1
|
Shen Y, Chen J, Zhou Z, Wu J, Hu X, Xu Y, Li J, Wang L, Wang S, Yu S, Feng L, Xu X. Matrix stiffness-related extracellular matrix signatures and the DYNLL1 protein promote hepatocellular carcinoma progression through the Wnt/β-catenin pathway. BMC Cancer 2024; 24:1211. [PMID: 39350022 PMCID: PMC11440708 DOI: 10.1186/s12885-024-12973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND In hepatocellular carcinoma (HCC) treatment, first-line targeted therapy in combination with immune checkpoint inhibitors (ICIs) has improved patient prognosis, but the 5-year survival rate is far from satisfactory. Studies have shown that the extracellular matrix (ECM) is an essential part of the tumour microenvironment (TME) and participates in the progression of malignant tumours. ECM remodelling can enhance matrix stiffness in cirrhosis patients, induce an immunosuppressive microenvironment network, and affect the efficacy of targeted therapies and ICIs for treating HCC. However, the exact mechanism is still unclear. METHODS We downloaded data from public databases, selected differentially expressed ECM proteins associated with matrix stiffness, constructed and validated a prognostic model of HCC using Lasso Cox regression, and investigated the roles and mechanism of one of the ECM proteins, dynein light chain LC8-type 1 (DYNLL1), in HCC proliferation, migration, and apoptosis via in vitro experiments. RESULTS In this study, the risk score of the matrix stiffness-related ECM protein model effectively predicted the prognosis of HCC patients. The high- and low-risk subgroups of the model also showed differences in immune cells, immune functions, and drug sensitivity. DYNLL1 promoted HCC cell progression and migration and inhibited HCC cell apoptosis through the Wnt/β-catenin pathway in vitro. CONCLUSION The expression of matrix stiffness-related ECM proteins could be an independent predictor of HCC prognosis. DYNLL1, an oncogenic gene in HCC, has the potential to be a new target for HCC treatment.
Collapse
Affiliation(s)
- Yang Shen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiayu Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhuolin Zhou
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jingyu Wu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xinyao Hu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yangtao Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiayi Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ling Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Siyu Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shuhong Yu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ling Feng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Ximing Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
2
|
Walker DR, Jara KA, Rolland AD, Brooks C, Hare W, Swansiger AK, Reardon PN, Prell JS, Barbar EJ. Linker Length Drives Heterogeneity of Multivalent Complexes of Hub Protein LC8 and Transcription Factor ASCIZ. Biomolecules 2023; 13:404. [PMID: 36979339 PMCID: PMC10046861 DOI: 10.3390/biom13030404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/08/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
LC8, a ubiquitous and highly conserved hub protein, binds over 100 proteins involved in numerous cellular functions, including cell death, signaling, tumor suppression, and viral infection. LC8 binds intrinsically disordered proteins (IDPs), and although several of these contain multiple LC8 binding motifs, the effects of multivalency on complex formation are unclear. Drosophila ASCIZ has seven motifs that vary in sequence and inter-motif linker lengths, especially within subdomain QT2-4 containing the second, third, and fourth LC8 motifs. Using isothermal-titration calorimetry, analytical-ultracentrifugation, and native mass-spectrometry of QT2-4 variants, with methodically deactivated motifs, we show that inter-motif spacing and specific motif sequences combine to control binding affinity and compositional heterogeneity of multivalent duplexes. A short linker separating strong and weak motifs results in stable duplexes but forms off-register structures at high LC8 concentrations. Contrastingly, long linkers engender lower cooperativity and heterogeneous complexation at low LC8 concentrations. Accordingly, two-mers, rather than the expected three-mers, dominate negative-stain electron-microscopy images of QT2-4. Comparing variants containing weak-strong and strong-strong motif combinations demonstrates sequence also regulates IDP/LC8 assembly. The observed trends persist for trivalent ASCIZ subdomains: QT2-4, with long and short linkers, forms heterogeneous complexes, whereas QT4-6, with similar mid-length linkers, forms homogeneous complexes. Implications of linker length variations for function are discussed.
Collapse
Affiliation(s)
- Douglas R. Walker
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Kayla A. Jara
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Amber D. Rolland
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Coban Brooks
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Wendy Hare
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Andrew K. Swansiger
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Patrick N. Reardon
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
- NMR Facility, Oregon State University, Corvallis, OR 97331, USA
| | - James S. Prell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
- Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Elisar J. Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
3
|
Chang W, Li H, Ou W, Wang SY. A novel zinc metabolism-related gene signature to predict prognosis and immunotherapy response in lung adenocarcinoma. Front Immunol 2023; 14:1147528. [PMID: 37033934 PMCID: PMC10079938 DOI: 10.3389/fimmu.2023.1147528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
Background Zinc is a key mineral element in regulating cell growth, development, and immune system. We constructed the zinc metabolism-related gene signature to predict prognosis and immunotherapy response for lung adenocarcinoma (LUAD). Methods Zinc metabolism-associated gene sets were obtained from Molecular Signature Database. Then, the zinc metabolism-related gene signature (ZMRGS) was constructed and validated. After combining with clinical characteristics, the nomogram for practical application was constructed. The differences in biological pathways, immune molecules, and tumor microenvironment (TME) between the different groups were analyzed. Tumor Immune Dysfunction and Exclusion algorithm (TIDE) and two immunotherapy datasets were used to evaluate the immunotherapy response. Results The signature was constructed according to six key zinc metabolism-related genes, which can well predict the prognosis of LUAD patients. The nomogram also showed excellent prediction performance. Functional analysis showed that the low-risk group was in the status of immune activation. More importantly, the lower risk score of LUAD patients showed a higher response rate to immunotherapy. Conclusion The state of zinc metabolism is closely connected to prognosis, tumor microenvironment, and response to immunotherapy. The zinc metabolism-related signature can well evaluate the prognosis and immunotherapy response for LUAD patients.
Collapse
Affiliation(s)
- Wuguang Chang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Hongmu Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Wei Ou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- *Correspondence: Si-Yu Wang, ; Wei Ou,
| | - Si-Yu Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- *Correspondence: Si-Yu Wang, ; Wei Ou,
| |
Collapse
|
4
|
Miao YR, Thakkar K, Cenik C, Jiang D, Mizuno K, Jia C, Li CG, Zhao H, Diep A, Xu Y, Zhang XE, Yang TTC, Liedtke M, Abidi P, Leung WS, Koong AC, Giaccia AJ. Developing high-affinity decoy receptors to treat multiple myeloma and diffuse large B cell lymphoma. J Exp Med 2022; 219:213366. [PMID: 35881112 PMCID: PMC9428257 DOI: 10.1084/jem.20220214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/05/2022] [Accepted: 06/17/2022] [Indexed: 11/12/2022] Open
Abstract
Disease relapse and treatment-induced immunotoxicity pose significant clinical challenges for patients with hematological cancers. Here, we reveal distinctive requirements for neutralizing TNF receptor ligands APRIL and BAFF and their receptor activity in MM and DLBCL, impacting protein translation and production in MM cells and modulating the translation efficiency of the ATM interactor (ATMIN/ACSIZ). Therapeutically, we investigated the use of BCMA decoy receptor (sBCMA-Fc) as an inhibitor of APRIL and BAFF. While wild-type sBCMA-Fc effectively blocked APRIL signaling in MM, it lacked activity in DLBCL due to its weak BAFF binding. To expand the therapeutic utility of sBCMA-Fc, we engineered an affinity-enhanced mutant sBCMA-Fc fusion molecule (sBCMA-Fc V3) 4- and 500-fold stronger in binding to APRIL and BAFF, respectively. The mutant sBCMA-Fc V3 clone significantly enhanced antitumor activity against both MM and DLBCL. Importantly, we also demonstrated an adequate toxicity profile and on-target mechanism of action in nonhuman primate studies.
Collapse
Affiliation(s)
- Yu Rebecca Miao
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Kaushik Thakkar
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX
| | - Dadi Jiang
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX
| | - Kazue Mizuno
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | | | - Caiyun Grace Li
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Hongjuan Zhao
- Department of Urology, Stanford University, Stanford, CA
| | - Anh Diep
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Yu Xu
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Xin Eric Zhang
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | | | - Michaela Liedtke
- Department of Medicine (Hematology), Stanford University, Stanford, CA
| | - Parveen Abidi
- Department of Medicine (Hematology), Stanford University, Stanford, CA
| | - Wing-Sze Leung
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Albert C Koong
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University, Stanford, CA.,Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Li YJ, Yang CN, Kuo MYP, Lai WT, Wu TS, Lin BR. ATMIN enhances invasion by altering PARP1 in MSS colorectal cancer. Am J Cancer Res 2022; 12:3799-3810. [PMID: 36119811 PMCID: PMC9441994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023] Open
Abstract
Genomic instability is a key cancer indicator. It results from defects in the DNA damage response (DDR) and increased replication stress. Herein, we examined how ataxia-telangiectasia mutated interactor (ATMIN), a DDR pathway involved in mismatch repair-proficient (microsatellite stability [MSS]), acts in colorectal carcinoma (CRC). Firstly, ATMIN mRNA expression was detected in CRC specimens with MSS characteristics, and the effects of ectopic ATMIN expression and ATMIN knockdown on invasion abilities were gauged in MSS cell lines. To understand the molecular mechanism, co-immunoprecipitation analyses in vitro were employed. Interestingly, ATMIN expression was positively correlated with advanced stages (P < .001), lymph node metastases (P = .002), and deeper invasion (P = .037) in MSS tumors; and significantly changed the cell motility in vitro. In the high-throughput analysis, ATMIN was found to act on the Wnt signaling pathway via PARP1. PAPR1 inhibition, in turn, significantly decreased invasion abilities resulting from ATMIN overexpression in cancer cell. Taken together, ATMIN, which alters the Wnt signaling pathway regulating CRC progression, plays as a crucial prognostic factor in MSS tumors.
Collapse
Affiliation(s)
- Yue-Ju Li
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan UniversityTaipei, Taiwan
- Department of Surgery, National Taiwan University Hospital and College of MedicineTaipei, Taiwan
| | - Cheng-Ning Yang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan UniversityTaipei, Taiwan
| | - Mark Yen-Ping Kuo
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan UniversityTaipei, Taiwan
| | - Wei-Ting Lai
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan UniversityTaipei, Taiwan
| | - Tai-Sheng Wu
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan UniversityTaipei, Taiwan
| | - Been-Ren Lin
- Department of Surgery, National Taiwan University Hospital and College of MedicineTaipei, Taiwan
| |
Collapse
|
6
|
Li Q, Zhang Z, Jiang H, Hou J, Chai Y, Nan H, Li F, Wang L. DLEU1 promotes cell survival by preventing DYNLL1 degradation in esophageal squamous cell carcinoma. J Transl Med 2022; 20:245. [PMID: 35619131 PMCID: PMC9134706 DOI: 10.1186/s12967-022-03449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Emerging evidence has highlighted the critical roles of long noncoding RNAs (lncRNAs) in tumor development and progression. However, the biological functions and underlying mechanisms of DLEU1 in esophageal squamous cell carcinoma (ESCC) remain unclear. METHODS LncRNA expression in ESCC tissues was explored using lncRNA microarray datasets. The functional roles of DLEU1 in ESCC were demonstrated by a series of in vitro and in vivo experiments. RNA pull-down and immunoprecipitation assays were performed to demonstrate the potential mechanisms of DLEU1. RESULTS In a screen for differentially expressed lncRNAs in ESCC, we determined that DLEU1 was one of the most overexpressed lncRNAs in ESCC tissues and that upregulated DLEU1 expression was associated with a worse prognosis. Functional assays showed that DLEU1 promoted tumor growth by inhibiting cell apoptosis. Mechanistically, DLEU1 could bind and stabilize DYNLL1 by interfering with RNF114-mediated ubiquitination and proteasomal degradation. The DLEU1/DYNLL1 axis subsequently upregulated antiapoptotic BCL2 and promoted cell survival. Furthermore, DLEU1 upregulation was at least partly facilitated by promoter hypomethylation. Notably, targeting DLEU1 sensitized ESCC cells to cisplatin-induced death. CONCLUSIONS Our findings suggest that DLEU1-mediated stabilization of DYNLL1 is critical for cell survival and that the DLEU1/DYNLL1 axis may be a promising therapeutic target for ESCC.
Collapse
Affiliation(s)
- Qihang Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Zhiyu Zhang
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - HongChao Jiang
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jun Hou
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yuhang Chai
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Hongxing Nan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Feng Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China. .,Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Lianghai Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China. .,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| |
Collapse
|
7
|
Liu R, King A, Tarlinton D, Heierhorst J. The ASCIZ-DYNLL1 Axis Is Essential for TLR4-Mediated Antibody Responses and NF-κB Pathway Activation. Mol Cell Biol 2021; 41:e0025121. [PMID: 34543116 PMCID: PMC8608018 DOI: 10.1128/mcb.00251-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022] Open
Abstract
Toll-like receptors (TLRs) and interleukin-1 (IL-1) receptors regulate immune and inflammatory responses by activating the NF-κB pathway. Here, we report that B-cell-specific loss of dynein light chain 1 (DYNLL1, LC8) or its designated transcription factor ASCIZ (ATMIN) leads to severely reduced in vivo antibody responses to TLR4-dependent but not T-cell-dependent antigens in mice. This defect was independent of DYNLL1's established roles in modulating BIM-dependent apoptosis and 53BP1-dependent antibody class-switch recombination. In B cells and fibroblasts, the ASCIZ-DYNLL1 axis was required for TLR4-, IL-1-, and CD40-mediated NF-κB pathway activation but dispensable for antigen receptor and tumor necrosis factor α (TNF-α) signaling. In contrast to previous reports that overexpressed DYNLL1 directly inhibits the phosphorylation and degradation of the NF-κB inhibitor IκBα, we found here that under physiological conditions, DYNLL1 is required for signal-specific activation of the NF-κB pathway upstream of IκBα. Our data identify DYNLL1 as a signal-specific regulator of the NF-κB pathway and indicate that it may act as a universal modulator of TLR4 (and IL-1) signaling with wide-ranging roles in inflammation and immunity.
Collapse
Affiliation(s)
- Rui Liu
- St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Ashleigh King
- St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - David Tarlinton
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Jörg Heierhorst
- St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine at St. Vincent’s Hospital, University of Melbourne Medical School, Fitzroy, Victoria, Australia
| |
Collapse
|
8
|
Li YJ, Yang CN, Kuo MYP, Lai WT, Wu TS, Lin BR. ATMIN Suppresses Metastasis by Altering the WNT-Signaling Pathway via PARP1 in MSI-High Colorectal Cancer. Ann Surg Oncol 2021; 28:8544-8554. [PMID: 34148137 DOI: 10.1245/s10434-021-10322-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Constant DNA damage occurs in cells, and the cells are programmed to respond constitutively. This study explored the roles of ataxia-telangiectasia mutated interactor (ATMIN), one of the impaired pathways involving the DNA damage response (DDR) in mismatch repair-deficient [microsatellite instability (MSI)-high] colorectal carcinoma (CRC). METHODS Expression of ATMIN messenger RNA (mRNA) was detected in CRC specimens with microsatellite instability (MSI) characteristics. The effects of ectopic ATMIN expression and ATMIN knockdown on invasion abilities were evaluated in MSI-high cell lines, and liver metastasis ability was investigated in vivo. Protein-protein interactions were assessed by coimmunoprecipitation analyses in vitro. RESULTS Decreased ATMIN expression was positively correlated with advanced stage of disease (P < 0.05), lymph node metastases (P < 0.05), and deeper invasion (P < 0.05) in MSI-high tumors. Transient or stable ATMIN knockdown significantly increased cell motility. Moreover, in the high-throughput microarray and gene set enrichment analysis, ATMIN was shown to act on the Wnt-signaling pathway via PARP1. This cascade influences β-catenin/transcription factor 4 (TCF4) binding affinity in MSI-high tumors, and PARP1 inhibition significantly decreased the number of metastases from ATMIN knockdown cancer cells. CONCLUSIONS The results not only indicated the critical role of ATMIN, but also shed new light on PARP1 inhibitors, providing a basis for further clinical trials of MSI-high CRC.
Collapse
Affiliation(s)
- Yue-Ju Li
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Division of Colorectal Surgery, Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei City, Taiwan
| | - Cheng-Ning Yang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Mark Yen-Ping Kuo
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Wei-Ting Lai
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Tai-Sheng Wu
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Been-Ren Lin
- Division of Colorectal Surgery, Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei City, Taiwan.
| |
Collapse
|
9
|
Liu Q, Guo Q, Guo W, Song S, Wang N, Chen X, Sun A, Yan L, Qiao J. Loss of CEP70 function affects acrosome biogenesis and flagella formation during spermiogenesis. Cell Death Dis 2021; 12:478. [PMID: 33980814 PMCID: PMC8116340 DOI: 10.1038/s41419-021-03755-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/03/2023]
Abstract
The spermatogenesis process is complex and delicate, and any error in a step may cause spermatogenesis arrest and even male infertility. According to our previous transcriptomic data, CEP70 is highly expressed throughout various stages of human spermatogenesis, especially during the meiosis and deformation stages. CEP70 is present in sperm tails and that it exists in centrosomes as revealed by human centrosome proteomics. However, the specific mechanism of this protein in spermatogenesis is still unknown. In this study, we found a heterozygous site of the same mutation on CEP70 through mutation screening of patients with clinical azoospermia. To further verify, we deleted CEP70 in mice and found that it caused abnormal spermatogenesis, leading to male sterility. We found that the knockout of CEP70 did not affect the prophase of meiosis I, but led to male germ-cell apoptosis and abnormal spermiogenesis. By transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analysis, we found that the deletion of CEP70 resulted in the abnormal formation of flagella and acrosomes during spermiogenesis. Tandem mass tag (TMT)-labeled quantitative proteomic analysis revealed that the absence of CEP70 led to a significant decrease in the proteins associated with the formation of the flagella, head, and acrosome of sperm, and the microtubule cytoskeleton. Taken together, our results show that CEP70 is essential for acrosome biogenesis and flagella formation during spermiogenesis.
Collapse
Affiliation(s)
- Qiang Liu
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Qianying Guo
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Wei Guo
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Shi Song
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Nan Wang
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xi Chen
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Andi Sun
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Liying Yan
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jie Qiao
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China ,grid.506261.60000 0001 0706 7839Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Berkel C, Cacan E. DYNLL1 is hypomethylated and upregulated in a tumor stage- and grade-dependent manner and associated with increased mortality in hepatocellular carcinoma. Exp Mol Pathol 2020; 117:104567. [PMID: 33171156 DOI: 10.1016/j.yexmp.2020.104567] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/23/2020] [Accepted: 11/03/2020] [Indexed: 01/22/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and cellular mechanisms regulating HCC pathogenesis and progression are not completely understood. DYNLL1 is essential for the development and expansion of MYC-driven B cell lymphoma, and also regulates genomic stability and responses to DNA-damaging chemotherapy in BRCA1-deficient tumors. However, the role and regulation of DYNLL1 has not been previously studied in the context of HCC. Here we report that DYNLL1 gene is hypomethylated and its expression is upregulated in HCC patients compared to healthy controls. The expression of DYNLL1 changes in a tumor grade- and stage-dependent manner in HCC. In this study, we further show that high DYNLL1 expression results in shorter overall and progression-free survival in hepatocellular carcinoma patients. Similar to DYNLL1, one of its protein interactors, RACK1, also shows decreased CpG-aggregated methylation and increased expression in HCC. RACK1 expression increases from early to late stage and from low to high grade in HCC. We found that high RACK1 expression is significantly associated with increased mortality of HCC patients. The present study shows that the epigenetic regulation of DYNLL1 and its consequent upregulation might be contributing to cancer development and progression in HCC. Its higher expression in late stage or high grade HCC may favor more aggressive disease as pointed by the increased mortality in high expression cohort. A better mechanistic understanding of the role of DYNLL1 in HCC will be needed to develop targeted treatment strategies in the future.
Collapse
Affiliation(s)
- Caglar Berkel
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, Turkey.
| | - Ercan Cacan
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, Turkey.
| |
Collapse
|
11
|
Reardon PN, Jara KA, Rolland AD, Smith DA, Hoang HTM, Prell JS, Barbar EJ. The dynein light chain 8 (LC8) binds predominantly "in-register" to a multivalent intrinsically disordered partner. J Biol Chem 2020; 295:4912-4922. [PMID: 32139510 PMCID: PMC7152752 DOI: 10.1074/jbc.ra119.011653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/03/2020] [Indexed: 01/18/2023] Open
Abstract
Dynein light chain 8 (LC8) interacts with intrinsically disordered proteins (IDPs) and influences a wide range of biological processes. It is becoming apparent that among the numerous IDPs that interact with LC8, many contain multiple LC8-binding sites. Although it is established that LC8 forms parallel IDP duplexes with some partners, such as nucleoporin Nup159 and dynein intermediate chain, the molecular details of these interactions and LC8's interactions with other diverse partners remain largely uncharacterized. LC8 dimers could bind in either a paired "in-register" or a heterogeneous off-register manner to any of the available sites on a multivalent partner. Here, using NMR chemical shift perturbation, analytical ultracentrifugation, and native electrospray ionization MS, we show that LC8 forms a predominantly in-register complex when bound to an IDP domain of the multivalent regulatory protein ASCIZ. Using saturation transfer difference NMR, we demonstrate that at substoichiometric LC8 concentrations, the IDP domain preferentially binds to one of the three LC8 recognition motifs. Further, the differential dynamic behavior for the three sites and the size of the fully bound complex confirmed an in-register complex. Dynamics measurements also revealed that coupling between sites depends on the linker length separating these sites. These results identify linker length and motif specificity as drivers of in-register binding in the multivalent LC8-IDP complex assembly and the degree of compositional and conformational heterogeneity as a promising emerging mechanism for tuning of binding and regulation.
Collapse
Affiliation(s)
- Patrick N Reardon
- Oregon State University NMR Facility, Oregon State University, Corvallis, Oregon 97331
| | - Kayla A Jara
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Amber D Rolland
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Delaney A Smith
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Hanh T M Hoang
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - James S Prell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
- Materials Science Institute, University of Oregon, Eugene, Oregon 97403
| | - Elisar J Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
12
|
Singh PK, Roukounakis A, Weber A, Das KK, Sohm B, Villunger A, Garcia-Saez AJ, Häcker G. Dynein light chain binding determines complex formation and posttranslational stability of the Bcl-2 family members Bmf and Bim. Cell Death Differ 2019; 27:434-450. [PMID: 31189926 DOI: 10.1038/s41418-019-0365-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 12/31/2022] Open
Abstract
The BH3-only class of Bcl-2 family proteins triggers mitochondrial apoptosis. Several mechanisms are used to restrain the pro-apoptotic activity of these proteins. Dynein light chain (DYNLL) 1 and 2 has been proposed to negatively regulate the activity of Bim and Bmf, respectively, and the Bim-DYNLL1 interaction leads to the formation of large protein complexes on mitochondria. Here we found that Bim and Bmf interact with both isoforms of DYNLL (DYNLL1 and DYNLL2). DYNLL1/2 not only induced homo-dimerization of Bim and Bmf but also led to the formation of ternary complexes (Bim-DYNLL-Bmf), both in cell-free and in cellular systems. DYNLL-induced oligomerization stabilized Bmf in cultured cells and inhibited its degradation by the ubiquitin-independent 20S proteasome in a cell-free system. Surprisingly, overexpression of wild-type Bmf but not of a DYNLL-binding-deficient mutant induced degradation of endogenous Bim in different cell lines, but both variants sensitized to apoptosis. Mutant Bmf incapable of interacting with anti-apoptotic Bcl-2 proteins and of inducing apoptosis still caused Bim degradation. These results suggest that Bmf overexpression-induced Bim degradation is not due to the displacement of Bim from anti-apoptotic Bcl-2 proteins but a direct consequence of the modulation of Bim-DYNLL association. A peptide derived from the DYNLL-binding domain of Bim also led to the degradation of Bim as well as of its preferred binding partner Mcl-1. Thus DYNLL regulates the mitochondrial pathway of apoptosis by determining the stability of Bmf, Bim, and Mcl-1 proteins.
Collapse
Affiliation(s)
- Prafull Kumar Singh
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center - University of Freiburg, 79104, Freiburg, Germany
| | - Aristomenis Roukounakis
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center - University of Freiburg, 79104, Freiburg, Germany
| | - Arnim Weber
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center - University of Freiburg, 79104, Freiburg, Germany
| | - Kushal Kumar Das
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, 72076, Tübingen, Germany
| | - Benedicte Sohm
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria.,Laboratoire Interdisciplinaire des Environnements Continentaux UMR 7360 CNRS - Université de Lorraine, Metz, France
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Ana J Garcia-Saez
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, 72076, Tübingen, Germany
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center - University of Freiburg, 79104, Freiburg, Germany. .,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
13
|
Neospora caninum cytoplasmic dynein LC8 light chain 2 (NcDYNLL2) is differentially produced by pathogenically distinct isolates and regulates the host immune response. Parasitology 2018; 146:588-595. [PMID: 30561290 DOI: 10.1017/s003118201800207x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Neospora caninum is the causative agent of bovine neosporosis. A N. caninum cytoplasmic dynein LC8 light chain (NcDYNLL) protein was characterized in this study. Cytoplasmic dyneins, including DYNLLs, belong to the microtubule minus-end-directed motor proteins and are involved in many cellular processes. Previous microarray studies revealed that NcDYNLL was downregulated in the non-pathogenic clone, Ncts-8, when compared with the wild-type NC1 isolate. The present study showed that DYNLLs from different species are highly conserved (>85% identity), and the NcDYNLL belongs to the DYNLL2 family. NcDYNLL2 and Toxoplasma gondii DYNLL2 have identical amino acid sequences, although they are slightly divergent at the genetic level (89% identity). NcDYNLL2 was cloned and expressed in Escherichia coli and purified. NcDYNLL2 was identified in soluble and insoluble fractions of tachyzoite lysate. As expected, soluble NcDYNLL2 was lower in the Ncts-8 lysate when compared with that of NC1 isolate. NcDYNLL2 release by the tachyzoites was low; however, it was increased when tachyzoites were treated with either calcium ionophore or ethanol. The data indicate that NcDYNLL2 may be actively secreted at low levels, but the secretion was upregulated by agents that also augment microneme protein secretions. Immunostaining of NcDYNLL2 in isolated and intracellular Neospora tachyzoites showed a diffuse distribution pattern. Furthermore, rNcDYNLL2 was internalized by the host immune cells and stimulated tumour necrosis factor-α) and interleukin-12 (IL-12) production by murine dendritic cells. Taken together, these results suggest that NcDYNLL2 is a secretory protein that cross-regulates host immunity.
Collapse
|
14
|
Becker JR, Cuella-Martin R, Barazas M, Liu R, Oliveira C, Oliver AW, Bilham K, Holt AB, Blackford AN, Heierhorst J, Jonkers J, Rottenberg S, Chapman JR. The ASCIZ-DYNLL1 axis promotes 53BP1-dependent non-homologous end joining and PARP inhibitor sensitivity. Nat Commun 2018; 9:5406. [PMID: 30559443 PMCID: PMC6297349 DOI: 10.1038/s41467-018-07855-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022] Open
Abstract
53BP1 controls a specialized non-homologous end joining (NHEJ) pathway that is essential for adaptive immunity, yet oncogenic in BRCA1 mutant cancers. Intra-chromosomal DNA double-strand break (DSB) joining events during immunoglobulin class switch recombination (CSR) require 53BP1. However, in BRCA1 mutant cells, 53BP1 blocks homologous recombination (HR) and promotes toxic NHEJ, resulting in genomic instability. Here, we identify the protein dimerization hub-DYNLL1-as an organizer of multimeric 53BP1 complexes. DYNLL1 binding stimulates 53BP1 oligomerization, and promotes 53BP1's recruitment to, and interaction with, DSB-associated chromatin. Consequently, DYNLL1 regulates 53BP1-dependent NHEJ: CSR is compromised upon deletion of Dynll1 or its transcriptional regulator Asciz, or by mutation of DYNLL1 binding motifs in 53BP1; furthermore, Brca1 mutant cells and tumours are rendered resistant to poly-ADP ribose polymerase (PARP) inhibitor treatments upon deletion of Dynll1 or Asciz. Thus, our results reveal a mechanism that regulates 53BP1-dependent NHEJ and the therapeutic response of BRCA1-deficient cancers.
Collapse
Affiliation(s)
- Jordan R Becker
- Genome Integrity Laboratory, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Raquel Cuella-Martin
- Genome Integrity Laboratory, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Marco Barazas
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands
| | - Rui Liu
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
| | - Catarina Oliveira
- Genome Integrity Laboratory, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Antony W Oliver
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, BN1 9RQ, UK
| | - Kirstin Bilham
- Genome Integrity Laboratory, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Abbey B Holt
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, OX1 3TH, UK
| | - Andrew N Blackford
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Jörg Heierhorst
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
- Department of Medicine at St. Vincent's Hospital, Melbourne Medical School, The University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands
| | - Sven Rottenberg
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, 3012, Switzerland
| | - J Ross Chapman
- Genome Integrity Laboratory, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
15
|
Singh PK, Weber A, Häcker G. The established and the predicted roles of dynein light chain in the regulation of mitochondrial apoptosis. Cell Cycle 2018; 17:1037-1047. [PMID: 30019621 DOI: 10.1080/15384101.2018.1464851] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The mitochondrial pathway of apoptosis is regulated by the interplay between the members of Bcl-2 family. Within this family, BH3-only proteins are the sensors of apoptotic stimuli and can trigger apoptosis either by inhibiting the anti-apoptotic Bcl-2-family proteins or by directly activating the effectors Bax and Bak. An expanding body of research suggests that a number of non-Bcl-2 proteins can also interact with Bcl-2 proteins and contribute to the decision of cell fate. Dynein light chain (LC8, DYNLL or DLC), a hub protein and a dimerizing engine has been proposed to regulate the pro-apoptotic activity of two BH3-only proteins, Bim and Bmf. Our recent work has provided insight into the mechanisms through which DLC1 (DYNLL1) modulates Bim activity. Here we discuss the present day understanding of Bim-DLC interaction and endeavor to evaluate this interaction in the light of information from studies of DLC with other binding partners.
Collapse
Affiliation(s)
- Prafull Kumar Singh
- a Institute of Medical Microbiology and Hygiene, Faculty of Medicine , Medical Center-University of Freiburg , Freiburg , Germany
| | - Arnim Weber
- a Institute of Medical Microbiology and Hygiene, Faculty of Medicine , Medical Center-University of Freiburg , Freiburg , Germany
| | - Georg Häcker
- a Institute of Medical Microbiology and Hygiene, Faculty of Medicine , Medical Center-University of Freiburg , Freiburg , Germany.,b BIOSS Centre for Biological Signalling Studies , University of Freiburg , Freiburg , Germany
| |
Collapse
|
16
|
Clark S, Myers JB, King A, Fiala R, Novacek J, Pearce G, Heierhorst J, Reichow SL, Barbar EJ. Multivalency regulates activity in an intrinsically disordered transcription factor. eLife 2018; 7:36258. [PMID: 29714690 PMCID: PMC5963919 DOI: 10.7554/elife.36258] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/23/2018] [Indexed: 12/19/2022] Open
Abstract
The transcription factor ASCIZ (ATMIN, ZNF822) has an unusually high number of recognition motifs for the product of its main target gene, the hub protein LC8 (DYNLL1). Using a combination of biophysical methods, structural analysis by NMR and electron microscopy, and cellular transcription assays, we developed a model that proposes a concerted role of intrinsic disorder and multiple LC8 binding events in regulating LC8 transcription. We demonstrate that the long intrinsically disordered C-terminal domain of ASCIZ binds LC8 to form a dynamic ensemble of complexes with a gradient of transcriptional activity that is inversely proportional to LC8 occupancy. The preference for low occupancy complexes at saturating LC8 concentrations with both human and Drosophila ASCIZ indicates that negative cooperativity is an important feature of ASCIZ-LC8 interactions. The prevalence of intrinsic disorder and multivalency among transcription factors suggests that formation of heterogeneous, dynamic complexes is a widespread mechanism for tuning transcriptional regulation.
Collapse
Affiliation(s)
- Sarah Clark
- Department of Biochemistry and Biophysics, Oregon State University, Oregon, United States
| | - Janette B Myers
- Department of Chemistry, Portland State University, Oregon, United States
| | - Ashleigh King
- St. Vincent's Institute of Medical Research, The University of Melbourne, Victoria, Australia.,Department of Medicine, St. Vincent's Health, The University of Melbourne, Victoria, Australia
| | - Radovan Fiala
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jiri Novacek
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Grant Pearce
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Jörg Heierhorst
- St. Vincent's Institute of Medical Research, The University of Melbourne, Victoria, Australia.,Department of Medicine, St. Vincent's Health, The University of Melbourne, Victoria, Australia
| | - Steve L Reichow
- Department of Chemistry, Portland State University, Oregon, United States
| | - Elisar J Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Oregon, United States
| |
Collapse
|
17
|
Liu R, King A, Bouillet P, Tarlinton DM, Strasser A, Heierhorst J. Proapoptotic BIM Impacts B Lymphoid Homeostasis by Limiting the Survival of Mature B Cells in a Cell-Autonomous Manner. Front Immunol 2018; 9:592. [PMID: 29623080 PMCID: PMC5874283 DOI: 10.3389/fimmu.2018.00592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/09/2018] [Indexed: 01/30/2023] Open
Abstract
The proapoptotic BH3-only protein BIM (Bcl2l11) plays key roles in the maintenance of multiple hematopoietic cell types. In mice, germline knockout or conditional pan-hematopoietic deletion of Bim results in marked splenomegaly and significantly increased numbers of B cells. However, it has remained unclear whether these abnormalities reflect the loss of cell-intrinsic functions of BIM within the B lymphoid lineage and, if so, which stages in the lifecycle of B cells are most impacted by the loss of BIM. Here, we show that B lymphoid-specific conditional deletion of Bim during early development (i.e., in pro-B cells using Mb1-Cre) or during the final differentiation steps (i.e., in transitional B cells using Cd23-Cre) led to a similar >2-fold expansion of the mature follicular B cell pool. Notably, while the expansion of mature B cells was quantitatively similar in conditional and germline Bim-deficient mice, the splenomegaly was significantly attenuated after B lymphoid-specific compared to global Bim deletion. In vitro, conditional loss of Bim substantially increased the survival of mature B cells that were refractory to activation by lipopolysaccharide. Finally, we also found that conditional deletion of just one Bim allele by Mb1-Cre dramatically accelerated the development of Myc-driven B cell lymphoma, in a manner that was comparable to the effect of germline Bim heterozygosity. These data indicate that, under physiological conditions, BIM regulates B cell homeostasis predominantly by limiting the life span of non-activated mature B cells, and that it can have additional effects on developing B cells under pathological conditions.
Collapse
Affiliation(s)
- Rui Liu
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Ashleigh King
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.,Department of Medicine, St.Vincent's Health, The University of Melbourne, Fitzroy, VIC, Australia
| | - Philippe Bouillet
- Molecular Genetics of Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - David M Tarlinton
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Andreas Strasser
- Molecular Genetics of Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Jörg Heierhorst
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.,Department of Medicine, St.Vincent's Health, The University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
18
|
Singh PK, Roukounakis A, Frank DO, Kirschnek S, Das KK, Neumann S, Madl J, Römer W, Zorzin C, Borner C, Haimovici A, Garcia-Saez A, Weber A, Häcker G. Dynein light chain 1 induces assembly of large Bim complexes on mitochondria that stabilize Mcl-1 and regulate apoptosis. Genes Dev 2017; 31:1754-1769. [PMID: 28982759 PMCID: PMC5666674 DOI: 10.1101/gad.302497.117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/05/2017] [Indexed: 12/17/2022]
Abstract
In this study, Singh et al. investigated Bim structure and activity and show that Bim is regulated by the formation of large protein complexes containing dynein light chain 1 (DLC1). Their findings demonstrate that control of apoptosis at mitochondria extends beyond the interaction of monomers of proapoptotic and anti-apoptotic Bcl-2 family members and involves more complex structures of proteins at the mitochondrial outer membrane. The Bcl-2 family protein Bim triggers mitochondrial apoptosis. Bim is expressed in nonapoptotic cells at the mitochondrial outer membrane, where it is activated by largely unknown mechanisms. We found that Bim is regulated by formation of large protein complexes containing dynein light chain 1 (DLC1). Bim rapidly inserted into cardiolipin-containing membranes in vitro and recruited DLC1 to the membrane. Bim binding to DLC1 induced the formation of large Bim complexes on lipid vesicles, on isolated mitochondria, and in intact cells. Native gel electrophoresis and gel filtration showed Bim-containing mitochondrial complexes of several hundred kilodaltons in all cells tested. Bim unable to form complexes was consistently more active than complexed Bim, which correlated with its substantially reduced binding to anti-apoptotic Bcl-2 proteins. At endogenous levels, Bim surprisingly bound only anti-apoptotic Mcl-1 but not Bcl-2 or Bcl-XL, recruiting only Mcl-1 into large complexes. Targeting of DLC1 by RNAi in human cell lines induced disassembly of Bim–Mcl-1 complexes and the proteasomal degradation of Mcl-1 and sensitized the cells to the Bcl-2/Bcl-XL inhibitor ABT-737. Regulation of apoptosis at mitochondria thus extends beyond the interaction of monomers of proapoptotic and anti-apoptotic Bcl-2 family members but involves more complex structures of proteins at the mitochondrial outer membrane, and targeting complexes may be a novel therapeutic strategy.
Collapse
Affiliation(s)
- Prafull Kumar Singh
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center-University of Freiburg, 79104 Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Aristomenis Roukounakis
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center-University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Daniel O Frank
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center-University of Freiburg, 79104 Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Susanne Kirschnek
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center-University of Freiburg, 79104 Freiburg, Germany
| | - Kushal Kumar Das
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, 72076 Tübingen, Germany
| | - Simon Neumann
- Institute of Molecular Medicine and Cell Research, University of Freiburg, 79104 Freiburg, Germany
| | - Josef Madl
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Winfried Römer
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Carina Zorzin
- Institute of Pharmaceutical Technology and Biopharmacy, University of Freiburg, 79104 Freiburg, Germany
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Aladin Haimovici
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center-University of Freiburg, 79104 Freiburg, Germany
| | - Ana Garcia-Saez
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, 72076 Tübingen, Germany
| | - Arnim Weber
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center-University of Freiburg, 79104 Freiburg, Germany
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center-University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
19
|
King A, Li L, Wong DM, Liu R, Bamford R, Strasser A, Tarlinton DM, Heierhorst J. Dynein light chain regulates adaptive and innate B cell development by distinctive genetic mechanisms. PLoS Genet 2017; 13:e1007010. [PMID: 28922373 PMCID: PMC5619840 DOI: 10.1371/journal.pgen.1007010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/28/2017] [Accepted: 09/07/2017] [Indexed: 11/29/2022] Open
Abstract
Mechanistic differences in the development and function of adaptive, high-affinity antibody-producing B-2 cells and innate-like, “natural” antibody-producing B-1a cells remain poorly understood. Here we show that the multi-functional dynein light chain (DYNLL1/LC8) plays important roles in the establishment of B-1a cells in the peritoneal cavity and in the ongoing development of B-2 lymphoid cells in the bone marrow of mice. Epistasis analyses indicate that Dynll1 regulates B-1a and early B-2 cell development in a single, linear pathway with its direct transcriptional activator ASCIZ (ATMIN/ZNF822), and that the two genes also have complementary functions during late B-2 cell development. The B-2 cell defects caused by loss of DYNLL1 were associated with lower levels of the anti-apoptotic protein BCL-2, and could be supressed by deletion of pro-apoptotic BIM which is negatively regulated by both DYNLL1 and BCL-2. Defects in B cell development caused by loss of DYNLL1 could also be partially suppressed by a pre-arranged SWHELIgm-B cell receptor transgene. In contrast to the rescue of B-2 cell numbers, the B-1a cell deficiency in Dynll1-deleted mice could not be suppressed by the loss of Bim, and was further compounded by the SWHEL transgene. Conversely, oncogenic MYC expression, which is synthetic lethal with Dynll1 deletion in B-2 cells, did not further reduce B-1a cell numbers in Dynll1-defcient mice. Finally, we found that the ASCIZ-DYNLL1 axis was also required for the early-juvenile development of aggressive MYC-driven and p53-deficient B cell lymphomas. These results identify ASCIZ and DYNLL1 as the core of a transcriptional circuit that differentially regulates the development of the B-1a and B-2 B lymphoid cell lineages and plays a critical role in lymphomagenesis. Antibody-producing B cells can be segregated into two major populations: The better known conventional B-2 cells typically produce high-affinity and mono-specific antibodies, but only after they encounter a particular pathogen or in response to vaccines. In contrast, the B-1a cells constitutively produce lower-affinity broad-specificity “natural” antibodies that serve as a preemptive defense against a wide range of microbes. Here we reveal that the transcription factor ASCIZ and its target DYNLL1 are essential for mice to have a normally sized pool of B-1a cells in place shortly after birth. We show that these two factors function in a single linear pathway during the development of B-1a cells. This interaction represents a rare example where the activity of a transcription factor, in this case ASCIZ, can be explained by the effects of a single target gene, in this case Dynll1. While ASCIZ and DYNLL1 are also required for producing normal numbers of B-2 cells, we discovered that they regulate B-1a cells and B-2 cells by distinct genetic mechanisms. Finally, we found that ASCIZ also contributes to the early onset of B-1a B cell-derived lymphoid cancers in juvenile mice. The results provide insight into the development of an important cell population of the immune system.
Collapse
Affiliation(s)
- Ashleigh King
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), University of Melbourne, Fitzroy, Victoria, Australia
| | - Lingli Li
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), University of Melbourne, Fitzroy, Victoria, Australia
| | - David M. Wong
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Rui Liu
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Rebecca Bamford
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Andreas Strasser
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - David M. Tarlinton
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Jörg Heierhorst
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), University of Melbourne, Fitzroy, Victoria, Australia
- * E-mail:
| |
Collapse
|
20
|
Abstract
ASCIZ/ATMIN is not required for ATM activation by replication stress in MEFs. ATM activation is normal in human ASCIZ/ATMIN KO cells. ASCIZ/ATMIN is dispensable for aphidicolin-induced 53BP1 focus formation.
The ATM kinase plays critical roles in the response to DNA double-strand breaks, and can also be activated by prolonged DNA replication blocks. It has recently been proposed that replication stress-dependent ATM activation is mediated by ASCIZ (also known as ATMIN, ZNF822), an essential developmental transcription factor. In contrast, we show here that ATM activation, and phosphorylation of its substrates KAP1, p53 and H2AX in response to the replication blocking agent aphidicolin was unaffected in both immortalized and primary ASCIZ/ATMIN-deficient murine embryonic fibroblasts compared to control cells. Similar results were also obtained in human ASCIZ/ATMIN-deleted lymphoma cells. The results demonstrate that ASCIZ/ATMIN is dispensable for ATM activation, and contradict the previously reported dependence of ATM on ASCIZ/ATMIN.
Collapse
|
21
|
Ataxia-telangiectasia mutated interactor regulates head and neck cancer metastasis via KRas expression. Oral Oncol 2016; 66:100-107. [PMID: 28012797 DOI: 10.1016/j.oraloncology.2016.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/04/2016] [Accepted: 11/13/2016] [Indexed: 01/27/2023]
Abstract
OBJECTIVES Relapse is the most serious problem affecting the morbidity and mortality rates of patients with head and neck squamous cell carcinoma (HNSCC). Although HNSCC has been studied for several decades, the exact mechanism of cancer recurrence remains unclear. MATERIALS AND METHODS ataxia-telangiectasia mutated interactor (ATMIN) messenger RNA(mRNA) expression was detected in HNSCC samples by quantitative RT-PCR, and was analyzed with patients' clinical outcomes by Kaplan-Meier analyses. The ectopic ATMIN expression or ATMIN silencing on invasion ability was evaluated in HNSCC cell lines. Lymph node metastasis ability was investigated by buccal orthotopic implantation in vivo. All statistical tests were two-sided. RESULTS ATMIN mRNA expression was positively correlated with patients' clinical outcomes. ATMIN blockage reduced invasion, migration, and metastasis abilities both in vitro and in vivo. Evidence from a buccal orthotopic implantation mice model showed that silenced ATMIN expression prolongs mice survival and reduced lymph node metastasis. In high-throughput microarray and bioinformative analyses, KRas was identified as a crucial downstream effector in ATMIN-mediated HNSCC metastasis and was positively associated with patients' clinical stages and ATMIN mRNA expression. CONCLUSIONS The role of ATMIN and its regulatory mechanisms in HNSCC progression are reported for the first time. The study results improve our understanding of the ATMIN-KRas axis leading to HNSCC migration or invasion and metastasis and facilitates the identification of possible therapy targets of downstream genes for designing effective therapeutic strategies in personalized medicine.
Collapse
|
22
|
Sengupta S, Rath U, Yao C, Zavortink M, Wang C, Girton J, Johansen KM, Johansen J. Digitor/dASCIZ Has Multiple Roles in Drosophila Development. PLoS One 2016; 11:e0166829. [PMID: 27861562 PMCID: PMC5115829 DOI: 10.1371/journal.pone.0166829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/05/2016] [Indexed: 12/02/2022] Open
Abstract
In this study we provide evidence that the spindle matrix protein Skeletor in Drosophila interacts with the human ASCIZ (also known as ATMIN and ZNF822) ortholog, Digitor/dASCIZ. This interaction was first detected in a yeast two-hybrid screen and subsequently confirmed by pull-down assays. We also confirm a previously documented function of Digitor/dASCIZ as a regulator of Dynein light chain/Cut up expression. Using transgenic expression of a mCitrine-labeled Digitor construct, we show that Digitor/dASCIZ is a nuclear protein that is localized to interband and developmental puff chromosomal regions during interphase but redistributes to the spindle region during mitosis. Its mitotic localization and physical interaction with Skeletor suggest the possibility that Digitor/dASCIZ plays a direct role in mitotic progression as a member of the spindle matrix complex. Furthermore, we have characterized a P-element insertion that is likely to be a true null Digitor/dASCIZ allele resulting in complete pupal lethality when homozygous, indicating that Digitor/dASCIZ is an essential gene. Phenotypic analysis of the mutant provided evidence that Digitor/dASCIZ plays critical roles in regulation of metamorphosis and organogenesis as well as in the DNA damage response. In the Digitor/dASCIZ null mutant larvae there was greatly elevated levels of γH2Av, indicating accumulation of DNA double-strand breaks. Furthermore, reduced levels of Digitor/dASCIZ decreased the resistance to paraquat-induced oxidative stress resulting in increased mortality in a stress test paradigm. We show that an early developmental consequence of the absence of Digitor/dASCIZ is reduced third instar larval brain size although overall larval development appeared otherwise normal at this stage. While Digitor/dASCIZ mutant larvae initiate pupation, all mutant pupae failed to eclose and exhibited various defects in metamorphosis such as impaired differentiation, incomplete disc eversion, and faulty apoptosis. Altogether we provide evidence that Digitor/dASCIZ is a nuclear protein that performs multiple roles in Drosophila larval and pupal development.
Collapse
Affiliation(s)
- Saheli Sengupta
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Uttama Rath
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Changfu Yao
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Michael Zavortink
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Chao Wang
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Jack Girton
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Kristen M. Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail: (JJ); (KMJ)
| | - Jørgen Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail: (JJ); (KMJ)
| |
Collapse
|
23
|
Anjos-Afonso F, Loizou JI, Bradburn A, Kanu N, Purewal S, Da Costa C, Bonnet D, Behrens A. Perturbed hematopoiesis in mice lacking ATMIN. Blood 2016; 128:2017-2021. [PMID: 27581360 PMCID: PMC5147016 DOI: 10.1182/blood-2015-09-672980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 08/25/2016] [Indexed: 01/20/2023] Open
Abstract
The ataxia telangiectasia mutated (ATM)-interacting protein ATMIN mediates noncanonical ATM signaling in response to oxidative and replicative stress conditions. Like ATM, ATMIN can function as a tumor suppressor in the hematopoietic system: deletion of Atmin under the control of CD19-Cre results in B-cell lymphomas in aging mice. ATM signaling is essential for lymphopoiesis and hematopoietic stem cell (HSC) function; however, little is known about the role of ATMIN in hematopoiesis. We thus sought to investigate whether the absence of ATMIN would affect primitive hematopoietic cells in an ATM-dependent or -independent manner. Apart from its role in B-cell development, we show that ATMIN has an ATM-independent function in the common myeloid progenitors (CMPs) by deletion of Atmin in the entire hematopoietic system using Vav-Cre. Despite the lack of lymphoma formation, ATMIN-deficient mice developed chronic leukopenia as a result of high levels of apoptosis in B cells and CMPs and induced a compensatory mechanism in which HSCs displayed enhanced cycling. Consequently, ATMIN-deficient HSCs showed impaired regeneration ability with the induction of the DNA oxidative stress response, especially when aged. ATMIN, therefore, has multiple roles in different cell types, and its absence results in perturbed hematopoiesis, especially during stress conditions and aging.
Collapse
Affiliation(s)
- Fernando Anjos-Afonso
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London, United Kingdom
- Haematopoietic Signalling Group, European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Joanna I Loizou
- Mammalian Genetics Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London, United Kingdom
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Amy Bradburn
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London, United Kingdom
| | - Nnennaya Kanu
- Mammalian Genetics Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London, United Kingdom
- Translational Cancer Therapeutics Laboratory, UCL Cancer Institute, University College London, London, United Kingdom
| | - Sukhveer Purewal
- Flow Cytometry Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London, United Kingdom; and
| | - Clive Da Costa
- Mammalian Genetics Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London, United Kingdom
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London, United Kingdom
| | - Axel Behrens
- Mammalian Genetics Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London, United Kingdom
- Diabetes & Nutritional Sciences Division, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
24
|
Mazouzi A, Stukalov A, Müller AC, Chen D, Wiedner M, Prochazkova J, Chiang SC, Schuster M, Breitwieser FP, Pichlmair A, El-Khamisy SF, Bock C, Kralovics R, Colinge J, Bennett KL, Loizou JI. A Comprehensive Analysis of the Dynamic Response to Aphidicolin-Mediated Replication Stress Uncovers Targets for ATM and ATMIN. Cell Rep 2016; 15:893-908. [PMID: 27149854 DOI: 10.1016/j.celrep.2016.03.077] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/21/2016] [Accepted: 03/21/2016] [Indexed: 01/01/2023] Open
Abstract
The cellular response to replication stress requires the DNA-damage-responsive kinase ATM and its cofactor ATMIN; however, the roles of this signaling pathway following replication stress are unclear. To identify the functions of ATM and ATMIN in response to replication stress, we utilized both transcriptomics and quantitative mass-spectrometry-based phosphoproteomics. We found that replication stress induced by aphidicolin triggered widespread changes in both gene expression and protein phosphorylation patterns. These changes gave rise to distinct early and late replication stress responses. Furthermore, our analysis revealed previously unknown targets of ATM and ATMIN downstream of replication stress. We demonstrate ATMIN-dependent phosphorylation of H2AX and of CRMP2, a protein previously implicated in Alzheimer's disease but not in the DNA damage response. Overall, our dataset provides a comprehensive resource for discovering the cellular responses to replication stress and, potentially, associated pathologies.
Collapse
Affiliation(s)
- Abdelghani Mazouzi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Alexey Stukalov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria; Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - André C Müller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Doris Chen
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Marc Wiedner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Jana Prochazkova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Shih-Chieh Chiang
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Michael Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Florian P Breitwieser
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Andreas Pichlmair
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Sherif F El-Khamisy
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Robert Kralovics
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Jacques Colinge
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Joanna I Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria.
| |
Collapse
|
25
|
Blake SM, Stricker SH, Halavach H, Poetsch AR, Cresswell G, Kelly G, Kanu N, Marino S, Luscombe NM, Pollard SM, Behrens A. Inactivation of the ATMIN/ATM pathway protects against glioblastoma formation. eLife 2016; 5:e08711. [PMID: 26984279 PMCID: PMC4811777 DOI: 10.7554/elife.08711] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 02/18/2016] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive human primary brain cancer. Using a Trp53-deficient mouse model of GBM, we show that genetic inactivation of the Atm cofactor Atmin, which is dispensable for embryonic and adult neural development, strongly suppresses GBM formation. Mechanistically, expression of several GBM-associated genes, including Pdgfra, was normalized by Atmin deletion in the Trp53-null background. Pharmacological ATM inhibition also reduced Pdgfra expression, and reduced the proliferation of Trp53-deficient primary glioma cells from murine and human tumors, while normal neural stem cells were unaffected. Analysis of GBM datasets showed that PDGFRA expression is also significantly increased in human TP53-mutant compared with TP53-wild-type tumors. Moreover, combined treatment with ATM and PDGFRA inhibitors efficiently killed TP53-mutant primary human GBM cells, but not untransformed neural stem cells. These results reveal a new requirement for ATMIN-dependent ATM signaling in TP53-deficient GBM, indicating a pro-tumorigenic role for ATM in the context of these tumors.
Collapse
Affiliation(s)
- Sophia M Blake
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Stefan H Stricker
- Samantha Dickson Brain Cancer Unit and Department of Cancer Biology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Hanna Halavach
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Anna R Poetsch
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
- Bioinformatics and Computational Biology Laboratory, The Francis Crick Institute, London, United Kingdom
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- Okinawa Institute of Science and Technology, Okinawa, Japan
| | - George Cresswell
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
- Bioinformatics and Computational Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Gavin Kelly
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, United Kingdom
| | - Nnennaya Kanu
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Silvia Marino
- Blizard Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Nicholas M Luscombe
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
- Bioinformatics and Computational Biology Laboratory, The Francis Crick Institute, London, United Kingdom
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Steven M Pollard
- Samantha Dickson Brain Cancer Unit and Department of Cancer Biology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
- Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
26
|
Wong D, Li L, Jurado S, King A, Bamford R, Wall M, Walia M, Kelly G, Walkley C, Tarlinton D, Strasser A, Heierhorst J. The Transcription Factor ASCIZ and Its Target DYNLL1 Are Essential for the Development and Expansion of MYC-Driven B Cell Lymphoma. Cell Rep 2016; 14:1488-1499. [DOI: 10.1016/j.celrep.2016.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 12/04/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022] Open
|
27
|
Prochazkova J, Sakaguchi S, Owusu M, Mazouzi A, Wiedner M, Velimezi G, Moder M, Turchinovich G, Hladik A, Gurnhofer E, Hayday A, Behrens A, Knapp S, Kenner L, Ellmeier W, Loizou JI. DNA Repair Cofactors ATMIN and NBS1 Are Required to Suppress T Cell Activation. PLoS Genet 2015; 11:e1005645. [PMID: 26544571 PMCID: PMC4636180 DOI: 10.1371/journal.pgen.1005645] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 10/12/2015] [Indexed: 12/11/2022] Open
Abstract
Proper development of the immune system is an intricate process dependent on many factors, including an intact DNA damage response. The DNA double-strand break signaling kinase ATM and its cofactor NBS1 are required during T cell development and for the maintenance of genomic stability. The role of a second ATM cofactor, ATMIN (also known as ASCIZ) in T cells is much less clear, and whether ATMIN and NBS1 function in synergy in T cells is unknown. Here, we investigate the roles of ATMIN and NBS1, either alone or in combination, using murine models. We show loss of NBS1 led to a developmental block at the double-positive stage of T cell development, as well as reduced TCRα recombination, that was unexpectedly neither exacerbated nor alleviated by concomitant loss of ATMIN. In contrast, loss of both ATMIN and NBS1 enhanced DNA damage that drove spontaneous peripheral T cell hyperactivation, proliferation as well as excessive production of proinflammatory cytokines and chemokines, leading to a highly inflammatory environment. Intriguingly, the disease causing T cells were largely proficient for both ATMIN and NBS1. In vivo this resulted in severe intestinal inflammation, colitis and premature death. Our findings reveal a novel model for an intestinal bowel disease phenotype that occurs upon combined loss of the DNA repair cofactors ATMIN and NBS1.
Collapse
Affiliation(s)
- Jana Prochazkova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Vienna, Austria
| | - Michel Owusu
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Abdelghani Mazouzi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Marc Wiedner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Georgia Velimezi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Martin Moder
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gleb Turchinovich
- London Research Institute, Cancer Research UK, London, United Kingdom
| | - Anastasiya Hladik
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Gurnhofer
- Clinical Institute for Pathology, Medical University Vienna, Vienna, Austria
| | - Adrian Hayday
- London Research Institute, Cancer Research UK, London, United Kingdom
| | - Axel Behrens
- London Research Institute, Cancer Research UK, London, United Kingdom
| | - Sylvia Knapp
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Lukas Kenner
- Clinical Institute for Pathology, Medical University Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Vienna, Austria
| | - Joanna I. Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
28
|
Dynein Light Chain LC8 Is Required for RNA Polymerase I-Mediated Transcription in Trypanosoma brucei, Facilitating Assembly and Promoter Binding of Class I Transcription Factor A. Mol Cell Biol 2015; 36:95-107. [PMID: 26459761 DOI: 10.1128/mcb.00705-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/05/2015] [Indexed: 12/22/2022] Open
Abstract
Dynein light chain LC8 is highly conserved among eukaryotes and has both dynein-dependent and dynein-independent functions. Interestingly, LC8 was identified as a subunit of the class I transcription factor A (CITFA), which is essential for transcription by RNA polymerase I (Pol I) in the parasite Trypanosoma brucei. Given that LC8 has never been identified with a basal transcription factor and that T. brucei relies on RNA Pol I for expressing the variant surface glycoprotein (VSG), the key protein in antigenic variation, we investigated the CITFA-specific role of LC8. Depletion of LC8 from mammalian-infective bloodstream trypanosomes affected cell cycle progression, reduced the abundances of rRNA and VSG mRNA, and resulted in rapid cell death. Sedimentation analysis, coimmunoprecipitation of recombinant proteins, and bioinformatic analysis revealed an LC8 binding site near the N terminus of the subunit CITFA2. Mutation of this site prevented the formation of a CITFA2-LC8 heterotetramer and, in vivo, was lethal, affecting assembly of a functional CITFA complex. Gel shift assays and UV cross-linking experiments identified CITFA2 as a promoter-binding CITFA subunit. Accordingly, silencing of LC8 or CITFA2 resulted in a loss of CITFA from RNA Pol I promoters. Hence, we discovered an LC8 interaction that, unprecedentedly, has a basal function in transcription.
Collapse
|
29
|
Delbridge ARD, Strasser A. The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ 2015; 22:1071-80. [PMID: 25952548 DOI: 10.1038/cdd.2015.50] [Citation(s) in RCA: 389] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 12/14/2022] Open
Abstract
Escape from apoptosis is a key attribute of tumour cells and facilitates chemo-resistance. The 'BCL-2-regulated' or 'intrinsic' apoptotic pathway integrates stress and survival signalling to govern whether a cancer cell will live or die. Indeed, many pro-apoptotic members of the BCL-2 family have demonstrated tumour-suppression activity in mouse models of cancer and are lost or repressed in certain human cancers. Conversely, overexpression of pro-survival BCL-2 family members promotes tumorigenesis in humans and in mouse models. Many of the drugs currently used in the clinic mediate their therapeutic effects (at least in part) through the activation of the BCL-2-regulated apoptotic pathway. However, initiators of this apoptotic pathway, such as p53, are mutated, lost or silenced in many human cancers rendering them refractory to treatment. To counter such resistance mechanisms, a novel class of therapeutics, 'BH3-mimetics', has been developed. These drugs directly activate apoptosis by binding and inhibiting select antiapoptotic BCL-2 family members and thereby bypass the requirement for upstream initiators, such as p53. In this review, we discuss the role of the BCL-2 protein family in the development and treatment of cancer, with an emphasis on mechanistic studies using well-established mouse models of cancer, before describing the development and already recognised potential of the BH3-mimetic compounds.
Collapse
Affiliation(s)
- A R D Delbridge
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - A Strasser
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
30
|
Goggolidou P, Stevens JL, Agueci F, Keynton J, Wheway G, Grimes DT, Patel SH, Hilton H, Morthorst SK, DiPaolo A, Williams DJ, Sanderson J, Khoronenkova SV, Powles-Glover N, Ermakov A, Esapa CT, Romero R, Dianov GL, Briscoe J, Johnson CA, Pedersen LB, Norris DP. ATMIN is a transcriptional regulator of both lung morphogenesis and ciliogenesis. Development 2014; 141:3966-77. [PMID: 25294941 PMCID: PMC4197704 DOI: 10.1242/dev.107755] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Initially identified in DNA damage repair, ATM-interactor (ATMIN) further functions as a transcriptional regulator of lung morphogenesis. Here we analyse three mouse mutants, Atmingpg6/gpg6, AtminH210Q/H210Q and Dynll1GT/GT, revealing how ATMIN and its transcriptional target dynein light chain LC8-type 1 (DYNLL1) are required for normal lung morphogenesis and ciliogenesis. Expression screening of ciliogenic genes confirmed Dynll1 to be controlled by ATMIN and further revealed moderately altered expression of known intraflagellar transport (IFT) protein-encoding loci in Atmin mutant embryos. Significantly, Dynll1GT/GT embryonic cilia exhibited shortening and bulging, highly similar to the characterised retrograde IFT phenotype of Dync2h1. Depletion of ATMIN or DYNLL1 in cultured cells recapitulated the in vivo ciliogenesis phenotypes and expression of DYNLL1 or the related DYNLL2 rescued the effects of loss of ATMIN, demonstrating that ATMIN primarily promotes ciliogenesis by regulating Dynll1 expression. Furthermore, DYNLL1 as well as DYNLL2 localised to cilia in puncta, consistent with IFT particles, and physically interacted with WDR34, a mammalian homologue of the Chlamydomonas cytoplasmic dynein 2 intermediate chain that also localised to the cilium. This study extends the established Atmin-Dynll1 relationship into a developmental and a ciliary context, uncovering a novel series of interactions between DYNLL1, WDR34 and ATMIN. This identifies potential novel components of cytoplasmic dynein 2 and furthermore provides fresh insights into the molecular pathogenesis of human skeletal ciliopathies.
Collapse
Affiliation(s)
- Paraskevi Goggolidou
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Jonathan L Stevens
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Francesco Agueci
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Jennifer Keynton
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Gabrielle Wheway
- Section of Ophthalmology and Neurosciences, Wellcome Trust Brenner Building, Leeds Institute of Molecular Medicine, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Daniel T Grimes
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Saloni H Patel
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Helen Hilton
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Stine K Morthorst
- Department of Biology, University of Copenhagen, Universitetsparken 13, Copenhagen, OE DK-2100, Denmark
| | - Antonella DiPaolo
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Debbie J Williams
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Jeremy Sanderson
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Svetlana V Khoronenkova
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-11, Moscow 119991, Russia
| | - Nicola Powles-Glover
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Alexander Ermakov
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Chris T Esapa
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Rosario Romero
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Grigory L Dianov
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - James Briscoe
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Colin A Johnson
- Section of Ophthalmology and Neurosciences, Wellcome Trust Brenner Building, Leeds Institute of Molecular Medicine, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, Copenhagen, OE DK-2100, Denmark
| | - Dominic P Norris
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| |
Collapse
|
31
|
Schmidt L, Wiedner M, Velimezi G, Prochazkova J, Owusu M, Bauer S, Loizou JI. ATMIN is required for the ATM-mediated signaling and recruitment of 53BP1 to DNA damage sites upon replication stress. DNA Repair (Amst) 2014; 24:122-130. [PMID: 25262557 PMCID: PMC4251980 DOI: 10.1016/j.dnarep.2014.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 01/15/2023]
Abstract
Unresolved replication intermediates can block the progression of replication forks and become converted into DNA lesions, hence exacerbating genomic instability. The p53-binding protein 1 (53BP1) forms nuclear bodies at sites of unrepaired DNA lesions to shield these regions against erosion, in a manner dependent on the DNA damage kinase ATM. The molecular mechanism by which ATM is activated upon replicative stress to localize the 53BP1 protection complex is unknown. Here we show that the ATM-INteracting protein ATMIN (also known as ASCIZ) is partially required for 53BP1 localization upon replicative stress. Additionally, we demonstrate that ATM activation is impaired in cells lacking ATMIN and we define that ATMIN is required for initiating ATM signaling following replicative stress. Furthermore, loss of ATMIN leads to chromosomal segregation defects. Together these data reveal that chromatin integrity depends on ATMIN upon exposure to replication-induced stress.
Collapse
Affiliation(s)
- Luisa Schmidt
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3 1090 Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Waehringer Strasse 13A, 1090 Vienna, Austria
| | - Marc Wiedner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3 1090 Vienna, Austria
| | - Georgia Velimezi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3 1090 Vienna, Austria
| | - Jana Prochazkova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3 1090 Vienna, Austria
| | - Michel Owusu
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3 1090 Vienna, Austria
| | - Sabine Bauer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3 1090 Vienna, Austria
| | - Joanna I Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3 1090 Vienna, Austria.
| |
Collapse
|
32
|
Cremona CA, Behrens A. ATM signalling and cancer. Oncogene 2014; 33:3351-60. [PMID: 23851492 DOI: 10.1038/onc.2013.275] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 12/12/2022]
Abstract
ATM, the protein kinase mutated in the rare human disease ataxia telangiectasia (A-T), has been the focus of intense scrutiny over the past two decades. Initially this was because of the unusual radiosensitive phenotype of cells from A-T patients, and latterly because investigating ATM signalling has yielded valuable insights into the DNA damage response, redox signalling and cancer. With the recent explosion in genomic data, ATM alterations have been revealed both in the germline as a predisposing factor for cancer and as somatic changes in tumours themselves. Here we review these findings, as well as advances in the understanding of ATM signalling mechanisms in cancer and ATM inhibition as a strategy for cancer treatment.
Collapse
Affiliation(s)
- C A Cremona
- Mammalian Genetics Lab, Cancer Research UK London Research Institute, London, UK
| | - A Behrens
- Mammalian Genetics Lab, Cancer Research UK London Research Institute, London, UK
| |
Collapse
|
33
|
Barbar E, Nyarko A. NMR Characterization of Self-Association Domains Promoted by Interactions with LC8 Hub Protein. Comput Struct Biotechnol J 2014; 9:e201402003. [PMID: 24757501 PMCID: PMC3995210 DOI: 10.5936/csbj.201402003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/04/2014] [Accepted: 02/08/2014] [Indexed: 01/04/2023] Open
Abstract
Most proteins in interaction networks have a small number of partners, while a few, called hubs, participate in a large number of interactions and play a central role in cell homeostasis. One highly conserved hub is a protein called LC8 that was originally identified as an essential component of the multi-subunit complex dynein but later shown to be also critical in multiple protein complexes in diverse systems. What is intriguing about this hub protein is that it does not passively bind its various partners but emerging evidence suggests that LC8 acts as a dimerization engine that promotes self-association and/or higher order organization of its primarily disordered monomeric partners. This structural organization process does not require ATP but is triggered by long-range allosteric regulation initiated by LC8 binding a pair of disordered chains forming a bivalent or polybivalent scaffold. This review focuses on the role of LC8 in promoting self-association of two of its binding partners, a dynein intermediate chain and a non dynein protein called Swallow.
Collapse
Affiliation(s)
- Elisar Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Afua Nyarko
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
34
|
The novel zinc finger protein dASCIZ regulates mitosis in Drosophila via an essential role in dynein light-chain expression. Genetics 2013; 196:443-53. [PMID: 24336747 DOI: 10.1534/genetics.113.159541] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The essential zinc finger protein ASCIZ (also known as ATMIN, ZNF822) plays critical roles during lung organogenesis and B cell development in mice, where it regulates the expression of dynein light chain (DYNLL1/LC8), but its functions in other species including invertebrates are largely unknown. Here we report the identification of the Drosophila ortholog of ASCIZ (dASCIZ) and show that loss of dASCIZ function leads to pronounced mitotic delays with centrosome and spindle positioning defects during development, reminiscent of impaired dynein motor functions. Interestingly, similar mitotic and developmental defects were observed upon knockdown of the DYNLL/LC8-type dynein light chain Cutup (Ctp), and dASCIZ loss-of-function phenotypes could be suppressed by ectopic Ctp expression. Consistent with a genetic function of dASCIZ upstream of Ctp, we show that loss of dASCIZ led to reduced endogenous Ctp mRNA and protein levels and dramatically reduced Ctp-LacZ reporter gene activity in vivo, indicating that dASCIZ regulates development and mitosis as a Ctp transcription factor. We speculate that the more severe mitotic defects in the absence of ASCIZ in flies compared to mice may be due to redundancy with a second, ASCIZ-independent, Dynll2 gene in mammals in contrast to a single Ctp gene in Drosophila. Altogether, our data demonstrate that ASCIZ is an evolutionary highly conserved transcriptional regulator of dynein light-chain levels and a novel regulator of mitosis in flies.
Collapse
|
35
|
Renault TT, Chipuk JE. Getting away with murder: how does the BCL-2 family of proteins kill with immunity? Ann N Y Acad Sci 2013; 1285:59-79. [PMID: 23527542 DOI: 10.1111/nyas.12045] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The adult human body produces approximately one million white blood cells every second. However, only a small fraction of the cells will survive because the majority is eliminated through a genetically controlled form of cell death known as apoptosis. This review places into perspective recent studies pertaining to the BCL-2 family of proteins as critical regulators of the development and function of the immune system, with particular attention on B cell and T cell biology. Here we discuss how elegant murine model systems have revealed the major contributions of the BCL-2 family in establishing an effective immune system. Moreover, we highlight some key regulatory pathways that influence the expression, function, and stability of individual BCL-2 family members, and discuss their role in immunity. From lethal mechanisms to more gentle ones, the final portion of the review discusses the nonapoptotic functions of the BCL-2 family and how they pertain to the control of immunity.
Collapse
Affiliation(s)
- Thibaud T Renault
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|