1
|
Costa S, La Rocca G, Cavalieri V. Epigenetic Regulation of Chromatin Functions by MicroRNAs and Long Noncoding RNAs and Implications in Human Diseases. Biomedicines 2025; 13:725. [PMID: 40149701 PMCID: PMC11939841 DOI: 10.3390/biomedicines13030725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
The bulk of RNA produced from the genome of complex organisms consists of a very large number of transcripts lacking protein translational potential and collectively known as noncoding RNAs (ncRNAs). Initially thought to be mere products of spurious transcriptional noise, ncRNAs are now universally recognized as pivotal players in cell regulatory networks across a broad spectrum of biological processes. Owing to their critical regulatory roles, ncRNA dysfunction is closely associated with the etiopathogenesis of various human malignancies, including cancer. As such, ncRNAs represent valuable diagnostic biomarkers as well as potential targets for innovative therapeutic intervention. In this review, we focus on microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), the two most extensively studied classes in the field of ncRNA biology. After outlining key concepts of miRNA and lncRNA biogenesis pathways, we examine their multiple roles in mediating epigenetic regulation of gene expression and chromatin organization. Finally, by providing numerous examples of specific miRNAs and lncRNAs, we discuss how dysregulation of these mechanisms contributes to the onset and/or progression of various human diseases.
Collapse
Affiliation(s)
| | | | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Viale delle Scienze Bld. 16, 90128 Palermo, Italy
| |
Collapse
|
2
|
van Kampen F, Clark A, Soul J, Kanhere A, Glenn MA, Pettitt AR, Kalakonda N, Slupsky JR. Deletion of 17p in cancers: Guilt by (p53) association. Oncogene 2025; 44:637-651. [PMID: 39966556 PMCID: PMC11876076 DOI: 10.1038/s41388-025-03300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 01/17/2025] [Accepted: 02/04/2025] [Indexed: 02/20/2025]
Abstract
Monoallelic deletion of the short arm of chromosome 17 (del17p) is a recurrent abnormality in cancers with poor outcomes. Best studied in relation to haematological malignancies, associated functional outcomes are attributed mainly to loss and/or dysfunction of TP53, which is located at 17p13.1, but the wider impact of deletion of other genes located on 17p is poorly understood. 17p is one of the most gene-dense regions of the genome and includes tumour suppressor genes additional to TP53, genes essential for cell survival and proliferation, as well as small and long non-coding RNAs. In this review we utilise a data-driven approach to demarcate the extent of 17p deletion in multiple cancers and identify a common loss-of-function gene signature. We discuss how the resultant loss of heterozygosity (LOH) and haploinsufficiency may influence cell behaviour but also identify vulnerabilities that can potentially be exploited therapeutically. Finally, we highlight how emerging animal and isogenic cell line models of del17p can provide critical biological insights for cancer cell behaviour.
Collapse
Affiliation(s)
- Francisca van Kampen
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Abigail Clark
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Jamie Soul
- Computational Biology Facility, University of Liverpool, Liverpool, UK
| | - Aditi Kanhere
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Mark A Glenn
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Andrew R Pettitt
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Nagesh Kalakonda
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Joseph R Slupsky
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
3
|
Huang B, Guo F, Chen J, Lu L, Gao S, Yang C, Wu H, Luo W, Pan Q. Regulation of B-cell function by miRNAs impacting Systemic lupus erythematosus progression. Gene 2025; 933:149011. [PMID: 39427831 DOI: 10.1016/j.gene.2024.149011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease marked by abnormal B-cell proliferation and increased autoantibodies. miRNAs play a crucial role in regulating B-cell dysfunction and SLE pathology. miRNAs influence DNA methylation, B-cell activation, and gene expression, contributing to SLE pathogenesis. miRNAs impact B cells through key processes like proliferation, differentiation, tolerance, and apoptosis. miRNAs also exacerbate inflammation and immune responses by modulating Interleukin 4 (IL-4), IL-6, and interferon cytokines. Autophagy, a key degradation mechanism, is also regulated by specific miRNAs that impact SLE pathology. This article explores the role of multiple miRNAs in regulating B-cell development, proliferation, survival, and immune responses, influencing SLE pathogenesis. miRNAs like miR-23a, the miR-17 ∼ 92 family, and miR-125b/miR-221 affect B-cell development by regulating transcription factors, signaling pathways, and cell cycle genes. miRNAs such as miR-181a-5p and miR-23a-5p are differentially regulated across developmental stages, emphasizing their complex regulatory roles in B-cell biology. This article synthesizes miRNA-B cell interactions to offer new strategies and directions for SLE diagnosis and treatment.
Collapse
Affiliation(s)
- Bitang Huang
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Fengbiao Guo
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jiaxuan Chen
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Lu Lu
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Shenglan Gao
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Chunlong Yang
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Han Wu
- Clinical Laboratory, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Wenying Luo
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| | - Qingjun Pan
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| |
Collapse
|
4
|
Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet 2024; 25:211-232. [PMID: 37968332 DOI: 10.1038/s41576-023-00662-1] [Citation(s) in RCA: 283] [Impact Index Per Article: 283.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 11/17/2023]
Abstract
Non-coding RNAs (ncRNAs) are a heterogeneous group of transcripts that, by definition, are not translated into proteins. Since their discovery, ncRNAs have emerged as important regulators of multiple biological functions across a range of cell types and tissues, and their dysregulation has been implicated in disease. Notably, much research has focused on the link between microRNAs (miRNAs) and human cancers, although other ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as relevant contributors to human disease. In this Review, we summarize our current understanding of the roles of miRNAs, lncRNAs and circRNAs in cancer and other major human diseases, notably cardiovascular, neurological and infectious diseases. Further, we discuss the potential use of ncRNAs as biomarkers of disease and as therapeutic targets.
Collapse
Affiliation(s)
- Kinga Nemeth
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Recep Bayraktar
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - George A Calin
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The RNA Interference and Non-coding RNA Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Crosstalk of Transcriptional Regulators of Adaptive Immune System and microRNAs: An Insight into Differentiation and Development. Cells 2023; 12:cells12040635. [PMID: 36831302 PMCID: PMC9953855 DOI: 10.3390/cells12040635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
MicroRNAs (miRNAs), as small regulatory RNA molecules, are involved in gene expression at the post-transcriptional level. Hence, miRNAs contribute to gene regulation of various steps of different cell subsets' differentiation, maturation, and activation. The adaptive immune system arm, which exhibits the most specific immune responses, is also modulated by miRNAs. The generation and maturation of various T-cell subsets concomitant with B-cells is under precise regulation of miRNAs which function directly on the hallmark genes of each cell subset or indirectly through regulation of signaling pathway mediators and/or transcription factors involved in this maturation journey. In this review, we first discussed the origination process of common lymphocyte progenitors from hematopoietic stem cells, which further differentiate into various T-cell subsets under strict regulation of miRNAs and transcription factors. Subsequently, the differentiation of B-cells from common lymphocyte progenitors in bone marrow and periphery were discussed in association with a network of miRNAs and transcription factors.
Collapse
|
6
|
Heiskanen M, Das Gupta S, Mills JD, van Vliet EA, Manninen E, Ciszek R, Andrade P, Puhakka N, Aronica E, Pitkänen A. Discovery and Validation of Circulating microRNAs as Biomarkers for Epileptogenesis after Experimental Traumatic Brain Injury-The EPITARGET Cohort. Int J Mol Sci 2023; 24:ijms24032823. [PMID: 36769143 PMCID: PMC9918096 DOI: 10.3390/ijms24032823] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Traumatic brain injury (TBI) causes 10-20% of structural epilepsies and 5% of all epilepsies. The lack of prognostic biomarkers for post-traumatic epilepsy (PTE) is a major obstacle to the development of anti-epileptogenic treatments. Previous studies revealed TBI-induced alterations in blood microRNA (miRNA) levels, and patients with epilepsy exhibit dysregulation of blood miRNAs. We hypothesized that acutely altered plasma miRNAs could serve as prognostic biomarkers for brain damage severity and the development of PTE. To investigate this, epileptogenesis was induced in adult male Sprague Dawley rats by lateral fluid-percussion-induced TBI. Epilepsy was defined as the occurrence of at least one unprovoked seizure during continuous 1-month video-electroencephalography monitoring in the sixth post-TBI month. Cortical pathology was analyzed by magnetic resonance imaging on day 2 (D2), D7, and D21, and by histology 6 months post-TBI. Small RNA sequencing was performed from tail-vein plasma samples on D2 and D9 after TBI (n = 16, 7 with and 9 without epilepsy) or sham operation (n = 4). The most promising miRNA biomarker candidates were validated by droplet digital polymerase chain reaction in a validation cohort of 115 rats (8 naïve, 17 sham, and 90 TBI rats [21 with epilepsy]). These included 7 brain-enriched plasma miRNAs (miR-434-3p, miR-9a-3p, miR-136-3p, miR-323-3p, miR-124-3p, miR-212-3p, and miR-132-3p) that were upregulated on D2 post-TBI (p < 0.001 for all compared with naïve rats). The acute post-TBI plasma miRNA profile did not predict the subsequent development of PTE or PTE severity. Plasma miRNA levels, however, predicted the cortical pathology severity on D2 (Spearman ρ = 0.345-0.582, p < 0.001), D9 (ρ = 0.287-0.522, p < 0.001-0.01), D21 (ρ = 0.269-0.581, p < 0.001-0.05) and at 6 months post-TBI (ρ = 0.230-0.433, p < 0.001-0.05). We found that the levels of 6 of 7 miRNAs also reflected mild brain injury caused by the craniotomy during sham operation (ROC AUC 0.76-0.96, p < 0.001-0.05). In conclusion, our findings revealed that increased levels of neuronally enriched miRNAs in the blood circulation after TBI reflect the extent of cortical injury in the brain but do not predict PTE development.
Collapse
Affiliation(s)
- Mette Heiskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Shalini Das Gupta
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - James D. Mills
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Buckinghamshire SL9 0RJ, UK
| | - Erwin A. van Vliet
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Eppu Manninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Robert Ciszek
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Pedro Andrade
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Noora Puhakka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland, 2103 SW Heemstede, The Netherlands
| | - Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Correspondence:
| |
Collapse
|
7
|
St-Cyr G, Penarroya D, Daniel L, Giguère H, Alkayyal AA, Tai LH. Remodeling the tumor immune microenvironment with oncolytic viruses expressing miRNAs. Front Immunol 2023; 13:1071223. [PMID: 36685574 PMCID: PMC9846254 DOI: 10.3389/fimmu.2022.1071223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
MiRNAs (miRNA, miR) play important functions in the tumor microenvironment (TME) by silencing gene expression through RNA interference. They are involved in regulating both tumor progression and tumor suppression. The pathways involved in miRNA processing and the miRNAs themselves are dysregulated in cancer. Consequently, they have become attractive therapeutic targets as underscored by the plethora of miRNA-based therapies currently in pre-clinical and clinical studies. It has been shown that miRNAs can be used to improve oncolytic viruses (OVs) and enable superior viral oncolysis, tumor suppression and immune modulation. In these cases, miRNAs are empirically selected to improve viral oncolysis, which translates into decreased tumor growth in multiple murine models. While this infectious process is critical to OV therapy, optimal immunomodulation is crucial for the establishment of a targeted and durable effect, resulting in cancer eradication. Through numerous mechanisms, OVs elicit a strong antitumor immune response that can also be further improved by miRNAs. They are known to regulate components of the immune TME and promote effector functions, antigen presentation, phenotypical polarization, and varying levels of immunosuppression. Reciprocally, OVs have the power to overcome the limitations encountered in canonical miRNA-based therapies. They deliver therapeutic payloads directly into the TME and facilitate their amplification through selective tumoral tropism and abundant viral replication. This way, off-target effects can be minimized. This review will explore the ways in which miRNAs can synergistically enhance OV immunotherapy to provide the basis for future therapeutics based on this versatile combination platform.
Collapse
Affiliation(s)
- Guillaume St-Cyr
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Daphné Penarroya
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Lauren Daniel
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Hugo Giguère
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Almohanad A. Alkayyal
- Department of Medical Laboratory Technology, Tabuk, Saudi Arabia
- Immunology Research Program, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Lee-Hwa Tai
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
- Research Centre of the Centre Hospitalier de l'Universite de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| |
Collapse
|
8
|
Lieske A, Agyeman-Duah E, Selich A, Dörpmund N, Talbot SR, Schambach A, Maetzig T. A pro B cell population forms the apex of the leukemic hierarchy in Hoxa9/Meis1-dependent AML. Leukemia 2023; 37:79-90. [PMID: 36517672 PMCID: PMC9883166 DOI: 10.1038/s41375-022-01775-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022]
Abstract
Relapse is a major challenge to therapeutic success in acute myeloid leukemia (AML) and can be partly associated with heterogeneous leukemic stem cell (LSC) properties. In the murine Hoxa9/Meis1-dependent (H9M) AML model, LSC potential lies in three defined immunophenotypes, including Lin-cKit+ progenitor cells (Lin-), Gr1+CD11b+cKit+ myeloid cells, and lymphoid cells (Lym+). Previous reports demonstrated their interconversion and distinct drug sensitivities. In contrast, we here show that H9M AML is hierarchically organized. We, therefore, tracked the developmental potential of LSC phenotypes. This unexpectedly revealed a substantial fraction of Lin- LSCs that failed to regenerate Lym+ LSCs, and that harbored reduced leukemogenic potential. However, Lin- LSCs capable of producing Lym+ LSCs as well as Lym+ LSCs triggered rapid disease development suggestive of their high relapse-driving potential. Transcriptional analyses revealed that B lymphoid master regulators, including Sox4 and Bach2, correlated with Lym+ LSC development and presumably aggressive disease. Lentiviral overexpression of Sox4 and Bach2 induced dedifferentiation of H9M cells towards a lineage-negative state in vitro as the first step of lineage conversion. This work suggests that the potency to initiate a partial B lymphoid primed transcriptional program as present in infant AML correlates with aggressive disease and governs the H9M LSC hierarchy.
Collapse
Affiliation(s)
- Anna Lieske
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Eric Agyeman-Duah
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Anton Selich
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Nicole Dörpmund
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Steven R Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tobias Maetzig
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
9
|
Evolving understandings for the roles of non-coding RNAs in autoimmunity and autoimmune disease. J Autoimmun 2022:102948. [DOI: 10.1016/j.jaut.2022.102948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
|
10
|
Souza OF, Popi AF. Role of microRNAs in B-Cell Compartment: Development, Proliferation and Hematological Diseases. Biomedicines 2022; 10:biomedicines10082004. [PMID: 36009551 PMCID: PMC9405569 DOI: 10.3390/biomedicines10082004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022] Open
Abstract
B-cell development is a very orchestrated pathway that involves several molecules, such as transcription factors, cytokines, microRNAs, and also different cells. All these components maintain the ideal microenvironment and control B-cell differentiation. MicroRNAs are small non-coding RNAs that bind to target mRNA to control gene expression. These molecules could circulate in the body in a free form, protein-bounded, or encapsulated into extracellular vesicles, such as exosomes. The comprehension of the role of microRNAs in the B-cell development was possible based on microRNA profile of each B-cell stage and functional studies. Herein, we report the knowledge about microRNAs in the B-cell the differentiation, proliferation, and also in hematological malignancies.
Collapse
|
11
|
Shen Y, Qu B, Shen N. Expanding Roles of Noncoding RNAs in the Pathogenesis of Systemic Lupus Erythematosus. Curr Rheumatol Rep 2022; 24:64-75. [PMID: 35239107 DOI: 10.1007/s11926-022-01058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW The exact pathogenesis of systemic lupus erythematosus (SLE) remains unclear. Accumulating finds have indicated the roles of the non-coding RNAs (ncRNAs) acting as novel epigenetic regulatory elements in the dysfunction of the immune system in SLE. This review will introduce recent studies on how ncRNAs are involved in the development of SLE. RECENT FINDINGS Recent advances in ncRNAs biology have greatly expanded our understanding of epigenetic regulation of immune responses and inflammation, and increasing evidence suggests ncRNAs are important players in SLE development. Identifications of abnormal expression patterns of ncRNAs and relevant biological impacts in lupus patients have revealed their potential as novel biomarkers and therapeutic targets for SLE. The dysregulation of ncRNAs contributes to the immunopathogenesis of SLE. Clarifying the functions and mechanisms of SLE-associated ncRNAs provides new opportunities for disease biomarkers and targeted therapies.
Collapse
Affiliation(s)
- Yiwei Shen
- Department of Rheumatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, China
| | - Bo Qu
- Department of Rheumatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, China
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040, China
| | - Nan Shen
- Department of Rheumatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, China.
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040, China.
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200032, China.
| |
Collapse
|
12
|
A genome-wide association meta-analysis identifies new eosinophilic esophagitis loci. J Allergy Clin Immunol 2022; 149:988-998. [PMID: 34506852 PMCID: PMC9579995 DOI: 10.1016/j.jaci.2021.08.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Eosinophilic esophagitis (EoE) is a chronic inflammatory disorder of the esophagus marked by eosinophilic infiltration. Cumulative evidence indicates that the risk of EoE involves the complex interplay of both genetic and environmental factors. Because only a few genetic loci have been identified in EoE, the genetic underpinning of EoE remains largely elusive. OBJECTIVE We sought to identify genetic loci associated with EoE. METHODS Four EoE cohorts were genotyped using the Illumina single nucleotide polymorphism array platform, totaling 1,930 cases and 13,634 controls of European ancestry. Genotype imputation was performed with the Michigan Imputation Server using the Trans-Omics for Precision Medicine reference panel including whole-genome sequencing data from more than 100,000 individuals. Meta-analysis was conducted to identify potential novel genetic loci associated with EoE. RESULTS Our study identified 11 new genome-wide significant loci, of which 6 are common variant loci, including 5q31.1 (rs2106984, P = 4.16 × 10-8; odds ratio [OR], 1.26, RAD50), 15q22.2 (rs2279293, P = 1.23 × 10-10; OR, 0.69, RORA), and 15q23 (rs56062135, P = 2.91 × 10-11; OR, 1.29, SMAD3), which have been previously associated with allergic conditions. Interestingly, a low-frequency synonymous mutation within the MATN2 gene was identified as the most significant single nucleotide polymorphism at the 8q22.1 locus. We also identified 5 sex-specific loci in the EoE cases, including an inflammatory bowel disease-associated locus at 9p24.1 (rs62541556, P = 4.4 × 10-8; OR, 1.11, JAK2). CONCLUSIONS Our findings demonstrate shared genetic underpinnings between EoE and other immune-mediated diseases and provide novel candidate genes for therapeutic target identification and prioritization.
Collapse
|
13
|
Advance of SOX Transcription Factors in Hepatocellular Carcinoma: From Role, Tumor Immune Relevance to Targeted Therapy. Cancers (Basel) 2022; 14:cancers14051165. [PMID: 35267473 PMCID: PMC8909699 DOI: 10.3390/cancers14051165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is one of the deadliest human health burdens worldwide. However, the molecular mechanism of HCC development is still not fully understood. Sex determining region Y-related high-mobility group box (SOX) transcription factors not only play pivotal roles in cell fate decisions during development but also participate in the initiation and progression of cancer. Given the significance of SOX factors in cancer and their ‘undruggable’ properties, we summarize the role and molecular mechanism of SOX family members in HCC and the regulatory effect of SOX factors in the tumor immune microenvironment (TIME) of various cancers. For the first time, we analyze the association between the levels of SOX factors and that of immune components in HCC, providing clues to the pivotal role of SOX factors in the TIME of HCC. We also discuss the opportunities and challenges of targeting SOX factors for cancer. Abstract Sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) factors belong to an evolutionarily conserved family of transcription factors that play essential roles in cell fate decisions involving numerous developmental processes. In recent years, the significance of SOX factors in the initiation and progression of cancers has been gradually revealed, and they act as potential therapeutic targets for cancer. However, the research involving SOX factors is still preliminary, given that their effects in some leading-edge fields such as tumor immune microenvironment (TIME) remain obscure. More importantly, as a class of ‘undruggable’ molecules, targeting SOX factors still face considerable challenges in achieving clinical translation. Here, we mainly focus on the roles and regulatory mechanisms of SOX family members in hepatocellular carcinoma (HCC), one of the fatal human health burdens worldwide. We then detail the role of SOX members in remodeling TIME and analyze the association between SOX members and immune components in HCC for the first time. In addition, we emphasize several alternative strategies involved in the translational advances of SOX members in cancer. Finally, we discuss the alternative strategies of targeting SOX family for cancer and propose the opportunities and challenges they face based on the current accumulated studies and our understanding.
Collapse
|
14
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Jamali E. The emerging role non-coding RNAs in B cell-related disorders. Cancer Cell Int 2022; 22:91. [PMID: 35193592 PMCID: PMC8862212 DOI: 10.1186/s12935-022-02521-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/10/2022] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs and microRNAs have recently attained much attention regarding their role in the development of B cell lineage as well as participation in the lymphomagenesis. These transcripts have a highly cell type specific signature which endows them the potential to be used as biomarkers for clinical situations. Aberrant expression of several non-coding RNAs has been linked with B cell malignancies and immune related disorders such as rheumatoid arthritis, systemic lupus erythematous, asthma and graft-versus-host disease. Moreover, these transcripts can alter response of immune system to infectious conditions. miR-7, miR-16-1, miR-15a, miR-150, miR-146a, miR-155, miR-212 and miR-132 are among microRNAs whose role in the development of B cell-associated disorders has been investigated. Similarly, SNHG14, MALAT1, CRNDE, AL133346.1, NEAT1, SMAD5-AS1, OR3A4 and some other long non-coding RNAs participate in this process. In the current review, we describe the role of non-coding RNAs in B cell malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Miyashita Y, Yoshida T, Takagi Y, Tsukamoto H, Takashima K, Kouwaki T, Makino K, Fukushima S, Nakamura K, Oshiumi H. Circulating extracellular vesicle microRNAs associated with adverse reactions, proinflammatory cytokine, and antibody production after COVID-19 vaccination. NPJ Vaccines 2022; 7:16. [PMID: 35136071 PMCID: PMC8826357 DOI: 10.1038/s41541-022-00439-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
mRNA-based vaccines have been used globally to eradicate the coronavirus-disease 2019 (COVID-19) pandemic. Vaccine efficacy and adverse reactions depend on immune responses, such as proinflammatory cytokine production and lymphocyte activation. We conducted a prospective cohort study to investigate relationships among specific antibody titers, adverse reactions, proinflammatory cytokine production, and immune-regulatory microRNA (miRNA) levels in serum extracellular vesicles (EVs) after COVID-19 vaccination (BNT162b2). Local adverse reactions after the second dose, such as local pain and swelling, were less correlated with those of systemic symptoms, such as fever and muscle pain, whereas serum TNF-α levels were associated with systemic adverse reactions and with specific antibody titers. Interestingly, EV miR-92a-2-5p levels in sera were negatively correlated with degrees of adverse reactions, and EV miR-148a levels were associated with specific antibody titers. Our data suggest a potential of circulating EV miRNAs as biomarkers for vaccine efficacy and adverse reactions.
Collapse
Affiliation(s)
- Yusuke Miyashita
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan.,Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Takanobu Yoshida
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan.,Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yuriko Takagi
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Hirotake Tsukamoto
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan.,Division of Clinical Immunology and Cancer Immunotherapy, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Takashima
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Takahisa Kouwaki
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Katsunari Makino
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Hiroyuki Oshiumi
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan.
| |
Collapse
|
16
|
Mi L, Hu J, Li N, Gao J, Huo R, Peng X, Zhang N, Liu Y, Zhao H, Liu R, Zhang L, Xu K. The Mechanism of Stem Cell Aging. Stem Cell Rev Rep 2022; 18:1281-1293. [PMID: 35000109 PMCID: PMC9033730 DOI: 10.1007/s12015-021-10317-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/22/2022]
Abstract
Stem cells have self-renewal ability and multi-directional differentiation potential. They have tissue repair capabilities and are essential for maintaining the tissue homeostasis. The depletion of stem cells is closely related to the occurrence of body aging and aging-related diseases. Therefore, revealing the molecular mechanisms of stem cell aging will set new directions for the therapeutic application of stem cells, the study of aging mechanisms, and the prevention and treatment of aging-related diseases. This review comprehensively describes the molecular mechanisms related to stem cell aging and provides the basis for further investigations aimed at developing new anti-stem cell aging strategies and promoting the clinical application of stem cells.
Collapse
Affiliation(s)
- Liangyu Mi
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Junping Hu
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Department of Immunology, Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Na Li
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Jinfang Gao
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Rongxiu Huo
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xinyue Peng
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Na Zhang
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ying Liu
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Hanxi Zhao
- Silc Business School, Shanghai University, Shanghai, 200444, China
| | - Ruiling Liu
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Department of Immunology, Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Liyun Zhang
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ke Xu
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
17
|
Attaway M, Chwat-Edelstein T, Vuong BQ. Regulatory Non-Coding RNAs Modulate Transcriptional Activation During B Cell Development. Front Genet 2021; 12:678084. [PMID: 34721515 PMCID: PMC8551670 DOI: 10.3389/fgene.2021.678084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/29/2021] [Indexed: 01/07/2023] Open
Abstract
B cells play a significant role in the adaptive immune response by secreting immunoglobulins that can recognize and neutralize foreign antigens. They develop from hematopoietic stem cells, which also give rise to other types of blood cells, such as monocytes, neutrophils, and T cells, wherein specific transcriptional programs define the commitment and subsequent development of these different cell lineages. A number of transcription factors, such as PU.1, E2A, Pax5, and FOXO1, drive B cell development. Mounting evidence demonstrates that non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), modulate the expression of these transcription factors directly by binding to the mRNA coding for the transcription factor or indirectly by modifying cellular pathways that promote expression of the transcription factor. Conversely, these transcription factors upregulate expression of some miRNAs and lncRNAs to determine cell fate decisions. These studies underscore the complex gene regulatory networks that control B cell development during hematopoiesis and identify new regulatory RNAs that require additional investigation. In this review, we highlight miRNAs and lncRNAs that modulate the expression and activity of transcriptional regulators of B lymphopoiesis and how they mediate this regulation.
Collapse
Affiliation(s)
- Mary Attaway
- Department of Biology, The City College of New York, New York, NY, United States
| | - Tzippora Chwat-Edelstein
- Department of Biology, The City College of New York, New York, NY, United States.,Macaulay Honors College, New York, NY, United States
| | - Bao Q Vuong
- Department of Biology, The City College of New York, New York, NY, United States.,The Graduate Center, The City University of New York, New York, NY, United States
| |
Collapse
|
18
|
Kersy O, Salmon-Divon M, Shpilberg O, Hershkovitz-Rokah O. Non-Coding RNAs in Normal B-Cell Development and in Mantle Cell Lymphoma: From Molecular Mechanism to Biomarker and Therapeutic Agent Potential. Int J Mol Sci 2021; 22:ijms22179490. [PMID: 34502399 PMCID: PMC8430640 DOI: 10.3390/ijms22179490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 12/27/2022] Open
Abstract
B-lymphocytes are essential for an efficient immune response against a variety of pathogens. A large fraction of hematologic malignancies are of B-cell origin, suggesting that the development and activation of B cells must be tightly regulated. In recent years, differentially expressed non-coding RNAs have been identified in mantle cell lymphoma (MCL) tumor samples as opposed to their naive, normal B-cell compartment. These aberrantly expressed molecules, specifically microRNAs (miRNAs), circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), have a role in cellular growth and survival pathways in various biological models. Here, we provide an overview of current knowledge on the role of non-coding RNAs and their relevant targets in B-cell development, activation and malignant transformation, summarizing the current understanding of the role of aberrant expression of non-coding RNAs in MCL pathobiology with perspectives for clinical use.
Collapse
Affiliation(s)
- Olga Kersy
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (O.K.); (M.S.-D.)
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv 6971028, Israel;
| | - Mali Salmon-Divon
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (O.K.); (M.S.-D.)
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Ofer Shpilberg
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv 6971028, Israel;
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel
- Institute of Hematology, Assuta Medical Centers, Tel-Aviv 6971028, Israel
| | - Oshrat Hershkovitz-Rokah
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (O.K.); (M.S.-D.)
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv 6971028, Israel;
- Correspondence: ; Tel.: +972-3-764-4094
| |
Collapse
|
19
|
Wang F, Cui D, Zhang Q, Shao Y, Zheng B, Chen L, Luo Y, Yuan L, Wang D. LncRNA00492 is required for marginal zone B-cell development. Immunology 2021; 165:88-98. [PMID: 34435359 DOI: 10.1111/imm.13408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 01/01/2023] Open
Abstract
B-cell development undergoes a series of steps from the bone marrow to the secondary lymphoid organs. A defect in B-cell development can lead to immunodeficiency or malignant disorders, such as leukaemia or lymphoma. Long non-coding RNAs have been reported to act as important regulators of many pathological processes. However, very little is known regarding the role of lncRNAs during B-cell development and the regulation of their expression. In this study, we explored the expression and role of lncRNA Gme00492 in B-cell development. We observed that lnc00492 was highly expressed in B-cell development and primarily expressed in the nucleus. Lnc00492-deficient mice had fewer marginal zone B cells in the spleen, likely due to a developmental block. Importantly, lnc00492 interacts with CTBP1 and targets it for ubiquitination and degradation during B-cell development, whereas the transcriptional corepressor factor CTBP1 plays a critical role in Notch2 signalling. Thus, we identified a novel regulatory axis between lnc00492 and CTBP1 in B cells, suggesting that lnc00492 is essential for marginal zone B-cell development.
Collapse
Affiliation(s)
- Faming Wang
- Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing, China
| | - Dongya Cui
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China.,The Key Laboratories of Innate Immune Biology of Fujian Province, Fuzhou, China
| | - Qingyun Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Yingying Shao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Baijiao Zheng
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China.,The Key Laboratories of Innate Immune Biology of Fujian Province, Fuzhou, China
| | - Liling Chen
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China.,The Key Laboratories of Innate Immune Biology of Fujian Province, Fuzhou, China
| | - Yao Luo
- Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing, China
| | - Liudi Yuan
- Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Demin Wang
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
20
|
Schell SL, Rahman ZSM. miRNA-Mediated Control of B Cell Responses in Immunity and SLE. Front Immunol 2021; 12:683710. [PMID: 34079558 PMCID: PMC8165268 DOI: 10.3389/fimmu.2021.683710] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Loss of B cell tolerance is central to autoimmune diseases such as systemic lupus erythematosus (SLE). As such, the mechanisms involved in B cell development, maturation, activation, and function that are aberrantly regulated in SLE are of interest in the design of targeted therapeutics. While many factors are involved in the generation and regulation of B cell responses, miRNAs have emerged as critical regulators of these responses within the last decade. To date, miRNA involvement in B cell responses has largely been studied in non-autoimmune, immunization-based systems. However, miRNA profiles have also been strongly associated with SLE in human patients and these molecules have proven critical in both the promotion and regulation of disease in mouse models and in the formation of autoreactive B cell responses. Functionally, miRNAs are small non-coding RNAs that bind to complementary sequences located in target mRNA transcripts to mediate transcript degradation or translational repression, invoking a post-transcriptional level of genetic regulation. Due to their capacity to target a diverse range of transcripts and pathways in different immune cell types and throughout the various stages of development and response, targeting miRNAs is an interesting potential therapeutic avenue. Herein, we focus on what is currently known about miRNA function in both normal and SLE B cell responses, primarily highlighting miRNAs with confirmed functions in mouse models. We also discuss areas that should be addressed in future studies and whether the development of miRNA-centric therapeutics may be a viable alternative for the treatment of SLE.
Collapse
Affiliation(s)
- Stephanie L Schell
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
21
|
Ahmed EA, Ibrahim HIM, Khalil HE. Pinocembrin Reduces Arthritic Symptoms in Mouse Model via Targeting Sox4 Signaling Molecules. J Med Food 2021; 24:282-291. [PMID: 33739886 DOI: 10.1089/jmf.2020.4862] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune, multifactorial, inflammatory disorder characterized by hyperplasia and infiltration of inflammatory cells at the synovial lining leading to destruction of cartilage and bone tissues. Pinocembrin (PCB) is a natural flavonoid extracted as a pure molecule from honey, propolis, and some plants. In this study, we evaluated the antiarthritic effect of PCB in adjuvant induced arthritis (AIA) mice. Treating the AIA mouse model with PCB reduced the arthritis symptoms/score, including edema size, extent of hind paw redness, abnormal movement, and holding inability. At the pathological level, PCB significantly decreased the joint erosion and percentages of infiltrated inflammatory cells. Biochemically, PCB interacts with the transcription factor, SRY-related HMG-box 4 (Sox4), and then modulates its dysregulated expression and the expression of Sox4/Stat3 signaling molecules in AIA mice. These molecules include tumor necrosis factor-α, nuclear transcription factor kappaB, and cyclooxygenase-2, besides the microRNAs; miR-132, miR-202-5p, and miR-7235, which are dysregulated in adjuvant-induced arthritis model relative to the control mice. The possible PCB interaction with Sox4 transcriptional protein was confirmed through molecular docking where three hydrogen bonds were formed at ARG and LYS residues at a stable binding energy of -4.72. Taken together, our data demonstrate that PCB could serve as a therapeutic drug in treatment of RA.
Collapse
Affiliation(s)
- Emad A Ahmed
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Hofuf, Saudi Arabia.,Lab of molecular Physiology, Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Hairul-Islam Mohamed Ibrahim
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Hofuf, Saudi Arabia.,Pondicherry Centre for Biological Science and Educational Trust, Kottakuppam, Pondicherry, India
| | - Hany Ezzat Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Hofuf, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
22
|
Feng R, Cui Z, Liu Z, Zhang Y. Upregulated microRNA-132 in T helper 17 cells activates hepatic stellate cells to promote hepatocellular carcinoma cell migration in vitro. Scand J Immunol 2021; 93:e13007. [PMID: 33264420 DOI: 10.1111/sji.13007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/14/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022]
Abstract
MicroRNAs play an important role in the modulation of the immune system. T helper 17 (Th17) cells are involved in the modulation of the tumour microenvironment. However, the function of miRNA in Th17 cells in the tumour microenvironment is unclear. In this study, we analysed miR-132 expression in Th17 cells and assessed the function of miR-132 on Th17 cell differentiation. In addition, the effect of miR-132 on Th17 cells in the tumour microenvironment, especially hepatic stellate cells (HSCs), was confirmed. CD4+ IL-17 ∓ cells were isolated from hepatocellular carcinoma (HCC) tumour tissues. The expression of miR-132 was higher in CD4+ IL-17 + cells than in CD4+ IL-17- cells. Human primary CD4+ T cells were used for Th17 cell differentiation. Compared with primary CD4+ T cells, Th17 cells expressed high levels of miR-132. During Th17 cell differentiation, a miR-132 mimic and inhibition were applied. After treatment with the miR-132 mimic, the differentiation of Th17 cells accelerated, showing a a higher percentage of Th17 cells and the expression and secretion of IL-17 and IL-22. Smad nuclear interacting protein 1 (SNIP1), as one of the targets of miR-132, decreased during Th17 cell differentiation-related Th17 differentiation and IL-17 expression. The conditioned medium of miR-132-overexpressing Th17 cells could increase the activation of the HSCs, which strongly promoted HCC cell migration and epithelial-mesenchymal transition (EMT). In summary, miR-132 positively regulates Th17 cell differentiation and improves the function of Th17 on HSCs for their tumour-promoting effects.
Collapse
Affiliation(s)
- Rui Feng
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Zilin Cui
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Zirong Liu
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| |
Collapse
|
23
|
The Multifaceted Role and Utility of MicroRNAs in Indolent B-Cell Non-Hodgkin Lymphomas. Biomedicines 2021; 9:biomedicines9040333. [PMID: 33806113 PMCID: PMC8064455 DOI: 10.3390/biomedicines9040333] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Normal B-cell development is a tightly regulated complex procedure, the deregulation of which can lead to lymphomagenesis. One common group of blood cancers is the B-cell non-Hodgkin lymphomas (NHLs), which can be categorized according to the proliferation and spread rate of cancer cells into indolent and aggressive ones. The most frequent indolent B-cell NHLs are follicular lymphoma and marginal zone lymphoma. MicroRNAs (miRNAs) are small non-coding RNAs that can greatly influence protein expression. Based on the multiple interactions among miRNAs and their targets, complex networks of gene expression regulation emerge, which normally are essential for proper B-cell development. Multiple miRNAs have been associated with B-cell lymphomas, as the deregulation of these complex networks can lead to such pathological states. The aim of the present review is to summarize the existing information regarding the multifaceted role of miRNAs in indolent B-cell NHLs, affecting the main B-cell subpopulations. We attempt to provide insight into their biological function, the complex miRNA-mRNA interactions, and their biomarker utility in these malignancies. Lastly, we address the limitations that hinder the investigation of the role of miRNAs in these lymphomas and discuss ways that these problems could be overcome in the future.
Collapse
|
24
|
Zhang L, Wu X, Li Y, Teng X, Zou L, Yu B. LncRNA SNHG5 promotes cervical cancer progression by regulating the miR-132/SOX4 pathway. Autoimmunity 2021; 54:88-96. [PMID: 33622094 DOI: 10.1080/08916934.2020.1864731] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The long non-coding RNA (lncRNA) small nucleolar RNA host gene 5 (SNHG5) has been verified as a crucial regulator in many types of tumours but not clear in cervical cancer (CC). This study aims to investigate the effect and further mechanisms of lncRNA SNHG5 in CC. METHODS The expression of SNHG5 and miR-132, as well as SOX4 (sex-determining region Y-box 4) mRNA expression were determined by quantitative real-time PCR (qRT-PCR). The protein level of SOX4 and epithelial-mesenchymal transition (EMT)-related proteins were evaluated by western blot. Then, Edu and Transwell assay were performed to assess the proliferation, migration and invasion of CC cells. RNA immunoprecipitation (RIP) and RNA pull-down assay were conducted to explore the relationship between SNHG5 and miR-132. RESULTS SNHG5 and SOX4 were upregulated, and miR-132 was downregulated in CC tissues and cell lines. SNHG5 was positively correlated with FIGO stage (p = .003) and lymph node metastasis (p = .001). Pearson's correlation analysis conveyed that SNHG5 was positively correlated with SOX4, and miR-132 was negatively correlated with SOX4 and SNHG5. Knockdown of SNHG5 in vitro reduced CC cell proliferation, migration and invasion through regulating miR-132. Moreover, overexpression of miR-132 restrained CC cell proliferation, migration, and invasion through targeting SOX4, and SNHG5 enhanced SOX4 expression via negatively regulating miR-132. CONCLUSION SNHG5 promotes SOX4 expression to accelerate CC cell proliferation, migration and invasion through negatively regulating miR-132.
Collapse
Affiliation(s)
- Liqin Zhang
- Department of Laboratory, Jinhua People's Hospital, China
| | - Xiaoming Wu
- Department of Laboratory, Hangzhou Jianggan District People's Hospital, Hangzhou, China
| | - Yue Li
- Department of Laboratory, Jinhua People's Hospital, China
| | - Xianlin Teng
- Department of Laboratory, Jinhua People's Hospital, China
| | - Libo Zou
- Department of Laboratory, Jinhua People's Hospital, China
| | - Beiwei Yu
- Department of Laboratory, Hangzhou Jianggan District People's Hospital, Hangzhou, China
| |
Collapse
|
25
|
Katsaraki K, Karousi P, Artemaki PI, Scorilas A, Pappa V, Kontos CK, Papageorgiou SG. MicroRNAs: Tiny Regulators of Gene Expression with Pivotal Roles in Normal B-Cell Development and B-Cell Chronic Lymphocytic Leukemia. Cancers (Basel) 2021; 13:cancers13040593. [PMID: 33546241 PMCID: PMC7913321 DOI: 10.3390/cancers13040593] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/01/2023] Open
Abstract
Simple Summary The involvement of miRNAs in physiological cellular processes has been well documented. The development of B cells, which is dictated by a miRNA-transcription factor regulatory network, suggests a typical process partly orchestrated by miRNAs. Besides their contribution in normal hematopoiesis, miRNAs have been severally reported to be implicated in hematological malignancies, a typical example of which is B-cell chronic lymphocytic leukemia (B-CLL). Numerous studies have attempted to highlight the regulatory role of miRNAs in B-CLL or establish some of them as molecular biomarkers or therapeutic targets. Thus, a critical review summarizing the current knowledge concerning the multifaceted role of miRNAs in normal B-cell development and B-CLL progression, prognosis, and therapy, is urgent. Moreover, this review aims to highlight important miRNAs in both normal B-cell development and B-CLL and discuss future perspectives concerning their regulatory potential and establishment in clinical practice. Abstract MicroRNAs (miRNAs) represent a class of small non-coding RNAs bearing regulatory potency. The implication of miRNAs in physiological cellular processes has been well documented so far. A typical process orchestrated by miRNAs is the normal B-cell development. A stage-specific expression pattern of miRNAs has been reported in the developmental procedure, as well as interactions with transcription factors that dictate B-cell development. Besides their involvement in normal hematopoiesis, miRNAs are severally implicated in hematological malignancies, a typical paradigm of which is B-cell chronic lymphocytic leukemia (B-CLL). B-CLL is a highly heterogeneous disease characterized by the accumulation of abnormal B cells in blood, bone marrow, lymph nodes, and spleen. Therefore, timely, specific, and sensitive assessment of the malignancy is vital. Several studies have attempted to highlight the remarkable significance of miRNAs as regulators of gene expression, biomarkers for diagnosis, prognosis, progression, and therapy response prediction, as well as molecules with potential therapeutic utility. This review seeks to outline the linkage between miRNA function in normal and malignant hematopoiesis by demonstrating the main benchmarks of the implication of miRNAs in the regulation of normal B-cell development, and to summarize the key findings about their value as regulators, biomarkers, or therapeutic targets in B-CLL.
Collapse
Affiliation(s)
- Katerina Katsaraki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (K.K.); (P.K.); (P.I.A.); (A.S.)
| | - Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (K.K.); (P.K.); (P.I.A.); (A.S.)
| | - Pinelopi I. Artemaki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (K.K.); (P.K.); (P.I.A.); (A.S.)
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (K.K.); (P.K.); (P.I.A.); (A.S.)
| | - Vasiliki Pappa
- Second Department of Internal Medicine and Research Unit, University General Hospital “Attikon”, 12462 Athens, Greece;
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (K.K.); (P.K.); (P.I.A.); (A.S.)
- Correspondence: (C.K.K.); (S.G.P.); Tel.: +30-210-727-4616 (C.K.K.); +30-210-583-2519 (S.G.P.)
| | - Sotirios G. Papageorgiou
- Second Department of Internal Medicine and Research Unit, University General Hospital “Attikon”, 12462 Athens, Greece;
- Correspondence: (C.K.K.); (S.G.P.); Tel.: +30-210-727-4616 (C.K.K.); +30-210-583-2519 (S.G.P.)
| |
Collapse
|
26
|
Li J, Zou J, Wan X, Sun C, Peng F, Chu Z, Hu Y. The Role of Noncoding RNAs in B-Cell Lymphoma. Front Oncol 2020; 10:577890. [PMID: 33194698 PMCID: PMC7645065 DOI: 10.3389/fonc.2020.577890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022] Open
Abstract
In recent years, emerging evidence has suggested that noncoding RNAs (ncRNAs) participate in nearly every aspect of biological processes and play a crucial role in the genesis and progression of numerous tumors, including B-cell lymphoma. The exploration of ncRNA dysregulations and their functions in B-cell lymphoma provides new insights into lymphoma pathogenesis and is essential for indicating future clinical trials and optimizing the diagnostic and therapeutic strategies. In this review, we summarize the role of ncRNAs in B-cell lymphoma and discuss their potential in clinical applications.
Collapse
Affiliation(s)
- Jingwen Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyue Wan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Peng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangbo Chu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Chen T, Che X, Han P, Lu J, Wang C, Liang B, Hou Z, Wei X, Wei L, Li P. MicroRNA-1 promotes cartilage matrix synthesis and regulates chondrocyte differentiation via post-transcriptional suppression of Ihh expression. Mol Med Rep 2020; 22:2404-2414. [PMID: 32705199 PMCID: PMC7411356 DOI: 10.3892/mmr.2020.11296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 05/21/2020] [Indexed: 12/18/2022] Open
Abstract
Indian hedgehog signaling molecule (Ihh) is known to play critical roles in chondrogenesis and cartilage development. However, it remains largely unknown how Ihh is regulated during the process. Previous studies suggest that Ihh plays an important regulatory role in the growth and development of articular cartilage, but whether it is regulated by miRNAs is unclear. The present study aimed to investigate the effects of miR‑1 on chondrocyte differentiation and matrix synthesis, and to determine whether miR‑1 can regulate the Ihh signaling pathway. In the present study, the expression level of miR‑1 was altered via transfection of the miR‑1 mimic or inhibitor in mouse thorax chondrocytes, and the impact on chondrocyte phenotypes and Ihh expression was examined. Overexpression of miR‑1 promoted the expression of the matrix synthesis‑associated molecules collagen (Col)‑II and aggrecan, two key components in cartilage matrix. Conversely, overexpression of miR‑1 significantly downregulated the expression of chondrocyte differentiation markers Col‑X and matrix metallopeptidase 13. Moreover, overexpression of miR‑1 dose‑dependently inhibited endogenous Ihh expression, and an association was observed between miR‑1 and Ihh expression. The 3' untranslated region (UTR) of Ihh from various species contains two miR‑1 binding sites. Luciferase reporter assays indicated that miR‑1 post‑transcriptionally suppressed Ihh expression, which was dependent on the binding of miR‑1 to one of the two putative binding sites of the Ihh 3'UTR. Furthermore, via inhibition of Ihh expression, miR‑1 decreased the expression of molecules downstream of Ihh in the Hedgehog signaling pathway in mouse thorax chondrocytes. This study provided new insight into the molecular mechanisms of miR‑1 in regulating chondrocyte phenotypes via targeting the Ihh pathway.
Collapse
Affiliation(s)
- Taoyu Chen
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, P.R. China
| | - Xianda Che
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, P.R. China
| | - Pengfei Han
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, P.R. China
| | - Jiangong Lu
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, P.R. China
| | - Chunfang Wang
- Laboratory Animal Center of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Bin Liang
- Department of Orthopedics, Fenyang Hospital Affiliated to Shanxi Medical University, Fenyang, Shanxi 032200, P.R. China
| | - Ziqi Hou
- Laboratory Animal Center of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xiaochun Wei
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, P.R. China
| | - Lei Wei
- Department of Orthopedics, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Pengcui Li
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
28
|
Sartorius K, Swadling L, An P, Makarova J, Winkler C, Chuturgoon A, Kramvis A. The Multiple Roles of Hepatitis B Virus X Protein (HBx) Dysregulated MicroRNA in Hepatitis B Virus-Associated Hepatocellular Carcinoma (HBV-HCC) and Immune Pathways. Viruses 2020; 12:v12070746. [PMID: 32664401 PMCID: PMC7412373 DOI: 10.3390/v12070746] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Currently, the treatment of hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) [HBV-HCC] relies on blunt tools that are unable to offer effective therapy for later stage pathogenesis. The potential of miRNA to treat HBV-HCC offer a more targeted approach to managing this lethal carcinoma; however, the complexity of miRNA as an ancillary regulator of the immune system remains poorly understood. This review examines the overlapping roles of HBx-dysregulated miRNA in HBV-HCC and immune pathways and seeks to demonstrate that specific miRNA response in immune cells is not independent of their expression in hepatocytes. This interplay between the two pathways may provide us with the possibility of using candidate miRNA to manipulate this interaction as a potential therapeutic option.
Collapse
Affiliation(s)
- Kurt Sartorius
- Faculty of Commerce, Law and Management, University of the Witwatersrand, Johannesburg 2050, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban 4041, South Africa;
- UKZN Gastrointestinal Cancer Research Centre, Durban 4041, South Africa
- Correspondence:
| | - Leo Swadling
- Division of Infection and Immunity, University College London, London WC1E6BT, UK;
| | - Ping An
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc. Frederick Nat. Lab. for Cancer Research, Frederick, MD 20878, USA; (P.A.); (C.W.)
| | - Julia Makarova
- National Research University Higher School of Economics, Faculty of Biology and Biotechnology, 10100 Moscow, Russia;
| | - Cheryl Winkler
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc. Frederick Nat. Lab. for Cancer Research, Frederick, MD 20878, USA; (P.A.); (C.W.)
| | - Anil Chuturgoon
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa;
| |
Collapse
|
29
|
Chen P, Zhang W, Chen Y, Zheng X, Yang D. Comprehensive analysis of aberrantly expressed long non‑coding RNAs, microRNAs, and mRNAs associated with the competitive endogenous RNA network in cervical cancer. Mol Med Rep 2020; 22:405-415. [PMID: 32377727 PMCID: PMC7248517 DOI: 10.3892/mmr.2020.11120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is a common malignant disease that poses a serious health threat to women worldwide. Growing research efforts have focused on protein‑coding and non‑coding RNAs involved in the tumorigenesis and prognosis of various types of cancer. The potential molecular mechanisms and the interaction among long non‑coding RNAs (lncRNAs), microRNAs (miRNAs), and mRNAs require further investigation in cervical cancer. In the present study, lncRNA, miRNA, and mRNA expression profiles of 304 primary tumor tissues from patients with cervical cancer and 3 solid normal tissues from The Cancer Genome Atlas (TCGA) dataset were studied via RNA sequencing (RNA‑seq). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed using R package clusterProfiler to annotate the principal functions of differentially expressed (DE) mRNAs. Kaplan‑Meier analysis was also conducted to investigate the effects of DElncRNAs, DEmiRNAs, and DEmRNAs on overall survival. A total of 2,255 mRNAs, 133 miRNAs, and 150 lncRNAs that were differentially expressed were identified with a threshold of P<0.05 and |fold change (FC)|>2. Functional enrichment analysis indicated that DEmRNAs were enriched in cancer‑associated KEGG pathways. Furthermore, 255 mRNAs, 15 miRNAs, and 12 lncRNAs that were significantly associated with overall survival in cervical carcinoma were also identified. Importantly, an miRNA‑mediated competitive endogenous RNA (ceRNA) network was successfully constructed based on the expression profiles of DElncRNAs and DEmRNAs. More importantly, it was found that the lncRNA EPB41L4A‑AS1 may function as a pivotal regulator in carcinoma of the uterine cervix. Taken together, the present study has provided novel insights into investigating the potential mechanisms underlying tumorigenesis, development, and prognosis of cervical cancer, and presented new potential avenues for cancer therapeutics.
Collapse
Affiliation(s)
- Peng Chen
- Department of Obstetrics and Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100000, P.R. China
| | - Weiyuan Zhang
- Department of Obstetrics and Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100000, P.R. China
| | - Yu Chen
- Department of Obstetrics and Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100000, P.R. China
| | - Xiaoli Zheng
- Department of Obstetrics and Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100000, P.R. China
| | - Dong Yang
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100000, P.R. China
| |
Collapse
|
30
|
Kabekkodu SP, Shukla V, Varghese VK, Adiga D, Vethil Jishnu P, Chakrabarty S, Satyamoorthy K. Cluster miRNAs and cancer: Diagnostic, prognostic and therapeutic opportunities. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1563. [PMID: 31436881 DOI: 10.1002/wrna.1563] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/05/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
Abstract
MiRNAs are class of noncoding RNA important for gene expression regulation in many plants, animals and viruses. MiRNA clusters contain a set of two or more miRNA encoding genes, transcribed together as polycistronic miRNAs. Currently, there are approximately 159 miRNA clusters reported in the human genome consisting of miRNAs ranging from two or more miRNA genes. A large proportion of clustered miRNAs resides in and around the fragile sites or cancer associated genomic hotspots and plays an important role in carcinogenesis. Altered expression of miRNA cluster can be pro-tumorigenic or anti-tumorigenic and can be targeted for clinical management of cancer. Over the past few years, manipulation of miRNA clusters expression is attempted for experimental purpose as well as for diagnostic, prognostic and therapeutic applications in cancer. Re-expression of miRNAs by epigenetic therapy, genome editing such as clustered regulatory interspaced short palindromic repeats (CRISPR) and miRNA mowers showed promising results in cancer therapy. In this review, we focused on the potential of miRNA clusters as a biomarker for diagnosis, prognosis, targeted therapy as well as strategies for modulating their expression in a therapeutic context. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Processing > Processing of Small RNAs RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vinay Koshy Varghese
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Padacherri Vethil Jishnu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
31
|
Wu B, Li J, Wang H, Wu Q, Liu H. MiR-132-3p serves as a tumor suppressor in mantle cell lymphoma via directly targeting SOX11. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:2197-2208. [PMID: 32040593 DOI: 10.1007/s00210-020-01834-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
Mantle cell lymphoma (MCL) is an uncommon type of non-Hodgkin's lymphoma (NHL), comprising about 6% of NHL cases. SOX11 is a member of the group C of Sry-related high-mobility group (HMG) box (Sox) transcription factors, which is ubiquitously expressed in approximate 90% MCL cases. However, the underlying mechanisms of the SOX11 expression aberration are not fully unveiled. In the present study, we firstly observed that miR-132-3p was dramatically down-regulated in CD19+ lymphocytes isolated from peripheral blood mononuclear cells (PBMCs) of MCL patients. Subsequently, we found miR-132-3p exhibited potentials in clinical application, indicated by its negative association with high-risk clinical features. In terms of function, ectopic miR-132-3p aggravated cell apoptosis and arrested cell cycle in G0/G1, and then inhibited cell proliferation in vitro and tumor growth in vivo. Also, we identified miR-132-3p's direct target, SOX11, in MCL cell lines, and loss-function of SOX11 blocked its inhibitory effect on cell proliferation in vitro. Collectively, our observations bring about a novel mechanism to explain the aberrant expression of SOX11 in MCL. Therefore, miR-132-3p may be a promising biomarker for the diagnosis of MCL.
Collapse
Affiliation(s)
- Baoyu Wu
- Department of Pathology, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jingyu Li
- Department of Pathology, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Han Wang
- Department of Pathology, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qian Wu
- Department of Dermatology, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hui Liu
- Department of Pathology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
32
|
SOX4: Epigenetic regulation and role in tumorigenesis. Semin Cancer Biol 2019; 67:91-104. [PMID: 31271889 DOI: 10.1016/j.semcancer.2019.06.022] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Sex-determining region Y-related (SRY) high-mobility group box 4 (SOX4) is a member of the group C subfamily of SOX transcription factors and promotes tumorigenesis by endowing cancer cells with survival, migratory, and invasive capacities. Emerging evidence has highlighted an unequivocal role for this transcription factor in mediating various signaling pathways involved in tumorigenesis, epithelial-to-mesenchymal transition (EMT), and tumor progression. During the last decade, numerous studies have highlighted the epigenetic interplay between SOX4-targeting microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and SOX4 and the subsequent modulation of tumorigenesis, invasion and metastasis. In this review, we summarize the current state of knowledge about the role of SOX4 in cancer development and progression, the epigenetic regulation of SOX4, and the potential utilization of SOX4 as a diagnostic and prognostic biomarker and its depletion as a therapeutic target.
Collapse
|
33
|
Lie S, Rochet E, Segerdell E, Ma Y, Ashander LM, Shadforth AMA, Blenkinsop TA, Michael MZ, Appukuttan B, Wilmot B, Smith JR. Immunological Molecular Responses of Human Retinal Pigment Epithelial Cells to Infection With Toxoplasma gondii. Front Immunol 2019; 10:708. [PMID: 31118929 PMCID: PMC6506780 DOI: 10.3389/fimmu.2019.00708] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/15/2019] [Indexed: 11/13/2022] Open
Abstract
Ocular toxoplasmosis is the commonest clinical manifestation of infection with obligate intracellular parasite, Toxoplasma gondii. Active ocular toxoplasmosis is characterized by replication of T. gondii tachyzoites in the retina, with reactive inflammation. The multifunctional retinal pigment epithelium is a key target cell population for T. gondii. Since the global gene expression profile is germane to understanding molecular involvements of retinal pigment epithelial cells in ocular toxoplasmosis, we performed RNA-Sequencing (RNA-Seq) of human cells following infection with T. gondii tachyzoites. Primary cell isolates from eyes of cadaveric donors (n = 3), and the ARPE-19 human retinal pigment epithelial cell line, were infected for 24 h with GT-1 strain T. gondii tachyzoites (multiplicity of infection = 5) or incubated uninfected as control. Total and small RNA were extracted from cells and sequenced on the Illumina NextSeq 500 platform; results were aligned to the human hg19 reference sequence. Multidimensional scaling showed good separation between transcriptomes of infected and uninfected primary cell isolates, which were compared in edgeR software. This differential expression analysis revealed a sizeable response in the total RNA transcriptome-with significantly differentially expressed genes totaling 7,234 (28.9% of assigned transcripts)-but very limited changes in the small RNA transcriptome-totaling 30 (0.35% of assigned transcripts) and including 8 microRNA. Gene ontology and pathway enrichment analyses of differentially expressed total RNA in CAMERA software, identified a strong immunologic transcriptomic signature. We conducted RT-qPCR for 26 immune response-related protein-coding and long non-coding transcripts in epithelial cell isolates from different cadaveric donors (n = 3), extracted by a different isolation protocol but similarly infected with T. gondii, to confirm immunological activity of infected cells. For microRNA, increases in miR-146b and miR-212 were detected by RT-qPCR in 2 and 3 of these independent cell isolates. Biological network analysis in the InnateDB platform, including 735 annotated differentially expressed genes plus 2,046 first-order interactors, identified 10 contextural hubs and 5 subnetworks in the transcriptomic immune response of cells to T. gondii. Our observations provide a solid base for future studies of molecular and cellular interactions between T. gondii and the human retinal pigment epithelium to illuminate mechanisms of ocular toxoplasmosis.
Collapse
Affiliation(s)
- Shervi Lie
- Eye and Vision Health, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
| | - Elise Rochet
- Eye and Vision Health, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
| | - Erik Segerdell
- Department of Biostatistics, Oregon Health and Sciences University, Portland, OR, United States
| | - Yuefang Ma
- Eye and Vision Health, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
| | - Liam M. Ashander
- Eye and Vision Health, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
| | - Audra M. A. Shadforth
- Queensland Eye Institute, Brisbane, QLD, Australia
- School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Timothy A. Blenkinsop
- Departments of Cell, Developmental and Regenerative Biology, and Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michael Z. Michael
- Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
| | - Binoy Appukuttan
- Eye and Vision Health, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
- Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
| | - Beth Wilmot
- Department of Biostatistics, Oregon Health and Sciences University, Portland, OR, United States
| | - Justine R. Smith
- Eye and Vision Health, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
- Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
| |
Collapse
|
34
|
Kim M, Civin CI, Kingsbury TJ. MicroRNAs as regulators and effectors of hematopoietic transcription factors. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1537. [PMID: 31007002 DOI: 10.1002/wrna.1537] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/24/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022]
Abstract
Hematopoiesis is a highly-regulated development process orchestrated by lineage-specific transcription factors that direct the generation of all mature blood cells types, including red blood cells, megakaryocytes, granulocytes, monocytes, and lymphocytes. Under homeostatic conditions, the hematopoietic system of the typical adult generates over 1011 blood cells daily throughout life. In addition, hematopoiesis must be responsive to acute challenges due to blood loss or infection. MicroRNAs (miRs) cooperate with transcription factors to regulate all aspects of hematopoiesis, including stem cell maintenance, lineage selection, cell expansion, and terminal differentiation. Distinct miR expression patterns are associated with specific hematopoietic lineages and stages of differentiation and functional analyses have elucidated essential roles for miRs in regulating cell transitions, lineage selection, maturation, and function. MiRs function as downstream effectors of hematopoietic transcription factors and as upstream regulators to control transcription factor levels. Multiple miRs have been shown to play essential roles. Regulatory networks comprised of differentially expressed lineage-specific miRs and hematopoietic transcription factors are involved in controlling the quiescence and self-renewal of hematopoietic stem cells as well as proliferation and differentiation of lineage-specific progenitor cells during erythropoiesis, myelopoiesis, and lymphopoiesis. This review focuses on hematopoietic miRs that function as upstream regulators of central hematopoietic transcription factors required for normal hematopoiesis. This article is categorized under: RNA in Disease and Development > RNA in Development Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- MinJung Kim
- Department of Pediatrics, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Curt I Civin
- Department of Pediatrics and Physiology, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tami J Kingsbury
- Department of Physiology, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
35
|
Hewitson JP, Shah KM, Brown N, Grevitt P, Hain S, Newling K, Sharp TV, Kaye PM, Lagos D. miR-132 suppresses transcription of ribosomal proteins to promote protective Th1 immunity. EMBO Rep 2019; 20:embr.201846620. [PMID: 30833344 DOI: 10.15252/embr.201846620] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 01/01/2023] Open
Abstract
Determining the mechanisms that distinguish protective immunity from pathological chronic inflammation remains a fundamental challenge. miR-132 has been shown to play largely immunoregulatory roles in immunity; however, its role in CD4+ T cell function is poorly understood. Here, we show that CD4+ T cells express high levels of miR-132 and that T cell activation leads to miR-132 up-regulation. The transcriptomic hallmark of splenic CD4+ T cells lacking the miR-132/212 cluster during chronic infection is an increase in mRNA levels of ribosomal protein (RP) genes. BTAF1, a co-factor of B-TFIID and novel miR-132/212-3p target, and p300 contribute towards miR-132/212-mediated regulation of RP transcription. Following infection with Leishmania donovani, miR-132 -/- CD4+ T cells display enhanced expression of IL-10 and decreased IFNγ. This is associated with reduced hepatosplenomegaly and enhanced pathogen load. The enhanced IL-10 expression in miR-132 -/- Th1 cells is recapitulated in vitro following treatment with phenylephrine, a drug reported to promote ribosome synthesis. Our results uncover that miR-132/212-mediated regulation of RP expression is critical for optimal CD4+ T cell activation and protective immunity against pathogens.
Collapse
Affiliation(s)
- James P Hewitson
- Centre for Immunology and Infection and York Biomedical Research Institute, Hull York Medical School and Department of Biology, University of York, York, UK
| | - Kunal M Shah
- Centre of Molecular Oncology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University London, London, UK
| | - Najmeeyah Brown
- Centre for Immunology and Infection and York Biomedical Research Institute, Hull York Medical School and Department of Biology, University of York, York, UK
| | - Paul Grevitt
- Centre of Molecular Oncology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University London, London, UK
| | - Sofia Hain
- Centre for Immunology and Infection and York Biomedical Research Institute, Hull York Medical School and Department of Biology, University of York, York, UK
| | - Katherine Newling
- Genomics and Bioinformatics Laboratory, Bioscience Technology Facility, Department of Biology, University of York, York, UK
| | - Tyson V Sharp
- Centre of Molecular Oncology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University London, London, UK
| | - Paul M Kaye
- Centre for Immunology and Infection and York Biomedical Research Institute, Hull York Medical School and Department of Biology, University of York, York, UK
| | - Dimitris Lagos
- Centre for Immunology and Infection and York Biomedical Research Institute, Hull York Medical School and Department of Biology, University of York, York, UK
| |
Collapse
|
36
|
Ponnusamy V, Yip PK. The role of microRNAs in newborn brain development and hypoxic ischaemic encephalopathy. Neuropharmacology 2019; 149:55-65. [PMID: 30716413 DOI: 10.1016/j.neuropharm.2018.11.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 02/08/2023]
Abstract
Neonates can develop hypoxic-ischaemic encephalopathy (HIE) due to lack of blood supply or oxygen, resulting in a major cause of death and disability among term newborns. However, current definitive treatment of therapeutic hypothermia, will only benefit one out of nine babies. Furthermore, the mechanisms of HIE and therapeutic hypothermia are not fully understood. Recently, microRNAs (miRNAs) have become of interest to many researchers due to their important role in post-transcriptional control and deep evolutionary history. Despite this, role of miRNAs in newborns with HIE remains largely unknown due to limited research in this field. Therefore, this review aims to understand the role of miRNAs in normal brain development and HIE pathophysiology with reliance on extrapolated data from other diseases, ages and species due to current limited data. This will provide us with an overview of how miRNAs in normal brain development changes after HIE. Furthermore, it will indicate how miRNAs are affected specifically or globally by the various pathophysiological events. In addition, we discuss about how drugs and commercially available agents can specifically target certain miRNAs as a mechanism of action and potential safety issue with off-target effects. Improving our understanding of the role of miRNAs on the cellular response after HIE would enhance the success of effective diagnosis, prognosis, and treatment of newborns with HIE.
Collapse
Affiliation(s)
- Vennila Ponnusamy
- Centre of Genomics and Child Health, Blizard Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, UK; Neonatal Intensive Care Unit, Ashford and St. Peter's Hospitals NHS Trust, Chertsey, UK.
| | - Ping K Yip
- Center of Neuroscience, Surgery and Trauma, Blizard Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, UK.
| |
Collapse
|
37
|
Kabekkodu SP, Shukla V, Varghese VK, D' Souza J, Chakrabarty S, Satyamoorthy K. Clustered miRNAs and their role in biological functions and diseases. Biol Rev Camb Philos Soc 2018; 93:1955-1986. [PMID: 29797774 DOI: 10.1111/brv.12428] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are endogenous, small non-coding RNAs known to regulate expression of protein-coding genes. A large proportion of miRNAs are highly conserved, localized as clusters in the genome, transcribed together from physically adjacent miRNAs and show similar expression profiles. Since a single miRNA can target multiple genes and miRNA clusters contain multiple miRNAs, it is important to understand their regulation, effects and various biological functions. Like protein-coding genes, miRNA clusters are also regulated by genetic and epigenetic events. These clusters can potentially regulate every aspect of cellular function including growth, proliferation, differentiation, development, metabolism, infection, immunity, cell death, organellar biogenesis, messenger signalling, DNA repair and self-renewal, among others. Dysregulation of miRNA clusters leading to altered biological functions is key to the pathogenesis of many diseases including carcinogenesis. Here, we review recent advances in miRNA cluster research and discuss their regulation and biological functions in pathological conditions.
Collapse
Affiliation(s)
- Shama P Kabekkodu
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vinay K Varghese
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Jeevitha D' Souza
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| |
Collapse
|
38
|
Zheng B, Xi Z, Liu R, Yin W, Sui Z, Ren B, Miller H, Gong Q, Liu C. The Function of MicroRNAs in B-Cell Development, Lymphoma, and Their Potential in Clinical Practice. Front Immunol 2018; 9:936. [PMID: 29760712 PMCID: PMC5936759 DOI: 10.3389/fimmu.2018.00936] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022] Open
Abstract
B-cell formation, development, and differentiation are complex processes regulated by several mechanisms. Recently, there has been growing evidence indicating that microRNAs (miRNAs) are important for normal B-cell lineage development. miRNAs are small non-coding RNA molecules, about 20–22 nucleotide in length, that play an important role in regulating gene expression. They pair with specific messenger RNAs (mRNAs), resulting in mRNAs translational repression or degradation. Here, we review current research about the function of miRNAs in the aspects of B-cell physiology and pathology. We start by introducing the process of miRNA biogenesis. We will then focus on the role of miRNAs during B-cell lineage commitment and development in the bone marrow, followed by a discussion of miRNAs’ role in subsequent peripheral B-cell activation, proliferation, and final differentiation (including B-cell central tolerance and autoimmunity). We list and describe several examples to illustrate miRNAs’ role in the development of B-cell lymphoma, both as oncogenes and tumor suppressor genes. Finally, we delineate the potential value of miRNAs in diagnosing B-cell lymphoma, predicting clinical outcomes, and modulating the efficiency of anticancer treatments. Despite the vast amount of research conducted on miRNAs in recent years, it is still necessary to increase and further strengthen studies on miRNAs and their targets to promote a better understanding on B-cell development and as a result, construct more effective treatments against B-cell disease.
Collapse
Affiliation(s)
- Bing Zheng
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Zhijiang Xi
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Rong Liu
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwei Sui
- Division of Medical and Biological Measurement, National Institute of Metrology, Beijing, China
| | - Boxu Ren
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Heather Miller
- Department of Intracellular Pathogens, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Chaohong Liu
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Epigenetic silencing of miR-125b is required for normal B-cell development. Blood 2018; 131:1920-1930. [PMID: 29555645 DOI: 10.1182/blood-2018-01-824540] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/05/2018] [Indexed: 11/20/2022] Open
Abstract
Deregulation of several microRNAs (miRs) can influence critical developmental checkpoints during hematopoiesis as well as cell functions, eventually leading to the development of autoimmune disease or cancer. We found that miR-125b is expressed in bone marrow multipotent progenitors and myeloid cells but shut down in the B-cell lineage, and the gene encoding miR-125b lacked transcriptional activation markers in B cells. To understand the biological importance of the physiological silencing of miR-125b expression in B cells, we drove its expression in the B-cell lineage and found that dysregulated miR-125b expression impaired egress of immature B cells from the bone marrow to peripheral blood. Such impairment appeared to be mediated primarily by inhibited expression of the sphingosine-1-phosphate receptor 1 (S1PR1). Enforced expression of S1PR1 or clustered regularly interspaced short palindromic repeats/Cas9-mediated genome editing of the miR-125b targeting site in the S1PR1 3' untranslated region rescued the miR-125b-mediated defect in B-cell egress. In addition to impaired B-cell egress, miR-125b dysregulation initially reduced pre-B-cell output but later induced pre-B-cell lymphoma/leukemia in mice. Genetic deletion of IRF4 was found in miR-125b-induced B-cell cancer, but its role in oncogenic miR-125b-induced B-cell transformation is still unknown. Here, we further demonstrated an interaction of the effects of miR-125b and IRF4 in cancer induction by showing that miR125b-induced B-cell leukemia was greatly accelerated in IRF4 homozygous mutant mice. Thus, we conclude that physiological silencing of miR-125b is required for normal B-cell development and also acts as a mechanism of cancer suppression.
Collapse
|
40
|
Zheng Y, Wu W, Hu G, Zhao Z, Meng S, Fan L, Song C, Qiu L, Chen J. Hepatic transcriptome analysis of juvenile GIFT tilapia (Oreochromis niloticus), fed diets supplemented with different concentrations of resveratrol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:447-454. [PMID: 28892663 DOI: 10.1016/j.ecoenv.2017.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
The GIFT (Genetically Improved Farmed Tilapia) tilapia, Oreochromis niloticus, is cultured widely for the production of freshwater fish in China. Streptococcosis, which is related to pathogenic infections, occurs frequently in juvenile and adult female GIFT individuals. Resveratrol (RES) has been used in feed to control these infections in freshwater tilapia. To address the effects of RES on tilapia, we used high-throughput RNA sequencing technology (RNA-Seq, HiSeq. 2500) to explore the global transcriptomic response and specific involvement of hepatic mRNA of juvenile O. niloticus fed with diets containing different concentrations of (0, 0.025, 0.05, and 0.1g/kg) RES. A total of > 24,513,018 clean reads were generated and then assembled into 23,244 unigenes. The unigenes were annotated by comparing them against non-redundant protein sequence (Nr), non-redundant nucleotide (Nt), Swiss-Prot, Pfam, Gene Ontology database (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, and 12,578 unigenes were annotated to the GO database. A total of 1444 (0.025g/kg RES), 1526 (0.05g/kg RES), and 3135 (0.1g/kg RES) genes were detected as significant differentially expressed genes (DEGs), when compared with the controls. A total of 6 (0.025 vs 0.05g/kg RES), 19 (0.025 vs 0.1g/kg RES), and 124 (0.05 vs 0.1g/kg RES) genes were detected as significant DEGs. Six genes, including dnah7x1, sox4, fam46a, hsp90a, ddit4, and nmrk2, were associated with an immune response. These findings provide information on the innate immunity of GIFT and might contribute to the development of strategies for the effective management of diseases and long-term sustainability of O. niloticus culture.
Collapse
Affiliation(s)
- Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu 214081, PR China
| | - Wei Wu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu 214081, PR China
| | - Gengdong Hu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu 214081, PR China
| | - Zhixiang Zhao
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, PR China
| | - Shunlong Meng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu 214081, PR China
| | - Limin Fan
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu 214081, PR China
| | - Chao Song
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu 214081, PR China
| | - Liping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu 214081, PR China
| | - Jiazhang Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu 214081, PR China; Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, PR China.
| |
Collapse
|
41
|
Quan J, Liu S, Dai K, Jin L, He T, Pan X, Lai Y. MicroRNA-23a/24-2/27a as a potential diagnostic biomarker for cancer: A systematic review and meta-analysis. Mol Clin Oncol 2017; 8:159-169. [PMID: 29387410 DOI: 10.3892/mco.2017.1492] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/02/2017] [Indexed: 12/28/2022] Open
Abstract
An increasing number of studies have proven that microRNAs play an important role in the occurrence, development and prognosis of various types of cancer. As a vital gene cluster, the microRNA (miR)-23a/24-2/27a cluster may be an important marker for predicting cancer prognosis and tumor progression. A search was conducted through PubMed, Medline and the Cochrane Library to identify studies investigating the association between the miR-23a/24-2/27a cluster and cancer, and the identified related studies were included in the present meta-analysis. The strength of the association was assessed by hazard ratio (HR) and its 95% confidence interval (95% CI). A total of 21 studies were included in this meta-analysis. The results indicated that a high level of miR-23a exerted a significant effect on overall survival (OS) (HR=2.33, 95% CI: 1.18-4.58; P=0.014), but not on disease-free survival (DFS)/recurrence-free survival (RFS) (HR=1.13, 95% CI: 0.37-3.44; P=0.836). There was an obvious statistically significant association between OS and the expression of miR-24 (HR=2.49, 95% CI: 1.84-3.37; P=0.000), particularly in the digestive system (pooled HR=2.99, 95% CI: 2.17-4.13, P=0.000). In addition, the result suggested a statistically significant association between the expression of miR-27a and OS (pooled HR=1.89, 95% CI: 1.32-2.69; P=0.001), as well as DFS/RFS/progression-free survival (HR=2.19, 95% CI: 1.29-3.70; P=0.003), particularly in renal cell carcinoma (HR=2.30, 95% CI: 1.16-4.67; P=0.017). A subgroup analysis by ethnicity, cancer type and statistical methodology was performed. There was no obvious publication bias. In conclusion, the present study demonstrated that the miR-23a/24-2/27a cluster may be a useful marker for predicting cancer prognosis and tumor progression.
Collapse
Affiliation(s)
- Jing Quan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China.,Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Suyue Liu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China.,Department of Thoracic Surgery, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Kangfu Dai
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China.,Department of Hepatobiliary Endoscopic Surgery, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Lu Jin
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China.,Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Tao He
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China.,Department of Urology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xiang Pan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China.,Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
42
|
Kaehler M, Ruemenapp J, Gonnermann D, Nagel I, Bruhn O, Haenisch S, Ammerpohl O, Wesch D, Cascorbi I, Bruckmueller H. MicroRNA-212/ABCG2-axis contributes to development of imatinib-resistance in leukemic cells. Oncotarget 2017; 8:92018-92031. [PMID: 29190894 PMCID: PMC5696160 DOI: 10.18632/oncotarget.21272] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 09/08/2017] [Indexed: 12/27/2022] Open
Abstract
BCR-ABL-independent resistance against tyrosine kinase inhibitor is an emerging problem in therapy of chronic myeloid leukemia. Such drug resistance can be linked to dysregulation of ATP-binding cassette (ABC)-transporters leading to increased tyrosine kinase inhibitor efflux, potentially caused by changes in microRNA expression or DNA-methylation. In an in vitro-imatinib-resistance model using K-562 cells, microRNA-212 was found to be dysregulated and inversely correlated to ABC-transporter ABCG2 expression, targeting its 3'-UTR. However, the functional impact on drug sensitivity remained unknown. Therefore, we performed transfection experiments using microRNA-mimics and -inhibitors and investigated their effect on imatinib-susceptibility in sensitive and resistant leukemic cell lines. Under imatinib-treatment, miR-212 inhibition led to enhanced cell viability (p = 0.01), reduced apoptosis (p = 0.01) and cytotoxicity (p = 0.03). These effects were limited to treatment-naïve cells and were not observed in cells, which were resistant to various imatinib-concentrations (0.1 μM to 2 μM). Further analysis in treatment-naïve cells revealed that miR-212 inhibition resulted in ABCG2 upregulation and increased ABCG2-dependent efflux. Furthermore, we observed miR-212 promoter hypermethylation in 0.5 and 2 μM IM-resistant sublines, whereas ABCG2 methylation status was not altered. Taken together, the miR-212/ABCG2-axis influences imatinib-susceptibility contributing to development of imatinib-resistance. Our data reveal new insights into mechanisms initiating imatinib-resistance in leukemic cells.
Collapse
Affiliation(s)
- Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Johanna Ruemenapp
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Daniel Gonnermann
- Institute of Immunology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Inga Nagel
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Oliver Bruhn
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sierk Haenisch
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Henrike Bruckmueller
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
43
|
Dai W, Xu X, Li S, Ma J, Shi Q, Guo S, Liu L, Guo W, Xu P, He Y, Zhu G, Wang L, Ge R, Liu Y, Jian Z, Wang G, Shen L, Gao T, Li C. SOX4 Promotes Proliferative Signals by Regulating Glycolysis through AKT Activation in Melanoma Cells. J Invest Dermatol 2017; 137:2407-2416. [PMID: 28760661 DOI: 10.1016/j.jid.2017.06.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 06/10/2017] [Accepted: 06/12/2017] [Indexed: 01/21/2023]
Abstract
The sex-determining region Y-related high-mobility group box transcription factor 4 (SOX4) plays a fundamental role during embryogenesis and controls cell fate and differentiation. Recently, increased SOX4 expression has been reported in various cancer types, contributing to the progression and survival of cancer cells. However, the distinct functions and downstream targets of SOX4 remain to be fully elucidated. In this study, we initially found elevated SOX4 expression in melanoma. SOX4 regulates apoptosis and cell cycle arrest, affects glucose consumption and lactate production, and consequently, promotes melanoma cell proliferation. Moreover, we found that SOX4 rewires glucose metabolism by regulating the expression of glucose transporter type 1, hexokinase 2, and lactate dehydrogenase A at the transcriptional level. Mechanistically, SOX4 knockdown reduced activation of acutely transforming retrovirus AKT8 in rodent T-cell lymphoma and mTORC1, leading to an attenuated malignant phenotype. We also identified p70 ribosomal S6 kinase and eukaryotic initiation factor 4E-binding protein 1 as key substrates involved in the regulation of mTORC1 in melanoma cells. In conclusion, our study demonstrates the essential role of SOX4 in melanoma glycolytic metabolism through the acutely transforming retrovirus AKT8 in rodent T-cell lymphoma signaling pathway and highlights its potential as a therapeutic target in melanoma management.
Collapse
Affiliation(s)
- Wei Dai
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xinyuan Xu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jingjing Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lin Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Peng Xu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuanmin He
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Guannan Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Liwen Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Rui Ge
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yu Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhe Jian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lan Shen
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
44
|
Zhou Y, Ji Z, Yan W, Zhou Z, Li H. The biological functions and mechanism of miR‑212 in prostate cancer proliferation, migration and invasion via targeting Engrailed-2. Oncol Rep 2017; 38:1411-1419. [PMID: 28713997 PMCID: PMC5549026 DOI: 10.3892/or.2017.5805] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/06/2017] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence indicates that Engrailed-2 (EN-2), which is a homeobox-containing transcription factor, act as a candidate oncogene in prostate cancer (PCa). Even though there are some treatments targeting EN-2, however, it is limited because the mechanism of EN-2 upregulation in PCa cells is still unknown. In this study, we investigate the role of miR‑212 on EN-2 expression and explored the mechanism of prostate cancer survival and metastasis. The relative expression levels of miR‑212 and EN-2 in PCa samples and adjacent normal tissues as well as in PCa cell lines were detected by using quantitative real-time PCR. CCK-8, TUNEL and Transwell assays were used to analyze cell proliferation, apoptosis and invasion, respectively. EN-2 was identified as a direct target of miR‑212 via luciferase reporter and western blot assays. Results showed that the expression level of miR‑212 was downregulated in both PCa samples and PCa cell lines when compared with prostate epithelial cells and the adjacent no tumor tissues. Moreover, we found that overexpression of miR‑212 suppressed PCa cell proliferation and invasion, promoted PCa cell apoptosis. EN-2 was identified as a direct target gene of miR‑212 by using luciferase reporter and western blot assays. Also, the expression of EN-2 and miR‑212 in the PCa cells had an opposite correlation. The critical role of miR‑212 in inhibiting prostate tumor growth was verified in xenograft models of prostate cancer. These findings highlighted the role of miR‑212 in PCa progression. More importantly, we speculate that EN-2 is a direct target gene of miR‑212.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100000, P.R. China
| | - Zhigang Ji
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100000, P.R. China
| | - Weigang Yan
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100000, P.R. China
| | - Zhien Zhou
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100000, P.R. China
| | - Hanzhong Li
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100000, P.R. China
| |
Collapse
|
45
|
Kotaki R, Koyama-Nasu R, Yamakawa N, Kotani A. miRNAs in Normal and Malignant Hematopoiesis. Int J Mol Sci 2017; 18:ijms18071495. [PMID: 28696359 PMCID: PMC5535985 DOI: 10.3390/ijms18071495] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/21/2017] [Accepted: 06/25/2017] [Indexed: 02/07/2023] Open
Abstract
Lineage specification is primarily regulated at the transcriptional level and lineage-specific transcription factors determine cell fates. MicroRNAs (miRNAs) are 18–24 nucleotide-long non-coding RNAs that post-transcriptionally decrease the translation of target mRNAs and are essential for many cellular functions. miRNAs also regulate lineage specification during hematopoiesis. This review highlights the roles of miRNAs in B-cell development and malignancies, and discusses how miRNA expression profiles correlate with disease prognoses and phenotypes. We also discuss the potential for miRNAs as therapeutic targets and diagnostic tools for B-cell malignancies.
Collapse
Affiliation(s)
- Ryutaro Kotaki
- Department of Hematology and Oncology, Tokai University School of Medicine, Hiratsuka 259-1193, Japan.
| | - Ryo Koyama-Nasu
- Department of Hematology and Oncology, Tokai University School of Medicine, Hiratsuka 259-1193, Japan.
| | - Natsuko Yamakawa
- Department of Hematology and Oncology, Tokai University School of Medicine, Hiratsuka 259-1193, Japan.
| | - Ai Kotani
- Department of Hematology and Oncology, Tokai University School of Medicine, Hiratsuka 259-1193, Japan.
| |
Collapse
|
46
|
Coffre M, Koralov SB. miRNAs in B Cell Development and Lymphomagenesis. Trends Mol Med 2017; 23:721-736. [PMID: 28694140 DOI: 10.1016/j.molmed.2017.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 12/22/2022]
Abstract
B lymphocytes are essential for an efficient immune response against a variety of pathogens. A large fraction of hematologic malignancies is of B cell origin, suggesting that the development and activation of B cells need to be tightly regulated. In recent years, increasing evidence has emerged demonstrating that microRNAs (miRNAs) - a class of non-coding RNAs that control gene expression - are involved in the regulation of B cell development and function. We provide here an overview of the current knowledge on the role of miRNAs and their relevant targets in B cell development, B cell activation, and B cell malignant transformation.
Collapse
Affiliation(s)
- Maryaline Coffre
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
47
|
Haviv R, Oz E, Soreq H. The Stress-Responding miR-132-3p Shows Evolutionarily Conserved Pathway Interactions. Cell Mol Neurobiol 2017; 38:141-153. [PMID: 28667373 PMCID: PMC5775983 DOI: 10.1007/s10571-017-0515-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/22/2017] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA chains that can each interact with the 3′-untranslated region of multiple target transcripts in various organisms, humans included. MiRNAs tune entire biological pathways, spanning stress reactions, by regulating the stability and/or translation of their targets. MiRNA genes are often subject to co-evolutionary changes together with their target transcripts, which may be reflected by differences between paralog mouse and primate miRNA/mRNA pairs. However, whether such evolution occurred in stress-related miRNAs remained largely unknown. Here, we report that the stress-induced evolutionarily conserved miR-132-3p, its target transcripts and its regulated pathways provide an intriguing example to exceptionally robust conservation. Mice and human miR-132-3p share six experimentally validated targets and 18 predicted targets with a common miRNA response element. Enrichment analysis and mining in-house and web-available experimental data identified co-regulation by miR-132 in mice and humans of stress-related, inflammatory, metabolic, and neuronal growth pathways. Our findings demonstrate pan-mammalian preservation of miR-132′s neuronal roles, and call for further exploring the corresponding stress-related implications.
Collapse
Affiliation(s)
- Rotem Haviv
- Department of Biological Chemistry, The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401, Jerusalem, Israel
| | - Eden Oz
- Department of Biological Chemistry, The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401, Jerusalem, Israel
| | - Hermona Soreq
- Department of Biological Chemistry, The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401, Jerusalem, Israel.
| |
Collapse
|
48
|
Abstract
MicroRNAs (miRNAs) are crucial post-transcriptional regulators of haematopoietic cell fate decisions. They act by negatively regulating the expression of key immune development genes, thus contributing important logic elements to the regulatory circuitry. Deletion studies have made it increasingly apparent that they confer robustness to immune cell development, especially under conditions of environmental stress such as infectious challenge and ageing. Aberrant expression of certain miRNAs can lead to pathological consequences, such as autoimmunity and haematological cancers. In this Review, we discuss the mechanisms by which several miRNAs influence immune development and buffer normal haematopoietic output, first at the level of haematopoietic stem cells, then in innate and adaptive immune cells. We then discuss the pathological consequences of dysregulation of these miRNAs.
Collapse
|
49
|
Gutiérrez-Vázquez C, Rodríguez-Galán A, Fernández-Alfara M, Mittelbrunn M, Sánchez-Cabo F, Martínez-Herrera DJ, Ramírez-Huesca M, Pascual-Montano A, Sánchez-Madrid F. miRNA profiling during antigen-dependent T cell activation: A role for miR-132-3p. Sci Rep 2017; 7:3508. [PMID: 28615644 PMCID: PMC5471249 DOI: 10.1038/s41598-017-03689-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/04/2017] [Indexed: 02/07/2023] Open
Abstract
microRNAs (miRNAs) are tightly regulated during T lymphocyte activation to enable the establishment of precise immune responses. Here, we analyzed the changes of the miRNA profiles of T cells in response to activation by cognate interaction with dendritic cells. We also studied mRNA targets common to miRNAs regulated in T cell activation. pik3r1 gene, which encodes the regulatory subunits of PI3K p50, p55 and p85, was identified as target of miRNAs upregulated after T cell activation. Using 3′UTR luciferase reporter-based and biochemical assays, we showed the inhibitory relationship between miR-132-3p upregulation and expression of the pik3r1 gene. Our results indicate that specific miRNAs whose expression is modulated during T cell activation might regulate PI3K signaling in T cells.
Collapse
Affiliation(s)
- Cristina Gutiérrez-Vázquez
- Instituto de Investigación Sanitaria Princesa, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Ana Rodríguez-Galán
- Instituto de Investigación Sanitaria Princesa, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Marcos Fernández-Alfara
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - María Mittelbrunn
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Fátima Sánchez-Cabo
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | - Marta Ramírez-Huesca
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | - Francisco Sánchez-Madrid
- Instituto de Investigación Sanitaria Princesa, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain. .,Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain. .,CIBER Cardiovascular, Madrid, Spain.
| |
Collapse
|
50
|
Lin L, Wang Z, Jin H, Shi H, Lu Z, Qi Z. MiR-212/132 is epigenetically downregulated by SOX4/EZH2-H3K27me3 feedback loop in ovarian cancer cells. Tumour Biol 2016; 37:15719–15727. [PMID: 27812929 DOI: 10.1007/s13277-016-5339-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/06/2016] [Indexed: 11/25/2022] Open
Abstract
Both miR-212 and miR-132 are usually downregulated in ovarian cancer and act as tumor suppressors. However, the mechanism of their downregulation in ovarian cancer is not clear. In this study, we investigated the regulative effects of miR-212 and miR-132 on SOX4 expression in ovarian cancer cells and also studied whether there is a feedback regulation between miR-212/miR-132 and SOX4 via an epigenetic mechanism. The results showed that both EZH2 and SOX4 overexpressions significantly repressed miR-212 and miR-132 expressions in SKOV3 and OV2008 cells. Immunoprecipitation assay showed that there are interactions among SOX4, EZH2, and H3K27me3, and ChIP assay confirmed significant enrichment of EZH2 and H3K27me3 in the promoter region of miR-212/132. Both pri-miR-212 and pri-miR-132 expressions decreased after enforced EZH2 or SOX4 expression. Western blot and dual-luciferase assay confirmed that miR-212 and miR-132 can target the same sites in the 3'UTR of SOX4 mRNA and suppress its expression in ovarian cancer cells. MiR-132 or miR-212 overexpression or knockdown of endogenous SOX4 reduced epithelial-mesenchymal transition (EMT)-like properties. Therefore, we infer that the SOX4/EZH2 complex can silence miR-212 and miR-132 expressions via binding to the promoter region and promoting H3K27me3, while miR-212 and miR-132 can directly bind to the 3'UTR of SOX4 and suppress its expression. This forms a MiR-132/212-SOX4/EZH2-H3K27me3 feedback loop in ovarian cancer cells. Functionally, SOX4 is a downstream effector of miR-212/132 modulating EMT of ovarian cancer cells.
Collapse
Affiliation(s)
- Lin Lin
- Department of Reproductive Medicine, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, 066000, China
| | - Zhiwen Wang
- Department of Gynaecology and Obstetrics, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, 066000, China.
| | - Haihong Jin
- Department of Gynaecology and Obstetrics, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, 066000, China
| | - Hongzhen Shi
- Department of Reproductive Medicine, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, 066000, China
| | - Zhihong Lu
- Department of Infectious Disease, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, 066000, China
| | - Zhenqin Qi
- B-ultrasound Room, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, 066000, China
| |
Collapse
|