1
|
Soulez M, Tanguay PL, Dô F, Dort J, Crist C, Kotlyarov A, Gaestel M, Ferron M, Dumont NA, Meloche S. ERK3-MK5 signaling regulates myogenic differentiation and muscle regeneration by promoting FoxO3 degradation. J Cell Physiol 2022; 237:2271-2287. [PMID: 35141958 DOI: 10.1002/jcp.30695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 12/25/2022]
Abstract
The physiological functions and downstream effectors of the atypical mitogen-activated protein kinase extracellular signal-regulated kinase 3 (ERK3) remain to be characterized. We recently reported that mice expressing catalytically-inactive ERK3 (Mapk6KD/KD ) exhibit a reduced postnatal growth rate as compared to control mice. Here, we show that genetic inactivation of ERK3 impairs postnatal skeletal muscle growth and adult muscle regeneration after injury. Loss of MAPK-activated protein kinase 5 (MK5) phenocopies the muscle phenotypes of Mapk6KD/KD mice. At the cellular level, genetic or pharmacological inactivation of ERK3 or MK5 induces precocious differentiation of C2C12 or primary myoblasts, concomitant with MyoD activation. Reciprocally, ectopic expression of activated MK5 inhibits myogenic differentiation. Mechanistically, we show that MK5 directly phosphorylates FoxO3, promoting its degradation and reducing its association with MyoD. Depletion of FoxO3 rescues in part the premature differentiation of C2C12 myoblasts observed upon inactivation of ERK3 or MK5. Our findings reveal that ERK3 and its substrate MK5 act in a linear signaling pathway to control postnatal myogenic differentiation.
Collapse
Affiliation(s)
- Mathilde Soulez
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Pierre-Luc Tanguay
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada.,Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Ipsen Biopharmaceuticals Canada, Mississauga, Ontario, Canada
| | - Florence Dô
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Junio Dort
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.,School of Rehabilitation, Université de Montréal, Montreal, Quebec, Canada
| | - Colin Crist
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Alexey Kotlyarov
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Mathieu Ferron
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada.,Department of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Nicolas A Dumont
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.,School of Rehabilitation, Université de Montréal, Montreal, Quebec, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada.,Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Zhang L, Wang J, Zhao YT, Dubielecka P, Qin G, Zhuang S, Chin EY, Liu PY, Zhao TC. Deletion of PRAK Mitigates the Mitochondria Function and Suppresses Insulin Signaling in C2C12 Myoblasts Exposed to High Glucose. Front Pharmacol 2021; 12:698714. [PMID: 34671252 PMCID: PMC8521062 DOI: 10.3389/fphar.2021.698714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background: p38 regulated/activated protein kinase (PRAK) plays a crucial role in modulating cell death and survival. However, the role of PRAK in the regulation of metabolic stress remains unclear. We examined the effects of PRAK on cell survival and mitochondrial function in C2C12 myoblasts in response to high glucose stresses. Methods: PRAK of C2C12 myoblasts was knocked out by using CRISPR/Cas-9 genome editing technology. Both wild type and PRAK−/− C2C12 cells were exposed to high glucose at the concentration of 30 mmol/L to induce metabolic stress. The effect of irisin, an adipomyokine, on both wild type and PRAK−/− cells was determined to explore its relationship with RPAK. Cell viability, ATP product, glucose uptake, mitochondrial damage, and insulin signaling were assessed. Results: PRAK knockout decreased C2C12 viability in response to high glucose stress as evident by MTT assay in association with the reduction of ATP and glucose uptake. PRAK knockout enhanced apoptosis of C2C12 myoblasts in response to high glucose, consistent with an impairment in mitochondrial function, by decreasing mitochondrial membrane potential. PRAK knockout induced impairment of mitochondrial and cell damage were rescued by irisin. PRAK knockout caused decrease in phosphorylated PI3 kinase at Tyr 485, IRS-1 and AMPKα and but did not affect non-phosphorylated PI3 kinase, IRS-1 and AMPKα signaling. High glucose caused the further reduction of phosphorylated PI3 kinase, IRS-1 and AMPKα. Irisin treatment preserved phosphorylated PI3 kinase, IRS-1by rescuing PRAK in high glucose treatment. Conclusion: Our finding indicates a pivotal role of PRAK in preserving cellular survival, mitochondrial function, and high glucose stress.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Medicine, Rhode Island Hospital, Alpert Brown Medical School, Brown University, Providence, RI, United States
| | - Jianguo Wang
- Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine, Boston, MA, United States
| | - Yu Tina Zhao
- University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Patrycja Dubielecka
- Department of Medicine, Rhode Island Hospital, Alpert Brown Medical School, Brown University, Providence, RI, United States
| | - Gangjian Qin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital, Alpert Brown Medical School, Brown University, Providence, RI, United States
| | - Eugene Y Chin
- Institute of Health Sciences, Chinese Academy of Sciences-Jiaotong University School of Medicine, Shanghai, China
| | - Paul Y Liu
- Department of Surgery and Department of Plastic Surgery, Rhode Island Hospital, Brown University, Providence, RI, United States
| | - Ting C Zhao
- Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine, Boston, MA, United States.,Department of Surgery and Department of Plastic Surgery, Rhode Island Hospital, Brown University, Providence, RI, United States
| |
Collapse
|
3
|
Yuan M, Wang Y, Qin M, Zhao X, Chen X, Li D, Miao Y, Otieno Odhiambo W, Liu H, Ma Y, Ji Y. RAG enhances BCR-ABL1-positive leukemic cell growth through its endonuclease activity in vitro and in vivo. Cancer Sci 2021; 112:2679-2691. [PMID: 33949040 PMCID: PMC8253288 DOI: 10.1111/cas.14939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/15/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
BCR-ABL1 gene fusion associated with additional DNA lesions involves the pathogenesis of chronic myelogenous leukemia (CML) from a chronic phase (CP) to a blast crisis of B lymphoid (CML-LBC) lineage and BCR-ABL1+ acute lymphoblastic leukemia (BCR-ABL1+ ALL). The recombination-activating gene RAG1 and RAG2 (collectively, RAG) proteins that assemble a diverse set of antigen receptor genes during lymphocyte development are abnormally expressed in CML-LBC and BCR-ABL1+ ALL. However, the direct involvement of dysregulated RAG in disease progression remains unclear. Here, we generate human wild-type (WT) RAG and catalytically inactive RAG-expressing BCR-ABL1+ and BCR-ABL1- cell lines, respectively, and demonstrate that BCR-ABL1 specifically collaborates with RAG recombinase to promote cell survival in vitro and in xenograft mice models. WT RAG-expressing BCR-ABL1+ cell lines and primary CD34+ bone marrow cells from CML-LBC samples maintain more double-strand breaks (DSB) compared to catalytically inactive RAG-expressing BCR-ABL1+ cell lines and RAG-deficient CML-CP samples, which are measured by γ-H2AX. WT RAG-expressing BCR-ABL1+ cells are biased to repair RAG-mediated DSB by the alternative non-homologous end joining pathway (a-NHEJ), which could contribute genomic instability through increasing the expression of a-NHEJ-related MRE11 and RAD50 proteins. As a result, RAG-expressing BCR-ABL1+ cells decrease sensitivity to tyrosine kinase inhibitors (TKI) by activating BCR-ABL1 signaling but independent of the levels of BCR-ABL1 expression and mutations in the BCR-ABL1 tyrosine kinase domain. These findings identify a surprising and novel role of RAG in the functional specialization of disease progression in BCR-ABL1+ leukemia through its endonuclease activity.
Collapse
MESH Headings
- Acid Anhydride Hydrolases/metabolism
- Animals
- Blast Crisis/genetics
- Blast Crisis/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Cell Survival
- DNA Breaks, Double-Stranded
- DNA End-Joining Repair
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Disease Progression
- Endonucleases/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Genomic Instability
- Heterografts
- Histones/analysis
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- In Vitro Techniques
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- MRE11 Homologue Protein/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Nuclear Proteins/deficiency
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Protein Kinase Inhibitors/therapeutic use
Collapse
Affiliation(s)
- Meng Yuan
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Yang Wang
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Mengting Qin
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Xiaohui Zhao
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Xiaodong Chen
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Dandan Li
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Yinsha Miao
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
- Department of Clinical laboratoryXi’an No. 3 HospitalThe Affiliated Hospital of Northwest UniversityXi’anChina
| | - Wood Otieno Odhiambo
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Huasheng Liu
- Department of HematologyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Yunfeng Ma
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Yanhong Ji
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| |
Collapse
|
4
|
The essential role of PRAK in tumor metastasis and its therapeutic potential. Nat Commun 2021; 12:1736. [PMID: 33741957 PMCID: PMC7979731 DOI: 10.1038/s41467-021-21993-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 01/20/2021] [Indexed: 01/29/2023] Open
Abstract
Metastasis is the leading cause of cancer-related death. Despite the recent advancements in cancer treatment, there is currently no approved therapy for metastasis. The present study reveals a potent and selective activity of PRAK in the regulation of tumor metastasis. While showing no apparent effect on the growth of primary breast cancers or subcutaneously inoculated tumor lines, Prak deficiency abrogates lung metastases in PyMT mice or mice receiving intravenous injection of tumor cells. Consistently, PRAK expression is closely associated with metastatic risk in human cancers. Further analysis indicates that loss of function of PRAK leads to a pronounced inhibition of HIF-1α protein synthesis, possibly due to reduced mTORC1 activities. Notably, pharmacological inactivation of PRAK with a clinically relevant inhibitor recapitulates the anti-metastatic effect of Prak depletion, highlighting the therapeutic potential of targeting PRAK in the control of metastasis.
Collapse
|
5
|
The adrenergic-induced ERK3 pathway drives lipolysis and suppresses energy dissipation. Genes Dev 2020; 34:495-510. [PMID: 32139423 PMCID: PMC7111262 DOI: 10.1101/gad.333617.119] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
In this study, El-Merahbi et al. investigated new regulators of lipolysis, and using a high-throughput screen identified the extracellular-regulated kinase 3 (ERK3) in lipolysis regulation. They identified a downstream target of the ERK3/MK5 pathway, the transcription factor FOXO1, which promotes expression of the major lipolytic enzyme ATGL, and provide evidence that targeted deletion of ERK3 in mouse adipocytes inhibits lipolysis. Obesity-induced diabetes affects >400 million people worldwide. Uncontrolled lipolysis (free fatty acid release from adipocytes) can contribute to diabetes and obesity. To identify future therapeutic avenues targeting this pathway, we performed a high-throughput screen and identified the extracellular-regulated kinase 3 (ERK3) as a hit. We demonstrated that β-adrenergic stimulation stabilizes ERK3, leading to the formation of a complex with the cofactor MAP kinase-activated protein kinase 5 (MK5), thereby driving lipolysis. Mechanistically, we identified a downstream target of the ERK3/MK5 pathway, the transcription factor FOXO1, which promotes the expression of the major lipolytic enzyme ATGL. Finally, we provide evidence that targeted deletion of ERK3 in mouse adipocytes inhibits lipolysis, but elevates energy dissipation, promoting lean phenotype and ameliorating diabetes. Thus, ERK3/MK5 represents a previously unrecognized signaling axis in adipose tissue and an attractive target for future therapies aiming to combat obesity-induced diabetes.
Collapse
|
6
|
Zhao YT, Du J, Yano N, Wang H, Wang J, Dubielecka PM, Zhang LX, Qin G, Zhuang S, Liu PY, Chin YE, Zhao TC. p38-Regulated/activated protein kinase plays a pivotal role in protecting heart against ischemia-reperfusion injury and preserving cardiac performance. Am J Physiol Cell Physiol 2019; 317:C525-C533. [PMID: 31291142 DOI: 10.1152/ajpcell.00122.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
p38-Regulated/activated protein kinase (PRAK) plays a critical role in modulating cellular survival and biological function. However, the function of PRAK in the regulation of myocardial ischemic injury remains unknown. This study is aimed at determining the function of PRAK in modulating myocardial ischemia-reperfusion injury and myocardial remodeling following myocardial infarction. Hearts were isolated from adult male homozygous PRAK-/- and wild-type mice and subjected to global ischemia-reperfusion injury in Langendorff isolated heart perfusion. PRAK-/- mice mitigated postischemic ventricular functional recovery and decreased coronary effluent. Moreover, the infarct size in the perfused heart was significantly increased by deletion of PRAK. Western blot showed that deletion of PRAK decreased the phosphorylation of ERK1/2. Furthermore, the effect of deletion of PRAK on myocardial function and remodeling was also examined on infarcted mice in which the left anterior descending artery was ligated. Echocardiography indicated that PRAK-/- mice had accelerated left ventricular systolic dysfunction, which was associated with increased hypertrophy in the infarcted area. Deletion of PRAK augmented interstitial fibrosis and terminal deoxynucleotidyl transferase nick-end labeling (TUNEL)-positive myocytes. Furthermore, immunostaining analysis shows that CD31-postive vascular density and α-smooth muscle actin capillary staining decreased significantly in PRAK-/- mice. These results indicate that deletion of PRAK enhances susceptibility to myocardial ischemia-reperfusion injury, attenuates cardiac performance and angiogenesis, and increases interstitial fibrosis and apoptosis in the infarcted hearts.
Collapse
Affiliation(s)
- Yu Tina Zhao
- Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine, Providence, Rhode Island
| | - Jianfeng Du
- Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine, Providence, Rhode Island
| | - Naohiro Yano
- Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine, Providence, Rhode Island
| | - Hao Wang
- Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine, Providence, Rhode Island
| | - Jianguo Wang
- Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine, Providence, Rhode Island
| | - Patrycja M Dubielecka
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Ling X Zhang
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Gangjian Qin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Paul Y Liu
- Department of Plastic Surgery, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Y Eugene Chin
- Institute of Health Sciences, Chinese Academy of Sciences-Jiaotong University School of Medicine, Shanghai, China
| | - Ting C Zhao
- Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine, Providence, Rhode Island
| |
Collapse
|
7
|
Urbanczyk S, Stein M, Schuh W, Jäck HM, Mougiakakos D, Mielenz D. Regulation of Energy Metabolism during Early B Lymphocyte Development. Int J Mol Sci 2018; 19:E2192. [PMID: 30060475 PMCID: PMC6121686 DOI: 10.3390/ijms19082192] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 07/25/2018] [Indexed: 01/03/2023] Open
Abstract
The most important feature of humoral immunity is the adaptation of the diversity of newly generated B cell receptors, that is, the antigen receptor repertoire, to the body's own and foreign structures. This includes the transient propagation of B progenitor cells and B cells, which possess receptors that are positively selected via anabolic signalling pathways under highly competitive conditions. The metabolic regulation of early B-cell development thus has important consequences for the expansion of normal or malignant pre-B cell clones. In addition, cellular senescence programs based on the expression of B cell identity factors, such as Pax5, act to prevent excessive proliferation and cellular deviation. Here, we review the basic mechanisms underlying the regulation of glycolysis and oxidative phosphorylation during early B cell development in bone marrow. We focus on the regulation of glycolysis and mitochondrial oxidative phosphorylation at the transition from non-transformed pro- to pre-B cells and discuss some ongoing issues. We introduce Swiprosin-2/EFhd1 as a potential regulator of glycolysis in pro-B cells that has also been linked to Ca2+-mediated mitoflashes. Mitoflashes are bioenergetic mitochondrial events that control mitochondrial metabolism and signalling in both healthy and disease states. We discuss how Ca2+ fluctuations in pro- and pre-B cells may translate into mitoflashes in early B cells and speculate about the consequences of these changes.
Collapse
Affiliation(s)
- Sophia Urbanczyk
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Merle Stein
- Department of Internal Medicine V, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Wolfgang Schuh
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Dimitrios Mougiakakos
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, 89081 Ulm, Germany.
| | - Dirk Mielenz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| |
Collapse
|
8
|
van Doeselaar S, Burgering BMT. FOXOs Maintaining the Equilibrium for Better or for Worse. Curr Top Dev Biol 2018; 127:49-103. [PMID: 29433740 DOI: 10.1016/bs.ctdb.2017.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A paradigm shift is emerging within the FOXO field and accumulating evidence indicates that we need to reappreciate the role of FOXOs, at least in cancer development. Here, we discuss the possibility that FOXOs are both tumor suppressors as well as promoters of tumor progression. This is mostly dependent on the biological context. Critical to this dichotomous role is the notion that FOXOs are central in preserving cellular homeostasis in redox control, genomic stability, and protein turnover. From this perspective, a paradoxical role in both suppressing and enhancing tumor progression can be reconciled. As many small molecules targeting the PI3K pathway are developed by big pharmaceutical companies and/or are in clinical trial, we will discuss what the consequences may be for the context-dependent role of FOXOs in tumor development in treatment options based on active PI3K signaling in tumors.
Collapse
Affiliation(s)
- Sabina van Doeselaar
- Molecular Cancer Research, Center Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Boudewijn M T Burgering
- Molecular Cancer Research, Center Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Fukumoto M, Kondo K, Uni K, Ishiguro T, Hayashi M, Ueda S, Mori I, Niimi K, Tashiro F, Miyazaki S, Miyazaki JI, Inagaki S, Furuyama T. Tip-cell behavior is regulated by transcription factor FoxO1 under hypoxic conditions in developing mouse retinas. Angiogenesis 2017; 21:203-214. [DOI: 10.1007/s10456-017-9588-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/22/2017] [Indexed: 12/29/2022]
|
10
|
Sahadevan P, Allen BG. MK5: A novel regulator of cardiac fibroblast function? IUBMB Life 2017; 69:785-794. [PMID: 28941148 DOI: 10.1002/iub.1677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/21/2017] [Indexed: 12/28/2022]
Abstract
MAP kinase-activated protein kinases (MKs), protein serine/threonine kinases downstream of the MAPKs, regulate a number of biological functions. MK5 was initially identified as a substrate for p38 MAPK but subsequent studies revealed that MK5 activity is regulated by atypical MAPKs ERK3 and ERK4. However, the roles of these MAPKs in activating MK5 remain controversial. The interactome and physiological function of MK5 are just beginning to be understood. Here, we provide an overview of the structure-function of MK5 including recent progress in determining its role in cardiac structure and function. The cardiac phenotype of MK5 haplodeficient mice, and the effect of reduced MK5 expression on cardiac remodeling, is also discussed. © 2017 IUBMB Life, 69(10):785-794, 2017.
Collapse
Affiliation(s)
- Pramod Sahadevan
- Department of Biochemistry and Molecular Medicine, Université de Montréal and Montreal Heart Institute, Montréal, Québec, Canada
| | - Bruce G Allen
- Department of Biochemistry and Molecular Medicine, Université de Montréal and Montreal Heart Institute, Montréal, Québec, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, Canada.,Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
11
|
Dual Mechanism of Rag Gene Repression by c-Myb during Pre-B Cell Proliferation. Mol Cell Biol 2017; 37:MCB.00437-16. [PMID: 28373291 DOI: 10.1128/mcb.00437-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 03/26/2017] [Indexed: 11/20/2022] Open
Abstract
Developing B lymphocytes undergo clonal expansion following successful immunoglobulin heavy chain gene rearrangement. During this proliferative burst, expression of the Rag genes is transiently repressed to prevent the generation of double-stranded DNA (dsDNA) breaks in cycling large pre-B cells. The Rag genes are then reexpressed in small, resting pre-B cells for immunoglobulin light chain gene rearrangement. We previously identified c-Myb as a repressor of Rag transcription during clonal expansion using Abelson murine leukemia virus-transformed B cells. Nevertheless, the molecular mechanisms by which c-Myb achieved precise spatiotemporal repression of Rag expression remained obscure. Here, we identify two mechanisms by which c-Myb represses Rag transcription. First, c-Myb negatively regulates the expression of the Rag activator Foxo1, an activity dependent on M303 in c-Myb's transactivation domain, and likely the recruitment of corepressors to the Foxo1 locus by c-Myb. Second, c-Myb represses Rag transcription directly by occupying the Erag enhancer and antagonizing Foxo1 binding to a consensus forkhead site in this cis-regulatory element that we show is crucial for Rag expression in Abelson pre-B cell lines. This work provides important mechanistic insight into how spatiotemporal expression of the Rag genes is tightly controlled during B lymphocyte development to prevent mistimed dsDNA breaks and their deleterious consequences.
Collapse
|
12
|
Stein M, Dütting S, Mougiakakos D, Bösl M, Fritsch K, Reimer D, Urbanczyk S, Steinmetz T, Schuh W, Bozec A, Winkler TH, Jäck HM, Mielenz D. A defined metabolic state in pre B cells governs B-cell development and is counterbalanced by Swiprosin-2/EFhd1. Cell Death Differ 2017; 24:1239-1252. [PMID: 28524857 DOI: 10.1038/cdd.2017.52] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 02/10/2017] [Accepted: 03/08/2017] [Indexed: 12/14/2022] Open
Abstract
B-cell development in the bone marrow comprises proliferative and resting phases in different niches. We asked whether B-cell metabolism relates to these changes. Compared to pro B and small pre B cells, large pre B cells revealed the highest glucose uptake and ROS but not mitochondrial mass, whereas small pre B cells exhibited the lowest mitochondrial membrane potential. Small pre B cells from Rag1-/-;33.C9 μ heavy chain knock-in mice revealed decreased glycolysis (ECAR) and mitochondrial spare capacity compared to pro B cells from Rag1-/- mice. We were interested in the step regulating this metabolic switch from pro to pre B cells and uncovered that Swiprosin-2/EFhd1, a Ca2+-binding protein of the inner mitochondrial membrane involved in Ca2+-induced mitoflashes, is expressed in pro B cells, but downregulated by surface pre B-cell receptor expression. Knockdown and knockout of EFhd1 in 38B9 pro B cells decreased the oxidative phosphorylation/glycolysis (OCR/ECAR) ratio by increasing glycolysis, glycolytic capacity and reserve. Prolonged expression of EFhd1 in EFhd1 transgenic mice beyond the pro B cell stage increased expression of the mitochondrial co-activator PGC-1α in primary pre B cells, but reduced mitochondrial ATP production at the pro to pre B cell transition in IL-7 cultures. Transgenic EFhd1 expression caused a B-cell intrinsic developmental disadvantage for pro and pre B cells. Hence, coordinated expression of EFhd1 in pro B cells and by the pre BCR regulates metabolic changes and pro/pre B-cell development.
Collapse
Affiliation(s)
- Merle Stein
- Department of Internal Medicine 3, Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Sebastian Dütting
- Department of Internal Medicine 3, Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine V, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Bösl
- Department of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg D-97080, Germany
| | - Kristin Fritsch
- Department of Internal Medicine 3, Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Dorothea Reimer
- Department of Internal Medicine 3, Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Sophia Urbanczyk
- Department of Internal Medicine 3, Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tobit Steinmetz
- Department of Internal Medicine 3, Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Wolfgang Schuh
- Department of Internal Medicine 3, Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine III, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas H Winkler
- Department of Biology, Nikolaus-Fiebiger-Center, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Department of Internal Medicine 3, Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Dirk Mielenz
- Department of Internal Medicine 3, Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
13
|
Verkoczy L. Humanized Immunoglobulin Mice: Models for HIV Vaccine Testing and Studying the Broadly Neutralizing Antibody Problem. Adv Immunol 2017; 134:235-352. [PMID: 28413022 PMCID: PMC5914178 DOI: 10.1016/bs.ai.2017.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A vaccine that can effectively prevent HIV-1 transmission remains paramount to ending the HIV pandemic, but to do so, will likely need to induce broadly neutralizing antibody (bnAb) responses. A major technical hurdle toward achieving this goal has been a shortage of animal models with the ability to systematically pinpoint roadblocks to bnAb induction and to rank vaccine strategies based on their ability to stimulate bnAb development. Over the past 6 years, immunoglobulin (Ig) knock-in (KI) technology has been leveraged to express bnAbs in mice, an approach that has enabled elucidation of various B-cell tolerance mechanisms limiting bnAb production and evaluation of strategies to circumvent such processes. From these studies, in conjunction with the wealth of information recently obtained regarding the evolutionary pathways and paratopes/epitopes of multiple bnAbs, it has become clear that the very features of bnAbs desired for their function will be problematic to elicit by traditional vaccine paradigms, necessitating more iterative testing of new vaccine concepts. To meet this need, novel bnAb KI models have now been engineered to express either inferred prerearranged V(D)J exons (or unrearranged germline V, D, or J segments that can be assembled into functional rearranged V(D)J exons) encoding predecessors of mature bnAbs. One encouraging approach that has materialized from studies using such newer models is sequential administration of immunogens designed to bind progressively more mature bnAb predecessors. In this review, insights into the regulation and induction of bnAbs based on the use of KI models will be discussed, as will new Ig KI approaches for higher-throughput production and/or altering expression of bnAbs in vivo, so as to further enable vaccine-guided bnAb induction studies.
Collapse
Affiliation(s)
- Laurent Verkoczy
- Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States.
| |
Collapse
|
14
|
Lentucci C, Belkina AC, Cederquist CT, Chan M, Johnson HE, Prasad S, Lopacinski A, Nikolajczyk BS, Monti S, Snyder-Cappione J, Tanasa B, Cardamone MD, Perissi V. Inhibition of Ubc13-mediated Ubiquitination by GPS2 Regulates Multiple Stages of B Cell Development. J Biol Chem 2016; 292:2754-2772. [PMID: 28039360 DOI: 10.1074/jbc.m116.755132] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/21/2016] [Indexed: 12/12/2022] Open
Abstract
Non-proteolytic ubiquitin signaling mediated by Lys63 ubiquitin chains plays a critical role in multiple pathways that are key to the development and activation of immune cells. Our previous work indicates that GPS2 (G-protein Pathway Suppressor 2) is a multifunctional protein regulating TNFα signaling and lipid metabolism in the adipose tissue through modulation of Lys63 ubiquitination events. However, the full extent of GPS2-mediated regulation of ubiquitination and the underlying molecular mechanisms are unknown. Here, we report that GPS2 is required for restricting the activation of TLR and BCR signaling pathways and the AKT/FOXO1 pathway in immune cells based on direct inhibition of Ubc13 enzymatic activity. Relevance of this regulatory strategy is confirmed in vivo by B cell-targeted deletion of GPS2, resulting in developmental defects at multiple stages of B cell differentiation. Together, these findings reveal that GPS2 genomic and non-genomic functions are critical for the development and cellular homeostasis of B cells.
Collapse
Affiliation(s)
| | - Anna C Belkina
- the Flow Cytometry Core Facility, Boston University School of Medicine, Boston, Massachusetts 02118 and.,Microbiology, and
| | | | | | | | | | | | | | | | - Jennifer Snyder-Cappione
- the Flow Cytometry Core Facility, Boston University School of Medicine, Boston, Massachusetts 02118 and.,Microbiology, and
| | - Bogdan Tanasa
- the Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305
| | | | | |
Collapse
|
15
|
Ochodnicka-Mackovicova K, Bahjat M, Maas C, van der Veen A, Bloedjes TA, de Bruin AM, van Andel H, Schrader CE, Hendriks RW, Verhoeyen E, Bende RJ, van Noesel CJM, Guikema JEJ. The DNA Damage Response Regulates RAG1/2 Expression in Pre-B Cells through ATM-FOXO1 Signaling. THE JOURNAL OF IMMUNOLOGY 2016; 197:2918-29. [PMID: 27559048 DOI: 10.4049/jimmunol.1501989] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 07/20/2016] [Indexed: 01/01/2023]
Abstract
The recombination activating gene (RAG) 1 and RAG2 protein complex introduces DNA breaks at Tcr and Ig gene segments that are required for V(D)J recombination in developing lymphocytes. Proper regulation of RAG1/2 expression safeguards the ordered assembly of Ag receptors and the development of lymphocytes, while minimizing the risk for collateral damage. The ataxia telangiectasia mutated (ATM) kinase is involved in the repair of RAG1/2-mediated DNA breaks and prevents their propagation. The simultaneous occurrence of RAG1/2-dependent and -independent DNA breaks in developing lymphocytes exposed to genotoxic stress increases the risk for aberrant recombinations. In this study, we assessed the effect of genotoxic stress on RAG1/2 expression in pre-B cells and show that activation of the DNA damage response resulted in the rapid ATM-dependent downregulation of RAG1/2 mRNA and protein expression. We show that DNA damage led to the loss of FOXO1 binding to the enhancer region of the RAG1/2 locus (Erag) and provoked FOXO1 cleavage. We also show that DNA damage caused by RAG1/2 activity in pre-B cells was able to downmodulate RAG1/2 expression and activity, confirming the existence of a negative feedback regulatory mechanism. Our data suggest that pre-B cells are endowed with a protective mechanism that reduces the risk for aberrant recombinations and chromosomal translocations when exposed to DNA damage, involving the ATM-dependent regulation of FOXO1 binding to the Erag enhancer region.
Collapse
Affiliation(s)
- Katarina Ochodnicka-Mackovicova
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Mahnoush Bahjat
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Chiel Maas
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Amélie van der Veen
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Timon A Bloedjes
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Alexander M de Bruin
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Harmen van Andel
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Carol E Schrader
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Els Verhoeyen
- Centre International de Recherche en Infectiologie, Virus Enveloppés, Vecteurs et Réponses Innées Équipe, INSERM U1111, CNRS, UMR5308, Université de Lyon-1, École Normale Supérieure de Lyon, 69007 Lyon, France; and INSERM, U1065, Centre de Médecine Moléculaire, Équipe 3, 06204 Nice, France
| | - Richard J Bende
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Carel J M van Noesel
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands;
| |
Collapse
|
16
|
Gaestel M. MAPK-Activated Protein Kinases (MKs): Novel Insights and Challenges. Front Cell Dev Biol 2016; 3:88. [PMID: 26779481 PMCID: PMC4705221 DOI: 10.3389/fcell.2015.00088] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/18/2015] [Indexed: 11/14/2022] Open
Abstract
Downstream of MAPKs, such as classical/atypical ERKs and p38 MAPKs, but not of JNKs, signaling is often mediated by protein kinases which are phosphorylated and activated by MAPKs and, therefore, designated MAPK-activated protein kinases (MAPKAPKs). Recently, novel insights into the specificity of the assembly of MAPK/MAPKAPK hetero-dimeric protein kinase signaling complexes have been gained. In addition, new functional aspects of MKs have been described and established functions have been challenged. This short review will summarize recent developments including the linear motif (LM) in MKs, the ERK-independent activation of RSK, the RSK-independent effects of some RSK-inhibitors and the challenged role of MK5/PRAK in tumor suppression.
Collapse
Affiliation(s)
- Matthias Gaestel
- Department of Biochemistry, Hannover Medical University Hannover, Germany
| |
Collapse
|
17
|
Pei Y, Lu X, He L, Wang H, Zhang A, Li Y, Huang R, Liao L, Zhu Z, Wang Y. Expression pattern and transcriptional regulatory mechanism of noxa gene in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2015; 47:861-867. [PMID: 26453794 DOI: 10.1016/j.fsi.2015.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
Noxa, a pro-apoptotic protein, plays an important role in cell apoptosis. The researches about noxa gene were concentrated in mammalians, whereas the role and transcriptional regulatory mechanism of noxa in fish were still unclear. In this study, the expression pattern and transcriptional regulatory mechanism of noxa gene in grass carp were analyzed. Noxa was constitutively expressed in all the examined tissues but the relative expression level differed. After exposure to grass carp reovirus (GCRV), mRNA expression level of noxa was down-regulated at the early phase whereas up-regulated at the late phase of infection. Luciferase assays showed that the promoter region -867 ∼ +107 of noxa had high activity and the region -678 ∼ -603 was important in the response to GCRV infection. By deleting the predicted transcription factor binding sites, transcription factors FOXO1 and CEBPβ were found important for noxa in response to GCRV infection. Moreover, the noxa promoter was biotin-labeled and incubated with nuclear extracts from GCRV infected cells. Mass spectrometry analysis showed that transcription factors FOXO1 and CEBPβ were also enriched in the combined proteins. Therefore, the results suggested that transcription factors FOXO1 and CEBPβ may play an important role in the regulation of noxa. Our study would provide new insight into the transcriptional regulatory mechanism of noxa in teleost fish.
Collapse
Affiliation(s)
- Yongyan Pei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaonan Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aidi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
18
|
Ronkina N, Johansen C, Bohlmann L, Lafera J, Menon MB, Tiedje C, Laaß K, Turk BE, Iversen L, Kotlyarov A, Gaestel M. Comparative Analysis of Two Gene-Targeting Approaches Challenges the Tumor-Suppressive Role of the Protein Kinase MK5/PRAK. PLoS One 2015; 10:e0136138. [PMID: 26295581 PMCID: PMC4546416 DOI: 10.1371/journal.pone.0136138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 07/27/2015] [Indexed: 01/19/2023] Open
Abstract
MK5 (MAPK-activated protein kinase 5) or PRAK (p38-regulated and -activated kinase) are alternative names for a serine/threonine protein kinase downstream to ERK3/4 and p38 MAPK. A previous gene targeting approach for MK5/PRAK (termed here MK5/PRAK-Δex8) revealed a seemingly tumor-suppressive role of MK5/PRAK in DMBA-induced one step skin carcinogenesis and Ras-induced transformation. Here we demonstrate that an alternative targeting strategy of MK5/PRAK (termed MK5/PRAK-Δex6) increased neither tumor incidence in the one step skin carcinogenesis model, nor Ras-induced transformation in primary cells. Interestingly, due to the targeting strategies and exon skipping both knockouts do not completely abolish the generation of MK5/PRAK protein, but express MK5/PRAK deletion mutants with different biochemical properties depending on the exon targeted: Targeting of exon 6 leads to expression of an unstable cytoplasmic catalytically inactive MK5/PRAK-Δex6 mutant while targeting of exon 8 results in a more stable nuclear MK5/PRAK-Δex8 mutant with residual catalytic activity. The different properties of the MK5/PRAK deletion mutants could be responsible for the observed discrepancy between the knockout strains and challenge the role of MK5/PRAK in p53-dependent tumor suppression. Further MK5/PRAK knockout and knock-in mouse strains will be necessary to assign a physiological function to MK5/PRAK in this model organism.
Collapse
Affiliation(s)
- Natalia Ronkina
- Department of Biochemistry, Hannover Medical School, Hannover, Germany
| | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus C, Denmark
| | - Lisa Bohlmann
- Department of Biochemistry, Hannover Medical School, Hannover, Germany
| | - Juri Lafera
- Department of Biochemistry, Hannover Medical School, Hannover, Germany
| | - Manoj B. Menon
- Department of Biochemistry, Hannover Medical School, Hannover, Germany
| | | | - Kathrin Laaß
- Department of Biochemistry, Hannover Medical School, Hannover, Germany
| | - Benjamin E. Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, United States of America
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus C, Denmark
| | - Alexey Kotlyarov
- Department of Biochemistry, Hannover Medical School, Hannover, Germany
| | - Matthias Gaestel
- Department of Biochemistry, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
19
|
NF-κB and AKT signaling prevent DNA damage in transformed pre-B cells by suppressing RAG1/2 expression and activity. Blood 2015; 126:1324-35. [PMID: 26153519 DOI: 10.1182/blood-2015-01-621623] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 07/01/2015] [Indexed: 01/16/2023] Open
Abstract
In developing lymphocytes, expression and activity of the recombination activation gene protein 1 (RAG1) and RAG2 endonuclease complex is tightly regulated to ensure ordered recombination of the immunoglobulin genes and to avoid genomic instability. Aberrant RAG activity has been implicated in the generation of secondary genetic events in human B-cell acute lymphoblastic leukemias (B-ALLs), illustrating the oncogenic potential of the RAG complex. Several layers of regulation prevent collateral genomic DNA damage by restricting RAG activity to the G1 phase of the cell cycle. In this study, we show a novel pathway that suppresses RAG expression in cycling-transformed mouse pre-B cells and human pre-B B-ALL cells that involves the negative regulation of FOXO1 by nuclear factor κB (NF-κB). Inhibition of NF-κB in cycling pre-B cells resulted in upregulation of RAG expression and recombination activity, which provoked RAG-dependent DNA damage. In agreement, we observe a negative correlation between NF-κB activity and the expression of RAG1, RAG2, and TdT in B-ALL patients. Our data suggest that targeting NF-κB in B-ALL increases the risk of RAG-dependent genomic instability.
Collapse
|
20
|
Klotz LO, Sánchez-Ramos C, Prieto-Arroyo I, Urbánek P, Steinbrenner H, Monsalve M. Redox regulation of FoxO transcription factors. Redox Biol 2015; 6:51-72. [PMID: 26184557 PMCID: PMC4511623 DOI: 10.1016/j.redox.2015.06.019] [Citation(s) in RCA: 550] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/25/2015] [Accepted: 06/30/2015] [Indexed: 12/19/2022] Open
Abstract
Transcription factors of the forkhead box, class O (FoxO) family are important regulators of the cellular stress response and promote the cellular antioxidant defense. On one hand, FoxOs stimulate the transcription of genes coding for antioxidant proteins located in different subcellular compartments, such as in mitochondria (i.e. superoxide dismutase-2, peroxiredoxins 3 and 5) and peroxisomes (catalase), as well as for antioxidant proteins found extracellularly in plasma (e.g., selenoprotein P and ceruloplasmin). On the other hand, reactive oxygen species (ROS) as well as other stressful stimuli that elicit the formation of ROS, may modulate FoxO activity at multiple levels, including posttranslational modifications of FoxOs (such as phosphorylation and acetylation), interaction with coregulators, alterations in FoxO subcellular localization, protein synthesis and stability. Moreover, transcriptional and posttranscriptional control of the expression of genes coding for FoxOs is sensitive to ROS. Here, we review these aspects of FoxO biology focusing on redox regulation of FoxO signaling, and with emphasis on the interplay between ROS and FoxOs under various physiological and pathophysiological conditions. Of particular interest are the dual role played by FoxOs in cancer development and their key role in whole body nutrient homeostasis, modulating metabolic adaptations and/or disturbances in response to low vs. high nutrient intake. Examples discussed here include calorie restriction and starvation as well as adipogenesis, obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Lars-Oliver Klotz
- Institute of Nutrition, Department of Nutrigenomics, Friedrich-Schiller-Universität Jena, Dornburger Straße 29, 07743 Jena, Germany.
| | - Cristina Sánchez-Ramos
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain
| | - Ignacio Prieto-Arroyo
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain
| | - Pavel Urbánek
- Institute of Nutrition, Department of Nutrigenomics, Friedrich-Schiller-Universität Jena, Dornburger Straße 29, 07743 Jena, Germany
| | - Holger Steinbrenner
- Institute of Nutrition, Department of Nutrigenomics, Friedrich-Schiller-Universität Jena, Dornburger Straße 29, 07743 Jena, Germany
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain.
| |
Collapse
|
21
|
Deng Y, Kerdiles Y, Chu J, Yuan S, Wang Y, Chen X, Mao H, Zhang L, Zhang J, Hughes T, Deng Y, Zhang Q, Wang F, Zou X, Liu CG, Freud AG, Li X, Caligiuri MA, Vivier E, Yu J. Transcription factor Foxo1 is a negative regulator of natural killer cell maturation and function. Immunity 2015; 42:457-70. [PMID: 25769609 DOI: 10.1016/j.immuni.2015.02.006] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 01/01/2023]
Abstract
Little is known about the role of negative regulators in controlling natural killer (NK) cell development and effector functions. Foxo1 is a multifunctional transcription factor of the forkhead family. Using a mouse model of conditional deletion in NK cells, we found that Foxo1 negatively controlled NK cell differentiation and function. Immature NK cells expressed abundant Foxo1 and little Tbx21 relative to mature NK cells, but these two transcription factors reversed their expression as NK cells proceeded through development. Foxo1 promoted NK cell homing to lymph nodes by upregulating CD62L expression and inhibited late-stage maturation and effector functions by repressing Tbx21 expression. Loss of Foxo1 rescued the defect in late-stage NK cell maturation in heterozygous Tbx21(+/-) mice. Collectively, our data reveal a regulatory pathway by which the negative regulator Foxo1 and the positive regulator Tbx21 play opposing roles in controlling NK cell development and effector functions.
Collapse
Affiliation(s)
- Youcai Deng
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Yann Kerdiles
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Inserm U1104, CNRS UMR7280, Marseille 13288, France
| | - Jianhong Chu
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Shunzong Yuan
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; Department of Lymphoma, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, China
| | - Youwei Wang
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Xilin Chen
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; Department of Lymphoma, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, China
| | - Hsiaoyin Mao
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Lingling Zhang
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Jianying Zhang
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA
| | - Tiffany Hughes
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Yafei Deng
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Qi Zhang
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Fangjie Wang
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Xianghong Zou
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Chang-Gong Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aharon G Freud
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Xiaohui Li
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Michael A Caligiuri
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; The James Cancer Hospital, The Ohio State University, Columbus, OH 43210, USA.
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Inserm U1104, CNRS UMR7280, Marseille 13288, France; Service d'Immunologie, Assistance Publique - Hôpitaux de Marseille, Marseille 13385, France
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; The James Cancer Hospital, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
22
|
Abstract
Natural killer (NK) cells are innate lymphocytes that survey the environment and protect the host from infected and cancerous cells. As their name implies, NK cells represent an early line of defense during pathogen invasion by directly killing infected cells and secreting inflammatory cytokines. Although the function of NK cells was first described more than four decades ago, the development of this cytotoxic lineage is not well understood. In recent years, we have begun to identify specific transcription factors that control each stage of development and maturation, from ontogeny of the NK cell progenitor to the effector functions of activated NK cells in peripheral organs. This chapter highlights the transcription factors that are unique to NK cells, or shared between NK cells and other hematopoietic cell lineages, but govern the biology of this cytolytic lymphocyte.
Collapse
Affiliation(s)
- Joseph C Sun
- Memorial Sloan Kettering Cancer Center, Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, 408 East 69th Street, ZRC-1402, New York, NY, 10065, USA.
| |
Collapse
|
23
|
PRAK interacts with DJ-1 and prevents oxidative stress-induced cell death. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:735618. [PMID: 25383140 PMCID: PMC4212658 DOI: 10.1155/2014/735618] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/27/2014] [Indexed: 12/29/2022]
Abstract
As a core member of p38 MAPK signal transduction pathway, p38 regulated/activated kinase (PRAK) is activated by cellular stresses. However, the function of PRAK and its downstream interacting partner remain undefined. Using a yeast two-hybrid system, we identified DJ-1 as a potential PRAK interacting protein. We further verified that DJ-1 bound to PRAK in vitro and in vivo and colocalized with PRAK in the nuclei of NIH3T3 cells. Furthermore, following H2O2 stimulation the majority of endogenous DJ-1 in PRAK+/+ cells still remained in the nucleus, whereas most DJ-1 in PRAK−/− cells translocated from the nucleus into the cytoplasm, indicating that PRAK is essential for DJ-1 to localize in the nucleus. In addition, PRAK-associated phosphorylation of DJ-1 was observed in vitro and in vivo of H2O2-challenged PRAK+/+ cells. Cytoplasmic translocation of DJ-1 in H2O2-treated PRAK−/− cells lost its ability to sequester Daxx, a death protein, in the nucleus, and as a result, Daxx gained access to the cytoplasm and triggered cell death. These data highlight that DJ-1 is the downstream interacting target for PRAK, and in response to oxidative stress PRAK may exert a cytoprotective effect by facilitating DJ-1 to sequester Daxx in the nucleus, thus preventing cell death.
Collapse
|
24
|
The catalytic activity of the mitogen-activated protein kinase extracellular signal-regulated kinase 3 is required to sustain CD4+ CD8+ thymocyte survival. Mol Cell Biol 2014; 34:3374-87. [PMID: 25002529 DOI: 10.1128/mcb.01701-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3) is an atypical member of the mitogen-activated protein kinase (MAPK) family whose function is largely unknown. Given the central role of MAPKs in T cell development, we hypothesized that ERK3 may regulate thymocyte development. Here we have shown that ERK3 deficiency leads to a 50% reduction in CD4(+) CD8(+) (DP) thymocyte number. Analysis of hematopoietic chimeras revealed that the reduction in DP thymocytes is intrinsic to hematopoietic cells. We found that early thymic progenitors seed the Erk3(-/-) thymus and can properly differentiate and proliferate to generate DP thymocytes. However, ERK3 deficiency results in a decrease in the DP thymocyte half-life, associated with a higher level of apoptosis. As a consequence, ERK3-deficient DP thymocytes are impaired in their ability to make successful secondary T cell receptor alpha (TCRα) gene rearrangement. Introduction of an already rearranged TCR transgene restores thymic cell number. We further show that knock-in of a catalytically inactive allele of Erk3 fails to rescue the loss of DP thymocytes. Our results uncover a unique role for ERK3, dependent on its kinase activity, during T cell development and show that this atypical MAPK is essential to sustain DP survival during RAG-mediated rearrangements.
Collapse
|
25
|
Goltsov A, Deeni Y, Khalil HS, Soininen T, Kyriakidis S, Hu H, Langdon SP, Harrison DJ, Bown J. Systems analysis of drug-induced receptor tyrosine kinase reprogramming following targeted mono- and combination anti-cancer therapy. Cells 2014; 3:563-91. [PMID: 24918976 PMCID: PMC4092865 DOI: 10.3390/cells3020563] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/14/2014] [Accepted: 05/19/2014] [Indexed: 12/12/2022] Open
Abstract
The receptor tyrosine kinases (RTKs) are key drivers of cancer progression and targets for drug therapy. A major challenge in anti-RTK treatment is the dependence of drug effectiveness on co-expression of multiple RTKs which defines resistance to single drug therapy. Reprogramming of the RTK network leading to alteration in RTK co-expression in response to drug intervention is a dynamic mechanism of acquired resistance to single drug therapy in many cancers. One route to overcome this resistance is combination therapy. We describe the results of a joint in silico, in vitro, and in vivo investigations on the efficacy of trastuzumab, pertuzumab and their combination to target the HER2 receptors. Computational modelling revealed that these two drugs alone and in combination differentially suppressed RTK network activation depending on RTK co-expression. Analyses of mRNA expression in SKOV3 ovarian tumour xenograft showed up-regulation of HER3 following treatment. Considering this in a computational model revealed that HER3 up-regulation reprograms RTK kinetics from HER2 homodimerisation to HER3/HER2 heterodimerisation. The results showed synergy of the trastuzumab and pertuzumab combination treatment of the HER2 overexpressing tumour can be due to an independence of the combination effect on HER3/HER2 composition when it changes due to drug-induced RTK reprogramming.
Collapse
Affiliation(s)
- Alexey Goltsov
- Scottish Informatics, Mathematics, Biology and Statistics Centre (SIMBIOS), Abertay University, Dundee, DD1 1HG, United Kingdom.
| | - Yusuf Deeni
- Scottish Informatics, Mathematics, Biology and Statistics Centre (SIMBIOS), Abertay University, Dundee, DD1 1HG, United Kingdom.
| | - Hilal S Khalil
- Scottish Informatics, Mathematics, Biology and Statistics Centre (SIMBIOS), Abertay University, Dundee, DD1 1HG, United Kingdom.
| | - Tero Soininen
- Scottish Informatics, Mathematics, Biology and Statistics Centre (SIMBIOS), Abertay University, Dundee, DD1 1HG, United Kingdom.
| | | | - Huizhong Hu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | - Simon P Langdon
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, United Kingdom.
| | - David J Harrison
- School of Medicine, University of St Andrews, St Andrews, KY16 9TF, United Kingdom.
| | - James Bown
- Scottish Informatics, Mathematics, Biology and Statistics Centre (SIMBIOS), Abertay University, Dundee, DD1 1HG, United Kingdom.
| |
Collapse
|
26
|
Comparative molecular dynamics simulations of mitogen-activated protein kinase-activated protein kinase 5. Int J Mol Sci 2014; 15:4878-902. [PMID: 24651460 PMCID: PMC3975429 DOI: 10.3390/ijms15034878] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/21/2014] [Accepted: 02/28/2014] [Indexed: 12/28/2022] Open
Abstract
The mitogen-activated protein kinase-activated protein kinase MK5 is a substrate of the mitogen-activated protein kinases p38, ERK3 and ERK4. Cell culture and animal studies have demonstrated that MK5 is involved in tumour suppression and promotion, embryogenesis, anxiety, cell motility and cell cycle regulation. In the present study, homology models of MK5 were used for molecular dynamics (MD) simulations of: (1) MK5 alone; (2) MK5 in complex with an inhibitor; and (3) MK5 in complex with the interaction partner p38α. The calculations showed that the inhibitor occupied the active site and disrupted the intramolecular network of amino acids. However, intramolecular interactions consistent with an inactive protein kinase fold were not formed. MD with p38α showed that not only the p38 docking region, but also amino acids in the activation segment, αH helix, P-loop, regulatory phosphorylation region and the C-terminal of MK5 may be involved in forming a very stable MK5-p38α complex, and that p38α binding decreases the residual fluctuation of the MK5 model. Electrostatic Potential Surface (EPS) calculations of MK5 and p38α showed that electrostatic interactions are important for recognition and binding.
Collapse
|
27
|
Szydłowski M, Jabłońska E, Juszczyński P. FOXO1 transcription factor: a critical effector of the PI3K-AKT axis in B-cell development. Int Rev Immunol 2014; 33:146-57. [PMID: 24552152 DOI: 10.3109/08830185.2014.885022] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
B-cell development and differentiation are controlled at multiple levels by the complex interplay of specific receptors and a variety of transcription factors. Several receptors involved in regulating this process, such as IL-7R, pre-B cell receptor (pre-BCR), and BCR, share the ability to trigger the signaling via the phosphoinositide 3-kinase (PI3K)-AKT pathway. FOXO1 transcription factor, a major PI3K-AKT downstream effector, regulates the expression of genes critical for progress through consecutive steps of B-cell differentiation. FOXO1 directs or fine-tunes multiple biological functions that are crucial for differentiating cells, including the cell cycle, apoptosis, oxidative stress response or DNA damage repair. Recent studies have highlighted the key role that FOXO1 plays in the maintenance of the hematopoietic stem cell pool, regulation of progenitor commitment, development of early B-cell precursors, induction of B-cell tolerance, peripheral B-cell homeostasis, and terminal differentiation. FOXO1 deficiency impairs B-cell development, due to decreased expression of its critical target genes, that include early B-cell factor (EBF1), IL-7 receptor, recombination activating genes (RAG1 and 2), activation-induced cytidine deaminase (AID), L-selectin, and BLNK. Taken together, FOXO1 is an important node in a dynamic network of transcription factors that orchestrate B-cell differentiation and specialization. Herein, we review molecular mechanisms of the PI3K-AKT-dependent signal transduction and their impact on early B-cell development, peripheral B-cell homeostasis, and terminal differentiation.
Collapse
Affiliation(s)
- Maciej Szydłowski
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine , Warsaw , Poland
| | | | | |
Collapse
|
28
|
Kostenko S, Jensen KL, Moens U. Phosphorylation of heat shock protein 40 (Hsp40/DnaJB1) by mitogen-activated protein kinase-activated protein kinase 5 (MK5/PRAK). Int J Biochem Cell Biol 2014; 47:29-37. [DOI: 10.1016/j.biocel.2013.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/25/2013] [Accepted: 11/05/2013] [Indexed: 01/08/2023]
|