thrombocytopoiesis- and hemostasis-related researches and disorders. BLOOD SCIENCE 2020; 2:44-49. [PMID: 35402814 PMCID: PMC8975081 DOI: 10.1097/bs9.0000000000000043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 03/05/2020] [Indexed: 11/30/2022] Open
Abstract
Platelets play vital roles in hemostasis, inflammation, and vascular biology. Platelets are also active participants in the immune responses. As vertebrates, zebrafish have a highly conserved hematopoietic system in the developmental, cellular, functional, biochemical, and genetic levels with mammals. Thrombocytes in zebrafish are functional homologs of mammalian platelets. Here, we summarized thrombocyte development, function, and related research techniques in zebrafish, and reviewed available zebrafish models of platelet-associated disorders, including congenital amegakaryocytic thrombocytopenia, inherited thrombocytopenia, essential thrombocythemia, and blood coagulation disorders such as gray platelet syndrome. These elegant zebrafish models and methods are crucial for understanding the molecular and genetic mechanisms of thrombocyte development and function, and provide deep insights into related human disease pathophysiology and drug development.
Collapse
|
29
|
Marneth AE, Mullally A. The Molecular Genetics of Myeloproliferative Neoplasms. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a034876. [PMID: 31548225 DOI: 10.1101/cshperspect.a034876] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Activated JAK-STAT signaling is central to the pathogenesis of BCR-ABL-negative myeloproliferative neoplasms (MPNs) and occurs as a result of MPN phenotypic driver mutations in JAK2, CALR, or MPL The spectrum of concomitant somatic mutations in other genes has now largely been defined in MPNs. With the integration of targeted next-generation sequencing (NGS) panels into clinical practice, the clinical significance of concomitant mutations in MPNs has become clearer. In this review, we describe the consequences of concomitant mutations in the most frequently mutated classes of genes in MPNs: (1) DNA methylation pathways, (2) chromatin modification, (3) RNA splicing, (4) signaling pathways, (5) transcription factors, and (6) DNA damage response/stress signaling. The increased use of molecular genetics for early risk stratification of patients brings the possibility of earlier intervention to prevent disease progression in MPNs. However, additional studies are required to decipher underlying molecular mechanisms and effectively target them.
Collapse
Affiliation(s)
- Anna E Marneth
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute, Cambridge, Massachusetts 02142, USA.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
30
|
Luk ADW, Yang X, Alcasabas AP, Hao RC, Chan KW, Lee PP, Yang J, Chan GCF, So JCC, Yang W, Lau YL. NF-E2 mutation as a novel cause for inherited thrombocytopenia. Br J Haematol 2020; 189:e41-e44. [PMID: 31951293 PMCID: PMC7187305 DOI: 10.1111/bjh.16438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Anderson Dik Wai Luk
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xingtian Yang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ana Patricia Alcasabas
- Section of Pediatric Hematology-Oncology, University of the Philippines - Philippine General Hospital, Manila, Philippines
| | - Roxanne Casis Hao
- Section of Allergy and Immunology, University of the Philippines - Philippine General Hospital, Manila, Philippines
| | - Koon-Wing Chan
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Pamela P Lee
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,The Hong Kong Children's Hospital, Hong Kong, China
| | - Jing Yang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Godfrey Chi-Fung Chan
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,The Hong Kong Children's Hospital, Hong Kong, China
| | | | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,The Hong Kong Children's Hospital, Hong Kong, China
| |
Collapse
|
31
|
Opatz S, Bamopoulos SA, Metzeler KH, Herold T, Ksienzyk B, Bräundl K, Tschuri S, Vosberg S, Konstandin NP, Wang C, Hartmann L, Graf A, Krebs S, Blum H, Schneider S, Thiede C, Middeke JM, Stölzel F, Röllig C, Schetelig J, Ehninger G, Krämer A, Braess J, Görlich D, Sauerland MC, Berdel WE, Wörmann BJ, Hiddemann W, Spiekermann K, Bohlander SK, Greif PA. The clinical mutatome of core binding factor leukemia. Leukemia 2020; 34:1553-1562. [PMID: 31896782 PMCID: PMC7266744 DOI: 10.1038/s41375-019-0697-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/28/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022]
Abstract
The fusion genes CBFB/MYH11 and RUNX1/RUNX1T1 block differentiation through disruption of the core binding factor (CBF) complex and are found in 10–15% of adult de novo acute myeloid leukemia (AML) cases. This AML subtype is associated with a favorable prognosis; however, nearly half of CBF-rearranged patients cannot be cured with chemotherapy. This divergent outcome might be due to additional mutations, whose spectrum and prognostic relevance remains hardly defined. Here, we identify nonsilent mutations, which may collaborate with CBF-rearrangements during leukemogenesis by targeted sequencing of 129 genes in 292 adult CBF leukemia patients, and thus provide a comprehensive overview of the mutational spectrum (‘mutatome’) in CBF leukemia. Thereby, we detected fundamental differences between CBFB/MYH11- and RUNX1/RUNX1T1-rearranged patients with ASXL2, JAK2, JAK3, RAD21, TET2, and ZBTB7A being strongly correlated with the latter subgroup. We found prognostic relevance of mutations in genes previously known to be AML-associated such as KIT, SMC1A, and DHX15 and identified novel, recurrent mutations in NFE2 (3%), MN1 (4%), HERC1 (3%), and ZFHX4 (5%). Furthermore, age >60 years, nonprimary AML and loss of the Y-chromosomes are important predictors of survival. These findings are important for refinement of treatment stratification and development of targeted therapy approaches in CBF leukemia.
Collapse
Affiliation(s)
- Sabrina Opatz
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,Experimental Leukemia & Lymphoma Research, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefanos A Bamopoulos
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Klaus H Metzeler
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,Experimental Leukemia & Lymphoma Research, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Herold
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Bianka Ksienzyk
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Kathrin Bräundl
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,Experimental Leukemia & Lymphoma Research, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Tschuri
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Vosberg
- Experimental Leukemia & Lymphoma Research, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Nikola P Konstandin
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Christine Wang
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Luise Hartmann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,Experimental Leukemia & Lymphoma Research, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis at the Gene Center, LMU Munich, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis at the Gene Center, LMU Munich, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis at the Gene Center, LMU Munich, Munich, Germany
| | - Stephanie Schneider
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,Institute of Human Genetics, University Hospital, LMU Munich, Munich, Germany
| | - Christian Thiede
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine 1, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Jan Moritz Middeke
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine 1, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Friedrich Stölzel
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine 1, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Christoph Röllig
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine 1, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Johannes Schetelig
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine 1, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Gerhard Ehninger
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine 1, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Alwin Krämer
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Braess
- Oncology and Hematology, St. John of God Hospital, Regensburg, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | | | - Wolfgang E Berdel
- Department of Medicine A, Hematology, Oncology and Pneumology, University of Münster, Münster, Germany
| | - Bernhard J Wörmann
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine, Campus Virchow, Berlin, Germany
| | - Wolfgang Hiddemann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,Experimental Leukemia & Lymphoma Research, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karsten Spiekermann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,Experimental Leukemia & Lymphoma Research, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan K Bohlander
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Philipp A Greif
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany. .,Experimental Leukemia & Lymphoma Research, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
32
|
Guglielmelli P, Pacilli A, Coltro G, Mannelli F, Mannelli L, Contini E, Rotunno G, Bartalucci N, Fiaccabrino S, Sordi B, Loscocco GG, Paoli C, Vannucchi AM. Characteristics and clinical correlates of NFE2 mutations in chronic Myeloproliferative neoplasms. Am J Hematol 2020; 95:E23-E26. [PMID: 31659782 DOI: 10.1002/ajh.25668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Paola Guglielmelli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e ClinicaUniversità degli Studi Florence Italy
| | - Annalisa Pacilli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e ClinicaUniversità degli Studi Florence Italy
| | - Giacomo Coltro
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e ClinicaUniversità degli Studi Florence Italy
| | - Francesco Mannelli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e ClinicaUniversità degli Studi Florence Italy
| | - Lara Mannelli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e ClinicaUniversità degli Studi Florence Italy
| | - Elisa Contini
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e ClinicaUniversità degli Studi Florence Italy
| | - Giada Rotunno
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e ClinicaUniversità degli Studi Florence Italy
| | - Niccolò Bartalucci
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e ClinicaUniversità degli Studi Florence Italy
| | - Sara Fiaccabrino
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e ClinicaUniversità degli Studi Florence Italy
| | - Benedetta Sordi
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e ClinicaUniversità degli Studi Florence Italy
| | - Giuseppe Gaetano Loscocco
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e ClinicaUniversità degli Studi Florence Italy
| | - Chiara Paoli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e ClinicaUniversità degli Studi Florence Italy
| | - Alessandro M. Vannucchi
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e ClinicaUniversità degli Studi Florence Italy
| |
Collapse
|
33
|
Vorbach S, Gründer A, Zhou F, Koellerer C, Jutzi JS, Simoni M, Riccetti L, Valk PJ, Sanders MA, Müller-Tidow C, Nofer JR, Pahl HL, Potì F. Enhanced expression of the sphingosine-1-phosphate-receptor-3 causes acute myelogenous leukemia in mice. Leukemia 2019; 34:721-734. [PMID: 31636343 DOI: 10.1038/s41375-019-0577-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/20/2019] [Accepted: 06/07/2019] [Indexed: 12/19/2022]
Abstract
Acute myeloid leukemia (AML) carries a 10-100 fold lower mutational burden than other neoplastic entities. Mechanistic explanations for why a low number of mutations suffice to induce leukemogenesis are therefore required. Here we demonstrate that transgenic overexpression of the wild type sphingosine-1-phosphate receptor 3 (S1P3) in murine hematopoietic stem cells is sufficient to induce a transplantable myeloid leukemia. In contrast, S1P3 expression in more mature compartments does not cause malignant transformation. Treatment with the sphingosine phosphate receptor modulator Fingolimod, which prevents receptor signaling, normalized peripheral blood cell counts and reduced spleen sizes in S1P3 expressing mice. Gene expression analyses in AML patients revealed elevated S1P3 expression specifically in two molecular subclasses. Our data suggest a previously unrecognized contribution of wild type S1P3 signaling to leukemogenesis that warrants the exploration of S1P3 antagonists in preclinical AML models.
Collapse
Affiliation(s)
- Samuel Vorbach
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Albert Gründer
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Fengbiao Zhou
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Christoph Koellerer
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Jonas S Jutzi
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Manuela Simoni
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Giardini 1355, Modena, Italy
| | - Laura Riccetti
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Giardini 1355, Modena, Italy
| | - Peter J Valk
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mathijs A Sanders
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Carsten Müller-Tidow
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Jerzy-Roch Nofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Heike L Pahl
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| | - Francesco Potì
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Giardini 1355, Modena, Italy.,Department of Medicine and Surgery-Unit of Neurosciences, University of Parma, Via Volturno 39/F, 43125, Parma, Italy
| |
Collapse
|
34
|
Perner F, Perner C, Ernst T, Heidel FH. Roles of JAK2 in Aging, Inflammation, Hematopoiesis and Malignant Transformation. Cells 2019; 8:cells8080854. [PMID: 31398915 PMCID: PMC6721738 DOI: 10.3390/cells8080854] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/22/2022] Open
Abstract
Clonal alterations in hematopoietic cells occur during aging and are often associated with the establishment of a subclinical inflammatory environment. Several age-related conditions and diseases may be initiated or promoted by these alterations. JAK2 mutations are among the most frequently mutated genes in blood cells during aging. The most common mutation within the JAK2 gene is JAK2-V617F that leads to constitutive activation of the kinase and thereby aberrant engagement of downstream signaling pathways. JAK2 mutations can act as central drivers of myeloproliferative neoplasia, a pre-leukemic and age-related malignancy. Likewise, hyperactive JAK-signaling is a hallmark of immune diseases and critically influences inflammation, coagulation and thrombosis. In this review we aim to summarize the current knowledge on JAK2 in clonal hematopoiesis during aging, the role of JAK-signaling in inflammation and lymphocyte biology and JAK2 function in age-related diseases and malignant transformation.
Collapse
Affiliation(s)
- Florian Perner
- Innere Medizin 2, Hämatologie und Onkologie, Universitätsklinikum Jena, 07747 Jena, Germany
- Leibniz-Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany
- Dana-Farber Cancer Institute, Department of Pediatric Oncology, Harvard University, Boston, MA 02467, USA
| | - Caroline Perner
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital, and Harvard Medical School, Boston, 02129 MA, USA
| | - Thomas Ernst
- Innere Medizin 2, Hämatologie und Onkologie, Universitätsklinikum Jena, 07747 Jena, Germany
| | - Florian H Heidel
- Innere Medizin 2, Hämatologie und Onkologie, Universitätsklinikum Jena, 07747 Jena, Germany.
- Leibniz-Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany.
| |
Collapse
|
35
|
Duarte BKL, Yamaguti‐Hayakawa GG, Medina SS, Siqueira LH, Snetsinger B, Costa FF, Rauh MJ, Ozelo MC. Longitudinal sequencing ofRUNX1familial platelet disorder: new insights into genetic mechanisms of transformation to myeloid malignancies. Br J Haematol 2019; 186:724-734. [DOI: 10.1111/bjh.15990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Bruno K. L. Duarte
- INCT do Sangue Hemocentro UNICAMP University of Campinas CampinasSPBrazil
- Department of Internal Medicine Faculty of Medical Sciences University of Campinas FCM Campinas SP Brazil
| | - Gabriela G. Yamaguti‐Hayakawa
- INCT do Sangue Hemocentro UNICAMP University of Campinas CampinasSPBrazil
- Department of Internal Medicine Faculty of Medical Sciences University of Campinas FCM Campinas SP Brazil
| | - Samuel S. Medina
- INCT do Sangue Hemocentro UNICAMP University of Campinas CampinasSPBrazil
| | - Lúcia H. Siqueira
- INCT do Sangue Hemocentro UNICAMP University of Campinas CampinasSPBrazil
| | - Brooke Snetsinger
- Department of Pathology and Molecular Medicine Queen's University Kingston ON Canada
| | - Fernando F. Costa
- INCT do Sangue Hemocentro UNICAMP University of Campinas CampinasSPBrazil
- Department of Internal Medicine Faculty of Medical Sciences University of Campinas FCM Campinas SP Brazil
| | - Michael J. Rauh
- Department of Pathology and Molecular Medicine Queen's University Kingston ON Canada
| | - Margareth C. Ozelo
- INCT do Sangue Hemocentro UNICAMP University of Campinas CampinasSPBrazil
- Department of Internal Medicine Faculty of Medical Sciences University of Campinas FCM Campinas SP Brazil
| |
Collapse
|
36
|
Vainchenker W, Plo I, Marty C, Varghese LN, Constantinescu SN. The role of the thrombopoietin receptor MPL in myeloproliferative neoplasms: recent findings and potential therapeutic applications. Expert Rev Hematol 2019; 12:437-448. [PMID: 31092065 DOI: 10.1080/17474086.2019.1617129] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Classical Myeloproliferative Neoplasms (MPNs) include three disorders: Polycythemia Vera (PV), Essential Thrombocythemia (ET) and Primary Myelofibrosis (PMF). MPNs are associated with constitutive activation of JAK2 leading to persistent cell signaling downstream of the dimeric myeloid cytokine receptors due to mutations in three genes encoding JAK2, calreticulin (CALR) and the thrombopoietin (TPO) receptor (MPL or TPOR). CALR and MPL mutants induce JAK2 activation that depends on MPL expression, thus explaining why they induce megakaryocyte pathologies including ET and PMF, but not PV. In contrast, JAK2 V617F drives all three diseases as it induces persistent signaling via EPOR, G-CSFR (CSF3R) and MPL. Areas Covered: Here, we review how different pathogenic mutations of MPL are translated into active receptors by inducing stable dimerization. We focus on the unique role of MPL on the hematopoietic stem cell (HSC), explaining why MPL is indispensable for the development of all MPNs. Last but not least, we describe how CALR mutants are pathogenic via binding and activation of MPL. Expert Opinion: Altogether, we believe that MPL is an important, but challenging, therapeutic target in MPNs that requires novel strategies to interrupt the specific conformational changes induced by each mutation or pathologic interaction without compromising the key functions of wild type MPL.
Collapse
Affiliation(s)
- William Vainchenker
- a UMR1170 , INSERM , Villejuif , France.,b Université Paris-Saclay , Villejuif , France
| | - Isabelle Plo
- a UMR1170 , INSERM , Villejuif , France.,b Université Paris-Saclay , Villejuif , France
| | - Caroline Marty
- a UMR1170 , INSERM , Villejuif , France.,b Université Paris-Saclay , Villejuif , France
| | - Leila N Varghese
- c Ludwig Institute for Cancer Research Brussels , Brussels , Belgium.,d de Duve Institute, Université catholique de Louvain , Brussels , Belgium
| | - Stefan N Constantinescu
- c Ludwig Institute for Cancer Research Brussels , Brussels , Belgium.,d de Duve Institute, Université catholique de Louvain , Brussels , Belgium.,e WELBIO (Walloon Excellence in Life Sciences and Biotechnology) , Brussels , Belgium
| |
Collapse
|
37
|
Altered NFE2 activity predisposes to leukemic transformation and myelosarcoma with AML-specific aberrations. Blood 2019; 133:1766-1777. [PMID: 30755419 DOI: 10.1182/blood-2018-09-875047] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/05/2019] [Indexed: 12/14/2022] Open
Abstract
In acute myeloid leukemia (AML), acquired genetic aberrations carry prognostic implications and guide therapeutic decisions. Clinical algorithms have been improved by the incorporation of novel aberrations. Here, we report the presence and functional characterization of mutations in the transcription factor NFE2 in patients with AML and in a patient with myelosarcoma. We previously described NFE2 mutations in patients with myeloproliferative neoplasms and demonstrated that expression of mutant NFE2 in mice causes a myeloproliferative phenotype. Now, we show that, during follow-up, 34% of these mice transform to leukemia presenting with or without concomitant myelosarcomas, or develop isolated myelosarcomas. These myelosarcomas and leukemias acquired AML-specific alterations, including the murine equivalent of trisomy 8, loss of the AML commonly deleted region on chromosome 5q, and mutations in the tumor suppressor Trp53 Our data show that mutations in NFE2 predispose to the acquisition of secondary changes promoting the development of myelosarcoma and/or AML.
Collapse
|
38
|
O'Sullivan J, Mead AJ. Heterogeneity in myeloproliferative neoplasms: Causes and consequences. Adv Biol Regul 2018; 71:55-68. [PMID: 30528537 DOI: 10.1016/j.jbior.2018.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 01/09/2023]
Abstract
Myeloproliferative neoplasms (MPNs) are haematopoietic stem cell-derived clonal disorders characterised by proliferation of some or all myeloid lineages, depending on the subtype. MPNs are classically categorized into three disease subgroups; essential thrombocythaemia (ET), polycythaemia vera (PV) and primary myelofibrosis (PMF). The majority (>85%) of patients carry a disease-initiating or driver mutation, the most prevalent occurring in the janus kinase 2 gene (JAK2 V617F), followed by calreticulin (CALR) and myeloproliferative leukaemia virus (MPL) genes. Although these diseases are characterised by shared clinical, pathological and molecular features, one of the most challenging aspects of these disorders is the diverse clinical features which occur in each disease type, with marked variability in risks of disease complications and progression to leukaemia. A remarkable aspect of MPN biology is that the JAK2 V617F mutation, often occurring in the absence of additional mutations, generates a spectrum of phenotypes from asymptomatic ET through to aggressive MF, associated with a poor outcome. The mechanisms promoting MPN heterogeneity remain incompletely understood, but contributing factors are broad and include patient characteristics (gender, age, comorbidities and environmental exposures), additional somatic mutations, target disease-initiating cell, bone marrow microenvironment and germline genetic associations. In this review, we will address these in detail and discuss their role in heterogeneity of MPN disease phenotypes. Tailoring patient management according to the multiple different factors that influence disease phenotype may prove to be the most effective approach to modify the natural history of the disease and ultimately improve outcomes for patients.
Collapse
Affiliation(s)
- Jennifer O'Sullivan
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom.
| | - Adam J Mead
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom; NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK.
| |
Collapse
|
39
|
Aberrant splicing and defective mRNA production induced by somatic spliceosome mutations in myelodysplasia. Nat Commun 2018; 9:3649. [PMID: 30194306 PMCID: PMC6128865 DOI: 10.1038/s41467-018-06063-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
Spliceosome mutations are frequently found in myelodysplasia. Splicing alterations induced by these mutations, their precise targets, and the effect at the transcript level have not been fully elucidated. Here we report transcriptomic analyses of 265 bone marrow samples from myelodysplasia patients, followed by a validation using CRISPR/Cas9-mediated gene editing and an assessment of nonsense-mediated decay susceptibility. Small but widespread reduction of intron-retaining isoforms is the most frequent splicing alteration in SF3B1-mutated samples. SF3B1 mutation is also associated with 3′ splice site alterations, leading to the most pronounced reduction of canonical transcripts. Target genes include tumor suppressors and genes of mitochondrial iron metabolism or heme biosynthesis. Alternative exon usage is predominant in SRSF2- and U2AF1-mutated samples. Usage of an EZH2 cryptic exon harboring a premature termination codon is increased in both SRSF2- and U2AF1-mutated samples. Our study reveals a landscape of splicing alterations and precise targets of various spliceosome mutations. Mutations to the splicing machinery may have an important role in myelodysplasia. Here, the authors describe splicing factor gene mutations in myelodysplasia and report tumor suppressor, epigenetic, iron metabolism and heme biosynthesis genes as their targets.
Collapse
|
40
|
LSD1 Inhibition Prolongs Survival in Mouse Models of MPN by Selectively Targeting the Disease Clone. Hemasphere 2018; 2:e54. [PMID: 31723778 PMCID: PMC6745991 DOI: 10.1097/hs9.0000000000000054] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/27/2018] [Indexed: 12/27/2022] Open
Abstract
Supplemental Digital Content is available in the text Despite recent advances, the myeloproliferative neoplasms (MPNs) are attended by considerable morbidity and mortality. Janus kinase (Jak) inhibitors such as ruxolitinib manage symptoms but do not substantially change the natural history of the disease. In this report, we show the effects of IMG-7289, an irreversible inhibitor of the epigenetically active lysine-specific demethylase 1 (LSD1) in mouse models of MPN. Once-daily treatment with IMG-7289 normalized or improved blood cell counts, reduced spleen volumes, restored normal splenic architecture, and reduced bone marrow fibrosis. Most importantly, LSD1 inhibition lowered mutant allele burden and improved survival. IMG-7289 selectively inhibited proliferation and induced apoptosis of JAK2V617F cells by concomitantly increasing expression and methylation of p53, and, independently, the pro-apoptotic factor PUMA and by decreasing the levels of its antiapoptotic antagonist BCLXL. These data provide a molecular understanding of the disease-modifying activity of the LSD1 inhibitor IMG-7289 that is currently undergoing clinical evaluation in patients with high-risk myelofibrosis. Moreover, low doses of IMG-7289 and ruxolitinib synergize in normalizing the MPN phenotype in mice, offering a rationale for investigating combination therapy.
Collapse
|
41
|
JAK2 and JMJD1C activate NFE2 in MPNs. Blood 2018; 131:1998-1999. [DOI: 10.1182/blood-2018-03-839779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
Peeken JC, Jutzi JS, Wehrle J, Koellerer C, Staehle HF, Becker H, Schoenwandt E, Seeger TS, Schanne DH, Gothwal M, Ott CJ, Gründer A, Pahl HL. Epigenetic regulation of NFE2 overexpression in myeloproliferative neoplasms. Blood 2018; 131:2065-2073. [PMID: 29519804 PMCID: PMC5934799 DOI: 10.1182/blood-2017-10-810622] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/27/2018] [Indexed: 12/23/2022] Open
Abstract
The transcription factor "nuclear factor erythroid 2" (NFE2) is overexpressed in the majority of patients with myeloproliferative neoplasms (MPNs). In murine models, elevated NFE2 levels cause an MPN phenotype with spontaneous leukemic transformation. However, both the molecular mechanisms leading to NFE2 overexpression and its downstream targets remain incompletely understood. Here, we show that the histone demethylase JMJD1C constitutes a novel NFE2 target gene. JMJD1C levels are significantly elevated in polycythemia vera (PV) and primary myelofibrosis patients; concomitantly, global H3K9me1 and H3K9me2 levels are significantly decreased. JMJD1C binding to the NFE2 promoter is increased in PV patients, decreasing both H3K9me2 levels and binding of the repressive heterochromatin protein-1α (HP1α). Hence, JMJD1C and NFE2 participate in a novel autoregulatory loop. Depleting JMJD1C expression significantly reduced cytokine-independent growth of an MPN cell line. Independently, NFE2 is regulated through the epigenetic JAK2 pathway by phosphorylation of H3Y41. This likewise inhibits HP1α binding. Treatment with decitabine lowered H3Y41ph and augmented H3K9me2 levels at the NFE2 locus in HEL cells, thereby increasing HP1α binding, which normalized NFE2 expression selectively in JAK2V617F-positive cell lines.
Collapse
Affiliation(s)
| | - Jonas S Jutzi
- Division of Molecular Hematology
- Spemann Graduate School of Biology and Medicine (SGBM)
- Faculty of Biology, and
| | - Julius Wehrle
- Division of Molecular Hematology
- Berta Ottenstein Program, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | | | | - Christopher J Ott
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA; and
- Department of Medicine, Harvard Medical School, Charlestown, MA
| | | | - Heike L Pahl
- Division of Molecular Hematology
- Spemann Graduate School of Biology and Medicine (SGBM)
| |
Collapse
|
43
|
Greif PA, Hartmann L, Vosberg S, Stief SM, Mattes R, Hellmann I, Metzeler KH, Herold T, Bamopoulos SA, Kerbs P, Jurinovic V, Schumacher D, Pastore F, Bräundl K, Zellmeier E, Ksienzyk B, Konstandin NP, Schneider S, Graf A, Krebs S, Blum H, Neumann M, Baldus CD, Bohlander SK, Wolf S, Görlich D, Berdel WE, Wörmann BJ, Hiddemann W, Spiekermann K. Evolution of Cytogenetically Normal Acute Myeloid Leukemia During Therapy and Relapse: An Exome Sequencing Study of 50 Patients. Clin Cancer Res 2018; 24:1716-1726. [PMID: 29330206 DOI: 10.1158/1078-0432.ccr-17-2344] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/03/2017] [Accepted: 01/08/2018] [Indexed: 11/16/2022]
Abstract
Purpose: To study mechanisms of therapy resistance and disease progression, we analyzed the evolution of cytogenetically normal acute myeloid leukemia (CN-AML) based on somatic alterations.Experimental Design: We performed exome sequencing of matched diagnosis, remission, and relapse samples from 50 CN-AML patients treated with intensive chemotherapy. Mutation patterns were correlated with clinical parameters.Results: Evolutionary patterns correlated with clinical outcome. Gain of mutations was associated with late relapse. Alterations of epigenetic regulators were frequently gained at relapse with recurring alterations of KDM6A constituting a mechanism of cytarabine resistance. Low KDM6A expression correlated with adverse clinical outcome, particularly in male patients. At complete remission, persistent mutations representing preleukemic lesions were observed in 48% of patients. The persistence of DNMT3A mutations correlated with shorter time to relapse.Conclusions: Chemotherapy resistance might be acquired through gain of mutations. Insights into the evolution during therapy and disease progression lay the foundation for tailored approaches to treat or prevent relapse of CN-AML. Clin Cancer Res; 24(7); 1716-26. ©2018 AACR.
Collapse
Affiliation(s)
- Philipp A Greif
- Department of Medicine III, University Hospital, LMU Munich, München, Germany. .,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Luise Hartmann
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Vosberg
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sophie M Stief
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Raphael Mattes
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ines Hellmann
- Anthropology and Human Genomics, Department Biology II, LMU Munich, Martinsried, Germany
| | - Klaus H Metzeler
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Herold
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Paul Kerbs
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vindi Jurinovic
- Institute for Medical Information Procesing, Biometry and Epidemiology (IBE), LMU Munich, München, Germany
| | - Daniela Schumacher
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Friederike Pastore
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kathrin Bräundl
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Evelyn Zellmeier
- Department of Medicine III, University Hospital, LMU Munich, München, Germany
| | - Bianka Ksienzyk
- Department of Medicine III, University Hospital, LMU Munich, München, Germany
| | - Nikola P Konstandin
- Department of Medicine III, University Hospital, LMU Munich, München, Germany
| | - Stephanie Schneider
- Department of Medicine III, University Hospital, LMU Munich, München, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, München, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, München, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, München, Germany
| | - Martin Neumann
- German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Divison of Hematology and Oncology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, and Campus Virchow, Berlin, Germany
| | - Claudia D Baldus
- German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Divison of Hematology and Oncology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, and Campus Virchow, Berlin, Germany
| | - Stefan K Bohlander
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Stephan Wolf
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Wolfgang E Berdel
- Department of Medicine A -Hematology, Oncology and Pneumology, University of Münster, Münster, Germany
| | - Bernhard J Wörmann
- Divison of Hematology and Oncology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, and Campus Virchow, Berlin, Germany
| | - Wolfgang Hiddemann
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karsten Spiekermann
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
44
|
Isolated myelosarcoma is characterized by recurrent NFE2 mutations and concurrent preleukemic clones in the bone marrow. Blood 2017; 131:577-581. [PMID: 29191917 DOI: 10.1182/blood-2017-07-793620] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
45
|
Schischlik F, Kralovics R. Mutations in myeloproliferative neoplasms - their significance and clinical use. Expert Rev Hematol 2017; 10:961-973. [PMID: 28914569 DOI: 10.1080/17474086.2017.1380515] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Clonal hematologic diseases of the blood such as polycythemia vera, essential thrombocythemia and primary myelofibrosis belong to the BCR-ABL negative Myeloproliferative Neoplasms (MPN). These diseases are characterized by clonal expansion of hematopoietic precursor cells followed by increased production of differentiated cells of the myeloid lineage. Initiation of clonal hematopoiesis, formation of a clinical phenotype as well as disease progression form part of MPN disease evolution. The disease is driven by acquired somatic mutations in critical pathways such as cytokine signaling, epigenetic regulation, RNA splicing, and transcription factor signaling. Areas covered: The following review aims to provide an overview of the mutational landscape of MPN, the impact of these mutations in MPN pathogenesis as well as their prognostic value. Finally, a summary of how these mutations are being used or could potentially be used for the treatment of MPN patients is presented. Expert commentary: The genetic landscape of MPN patients has been successfully dissected within the past years with the advent of new sequencing technologies. Integrating the genetic information within a clinical setting is already benefitting patients in terms of disease monitoring and prognostic information of disease progression but will be further intensified within the next years.
Collapse
Affiliation(s)
- Fiorella Schischlik
- a CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , Vienna , Austria
| | - Robert Kralovics
- a CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , Vienna , Austria
| |
Collapse
|
46
|
Andersen M, Sajid Z, Pedersen RK, Gudmand-Hoeyer J, Ellervik C, Skov V, Kjær L, Pallisgaard N, Kruse TA, Thomassen M, Troelsen J, Hasselbalch HC, Ottesen JT. Mathematical modelling as a proof of concept for MPNs as a human inflammation model for cancer development. PLoS One 2017; 12:e0183620. [PMID: 28859112 PMCID: PMC5578482 DOI: 10.1371/journal.pone.0183620] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/08/2017] [Indexed: 12/15/2022] Open
Abstract
The chronic Philadelphia-negative myeloproliferative neoplasms (MPNs) are acquired stem cell neoplasms which ultimately may transform to acute myelogenous leukemia. Most recently, chronic inflammation has been described as an important factor for the development and progression of MPNs in the biological continuum from early cancer stage to the advanced myelofibrosis stage, the MPNs being described as "A Human Inflammation Model for Cancer Development". This novel concept has been built upon clinical, experimental, genomic, immunological and not least epidemiological studies. Only a few studies have described the development of MPNs by mathematical models, and none have addressed the role of inflammation for clonal evolution and disease progression. Herein, we aim at using mathematical modelling to substantiate the concept of chronic inflammation as an important trigger and driver of MPNs.The basics of the model describe the proliferation from stem cells to mature cells including mutations of healthy stem cells to become malignant stem cells. We include a simple inflammatory coupling coping with cell death and affecting the basic model beneath. First, we describe the system without feedbacks or regulatory interactions. Next, we introduce inflammatory feedback into the system. Finally, we include other feedbacks and regulatory interactions forming the inflammatory-MPN model. Using mathematical modeling, we add further proof to the concept that chronic inflammation may be both a trigger of clonal evolution and an important driving force for MPN disease progression. Our findings support intervention at the earliest stage of cancer development to target the malignant clone and dampen concomitant inflammation.
Collapse
Affiliation(s)
- Morten Andersen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Zamra Sajid
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Rasmus K. Pedersen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | | - Christina Ellervik
- Department of Laboratory Medicine at Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark
| | - Niels Pallisgaard
- Department of Pathology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark
| | - Torben A. Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Jesper Troelsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Hans Carl Hasselbalch
- Department of Hematology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark
| | - Johnny T. Ottesen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
47
|
Nangalia J, Grinfeld J, Green AR. Pathogenesis of Myeloproliferative Disorders. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 11:101-26. [PMID: 27193452 DOI: 10.1146/annurev-pathol-012615-044454] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myeloproliferative neoplasms (MPNs) are a set of chronic hematopoietic neoplasms with overlapping clinical and molecular features. Recent years have witnessed considerable advances in our understanding of their pathogenetic basis. Due to their protracted clinical course, the evolution to advanced hematological malignancies, and the accessibility of neoplastic tissue, the study of MPNs has provided a window into the earliest stages of tumorigenesis. With the discovery of mutations in CALR, the majority of MPN patients now bear an identifiable marker of clonal disease; however, the mechanism by which mutated CALR perturbs megakaryopoiesis is currently unresolved. We are beginning to understand better the role of JAK2(V617F) homozygosity, the function of comutations in epigenetic regulators and spliceosome components, and how these mutations cooperate with JAK2(V617F) to modulate MPN phenotype.
Collapse
Affiliation(s)
- Jyoti Nangalia
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0XY, United Kingdom; .,Department of Haematology, Addenbrooke's Hospital, Cambridge CB2 2QR, United Kingdom
| | - Jacob Grinfeld
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0XY, United Kingdom; .,Department of Haematology, Addenbrooke's Hospital, Cambridge CB2 2QR, United Kingdom
| | - Anthony R Green
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0XY, United Kingdom; .,Department of Haematology, Addenbrooke's Hospital, Cambridge CB2 2QR, United Kingdom
| |
Collapse
|
48
|
Grinfeld J, Godfrey AL. After 10 years of JAK2V617F: Disease biology and current management strategies in polycythaemia vera. Blood Rev 2017; 31:101-118. [DOI: 10.1016/j.blre.2016.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022]
|
49
|
Morotti A, Rocca S, Carrà G, Saglio G, Brancaccio M. Modeling myeloproliferative neoplasms: From mutations to mouse models and back again. Blood Rev 2016; 31:139-150. [PMID: 27899218 DOI: 10.1016/j.blre.2016.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/28/2016] [Accepted: 11/22/2016] [Indexed: 02/07/2023]
Abstract
Myeloproliferative neoplasms (MPNs) are defined according to the 2008 World Health Organization (WHO) classification and the recent 2016 revision. Over the years, several genetic lesions have been associated with the development of MPNs, with important consequences for identifying unique biomarkers associated with specific neoplasms and for developing targeted therapies. Defining the genotype-phenotype relationship in MPNs is essential to identify driver somatic mutations that promote MPN development and maintenance in order to develop curative targeted therapies. While studies with human samples can identify putative driver mutations, murine models are mandatory to demonstrate the causative role of mutations and for pre-clinical testing of specific therapeutic interventions. This review focuses on MPN mouse models specifically developed to assess the pathogenetic roles of gene mutations found in human patients, as well as murine MPN-like phenotypes identified in genetically modified mice.
Collapse
Affiliation(s)
- Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole, 10, 10043 Orbassano, Italy.
| | - Stefania Rocca
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza, 52, 10126 Torino, Italy.
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole, 10, 10043 Orbassano, Italy.
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole, 10, 10043 Orbassano, Italy.
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza, 52, 10126 Torino, Italy.
| |
Collapse
|
50
|
Shi J, Yuan B, Hu W, Lodish H. JAK2 V617F stimulates proliferation of erythropoietin-dependent erythroid progenitors and delays their differentiation by activating Stat1 and other nonerythroid signaling pathways. Exp Hematol 2016; 44:1044-1058.e5. [PMID: 27473563 DOI: 10.1016/j.exphem.2016.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 01/19/2023]
Abstract
JAK2 V617F is a mutant-activated JAK2 kinase found in most polycythemia vera (PV) patients; it skews normal proliferation and differentiation of hematopoietic stem and progenitor cells and simulates aberrant expansion of erythroid progenitors. JAK2 V617F is known to activate some signaling pathways not normally activated in mature erythroblasts, but there has been no systematic study of signal transduction pathways or gene expression in erythroid cells expressing JAK2 V617F undergoing erythropoietin (Epo)-dependent terminal differentiation. Here we report that expression of JAK2 V617F in murine fetal liver Epo-dependent progenitors allows them to divide approximately six rather than the normal approximately four times in the presence of Epo, delaying their exit from the cell cycle. Over time, the number of red cells formed from each Epo-dependent progenitor increases fourfold, and these cells eventually differentiate into normal enucleated reticulocytes. We report that purified fetal liver Epo-dependent progenitors express many cytokine receptors additional to the EpoR. Expression of JAK2 V617F triggers activation of Stat5, the only STAT normally activated by Epo, as well as activation of Stat1 and Stat3. Expression of JAK2 V617F also leads to transient induction of many genes not normally activated in terminally differentiating erythroid cells and that are characteristic of other hematopoietic lineages. Inhibition of Stat1 activation blocks JAK2 V617F hyperproliferation of erythroid progenitors, and we conclude that Stat1-mediated activation of nonerythroid signaling pathways delays terminal erythroid differentiation and permits extended cell divisions.
Collapse
Affiliation(s)
- Jiahai Shi
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA; Departments of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Bingbing Yuan
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA
| | - Wenqian Hu
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA
| | - Harvey Lodish
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA; Departments of Biology and Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA.
| |
Collapse
|