1
|
Zhang X, Meng L, Zu T, Zhou Q. Identification of necroptosis & mitophagy-related key genes and their prognostic value in colorectal cancer. Discov Oncol 2025; 16:461. [PMID: 40183870 PMCID: PMC11971082 DOI: 10.1007/s12672-025-02221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 03/24/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Our study aimed to elucidate the potential necroptotic&mitophagy-related key genes in colorectal cancer (COAD) by bioinformatics analysis and identify their prognostic value in COAD. METHODS Firstly, we integrated the cancer genome atlas (TCGA) and gene expression omnibus (GEO) datasets to identify necroptosis & mitophagy-related differentially expressed genes (N&MRDEGs) in COAD using "TCGAbiolinks" and "GEOquery" packages. Secondly, the obtained data were used for differential expression analysis using the "limma" package, and further functional enrichment analysis using the "clusterProfiler" package. Then, gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were utilized to explore pathway associations of the N&MRDEGs. Thirdly, the predictive model was developed utilizing LASSO (Least absolute shrinkage and selection regression) regression implemented through the "glmnet" package and validated via Kaplan-Meier analysis. Finally, we validated the function of the key genes by receiver operating characteristic (ROC) curve analysis, multivariate cox proportional hazards model and COAD cell lines. RESULTS There is a strong association between the 4 key genes (UCHL1, HSPA1A, MAPK8, and PLEC) of COAD and the necroptotic&mitophagy, which were found to be lowly mRNA level in COAD cell lines. Among them, PLEC exhibited a pronounced contribution to the utility of the model in the TCGA database and UCHL1 has excellent diagnostic potential with an area under the curve (AUC) greater than 0.9. CONCLUSIONS The perspective of bioinformatics analysis provides robust evidence suggested that UCHL1, HSPA1A, MAPK8, and PLEC genes are the prognostic biomarkers of COAD, the predictive model established herein provides a novel tool for risk stratification in clinical practice and serves as a foundation for further investigation into its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Xiuling Zhang
- Department of Internal Medicine, The Hospital of Shandong Normal University, Jinan, 250014, Shandong, China
| | - Li Meng
- Department of Pharmacy, Weifang People'S Hospital, Shandong Second Medical University, Weifang, 261041, Shandong, China
| | - Tingjian Zu
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| | - Qian Zhou
- Department of Pharmacy, Shandong Provincial Key Medical and Health Discipline of Clinical Pharmacy, Shandong Provincial Third Hospital, Shandong University, Jinan, 250013, Shandong, China.
| |
Collapse
|
2
|
Zheng M, Kessler M, Jeschke U, Reichenbach J, Czogalla B, Keckstein S, Schroeder L, Burges A, Mahner S, Trillsch F, Kaltofen T. Necroptosis-Related Gene Signature Predicts Prognosis in Patients with Advanced Ovarian Cancer. Cancers (Basel) 2025; 17:271. [PMID: 39858052 PMCID: PMC11763378 DOI: 10.3390/cancers17020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: This study aimed to construct a risk score (RS) based on necroptosis-associated genes to predict the prognosis of patients with advanced epithelial ovarian cancer (EOC). Methods: EOC data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) series 140082 (GSE140082) were used. Based on known necroptosis-associated genes, clustering was performed to identify molecular subtypes of EOC. A least absolute shrinkage and selection operator (LASSO)-Cox regression analysis identified key genes related to prognosis. The expression of one of them, RIPK3, was analyzed via immunohistochemistry in an EOC cohort. Results: An RS made from ten genes (IDH2, RIPK3, FASLG, BRAF, ITPK1, TNFSF10, ID1, PLK1, MLKL and HSPA4) was developed. Tumor samples were divided into a high-risk group (HRG) and low-risk group (LRG) using the RS. The model is able to predict the overall survival (OS) of EOC and distinguish the prognosis of different clinical subgroups. Immunohistochemical verification of the receptor-interacting serine/threonine-protein kinase (RIPK) 3 confirmed that high nuclear expression is correlated with a longer OS. In addition, the score can predict the response to a programmed death ligand 1 (PD-L1) blockade treatment in selected solid malignancies. Patients from the LRG seem to benefit more from it than patients from the HRG. Conclusions: Our RS based on necroptosis-associated genes might help to predict the prognosis of patients with advanced EOC and gives an idea on how the use of immunotherapy can potentially be guided.
Collapse
Affiliation(s)
- Mingjun Zheng
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany; (M.Z.); (M.K.); (J.R.); (B.C.); (S.K.); (L.S.); (A.B.); (S.M.); (F.T.)
- Department of Gynaecology and Obstetrics, Shengjing Hospital, China Medical University, Sanhao Street 36, Shenyang 110055, China
| | - Mirjana Kessler
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany; (M.Z.); (M.K.); (J.R.); (B.C.); (S.K.); (L.S.); (A.B.); (S.M.); (F.T.)
| | - Udo Jeschke
- Gynecology, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany;
| | - Juliane Reichenbach
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany; (M.Z.); (M.K.); (J.R.); (B.C.); (S.K.); (L.S.); (A.B.); (S.M.); (F.T.)
| | - Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany; (M.Z.); (M.K.); (J.R.); (B.C.); (S.K.); (L.S.); (A.B.); (S.M.); (F.T.)
| | - Simon Keckstein
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany; (M.Z.); (M.K.); (J.R.); (B.C.); (S.K.); (L.S.); (A.B.); (S.M.); (F.T.)
| | - Lennard Schroeder
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany; (M.Z.); (M.K.); (J.R.); (B.C.); (S.K.); (L.S.); (A.B.); (S.M.); (F.T.)
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany; (M.Z.); (M.K.); (J.R.); (B.C.); (S.K.); (L.S.); (A.B.); (S.M.); (F.T.)
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany; (M.Z.); (M.K.); (J.R.); (B.C.); (S.K.); (L.S.); (A.B.); (S.M.); (F.T.)
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany; (M.Z.); (M.K.); (J.R.); (B.C.); (S.K.); (L.S.); (A.B.); (S.M.); (F.T.)
| | - Till Kaltofen
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany; (M.Z.); (M.K.); (J.R.); (B.C.); (S.K.); (L.S.); (A.B.); (S.M.); (F.T.)
- Department for Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
3
|
Hosseinkhani S, Amandadi M, Ghanavatian P, Zarein F, Ataei F, Nikkhah M, Vandenabeele P. Harnessing luciferase chemistry in regulated cell death modalities and autophagy: overview and perspectives. Chem Soc Rev 2024; 53:11557-11589. [PMID: 39417351 DOI: 10.1039/d3cs00743j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Regulated cell death is a fate of cells in (patho)physiological conditions during which extrinsic or intrinsic signals or redox equilibrium pathways following infection, cellular stress or injury are coupled to cell death modalities like apoptosis, necroptosis, pyroptosis or ferroptosis. An immediate survival response to cellular stress is often induction of autophagy, a process that deals with removal of aggregated proteins and damaged organelles by a lysosomal recycling process. These cellular processes and their regulation are crucial in several human diseases. Exploiting high-throughput assays which discriminate distinct cell death modalities and autophagy are critical to identify potential therapeutic agents that modulate these cellular responses. In the past few years, luciferase-based assays have been widely developed for assessing regulated cell death and autophagy pathways due to their simplicity, sensitivity, known chemistry, different spectral properties and high-throughput potential. Here, we review basic principles of bioluminescent reactions from a mechanistic perspective, along with their implication in vitro and in vivo for probing cell death and autophagy pathways. These include applying luciferase-, luciferin-, and ATP-based biosensors for investigating regulated cell death modalities. We discuss multiplex bioluminescence platforms which simultaneously distinguish between the various cell death phenomena and cellular stress recovery processes such as autophagy. We also highlight the recent technological achievements of bioluminescent tools for the prediction of drug effectiveness in pathways associated with regulated cell death.
Collapse
Affiliation(s)
- Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mojdeh Amandadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Parisa Ghanavatian
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fateme Zarein
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Peter Vandenabeele
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
4
|
Lee GE, Bang G, Byun J, Chen W, Jeung D, Cho H, Lee JY, Kang HC, Lee HS, Kim JY, Kim KD, Wu J, Nam SB, Kwon YJ, Lee CJ, Cho YY. SPOP-mediated RIPK3 destabilization desensitizes LPS/sMAC/zVAD-induced necroptotic cell death. Cell Mol Life Sci 2024; 81:451. [PMID: 39540935 PMCID: PMC11564579 DOI: 10.1007/s00018-024-05487-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
RIPK1/RIPK3-MLKL signaling molecules are fundamental in initiating necroptotic cell death, but their roles in the development of colon cancer are unclear. This study reports that RIPK3 interacted with SPOP, a component of the E3 ligase within the Cul3 complex. This interaction leads to K48-linked ubiquitination and subsequent proteasomal degradation of RIPK3. Two distinct degron motifs, PETST and SPTST, were identified within the linker domain of RIPK3 for SPOP. RIPK3 phosphorylations at Thr403 by PIM2 and at Thr412/Ser413 by ERK2 are essential to facilitate its interaction with SPOP. Computational docking studies and immunoprecipitation analyses showed that these PIM2 and ERK2 phosphorylations bolster the stability of the RIPK3-SPOP interaction. In particular, mutations of RIPK3 at the degron motifs extended the half-life of RIPK3 by preventing its phosphorylation and subsequent ubiquitination. The deletion of SPOP, which led to increased stability of the RIPK3 protein, intensified LPS/sMAC/zVAD-induced necroptotic cell death in colon cancer cells. These findings underscore the critical role of the SPOP-mediated RIPK3 stability regulation pathway in controlling necroptotic cell death.
Collapse
Affiliation(s)
- Ga-Eun Lee
- BK21-4th, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon- si, Gyeonggi-do, 14662, Republic of Korea
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Sciences, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Republic of Korea
| | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Cheongju-si, Chungbuk, 28119, Republic of Korea
| | - Jiin Byun
- BK21-4th, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon- si, Gyeonggi-do, 14662, Republic of Korea
| | - Weidong Chen
- BK21-4th, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon- si, Gyeonggi-do, 14662, Republic of Korea
| | - Dohyun Jeung
- BK21-4th, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon- si, Gyeonggi-do, 14662, Republic of Korea
| | - Hana Cho
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Joo Young Lee
- BK21-4th, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon- si, Gyeonggi-do, 14662, Republic of Korea
- Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Han Chang Kang
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Hye Suk Lee
- BK21-4th, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon- si, Gyeonggi-do, 14662, Republic of Korea
- Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Cheongju-si, Chungbuk, 28119, Republic of Korea
| | - Kwang Dong Kim
- BK21-Four, Division of Applied Life Science, Gyeongsang National University, 501, Jinju-daero, Jinju- si, Gyeongsangnam-do, 52828, Republic of Korea
| | - Juan Wu
- BK21-4th, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon- si, Gyeonggi-do, 14662, Republic of Korea
| | - Soo-Bin Nam
- BK21-4th, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon- si, Gyeonggi-do, 14662, Republic of Korea
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Sciences, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Republic of Korea
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, 132, Sprague Hall, Irvine, CA, 92697, USA
| | - Cheol-Jung Lee
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Sciences, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Republic of Korea.
| | - Yong-Yeon Cho
- BK21-4th, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon- si, Gyeonggi-do, 14662, Republic of Korea.
- Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
5
|
Chen H, Hou G, Lan T, Xue S, Xu L, Feng Q, Zeng Y, Wang H. Identification and validation of a five-necroptosis-related lncRNAs signature for prognostic prediction in hepatocellular carcinoma. Heliyon 2024; 10:e37403. [PMID: 39309864 PMCID: PMC11415698 DOI: 10.1016/j.heliyon.2024.e37403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is among the most prevalent digestive system malignancies and is associated with a poor prognosis. Necroptosis, a form of regulated death mediated by death receptors, exhibits characteristics of both necrosis and apoptosis. Long non-coding RNAs (lncRNAs) have been identified as crucial regulators in tumor necroptosis. This study aims to identify the necroptosis-related lncRNAs (np-lncRNA) in HCC and investigate their relationships with prognosis. Method The RNA-sequencing data, along with clinicopathological and survival information of HCC patients were sourced from The Cancer Genome Atlas (TCGA) database. The np-lncRNAs were analyzed to assess their potential in predicting HCC prognosis. Prognostic signatures related to necroptosis were constructed using stepwise multivariate Cox regression analysis. The prognosis of patients was compared using Kaplan-Meier (KM) analysis. The accuracy of the prognostic signature was evaluated using Receiver operating characteristic (ROC) analysis and decision curve analysis (DCA). Quantitative real-time polymerase chain reaction(qPCR) was employed to validate the lncRNAs expression levels of lncRNAs among samples from an independent cohort. Results The np-lncRNAs ZFPM2-AS1, AC099850.3, BACE1-AS, KDM4A-AS1 and MKLN1-AS were identified as potential prognostic biomarkers. The prognostic signature constructed from these np-lncRNAs achieved an Area Under the Curve (AUC) of 0.773. Based on the risk score derived from the signature, patients were divided into two groups, with the high-risk group exhibiting poorer overall survival. Gene Set Enrichment Analysis (GSEA) revealed significantly different between the low risk and high risk groups in tumor-related pathways (such as mTOR, MAPK and p53 signaling pathways) and immune-related functions (like T cell receptor signaling pathway and natural killer cell mediated cytotoxicity). The increased expression of np-lncRNAs was confirmed in another independent HCC cohort. Conclusions This signature offers a dependable method for forecasting the prognosis of HCC patients. Our findings indicate a subset of np-lncRNA biomarkers that could be utilized for prognosis prediction and personalized treatment strategies of HCC patients.
Collapse
Affiliation(s)
- Hao Chen
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Luzhou, 646000, China
| | - Guimin Hou
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Hepato-Biliary-Pancreatic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Tian Lan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuai Xue
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Xu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qingbo Feng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haichuan Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
6
|
Zhang J, Sang X, Yuan Y, Shen J, Fang Y, Qin M, Zheng H, Zhu Z. 4-Deoxy- ε-Pyrromycinone: A Promising Drug/Lead Compound to Treat Tumors. Drug Des Devel Ther 2024; 18:2367-2379. [PMID: 38911033 PMCID: PMC11193465 DOI: 10.2147/dddt.s461594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024] Open
Abstract
Background Anthraquinone drugs are widely used in the treatment of tumors. However, multidrug resistance and severe cardiac toxicity limit its use, which have led to the discovery of new analogues. In this paper, 4-Deoxy-ε-pyrromycinone (4-Deo), belonging to anthraquinone compounds, was first been studied with the anti-tumor effects and the safety in vitro and in vivo as a new anti-tumor drug or lead compound. Methods The quantitative analysis of 4-Deo was established by UV methodology. The anti-cancer effect of 4-Deo in vitro was evaluated by cytotoxicity experiments of H22, HepG2 and Caco2, and the anti-cancer mechanism was explored by cell apoptosis and cycle. The tumor-bearing mouse model was established by subcutaneous inoculation of H22 cells to evaluate the anti-tumor effect of 4-Deo in vivo. The safety of 4-Deo was verified by the in vitro safety experiments of healthy cells and the in vivo safety experiments of H22 tumor-bearing mice. Tumor tissue sections were labeled with CRT, HMGB1, IL-6 and CD115 to explore the preliminary anti-cancer mechanism by immunohistochemistry. Results In vitro experiments demonstrated that 4-Deo could inhibit the growth of H22 by inducing cell necrosis and blocking cells in S phase, and 4-Deo has less damage to healthy cells. In vivo experiments showed that 4-Deo increased the positive area of CRT and HMGB1, which may inhibit tumor growth by triggering immunogenic cell death (ICD). In addition, 4-Deo reduced the positive area of CSF1R, and the anti-tumor effect may be achieved by blocking the transformation of tumor-associated macrophages (TAMs) to M2 phenotype. Conclusion In summary, this paper demonstrated the promise of 4-Deo for cancer treatment in vitro and in vivo. This paper lays the foundation for the study of 4-Deo, which is beneficial for the further development anti-tumor drugs based on the lead compound of 4-Deo.
Collapse
Affiliation(s)
- Jiping Zhang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 311402, People’s Republic of China
| | - Xianan Sang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 311402, People’s Republic of China
| | - Yichao Yuan
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 311402, People’s Republic of China
| | - Jiawei Shen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 311402, People’s Republic of China
| | - Yuanyuan Fang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 311402, People’s Republic of China
| | - Minjing Qin
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 311402, People’s Republic of China
| | - Hangsheng Zheng
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 311402, People’s Republic of China
| | - Zhihong Zhu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 311402, People’s Republic of China
| |
Collapse
|
7
|
Meier P, Legrand AJ, Adam D, Silke J. Immunogenic cell death in cancer: targeting necroptosis to induce antitumour immunity. Nat Rev Cancer 2024; 24:299-315. [PMID: 38454135 DOI: 10.1038/s41568-024-00674-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 03/09/2024]
Abstract
Most metastatic cancers remain incurable due to the emergence of apoptosis-resistant clones, fuelled by intratumour heterogeneity and tumour evolution. To improve treatment, therapies should not only kill cancer cells but also activate the immune system against the tumour to eliminate any residual cancer cells that survive treatment. While current cancer therapies rely heavily on apoptosis - a largely immunologically silent form of cell death - there is growing interest in harnessing immunogenic forms of cell death such as necroptosis. Unlike apoptosis, necroptosis generates second messengers that act on immune cells in the tumour microenvironment, alerting them of danger. This lytic form of cell death optimizes the provision of antigens and adjuvanticity for immune cells, potentially boosting anticancer treatment approaches by combining cellular suicide and immune response approaches. In this Review, we discuss the mechanisms of necroptosis and how it activates antigen-presenting cells, drives cross-priming of CD8+ T cells and induces antitumour immune responses. We also examine the opportunities and potential drawbacks of such strategies for exposing cancer cells to immunological attacks.
Collapse
Affiliation(s)
- Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK.
| | - Arnaud J Legrand
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - John Silke
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Yang J, Du Y, Yao Y, Liao Y, Wang B, Yu X, Yuan K, Zhang Y, He F, Yang P. Employing Piezoelectric Mg 2+-Doped Hydroxyapatite to Target Death Receptor-Mediated Necroptosis: A Strategy for Amplifying Immune Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307130. [PMID: 38251202 PMCID: PMC10987113 DOI: 10.1002/advs.202307130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/19/2023] [Indexed: 01/23/2024]
Abstract
Although immunogenic cell death (ICD) inducers evidently enhance the effectiveness of immunotherapy, their potential is increasingly restricted by the development of apoptosis resistance in tumor cells, poor immunogenicity, and low T-cell immune responsiveness. In this study, for the first time, piezoelectrically catalyzed Mg2+-doped hydroxyapatite (Mg-HAP) nanoparticles, which are coated with a mesoporous silica layer and loaded with ONC201 as an agonist to specifically target the death receptor DR5 on tumor cells, ultimately developing an Mg-HAP@MS/ONC201 nanoparticle (MHMO NP) system, are engineered. Owing to its excellent piezoelectric properties, MHMO facilitates the release of a significant amount of reactive oxygen species and Ca2+ within tumor cells, effectively promoting the upregulation of DR5 expression and inducing tumor cell necroptosis to ultimately overcome apoptosis resistance. Concurrently, Mg2+ released in the tumor microenvironment promotes CD8+ T receptor activation in response to the antitumor immune reaction induced by ICD. Using RNA-seq analysis, it is elucidated that MHMO can activate the NF-κB pathway under piezoelectric catalysis, thus inducing M1-type macrophage polarization. In summary, a dual-targeting therapy system that targets both tumor cells and the tumor microenvironment under piezoelectric catalysis is designed. This system holds substantial potential for advancements in tumor immunotherapy.
Collapse
Affiliation(s)
- Jiani Yang
- Department of Gastrointestinal Medical OncologyHarbin Medical University Cancer HospitalHarbin150001P. R. China
- Key Laboratory of Tumor Immunology in HeilongjiangHarbin Medical University Cancer HospitalHarbin150080China
| | - Yaqian Du
- Key Laboratory of Superlight Materials and Surface TechnologyMinistry of EducationCollege of Materials Science and Chemical EngineeringHarbin Engineering UniversityHarbin150001P. R. China
| | - Yuanfei Yao
- Department of Gastrointestinal Medical OncologyHarbin Medical University Cancer HospitalHarbin150001P. R. China
- Key Laboratory of Tumor Immunology in HeilongjiangHarbin Medical University Cancer HospitalHarbin150080China
| | - Yuanyu Liao
- Department of Gastrointestinal Medical OncologyHarbin Medical University Cancer HospitalHarbin150001P. R. China
- Key Laboratory of Tumor Immunology in HeilongjiangHarbin Medical University Cancer HospitalHarbin150080China
| | - Bojun Wang
- Department of Gastrointestinal Medical OncologyHarbin Medical University Cancer HospitalHarbin150001P. R. China
- Key Laboratory of Tumor Immunology in HeilongjiangHarbin Medical University Cancer HospitalHarbin150080China
| | - Xuefan Yu
- Department of Gastrointestinal Medical OncologyHarbin Medical University Cancer HospitalHarbin150001P. R. China
- Key Laboratory of Tumor Immunology in HeilongjiangHarbin Medical University Cancer HospitalHarbin150080China
| | - Kaikun Yuan
- Department of NeurosurgeryFirst Affiliated Hospital of Harbin Medical UniversityHarbin150001P. R. China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical OncologyHarbin Medical University Cancer HospitalHarbin150001P. R. China
- Key Laboratory of Tumor Immunology in HeilongjiangHarbin Medical University Cancer HospitalHarbin150080China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface TechnologyMinistry of EducationCollege of Materials Science and Chemical EngineeringHarbin Engineering UniversityHarbin150001P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface TechnologyMinistry of EducationCollege of Materials Science and Chemical EngineeringHarbin Engineering UniversityHarbin150001P. R. China
| |
Collapse
|
9
|
Xu S, Yang TJ, Xu S, Gong YN. Plasma membrane repair empowers the necrotic survivors as innate immune modulators. Semin Cell Dev Biol 2024; 156:93-106. [PMID: 37648621 PMCID: PMC10872800 DOI: 10.1016/j.semcdb.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/20/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
The plasma membrane is crucial to the survival of animal cells, and damage to it can be lethal, often resulting in necrosis. However, cells possess multiple mechanisms for repairing the membrane, which allows them to maintain their integrity to some extent, and sometimes even survive. Interestingly, cells that survive a near-necrosis experience can recognize sub-lethal membrane damage and use it as a signal to secrete chemokines and cytokines, which activate the immune response. This review will present evidence of necrotic cell survival in both in vitro and in vivo systems, including in C. elegans, mouse models, and humans. We will also summarize the various membrane repair mechanisms cells use to maintain membrane integrity. Finally, we will propose a mathematical model to illustrate how near-death experiences can transform dying cells into innate immune modulators for their microenvironment. By utilizing their membrane repair activity, the biological effects of cell death can extend beyond the mere elimination of the cells.
Collapse
Affiliation(s)
- Shiqi Xu
- Center for Stem Cell and Regenerative Medicine and Department of Burn and Wound Repair of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Rd., Haining, Zhejiang 314400, China
| | - Tyler J Yang
- Departments of Biology and Advanced Placement Biology, White Station High School, Memphis, TN 38117, USA
| | - Suhong Xu
- Center for Stem Cell and Regenerative Medicine and Department of Burn and Wound Repair of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Rd., Haining, Zhejiang 314400, China.
| | - Yi-Nan Gong
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, 5115 Center Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
10
|
Zhang Q, Luo Y, Zhang S, Huang Q, Liu G. Development of a necroptosis-related prognostic model for uterine corpus endometrial carcinoma. Sci Rep 2024; 14:4257. [PMID: 38383747 PMCID: PMC10881509 DOI: 10.1038/s41598-024-54651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
Necroptosis is a recently identified caspase-independent form of cell death which plays a significant role in the onset and progression of cancer. MicroRNAs (miRNAs) are vital for the development of uterine corpus endometrial carcinoma (UCEC) because they are an important regulatory component in necroptosis. This study developed a new necroptosis-related miRNAs profile to predict the prognosis of patients with UCEC. The TCGA-UCEC cohort's RNA sequencing data, consisting of 534 tumor samples and 33 normal samples, was downloaded. Ten differentially expressed miRNAs related to necroptosis were identified. A prediction model for necroptosis-related miRNAs was then created through COX regression and nomograms analysis. Clinical and pathological parameters were integrated to construct a nomogram and evaluate the model. Prognosis-related miRNAs were further used to predict target genes, and functional analysis was conducted to explore the potential mechanisms of these target genes. Subsequently, immune infiltration analysis was performed using transcriptome data to identify immune genes associated with prognosis, and the expression levels of target gene was validated using UCEC tissues. We identified 7 up-regulated miRNAs (hsa-miR-577, hsa-miR-7-5p, hsa-miR-210-3p, hsa-miR-210-5p, hsa-miR-200a-5p, hsa-miR-141-3p, hsa-miR-425-5p) and 3 down-regulated miRNAs (hsa-miR-7-2-3p, hsa-miR-383-5p, hsa-miR-29a-3p). The risk signature was based on univariate and multivariate COX analyses, constructed using 2 independent prognostic factors and miRNAs (hsa-miR-425-5p, hsa-miR-7-5p) associated with necroptosis. Nomograms demonstrated the prognostic value of risk level, age, FIGO stage, and histological type. Kaplan-Meier analysis revealed significant differences in overall survival (OS) outcomes associated with the expression of hsa-miR-425-5p (P < 0.001) and hsa-miR-7-5p (P = 0.015). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) investigations indicated that these miRNAs play crucial roles in tumor development, metastasis, and prognosis. Immune infiltration analysis showed decreased infiltration of CD8+ T cells, CD8+ T cells, NK cells, and M1 macrophages in normal tissues. Subsequently, a necroptosis-related immune gene significantly associated with prognosis (THRB) was identified, western blot and immunohistochemical staining confirmed the differential expression of THRB in normal endometrial tissues and tumor. Our findings demonstrate a close association between necroptosis and UCEC. The two necroptosis-related miRNAs used in this study may serve as valuable prognostic markers for UCEC patients, and are associated with immune cell infiltration. This suggests that necroptosis may be involved in the development of UCEC through its interaction with immune responses.
Collapse
Affiliation(s)
- Qi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yongfu Luo
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of General Surgery, Xintian People's Hospital, Xintian, 425700, Hunan, China
| | - Shiyao Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qianpeng Huang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Gang Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
11
|
Zhang Y, Hao M, Yang X, Zhang S, Han J, Wang Z, Chen HN. Reactive oxygen species in colorectal cancer adjuvant therapies. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166922. [PMID: 37898425 DOI: 10.1016/j.bbadis.2023.166922] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/27/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Colorectal cancer (CRC), a prevalent global malignancy, often necessitates adjuvant therapies such as chemotherapy, radiotherapy, targeted therapy, and immunotherapy to mitigate tumor burden in advanced stages. The efficacy of these therapies is significantly influenced by reactive oxygen species (ROS). Previous research underscores the pivotal role of ROS in gut pathology, targeted therapy, and drug resistance. ROS-mediated CRC adjuvant therapies encompass a myriad of mechanisms, including cell death and proliferation, survival and cell cycle, DNA damage, metabolic reprogramming, and angiogenesis. Preliminary clinical trials have begun to unveil the potential of ROS-manipulating therapy in enhancing CRC adjuvant therapies. This review aims to provide a comprehensive synthesis of studies exploring the role of ROS in CRC adjuvant therapies.
Collapse
Affiliation(s)
- Yang Zhang
- Colorectal Cancer Center and Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mengqiu Hao
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuyang Yang
- Colorectal Cancer Center and Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Su Zhang
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junhong Han
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziqiang Wang
- Colorectal Cancer Center and Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Hai-Ning Chen
- Colorectal Cancer Center and Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
12
|
Krishnan RP, Pandiar D, Ramani P, Jayaraman S. Necroptosis in human cancers with special emphasis on oral squamous cell carcinoma. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101565. [PMID: 37459966 DOI: 10.1016/j.jormas.2023.101565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/12/2023] [Indexed: 11/06/2023]
Abstract
Necroptosis is a type of caspase independent 'programmed or regulated' necrotic cell death that has a morphological resemblance to necrosis and mechanistic analogy to apoptosis. This type of cell death requires RIPK1, RIPK3, MLKL, death receptors, toll like receptors, interferons, and various other proteins. Necroptosis is implicated in plethora of diseases like rheumatoid arthritis, Alzheimer's disease, Crohn's disease, and head and neck cancers including oral squamous cell carcinoma. Oral carcinomas show dysregulation or mutation of necroptotic proteins, mediate antitumoral immunity, activate immune response and control tumor progression. Necroptosis is known to play a dual role (pro tumorigenic and anti-tumorigenic) in cancer progression and targeting this pathway could be an effective approach in cancer therapy. Necroptosis based chemotherapy has been proposed in malignancies, highlighting the importance of necroptotic pathway to overcome apoptosis resistance and serve as a "fail-safe" pathway to modulate cancer initiation, progression, and metastasis. However, there is dearth of information regarding the use of necroptotic cell death mechanism in the treatment of oral squamous cell carcinoma. In this review, we summarise molecular mechanism of necroptosis, and its protumorigenic and antitumorigenic role in cancers to shed light on the possible therapeutic significance of necroptosis in oral squamous cell carcinoma.
Collapse
Affiliation(s)
| | - Deepak Pandiar
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu.
| | - Pratibha Ramani
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu.
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu.
| |
Collapse
|
13
|
Byun HS, Ju E, Park KA, Sohn KC, Jung CS, Hong JH, Ro H, Lee HY, Quan KT, Park I, Na M, Hur GM. Rubiarbonol B induces RIPK1-dependent necroptosis via NOX1-derived ROS production. Cell Biol Toxicol 2023; 39:1677-1696. [PMID: 36163569 DOI: 10.1007/s10565-022-09774-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022]
Abstract
The activation of receptor-interacting protein kinase 1 (RIPK1) by death-inducing signaling complex (DISC) formation is essential for triggering the necroptotic mode of cell death under apoptosis-deficient conditions. Thus, targeting the induction of necroptosis by modulating RIPK1 activity could be an effective strategy to bypass apoptosis resistance in certain types of cancer. In this study, we screened a series of arborinane triterpenoids purified from Rubia philippinesis and identified rubiarbonol B (Ru-B) as a potent caspase-8 activator that induces DISC-mediated apoptosis in multiple types of cancer cells. However, in RIPK3-expressing human colorectal cancer (CRC) cells, the pharmacological or genetic inhibition of caspase-8 shifted the mode of cell death by Ru-B from apoptosis to necroptosis though upregulation of RIPK1 phosphorylation. Conversely, Ru-B-induced cell death was almost completely abrogated by RIPK1 deficiency. The enhanced RIPK1 phosphorylation and necroptosis triggered by Ru-B treatment occurred independently of tumor necrosis factor receptor signaling and was mediated by the production of reactive oxygen species via NADPH oxidase 1 in CRC cells. Thus, we propose Ru-B as a novel anticancer agent that activates RIPK1-dependent cell death via ROS production, and suggest its potential as a novel necroptosis-targeting compound in apoptosis-resistant CRC.
Collapse
Affiliation(s)
- Hee Sun Byun
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Eunjin Ju
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Kyeong Ah Park
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Kyung-Cheol Sohn
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Chan Seok Jung
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Jang Hee Hong
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Biosciences and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hoi Young Lee
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Khong Trong Quan
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - InWha Park
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung, 25451, Republic of Korea
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Gang Min Hur
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
14
|
Liu X, Liu L, Wang X, Jin Y, Wang S, Xie Q, Jin Y, Zhang M, Liu Y, Li J, Wang Z, Fu X, Jin CY. Necroptosis inhibits autophagy by regulating the formation of RIP3/p62/Keap1 complex in shikonin-induced ROS dependent cell death of human bladder cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154943. [PMID: 37421765 DOI: 10.1016/j.phymed.2023.154943] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/02/2023] [Accepted: 06/25/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Shikonin, a natural naphthoquinone compound, has a wide range of pharmacological effects, but its anti-tumor effect and underlying mechanisms in bladder cancer remain unclear. PURPOSE We aimed to investigate the role of shikonin in bladder cancer in vitro and in vivo in order to broaden the scope of shikonin's clinical application. STUDY DESIGN AND METHODS We performed MTT and colony formation to detect the inhibiting effect of shikonin on bladder cancer cells. ROS staining and flow cytometry assays were performed to detect the accumulation of ROS. Western blotting, siRNA and immunoprecipitation were used to evaluate the effect of necroptosis in bladder cancer cells. Transmission electron microscopy and immunofluorescence were used to examine the effect of autophagy. Nucleoplasmic separation and other pharmacological experimental methods described were used to explore the Nrf2 signal pathway and the crosstalk with necroptosis and autophagy. We established a subcutaneously implanted tumor model and performed immunohistochemistry assays to study the effects and the underlying mechanisms of shikonin on bladder cancer cells in vivo. RESULTS The results showed that shikonin has a selective inhibitory effect on bladder cancer cells and has no toxicity on normal bladder epithelial cells. Mechanically, shikonin induced necroptosis and impaired autophagic flux via ROS generation. The accumulation of autophagic biomarker p62 elevated p62/Keap1 complex and activated the Nrf2 signaling pathway to fight against ROS. Furthermore, crosstalk between necroptosis and autophagy was present, we found that RIP3 may be involved in autophagosomes and be degraded by autolysosomes. We found for the first time that shikonin-induced activation of RIP3 may disturb the autophagic flux, and inhibiting RIP3 and necroptosis could accelerate the conversion of autophagosome to autolysosome and further activate autophagy. Therefore, on the basis of RIP3/p62/Keap1 complex regulatory system, we further combined shikonin with late autophagy inhibitor(chloroquine) to treat bladder cancer and achieved a better inhibitory effect. CONCLUSION In conclusion, shikonin could induce necroptosis and impaired autophagic flux through RIP3/p62/Keap1 complex regulatory system, necroptosis could inhibit the process of autophagy via RIP3. Combining shikonin with late autophagy inhibitor could further activate necroptosis via disturbing RIP3 degradation in bladder cancer in vitro and in vivo.
Collapse
Affiliation(s)
- Xiaojie Liu
- Department of Microbiology and biochemical pharmacy, College of pharmacy, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, 450001, China
| | - Lu Liu
- Department of Microbiology and biochemical pharmacy, College of pharmacy, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, 450001, China
| | - Xu Wang
- Department of Microbiology and biochemical pharmacy, College of pharmacy, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, 450001, China
| | - Yubin Jin
- The Second Senior High School of Tumen City, Yuegong Street, Tumen, Jilin Province, 137200, China
| | - Shuang Wang
- Department of Microbiology and biochemical pharmacy, College of pharmacy, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, 450001, China
| | - Qin Xie
- Department of Microbiology and biochemical pharmacy, College of pharmacy, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, 450001, China
| | - Yanhe Jin
- Department of Microbiology and biochemical pharmacy, College of pharmacy, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, 450001, China
| | - Mengli Zhang
- Department of Microbiology and biochemical pharmacy, College of pharmacy, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, 450001, China
| | - Yunhe Liu
- Department of Microbiology and biochemical pharmacy, College of pharmacy, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, 450001, China
| | - Jinfeng Li
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, Henan Province, 450001, China
| | - Zhenya Wang
- Department of Microbiology and biochemical pharmacy, College of pharmacy, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, 450001, China
| | - Xiangjing Fu
- Department of Microbiology and biochemical pharmacy, College of pharmacy, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, 450001, China.
| | - Cheng-Yun Jin
- Department of Microbiology and biochemical pharmacy, College of pharmacy, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, China.
| |
Collapse
|
15
|
Guo X, Li R, Cui J, Hu C, Yu H, Ren L, Cheng Y, Jiang J, Ding X, Wang L. Induction of RIPK3/MLKL-mediated necroptosis by Erigeron breviscapus injection exhibits potent antitumor effect. Front Pharmacol 2023; 14:1219362. [PMID: 37397499 PMCID: PMC10311648 DOI: 10.3389/fphar.2023.1219362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of tumor-related deaths worldwide. Resistance of tumor cells to drug-induced apoptosis highlights the need for safe and effective antitumor alternatives. Erigeron breviscapus (Dengzhanxixin in China) injection (EBI), extracted from the natural herb Erigeron breviscapus (Vant.) Hand.-Mazz (EHM), has been widely used in clinical practice for cardiovascular diseases. Recent studies have suggested that EBI's main active ingredients exhibit potential antitumor effects. This study aims to explore the anti-CRC effect of EBI and elucidate the underlying mechanism. The anti-CRC effect of EBI was evaluated in vitro using CCK-8, flow cytometry, and transwell analysis, and in vivo through a xenograft mice model. RNA sequencing was utilized to compare the differentially expressed genes, and the proposed mechanism was verified through in vitro and in vivo experiments. Our study demonstrates that EBI significantly inhibits the proliferation of three human CRC cell lines and effectively suppresses the migration and invasion of SW620 cells. Moreover, in the SW620 xenograft mice model, EBI markedly retards tumor growth and lung metastasis. RNA-seq analysis revealed that EBI might exert antitumor effects by inducing necroptosis of tumor cells. Additionally, EBI activates the RIPK3/MLKL signaling pathway, a classical pathway of necroptosis and greatly promotes the generation of intracellular ROS. Furthermore, the antitumor effect of EBI on SW620 is significantly alleviated after the pretreatment of GW806742X, the MLKL inhibitor. Our findings suggest that EBI is a safe and effective inducer of necroptosis for CRC treatment. Notably, necroptosis is a non-apoptotic programmed cell death pathway that can effectively circumvent resistance to apoptosis, which provides a novel approach for overcoming tumor drug resistance.
Collapse
Affiliation(s)
- Xiuping Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Rui Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinjin Cui
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Chujuan Hu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haoyang Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ling Ren
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yangyang Cheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jiandong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiao Ding
- State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Lulu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Zhang T, Wang Y, Inuzuka H, Wei W. Necroptosis pathways in tumorigenesis. Semin Cancer Biol 2022; 86:32-40. [PMID: 35908574 PMCID: PMC11010659 DOI: 10.1016/j.semcancer.2022.07.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/13/2022] [Accepted: 07/27/2022] [Indexed: 01/27/2023]
Abstract
Necroptosis is a caspase-independent form of programmed cell death executed by the receptor interacting protein kinase 1 (RIPK1)-RIPK3-mixed lineage kinase domain-like protein (MLKL) signaling cascade, deregulation of which can cause various human diseases including cancer. Escape from programmed cell death is a hallmark of cancer, leading to uncontrolled growth and drug resistance. Therefore, it is crucial to further understand whether necroptosis plays a key role in therapeutic resistance. In this review, we summarize the recent findings of the link between necroptosis and cancer, and discuss that targeting necroptosis is a new strategy to overcome apoptosis resistance in tumor therapy.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yingnan Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
17
|
The Prediction of Necroptosis-Related lncRNAs in Prognosis and Anticancer Therapy of Colorectal Cancer. Anal Cell Pathol 2022; 2022:7158684. [PMID: 36199434 PMCID: PMC9527116 DOI: 10.1155/2022/7158684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/21/2022] [Accepted: 09/01/2022] [Indexed: 12/04/2022] Open
Abstract
Background Colorectal cancer is one of the most common gastrointestinal malignancies globally. Necroptosis has been proved to play a role in the occurrence and development of the tumor, which makes it a new target for molecular therapy. However, the role of necroptosis in colorectal cancer remains unknown yet. Our study aims to build a prognostic signature of necroptosis-related lncRNAs (nrlncRNAs) to predict the outcomes of patients with colorectal cancer and facilitate in anticancer therapy. Method We obtained RNA-seq and clinical data of colorectal adenocarcinoma from the TCGA database and got prognosis-related nrlncRNAs by univariate regression analysis. Then, we carried out the LASSO regression and multivariate regression analysis to build the prognostic signature, whose predictive ability was tested by the Kaplan-Meier as well as ROC curves and verified by the internal cohort. Moreover, we divided the cohort into 2 groups based on median of risk scores: high- and low-risk groups. By analyzing the difference in the tumor microenvironment, microsatellite instability, and tumor mutation burden between the two groups, we explored the potential chemotherapy and immunotherapy drugs. Results We screened out 9 nrlncRNAs and built a prognostic signature based on them. With its good prognostic ability, the risk scores can act as an independent prognostic factor for patients with colorectal cancer. The overall survival rate of patients in high-risk group was significantly higher than the low-risk one. Furthermore, risk scores can also give us hints about the tumor microenvironment and facilitate in predicting the response to the CTLA-4 blocker treatment and other chemotherapeutic agents with potential efficacy such as cisplatin and staurosporine. Conclusions In conclusion, our prognostic signature of necroptosis-related lncRNAs can facilitate in predicting the prognosis and response to the anticancer therapy of colorectal cancer patients.
Collapse
|
18
|
Wu J, Song D, Zhao G, Chen S, Ren H, Zhang B. Cross-talk between necroptosis-related lncRNAs to construct a novel signature and predict the immune landscape of lung adenocarcinoma patients. Front Genet 2022; 13:966896. [PMID: 36186456 PMCID: PMC9519990 DOI: 10.3389/fgene.2022.966896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Background: As a new style of cell death, necroptosis plays a crucial role in tumor immune microenvironment. LncRNAs have been identified to act as competitive RNAs to influence genes involved in necroptosis. Therefore, we aim to create a signature based on necroptosis-related lncRNAs to predict the prognosis and immune landscape of lung adenocarcinoma (LUAD) patients in this study. Methods: TCGA database was used to acquire RNA sequencing (RNA-Seq) data and clinical information for 59 lung normal samples and 535 lung adenocarcinoma samples. The Pearson correlation analysis, univariate cox regression analysis and least absolute shrinkage and selection operator (LASSO) cox regression were performed to construct the prognostic NRlncRNAs signature. Then we used Kaplan-Meier (K-M) analysis, time-dependent ROC curves, univariate and multivariate cox regression analysis, and nomogram to validate this signature. In addition, GO, KEGG, and GSVA were analyzed to investigate the potential molecular mechanism. Moreover, we analyzed the relationship between our identified signature and immune microenvironment, TMB, and some clinical characteristics. Finally, we detected the expression of the six necroptosis-related lncRNAs in cells and tissues. Results: We constructed a NRlncRNAs signature consisting of six lncRNAs (FRMD6-AS1, LINC01480, FAM83A-AS1, FRMD6-AS1, MED4-AS1, and LINC01415) in LUAD. LUAD patients with high risk scores had lower chance of survival with an AUC of 0.739, 0.709, and 0.733 for 1-year, 3-year, and 5-year respectively. The results based on GO, KEGG, and GSVA enrichment analysis demonstrated that NRlncRNAs signature-related genes were mainly correlated with immune pathways, metabolic-and cell growth-related pathways, cell cycle, and apoptosis. Moreover, the risk score was correlated with the immune status of LUAD patients. Patients with higher risk scores had lower ESTIMATE scores and higher TIDE scores. The risk score was positively correlated with TMB. LINC01415, FRMD6-AS1 and FAM83A-AS1 were significantly overexpressed in lung adenocarcinoma, while the expression levels of MED4-AS1 and LINC01480 were lower in lung adenocarcinoma. Conclusion: Overall, an innovative prognostic signature based on NRlncRNAs was developed for LUAD through comprehensive bioinformatics analysis, which can act as a predictor of immunotherapy and may provide guidance for clinicians.
Collapse
Affiliation(s)
- Jie Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Dingli Song
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Guang Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Sisi Chen
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hong Ren
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Hong Ren, ; Boxiang Zhang,
| | - Boxiang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Hong Ren, ; Boxiang Zhang,
| |
Collapse
|
19
|
Yu YQ, Gamez-Belmonte R, Patankar JV, Liebing E, Becker C. The Role of Programmed Necrosis in Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14174295. [PMID: 36077828 PMCID: PMC9455009 DOI: 10.3390/cancers14174295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Necrosis is a type of cell death characterized by plasma membrane rupture and the induction of inflammation. This review focuses on colorectal cancer and outlines the role of programmed necrosis in tumor development. Potential strategies for anti-tumor treatment via targeting programmed necrosis are also discussed. Abstract For quite a long time, necrosis was considered a chaotic and unorganized form of cell death. However, studies conducted during the past few decades unveiled multiple types of programmed necrosis, such as necroptosis, pyroptosis and ferroptosis. These types of programmed necrosis have been shown to play crucial roles in mediating pathological processes, including tumorigenesis. Almost all key mediators, such as RIPK3 and MLKL in necroptosis, GSDMD and caspase 1/11 in pyroptosis and GPX4 in ferroptosis, are highly expressed in intestinal epithelial cells (IECs). An aberrant increase or decrease in programmed necrosis in IECs has been connected to intestinal disorders. Here, we review the pathways of programmed necrosis and the specific consequences of regulated necrosis in colorectal cancer (CRC) development. Translational aspects of programmed necrosis induction as a novel therapeutic alternative against CRC are also discussed.
Collapse
Affiliation(s)
- Yu-Qiang Yu
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Reyes Gamez-Belmonte
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Jay V. Patankar
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Eva Liebing
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-35-886
| |
Collapse
|
20
|
Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, Chen Y, Han B. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther 2022; 7:286. [PMID: 35963853 PMCID: PMC9376115 DOI: 10.1038/s41392-022-01110-y] [Citation(s) in RCA: 414] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023] Open
Abstract
Regulated cell death (RCD), also well-known as programmed cell death (PCD), refers to the form of cell death that can be regulated by a variety of biomacromolecules, which is distinctive from accidental cell death (ACD). Accumulating evidence has revealed that RCD subroutines are the key features of tumorigenesis, which may ultimately lead to the establishment of different potential therapeutic strategies. Hitherto, targeting the subroutines of RCD with pharmacological small-molecule compounds has been emerging as a promising therapeutic avenue, which has rapidly progressed in many types of human cancers. Thus, in this review, we focus on summarizing not only the key apoptotic and autophagy-dependent cell death signaling pathways, but the crucial pathways of other RCD subroutines, including necroptosis, pyroptosis, ferroptosis, parthanatos, entosis, NETosis and lysosome-dependent cell death (LCD) in cancer. Moreover, we further discuss the current situation of several small-molecule compounds targeting the different RCD subroutines to improve cancer treatment, such as single-target, dual or multiple-target small-molecule compounds, drug combinations, and some new emerging therapeutic strategies that would together shed new light on future directions to attack cancer cell vulnerabilities with small-molecule drugs targeting RCD for therapeutic purposes.
Collapse
Affiliation(s)
- Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minru Liao
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shiou Zhu
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yi Chen
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
21
|
Liu Y, Hao H, Kang L, Zheng G, Guo X, Li B, Zhao H, Hao H. Construction of a novel necroptosis-related lncRNA signature for prognosis prediction in esophageal cancer. BMC Gastroenterol 2022; 22:345. [PMID: 35840890 PMCID: PMC9287891 DOI: 10.1186/s12876-022-02421-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/01/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Esophageal cancer (EC), one highly malignant gastrointestinal cancer, is the 6th leading cause of cancer-related deaths worldwide. Necroptosis and long non-coding RNA (lncRNA) play important roles in the occurrence and development of EC, but the research on the role of necroptosis-related lncRNA in EC is not conclusive. This study aims to use bioinformatics to investigate the prognostic value of necroptosis-related lncRNA in EC. METHODS Transcriptome data containing EC and normal samples, and clinical information were obtained from the Cancer Genome Atlas database. 102 necroptosis-related genes were obtained from Kanehisa Laboratories. Necroptosis-related lncRNAs were screened out via univariate, multivariate Cox and the least absolute shrinkage and selection operator regression analyses to construct the risk predictive model. The reliability of the risk model was evaluated mainly through quantitative real-time PCR (qRT-PCR), the receiver operating characteristic (ROC) curves and the constructed nomogram. KEGG pathways were explored in the high- and low-risk groups of EC patients via gene set enrichment analyses (GSEA) software. Immune microenvironment and potential therapeutic agents in risk groups were also analyzed. RESULTS A 6 necroptosis-related lncRNAs risk model composed of AC022211.2, Z94721.1, AC007991.2, SAMD12-AS1, AL035461.2 and AC051619.4 was established to predict the prognosis level of EC patients. qRT-PCR analysis showed upregulated Z94721.1 and AL035461.2 mRNA levels and downregulated AC051619.4 mRNA level in EC tissues compared with normal tissues. According to clinical characteristics, the patients in the high-risk group had a shorter overall survival than the low-risk group. The ROC curve and nomogram confirmed this model as one independent and predominant predictor. GSEA analysis showed metabolic and immune-related pathways enriched in the risk model. Most of the immune cells and immune checkpoints were positively correlated with the risk model, mainly active in the high-risk group. For the prediction of potential therapeutic drugs, 16 compounds in the high-risk group and 2 compounds in the low-risk group exhibited higher sensitivity. CONCLUSIONS Our results supported the necroptosis-related lncRNA signature could independently predict prognosis of EC patients, and provided theoretical basis for improving the clinical treatment of EC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pathology, Hebei General Hospital, Shijiazhuang, China
| | - Hongyu Hao
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Lin Kang
- Department of Pathology, Hebei General Hospital, Shijiazhuang, China
| | - Guona Zheng
- Department of Pathology, Hebei General Hospital, Shijiazhuang, China
| | - Xiaowan Guo
- Department of Radiology, Hebei General Hospital, Shijiazhuang, China
| | - Bingjie Li
- Department of Pathology, Hebei General Hospital, Shijiazhuang, China
| | - Huanfen Zhao
- Department of Pathology, Hebei General Hospital, Shijiazhuang, China.
| | - Han Hao
- Department of Pharmacology, The Key Laboratory of New Drug Pharmacology and Toxicology, Center of Innovative Drug Research and Evaluation, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
22
|
Sun K, Hong JJ, Chen DM, Luo ZX, Li JZ. Identification and validation of necroptosis-related prognostic gene signature and tumor immune microenvironment infiltration characterization in esophageal carcinoma. BMC Gastroenterol 2022; 22:344. [PMID: 35840882 PMCID: PMC9284853 DOI: 10.1186/s12876-022-02423-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/11/2022] [Indexed: 12/16/2022] Open
Abstract
Background Esophageal carcinoma (ESCA) is a common malignancy with a poor prognosis. Previous research has suggested that necroptosis is involved in anti-tumor immunity and promotes oncogenesis and cancer metastasis, which in turn affects tumor prognosis. However, the role of necroptosis in ESCA is unclear. This study aimed to investigate the relationships between necroptosis-related genes (NRGs) and ESCA. Methods and results The clinical data and gene expression profiles of ESCA patients were extracted from The Cancer Genome Atlas (TCGA), and 159 NRGs were screened from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. We then identified 52 differentially expressed NRGs associated with ESCA and used them for further analysis. Gene ontology (GO) and KEGG functional enrichment analyses showed that these NRGs were mostly associated with the regulation of necroptosis, Influenza A, apoptosis, NOD-like receptor, and NF-Kappa B signaling pathway. Next, univariate and multivariate Cox regression and LASSO analysis were used to identify the correlation between NRGs and the prognosis of ESCA. We constructed a prognostic model to predict the prognosis of ESCA based on SLC25A5, PPIA, and TNFRSF10B; the model classified patients into high- and low-risk subgroups based on the patient’s risk score. Furthermore, the receiver operating characteristic (ROC) curve was plotted, and the model was affirmed to perform moderately well for prognostic predictions. In addition, Gene Expression Omnibus (GEO) datasets were selected to validate the applicability and prognostic value of our predictive model. Based on different clinical variables, we compared the risk scores between the subgroups of different clinical features. We also analyzed the predictive value of this model for drug sensitivity. Moreover, Immunohistochemical (IHC) validation experiments explored that these three NRGs were expressed significantly higher in ESCA tissues than in adjacent non-tumor tissues. In addition, a significant correlation was observed between the three NRGs and immune-cell infiltration and immune checkpoints in ESCA. Conclusions In summary, we successfully constructed and validated a novel necroptosis-related signature containing three genes (SLC25A5, PPIA, and TNFRSF10B) for predicting prognosis in patients with ESCA; these three genes might also play a crucial role in the progression and immune microenvironment of ESCA. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02423-6.
Collapse
Affiliation(s)
- Kai Sun
- Department of Oncology, Liuzhou People's Hospital, Liuzhou, 545001, Guangxi Zhuang Autonomous Region, China.
| | - Juan-Juan Hong
- Department of Oncology, Liuzhou People's Hospital, Liuzhou, 545001, Guangxi Zhuang Autonomous Region, China
| | - Dong-Mei Chen
- Department of Oncology, Liuzhou People's Hospital, Liuzhou, 545001, Guangxi Zhuang Autonomous Region, China.,Guilin Medical University, Guilin, 541010, Guangxi Zhuang Autonomous Region, China
| | - Zhan-Xiong Luo
- Department of Oncology, Liuzhou People's Hospital, Liuzhou, 545001, Guangxi Zhuang Autonomous Region, China.
| | - Jing-Zhang Li
- Department of Oncology, Liuzhou People's Hospital, Liuzhou, 545001, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
23
|
Wei J, Hou S, Li M, Yao X, Wang L, Zheng Z, Mo H, Chen Y, Yuan X. Necroptosis-Related Genes Signatures Identified Molecular Subtypes and Underlying Mechanisms in Hepatocellular Carcinoma. Front Oncol 2022; 12:875264. [PMID: 35912224 PMCID: PMC9326098 DOI: 10.3389/fonc.2022.875264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAlthough emerging evidence supports the relationship between necroptosis (NEC) related genes and hepatocellular carcinoma (HCC), the contribution of these necroptosis-related genes to the development, prognosis, and immunotherapy of HCC is unclear.MethodsThe expression of genes and relevant clinical information were downloaded from TCGA-LIHC, LIRI-JP, GSE14520/NCI, GSE36376, GSE76427, GSE20140, GSE27150, and IMvigor210 datasets. Next, we used an unsupervised clustering method to assign the samples into phenotype clusters base on 15 necroptosis-related genes. Subsequently, we constructed a NEC score based on NEC phenotype-related prognostic genes to quantify the necroptosis related subtypes of individual patients.ResultsWe divided the samples into the high and low NEC score groups, and the high NEC score showed a poor prognosis. Simultaneously, NEC score is an effective and stable model and had a good performance in predicting the prognosis of HCC patients. A high NEC score was characterized by activation of the stroma and increased levels of immune infiltration. A high NEC score was also related to low expression of immune checkpoint molecules (PD-1/PD-L1). Importantly, the established NEC score would contribute to predicting the response to anti-PD-1/L1 immunotherapy.ConclusionsOur study provide a comprehensive analysis of necroptosis-related genes in HCC. Stratification based on the NEC score may enable HCC patients to benefit more from immunotherapy and help identify new cancer treatment strategies.
Collapse
Affiliation(s)
- Jianguo Wei
- Department of Pathology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Shuqian Hou
- Department of Pathology, Maoming People’s Hospital, Maoming, China
| | - Minhua Li
- Department of Pathology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Xiaofei Yao
- Department of Pathology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Li Wang
- Department of Pathology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Zhen Zheng
- Department of Pathology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Haiqian Mo
- Department of General Medicine, Maoming People’s Hospital, Maoming, China
| | - Yu Chen
- School of Science, Wuhan University of Technology, Wuhan, China
| | - Xiaolu Yuan
- Department of Pathology, Maoming People’s Hospital, Maoming, China
- *Correspondence: Xiaolu Yuan,
| |
Collapse
|
24
|
Non-Canonical Programmed Cell Death in Colon Cancer. Cancers (Basel) 2022; 14:cancers14143309. [PMID: 35884370 PMCID: PMC9320762 DOI: 10.3390/cancers14143309] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Non-canonical PCD is an important player in colon cancer cell suicide. It influences colon cancer in many ways, such as through tumorigenesis, treatment, and prognosis. In this review, we present the mechanism, application, and prospect of different types of non-canonical PCD in colon cancer. Abstract Programmed cell death (PCD) is an evolutionarily conserved process of cell suicide that is regulated by various genes and the interaction of multiple signal pathways. Non-canonical programmed cell death (PCD) represents different signaling excluding apoptosis. Colon cancer is the third most incident and the fourth most mortal worldwide. Multiple factors such as alcohol, obesity, and genetic and epigenetic alternations contribute to the carcinogenesis of colon cancer. In recent years, emerging evidence has suggested that diverse types of non-canonical programmed cell death are involved in the initiation and development of colon cancer, including mitotic catastrophe, ferroptosis, pyroptosis, necroptosis, parthanatos, oxeiptosis, NETosis, PANoptosis, and entosis. In this review, we summarized the association of different types of non-canonical PCD with tumorigenesis, progression, prevention, treatments, and prognosis of colon cancer. In addition, the prospect of drug-resistant colon cancer therapy related to non-canonical PCD, and the interaction between different types of non-canonical PCD, was systemically reviewed.
Collapse
|
25
|
Understanding Necroptosis in Pancreatic Diseases. Biomolecules 2022; 12:biom12060828. [PMID: 35740953 PMCID: PMC9221205 DOI: 10.3390/biom12060828] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Intermediate between apoptosis and necrosis, necroptosis is a regulated caspase-independent programmed cell death that induces an inflammatory response and mediates cancer development. As our understanding improves, its role in the physiopathology of numerous diseases, including pancreatic diseases, has been reconsidered, and especially in pancreatitis and pancreatic cancer. However, the exact pathogenesis remains elusive, even though some studies have been conducted on these diseases. Its unique mechanisms of action in diseases are expected to bring prospects for the treatment of pancreatic diseases. Therefore, it is imperative to further explore its molecular mechanism in pancreatic diseases in order to identify novel therapeutic options. This article introduces recent related research on necroptosis and pancreatic diseases, explores necroptosis-related molecular pathways, and provides a theoretical foundation for new therapeutic targets for pancreatic diseases.
Collapse
|
26
|
Clinicopathological and Prognostic Value of Necroptosis-Associated lncRNA Model in Patients with Kidney Renal Clear Cell Carcinoma. DISEASE MARKERS 2022; 2022:5204831. [PMID: 35664432 PMCID: PMC9157284 DOI: 10.1155/2022/5204831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/28/2022] [Indexed: 12/11/2022]
Abstract
Background. Necroptosis, a recently identified type of programmed necrotic cell death, is closely related to the tumorigenesis and development of cancer. However, it remains unclear whether necroptosis-associated long noncoding RNAs (lncRNAs) can be used to predict the prognosis of kidney renal clear cell carcinoma (KIRC). This work was designed to probe the possible prognostic worth of necroptosis-associated lncRNAs along with their impact on the tumor microenvironment (TME) in KIRC. Methods. The Cancer Genome Atlas (TCGA) database was used to extract KIRC gene expression and clinicopathological data. Pearson correlation analysis was used to evaluate necroptosis-associated lncRNAs against 159 known necroptosis-associated genes. To define molecular subtypes, researchers used univariate Cox regression analysis and consensus clustering, as well as clinical significance, TME, and tumor immune cells in each molecular subtype. We develop the necroptosis-associated lncRNA prognostic model using univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis. Patients were divided into high- and low-risk groups according to prognostic model. Moreover, comprehensive analyses, including prognostic value, gene set enrichment analysis (GSEA), immune infiltration, and immune checkpoint gene expression, were performed between the two risk groups. Finally, anticancer drug sensitivity analyses were employed for assessing associations for necroptosis-associated lncRNA expression profile and anticancer drug chemosensitivity. Results. Through univariate analysis, sixty-nine necroptosis-associated lncRNAs were found to have a significant relationship with KIRC prognosis. Two molecular clusters were identified, and significant differences were found with respect to clinicopathological features and prognosis. The segregation of patients into two risk groups was done by the constructed necroptosis-associated lncRNA model. The survival prognosis, clinical features, degree of immune cell infiltration, and expression of immune checkpoint genes of high-risk and low-risk groups were all shown to vary. Conclusions. Our study identified a model of necroptosis-associated lncRNA signature and revealed its prognostic role in KIRC. It is expected to provide a reference for the screening of KIRC prognostic markers and the evaluation of immune response.
Collapse
|
27
|
Shi H, Peng Q, Zhou X, He Y, Sun S. An Efficient Signature Based on Necroptosis-Related Genes for Prognosis of Patients With Pancreatic Cancer. Front Genet 2022; 13:848747. [PMID: 35419022 PMCID: PMC8995900 DOI: 10.3389/fgene.2022.848747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PCa) is a highly lethal and aggressive disease, characterized by high mortality rates. Although necroptosis plays a vital role in tumor progression, cancer metastasis, prognosis of cancer patients, necroptosis-related gene (NRG) sets have rarely been analyzed in PCa. Therefore, definition of novel necroptosis-related prognostic markers for PCa patients is urgently needed. Here, we screened 159 NRGs and identified 132 differentially expressed NRGs in The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) cohorts. Next, we employed univariate and multivariate Cox proportional regression models to establish a prognostic-related NRG signature comprising five NRGs that could stratify patients into high-risk and low-risk groups. Results from survival analysis showed that patients in the high-risk had dramatically shorter overall survival (OS) rates compared with their low-risk counterparts. Results from univariate and multivariate Cox regression analysis further confirmed the independent prognostic value of the established necroptosis-related signature, and the area under receiver (AUC) of the operating curve (ROC) for 1-, 3-, 5-years was 0.72, 0.74, and 0.75, respectively. Finally, we validated the signature efficacy using an independent cohort from the Gene Expression Omnibus (GEO) database. The ROC curve confirmed the predictive capacity of the five-gene signature. Furthermore, we validated expression of the signature proteins using the Human Protein Atlas (HPA) database. In conclusion, we successfully constructed a novel necroptosis-related signature for prognosis of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Heng Shi
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China.,Department of Gastroenterology, The Central Hospital of Shaoyang, University of South China, Shaoyang, China
| | - Qin Peng
- Department of Gastroenterology, The Central Hospital of Shaoyang, University of South China, Shaoyang, China
| | - Xianling Zhou
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yushan He
- Department of Gastroenterology, The Central Hospital of Shaoyang, University of South China, Shaoyang, China
| | - Shengyun Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| |
Collapse
|
28
|
Wang X, Hua P, He C, Chen M. Non-apoptotic cell death-based cancer therapy: Molecular mechanism, pharmacological modulators, and nanomedicine. Acta Pharm Sin B 2022; 12:3567-3593. [PMID: 36176912 PMCID: PMC9513500 DOI: 10.1016/j.apsb.2022.03.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/25/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023] Open
Abstract
As an emerging cancer therapeutic target, non-apoptotic cell death such as ferroptosis, necroptosis and pyroptosis, etc., has revealed significant potential in cancer treatment for bypassing apoptosis to enhance the undermined therapeutic efficacy triggered by apoptosis resistance. A variety of anticancer drugs, synthesized compounds and natural products have been proven recently to induce non-apoptotic cell death and exhibit excellent anti-tumor effects. Moreover, the convergence of nanotechnology with functional materials and biomedicine science has provided tremendous opportunities to construct non-apoptotic cell death-based nanomedicine for innovative cancer therapy. Nanocarriers are not only employed in targeted delivery of non-apoptotic inducers, but also used as therapeutic components to induce non-apoptotic cell death to achieve efficient tumor treatment. This review first introduces the main characteristics, the mechanism and various pharmacological modulators of different non-apoptotic cell death forms, including ferroptosis, necroptosis, pyroptosis, autophagy, paraptosis, lysosomal-dependent cell death, and oncosis. Second, we comprehensively review the latest progresses of nanomedicine that induces various forms of non-apoptotic cell death and focus on the nanomedicine targeting different pathways and components. Furthermore, the combination therapies of non-apoptotic cell death with photothermal therapy, photodynamic therapy, immunotherapy and other modalities are summarized. Finally, the challenges and future perspectives in this regard are also discussed.
Collapse
|
29
|
Luo L, Li L, Liu L, Feng Z, Zeng Q, Shu X, Cao Y, Li Z. A Necroptosis-Related lncRNA-Based Signature to Predict Prognosis and Probe Molecular Characteristics of Stomach Adenocarcinoma. Front Genet 2022; 13:833928. [PMID: 35330731 PMCID: PMC8940523 DOI: 10.3389/fgene.2022.833928] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/11/2022] [Indexed: 12/14/2022] Open
Abstract
Background: As a caspase-independent type of cell death, necroptosis plays a significant role in the initiation, and progression of gastric cancer (GC). Numerous studies have confirmed that long non-coding RNAs (lncRNAs) are closely related to the prognosis of patients with GC. However, the relationship between necroptosis and lncRNAs in GC remains unclear. Methods: The molecular profiling data (RNA-sequencing and somatic mutation data) and clinical information of patients with stomach adenocarcinoma (STAD) were retrieved from The Cancer Genome Atlas (TCGA) database. Pearson correlation analysis was conducted to identify the necroptosis-related lncRNAs (NRLs). Subsequently, univariate Cox regression and LASSO-Cox regression were conducted to establish a 12-NRLs signature in the training set and validate it in the testing set. Finally, the prognostic power of the 12-NRLs signature was appraised via survival analysis, nomogram, Cox regression, clinicopathological characteristics correlation analysis, and the receiver operating characteristic (ROC) curve. Furthermore, correlations between the signature risk score (RS) and immune cell infiltration, immune checkpoint molecules, somatic gene mutations, and anticancer drug sensitivity were analyzed. Results: In the present study, a 12-NRLs signature comprising REPIN1-AS1, UBL7-AS1, LINC00460, LINC02773, CHROMR, LINC01094, FLNB-AS1, ITFG1-AS1, LASTR, PINK1-AS, LINC01638, and PVT1 was developed to improve the prognosis prediction of STAD patients. Unsupervised methods, including principal component analysis and t-distributed stochastic neighbor embedding, confirmed the capability of the present signature to separate samples with RS. Kaplan-Meier and ROC curves revealed that the signature had an acceptable predictive potency in the TCGA training and testing sets. Cox regression and stratified survival analysis indicated that the 12-NRLs signature were risk factors independent of various clinical parameters. Additionally, immune cell infiltration, immune checkpoint molecules, somatic gene mutations, and half-inhibitory concentration differed significantly among different risk subtypes, which implied that the signature could assess the clinical efficacy of chemotherapy and immunotherapy. Conclusion: This 12-NRLs risk signature may help assess the prognosis and molecular features of patients with STAD and improve treatment modalities, thus can be further applied clinically.
Collapse
Affiliation(s)
- Lianghua Luo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Leyan Li
- Queen Mary School, Medical Department of Nanchang University, Nanchang, China
| | - Li Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Zongfeng Feng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Qingwen Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xufeng Shu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Yi Cao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Zhengrong Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| |
Collapse
|
30
|
Mohanty S, Yadav P, Lakshminarayanan H, Sharma P, Vivekanandhan A, Karunagaran D. RETRA induces necroptosis in cervical cancer cells through RIPK1, RIPK3, MLKL and increased ROS production. Eur J Pharmacol 2022; 920:174840. [PMID: 35219733 DOI: 10.1016/j.ejphar.2022.174840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023]
Abstract
Cervical cancer is the fourth most prevalent cancer in women worldwide, predominantly infected with human papillomavirus (HPV). The current chemo and radiotherapies are mostly futile due to acquired resistance to apoptosis and warrant new therapeutic approaches targeting potent non-apoptotic cell death pathways to eliminate cervical cancer cells. Induction of necroptosis by pharmaceutical interventions is emerging as a promising tool in multiple apoptotic resistant cancer cells. RETRA (REactivation of Transcriptional Reporter Activity) is a small molecule known to induce expression of p53 regulated genes in mutant (mt) p53 cells but, detailed mechanisms of its anticancer effects are poorly known. The present study investigated the potentials of RETRA as an anticancer agent and found that it induces necroptosis selectively in cervical cancer cells irrespective of p53 status through the phosphorylation of receptor-interacting protein kinase 1,3 (RIPK1, RIPK3) and mixed lineage kinase domain-like protein (MLKL) with no cytotoxic effects in normal human peripheral blood mononuclear cells (PBMCs). RETRA-treated cells also displayed necroptotic morphology of disintegrated plasma membranes with intact nuclei and also showed cell cycle arrest at the S phase with the upregulation of p21 and downregulation of cyclin-D3. Intriguingly, the combinatorial approach of using RETRA with Necrostain-1, a known inhibitor of necroptosis, reversed the effect of RETRA and rescued cell death. Moreover, induction of necroptosis by RETRA is associated with mitochondrial hyperpolarization and elevated ROS production. Collectively, these findings suggest that RETRA induces cell death via necroptosis with increased production of ROS, accentuating the therapeutic implication of RETRA in cervical cancer cells.
Collapse
Affiliation(s)
- Suchitra Mohanty
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, 600036, Tamil Nadu, India
| | - Poonam Yadav
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, 600036, Tamil Nadu, India
| | - Harini Lakshminarayanan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, 600036, Tamil Nadu, India
| | - Priyanshu Sharma
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, 600036, Tamil Nadu, India
| | - Aravindhan Vivekanandhan
- Dr. A.L.M. PG Institute of Basic Medical Sciences, University of Madras, Chennai, 600113, Tamil Nadu, India
| | - Devarajan Karunagaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, 600036, Tamil Nadu, India.
| |
Collapse
|
31
|
Novel Aurora A Kinase Inhibitor Fangchinoline Enhances Cisplatin-DNA Adducts and Cisplatin Therapeutic Efficacy in OVCAR-3 Ovarian Cancer Cells-Derived Xenograft Model. Int J Mol Sci 2022; 23:ijms23031868. [PMID: 35163790 PMCID: PMC8836832 DOI: 10.3390/ijms23031868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Aurora A kinase (Aurora A) is a serine/threonine kinase regulating control of multiple events during cell-cycle progression. Playing roles in promoting proliferation and inhibiting cell death in cancer cells leads Aurora A to become a target for cancer therapy. It is overexpressed and associated with a poor prognosis in ovarian cancer. Improving cisplatin therapy outcomes remains an important issue for advanced-stage ovarian cancer treatment, and Aurora A inhibitors may improve it. In the present study, we identified natural compounds with higher docking scores than the known Aurora A ligand through structure-based virtual screening, including the natural compound fangchinoline, which has been associated with anticancer activities but not yet investigated in ovarian cancer. The binding and inhibition of Aurora A by fangchinoline were verified using cellular thermal shift and enzyme activity assays. Fangchinoline reduced viability and proliferation in ovarian cancer cell lines. Combination fangchinoline and cisplatin treatment enhanced cisplatin-DNA adduct levels, and the combination index revealed synergistic effects on cell viability. An in vivo study showed that fangchinoline significantly enhanced cisplatin therapeutic effects in OVCAR-3 ovarian cancer-bearing mice. Fangchinoline may inhibit tumor growth and enhance cisplatin therapy in ovarian cancer. This study reveals a novel Aurora A inhibitor, fangchinoline, as a potentially viable adjuvant for ovarian cancer therapy.
Collapse
|
32
|
Salmonella pSLT-encoded effector SpvB promotes RIPK3-dependent necroptosis in intestinal epithelial cells. Cell Death Dis 2022; 8:44. [PMID: 35110556 PMCID: PMC8810775 DOI: 10.1038/s41420-022-00841-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 12/30/2022]
Abstract
Salmonella is one of the most important worldwide zoonotic pathogens. After invading a host orally, the bacteria break through the intestinal epithelial barrier for further invasion. Intestinal epithelial cells (IECs) play a crucial role in maintaining the integrity of the intestinal epithelial barrier. Necroptosis is considered one of the virulence strategies utilized by invasive Salmonella. Our previous work has shown that SpvB, an effector encoded by S. Typhimurium virulence plasmid (pSLT), promotes bacterial translocation via the paracellular route. However, it is still unknown whether SpvB could promote bacterial invasion through disrupting the integrity of IECs. Here, we demonstrated that SpvB promoted necroptosis of IECs and contributed to the destruction of the intestinal barrier during Salmonella infection. We found that SpvB enhanced the protein level of receptor-interacting protein kinase 3 (RIPK3) through inhibiting K48-linked poly-ubiquitylation of RIPK3 and the degradation of the protein in an autophagy-dependent manner. The abundant accumulation of RIPK3 upregulated the phosphorylation of MLKL, which contributed to necroptosis. The damage to IECs ultimately led to the disruption of the intestinal barrier and aggravated infection. In vivo, SpvB promoted the pathogenesis of Salmonella, favoring intestinal injury and colonic necroptosis. Our findings reveal a novel function of Salmonella effector SpvB, which could facilitate salmonellosis by promoting necroptosis, and broaden our understanding of the molecular mechanisms of bacterial invasion.
Collapse
|
33
|
Sensing plasma membrane pore formation induces chemokine production in survivors of regulated necrosis. Dev Cell 2022; 57:228-245.e6. [PMID: 35016014 PMCID: PMC8792343 DOI: 10.1016/j.devcel.2021.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 10/04/2021] [Accepted: 12/14/2021] [Indexed: 01/26/2023]
Abstract
Although overwhelming plasma membrane integrity loss leads to cell lysis and necrosis, cells can tolerate a limited level of plasma membrane damage, undergo ESCRT-III-mediated repair, and survive. Here, we find that cells which undergo limited plasma membrane damage from the pore-forming actions of MLKL, GSDMD, perforin, or detergents experience local activation of PKCs through Ca2+ influx at the damage sites. S660-phosphorylated PKCs subsequently activate the TAK1/IKKs axis and RelA/Cux1 complex to trigger chemokine expressions. We observe that in late-stage cancers, cells with active MLKL show expression of CXCL8. Similar expression induction is also found in ischemia-injured kidneys. Chemokines generated in this manner are also indispensable for recruiting immune cells to the dead and dying cells. This plasma membrane integrity-sensing pathway is similar to the well-established yeast cell wall integrity signaling pathway at molecular level, and this suggests an evolutionary conserved mechanism to respond to the cellular barrier damage.
Collapse
|
34
|
Yu YQ, Thonn V, Patankar JV, Thoma OM, Waldner M, Zielinska M, Bao LL, Gonzalez-Acera M, Wallmüller S, Engel FB, Stürzl M, Neurath MF, Liebing E, Becker C. SMYD2 targets RIPK1 and restricts TNF-induced apoptosis and necroptosis to support colon tumor growth. Cell Death Dis 2022; 13:52. [PMID: 35022391 PMCID: PMC8755774 DOI: 10.1038/s41419-021-04483-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/23/2021] [Accepted: 12/10/2021] [Indexed: 12/27/2022]
Abstract
SMYD2 is a histone methyltransferase, which methylates both histone H3K4 as well as a number of non-histone proteins. Dysregulation of SMYD2 has been associated with several diseases including cancer. In the present study, we investigated whether and how SMYD2 might contribute to colorectal cancer. Increased expression levels of SMYD2 were detected in human and murine colon tumor tissues compared to tumor-free tissues. SMYD2 deficiency in colonic tumor cells strongly decreased tumor growth in two independent experimental cancer models. On a molecular level, SMYD2 deficiency sensitized colonic tumor cells to TNF-induced apoptosis and necroptosis without affecting cell proliferation. Moreover, we found that SMYD2 targeted RIPK1 and inhibited the phosphorylation of RIPK1. Finally, in a translational approach, pharmacological inhibition of SMYD2 attenuated colonic tumor growth. Collectively, our data show that SMYD2 is crucial for colon tumor growth and inhibits TNF-induced apoptosis and necroptosis.
Collapse
Affiliation(s)
- Yu-Qiang Yu
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany
| | - Veronika Thonn
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany
| | - Jay V Patankar
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany
| | - Oana-Maria Thoma
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany
| | - Maximilian Waldner
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany
| | - Marta Zielinska
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Li-Li Bao
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany
| | - Miguel Gonzalez-Acera
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany
| | - Stefan Wallmüller
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany
| | - Eva Liebing
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany.
| |
Collapse
|
35
|
Xiang Y, Peng F, Guo Y, Ge H, Cai S, Fan L, Peng Y, Wen H, Wang Q, Tao L. Connexin32 activates necroptosis through Src-mediated inhibition of caspase 8 in hepatocellular carcinoma. Cancer Sci 2021; 112:3507-3519. [PMID: 34050696 PMCID: PMC8409421 DOI: 10.1111/cas.14994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/28/2022] Open
Abstract
Necroptosis is an alternative form of programmed cell death that generally occurs under apoptosis-deficient conditions. Our previous work showed that connexin32 (Cx32) promotes the malignant progress of hepatocellular carcinoma (HCC) by enhancing the ability of resisting apoptosis in vivo and in vitro. Whether triggering necroptosis is a promising strategy to eliminate the apoptosis-resistant HCC cells with high Cx32 expression remains unknown. In this study, we found that Cx32 expression was positively correlated with the expression of necroptosis protein biomarkers in human HCC specimens, cell lines, and a xenograft model. Treatment with shikonin, a well-used necroptosis inducer, markedly caused necroptosis in HCC cells. Interestingly, overexpressed Cx32 exacerbated shikonin-induced necroptosis, but downregulation of Cx32 alleviated necroptosis in vitro and in vivo. Mechanistically, Cx32 was found to bind to Src and promote Src-mediated caspase 8 phosphorylation and inactivation, which ultimately reduced the activated caspase 8-mediated proteolysis of receptor-interacting serine-threonine protein kinase 1/3, the key molecule for necroptosis activation. In conclusion, we showed that Cx32 contributed to the activation of necroptosis in HCC cells through binding to Src and then mediating the inactivation of caspase 8. The present study suggested that necroptosis inducers could be more favorable than apoptosis inducers to eliminate HCC cells with high expression of Cx32.
Collapse
Affiliation(s)
- Yu‐ke Xiang
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Fu‐hua Peng
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Yun‐quan Guo
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central AsiaThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiPR China
| | - Hui Ge
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central AsiaThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiPR China
| | - Shao‐yi Cai
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Li‐xia Fan
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Yue‐xia Peng
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central AsiaThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiPR China
| | - Qin Wang
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Liang Tao
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central AsiaThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiPR China
| |
Collapse
|
36
|
Gornowicz A, Szymanowski W, Czarnomysy R, Bielawski K, Bielawska A. Anti-HER2 monoclonal antibodies intensify the susceptibility of human gastric cancer cells to etoposide by promoting apoptosis, but not autophagy. PLoS One 2021; 16:e0255585. [PMID: 34437575 PMCID: PMC8389407 DOI: 10.1371/journal.pone.0255585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is a multifactorial disease with high mortality. Anti-HER2 therapy is a promising strategy in GC treatment and trastuzumab was approved by FDA (Food and Drug Administration) as the first and the second line of treatment of the disease. PURPOSE The aim of the study was to examine the effectiveness of a combination of etoposide with trastuzumab or pertuzumab in AGS gastric cancer cells and breast cancer cells such as MCF-7, MDA-MB-231 and HCC1954. METHODS AND FINDINGS The cytotoxic effects of the tested compounds against gastric and breast cancer cells were checked by MTT (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide) assay. The anti-proliferative potential was analyzed by the incorporation of [3H]-thymidine into DNA. Fluorescent microscopy and flow cytometry was used to demonstrate the effect of the compounds on apoptosis. The mitochondrial membrane potential, and the activity of caspase-8 and caspase-9 were assessed. Autophagosomes and autolysosomes formation was checked by flow cytometry. The concentrations of Beclin-1, LC3A and LC3B were performed using ELISA. The expression of LC3A/B was also determined. The results from our study proved that the combination of etoposide with anti-HER2 antibodies was not cytotoxic against breast cancer cells, whereas the combination of etoposide with anti-HER2 antibodies decreased viability and DNA biosynthesis in gastric cancer cells. The interaction of etoposide with pertuzumab or trastuzumab induced programmed cell death via extrinsic and intrinsic apoptotic pathways in AGS gastric cancer cells, but did not affect autophagy, where a decrease of Beclin-1, LC3A and LC3B was observed in comparison with the untreated control. CONCLUSIONS The study demonstrated that etoposide (12.5 μM) with pertuzumab represent a promising strategy in gastric cancer treatment, but further in vivo examinations are also required.
Collapse
Affiliation(s)
- Agnieszka Gornowicz
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| | | | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
37
|
Abstract
Colorectal cancer has served as a genetic and biological paradigm for the evolution of solid tumors, and these insights have illuminated early detection, risk stratification, prevention, and treatment principles. Employing the hallmarks of cancer framework, we provide a conceptual framework to understand how genetic alterations in colorectal cancer drive cancer cell biology properties and shape the heterotypic interactions across cells in the tumor microenvironment. This review details research advances pertaining to the genetics and biology of colorectal cancer, emerging concepts gleaned from immune and single-cell profiling, and critical advances and remaining knowledge gaps influencing the development of effective therapies for this cancer that remains a major public health burden.
Collapse
Affiliation(s)
- Jiexi Li
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xingdi Ma
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shabnam Shalapour
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
38
|
Cheng R, Liu X, Wang Z, Tang K. ABT‑737, a Bcl‑2 family inhibitor, has a synergistic effect with apoptosis by inducing urothelial carcinoma cell necroptosis. Mol Med Rep 2021; 23:412. [PMID: 33786632 PMCID: PMC8025475 DOI: 10.3892/mmr.2021.12051] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 02/09/2021] [Indexed: 01/07/2023] Open
Abstract
ABT‑737 is a recently reported inhibitor of members of the Bcl‑2 family of apoptosis regulators. However, to the best of our knowledge, its necroptosis‑inducing function in bladder cancer has not yet been researched. Thus, the present study aimed to investigate whether this Bcl‑2 family inhibitor can induce both apoptosis and necroptosis of urothelial carcinoma cells. The proliferation and survival of urothelial carcinoma cell lines treated with a combination of both Z‑VAD‑FMK as a pan‑caspase inhibitor and ABT‑737 were assessed in vitro. Z‑DNA binding protein 1 (ZBP1), receptor‑interacting protein (RIP)1 and RIP3 were knocked down using small interfering RNA in urothelial carcinoma cell lines. The protein expression levels of ZBP1, RIP1 and RIP3 following cell transfection were measured via western blot analysis. Cell viability was determined using an MTT assay. Cell invasion was examined using cell invasion assays. The expression levels of necroptosis‑related proteins, high mobility group box 1, ZBP1, mixed‑lineage kinase domain‑like protein (MLKL) and RIP3, were measured via western blotting. It was found that ABT‑737 inhibited the proliferation and invasion of bladder cancer cells by inducing cell necrosis. The data demonstrated that ZBP1 and RIP3 have main roles in the cell necrosis induced by ABT‑737. In addition, RIP3 and ZBP1, without interacting with RIP1, directly induced MLKL‑mediated programmed cell necrosis. Thus, understanding how urothelial carcinoma cells react to Bcl‑2 family inhibitors may accelerate the discovery of drugs to treat bladder cancer.
Collapse
Affiliation(s)
- Rui Cheng
- Department of Urology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xiaolong Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zheng Wang
- Department of Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Kunlong Tang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China,Correspondence to: Dr Kunlong Tang, Department of Urology, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, P.R. China, E-mail:
| |
Collapse
|
39
|
Zhang L, Guo W, Yu J, Li C, Li M, Chai D, Wang W, Deng W. Receptor-interacting protein in malignant digestive neoplasms. J Cancer 2021; 12:4362-4371. [PMID: 34093836 PMCID: PMC8176420 DOI: 10.7150/jca.57076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
A deep and comprehensive understanding of factors that contribute to cancer initiation, progression, and evolution is of essential importance. Among them, the serine/threonine and tyrosine kinase-like kinases, also known as receptor interacting proteins (RIPs) or receptor interacting protein kinases (RIPKs), is emerging as important tumor-related proteins due to its complex regulation of cell survival, apoptosis, and necrosis. In this review, we mainly review the relevance of RIP to various malignant digestive neoplasms, including esophageal cancer, gastric cancer, colorectal cancer, hepatocellular carcinoma, gallbladder cancer, cholangiocarcinoma, and pancreatic cancer. Consecutive research on RIPs and its relationship with malignant digestive neoplasms is required, as it ultimately conduces to the etiology and treatment of cancer.
Collapse
Affiliation(s)
- Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Wenyi Guo
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Jia Yu
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Chunlei Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Man Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Dongqi Chai
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| |
Collapse
|
40
|
Lou J, Zhou Y, Feng Z, Ma M, Yao Y, Wang Y, Deng Y, Wu Y. Caspase-Independent Regulated Necrosis Pathways as Potential Targets in Cancer Management. Front Oncol 2021; 10:616952. [PMID: 33665167 PMCID: PMC7921719 DOI: 10.3389/fonc.2020.616952] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
Regulated necrosis is an emerging type of cell death independent of caspase. Recently, with increasing findings of regulated necrosis in the field of biochemistry and genetics, the underlying molecular mechanisms and signaling pathways of regulated necrosis are gradually understood. Nowadays, there are several modes of regulated necrosis that are tightly related to cancer initiation and development, including necroptosis, ferroptosis, parthanatos, pyroptosis, and so on. What’s more, accumulating evidence shows that various compounds can exhibit the anti-cancer effect via inducing regulated necrosis in cancer cells, which indicates that caspase-independent regulated necrosis pathways are potential targets in cancer management. In this review, we expand the molecular mechanisms as well as signaling pathways of multiple modes of regulated necrosis. We also elaborate on the roles they play in tumorigenesis and discuss how each of the regulated necrosis pathways could be therapeutically targeted.
Collapse
Affiliation(s)
- Jianyao Lou
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zengyu Feng
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mindi Ma
- Department of Nuclear Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yulian Wu
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Xie Y, Zhao Y, Shi L, Li W, Chen K, Li M, Chen X, Zhang H, Li T, Matsuzawa-Ishimoto Y, Yao X, Shao D, Ke Z, Li J, Chen Y, Zhang X, Cui J, Cui S, Leng Q, Cadwell K, Li X, Wei H, Zhang H, Li H, Xiao H. Gut epithelial TSC1/mTOR controls RIPK3-dependent necroptosis in intestinal inflammation and cancer. J Clin Invest 2020; 130:2111-2128. [PMID: 31961824 DOI: 10.1172/jci133264] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Although Western diet and dysbiosis are the most prominent environmental factors associated with inflammatory bowel diseases (IBDs), the corresponding host factors and cellular mechanisms remain poorly defined. Here we report that the TSC1/mTOR pathway in the gut epithelium represents a metabolic and innate immune checkpoint for intestinal dysfunction and inflammation. mTOR hyperactivation triggered by Western diet or Tsc1 ablation led to epithelium necroptosis, barrier disruption, and predisposition to dextran sulfate sodium-induced colitis and inflammation-associated colon cancer. Mechanistically, our results uncovered a critical role for TSC1/mTOR in restraining the expression and activation of RIPK3 in the gut epithelium through TRIM11-mediated ubiquitination and autophagy-dependent degradation. Notably, microbiota depletion by antibiotics or gnotobiotics attenuated RIPK3 expression and activation, thereby alleviating epithelial necroptosis and colitis driven by mTOR hyperactivation. mTOR primarily impinged on RIPK3 to potentiate necroptosis induced by TNF and by microbial pathogen-associated molecular patterns (PAMPs), and hyperactive mTOR and aberrant necroptosis were intertwined in human IBDs. Together, our data reveal a previously unsuspected link between the Western diet, microbiota, and necroptosis and identify the mTOR/RIPK3/necroptosis axis as a driving force for intestinal inflammation and cancer.
Collapse
Affiliation(s)
- Yadong Xie
- The Center for Microbes, Development and Health, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, CAS, Shanghai, China.,Center for Allergic and Inflammatory Diseases & Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Yifan Zhao
- The Center for Microbes, Development and Health, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Lei Shi
- The Center for Microbes, Development and Health, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Wei Li
- The Center for Microbes, Development and Health, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Kun Chen
- Center for Allergic and Inflammatory Diseases & Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Min Li
- Center for Allergic and Inflammatory Diseases & Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Xia Chen
- The Center for Microbes, Development and Health, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Haiwei Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Tiantian Li
- The Center for Microbes, Development and Health, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Yu Matsuzawa-Ishimoto
- Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
| | - Xiaomin Yao
- Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
| | - Dianhui Shao
- The Center for Microbes, Development and Health, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Zunfu Ke
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian Li
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Yan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Xiaoming Zhang
- The Center for Microbes, Development and Health, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Jun Cui
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuzhong Cui
- State Key Laboratory of Respiratory Diseases, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qibin Leng
- State Key Laboratory of Respiratory Diseases, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Huabin Li
- Center for Allergic and Inflammatory Diseases & Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China.,Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Xiao
- The Center for Microbes, Development and Health, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, CAS, Shanghai, China
| |
Collapse
|
42
|
Tan Y, Sementino E, Cheung M, Peri S, Menges CW, Kukuyan AM, Zhang T, Khazak V, Fox LA, Ross EA, Ramanathan S, Jhanwar SC, Flores RM, Balachandran S, Testa JR. Somatic Epigenetic Silencing of RIPK3 Inactivates Necroptosis and Contributes to Chemoresistance in Malignant Mesothelioma. Clin Cancer Res 2020; 27:1200-1213. [PMID: 33203643 DOI: 10.1158/1078-0432.ccr-18-3683] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 09/29/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Receptor-interacting protein kinase 3 (RIPK3) phosphorylates effector molecule MLKL to trigger necroptosis. Although RIPK3 loss is seen in several human cancers, its role in malignant mesothelioma is unknown. This study aimed to determine whether RIPK3 functions as a potential tumor suppressor to limit development of malignant mesothelioma. EXPERIMENTAL DESIGN RIPK3 expression was examined in 66 malignant mesothelioma tumors and cell lines. Promoter methylation and DNMT1 siRNA studies were performed to assess the mode of RIPK3 silencing in RIPK3-deficient malignant mesothelioma cells. Restoration of RIPK3 expression in RIPK3-negative malignant mesothelioma cells, either by treatment with 5-aza-2'-deoxycytidine or lentiviral expression of cDNA, was performed to assess effects on cell viability, necrosis, and chemosensitization. RESULTS Loss of RIPK3 expression was observed in 42/66 (63%) primary malignant mesotheliomas and malignant mesothelioma cell lines, and RT-PCR analysis demonstrated that downregulation occurs at the transcriptional level, consistent with epigenetic silencing. RIPK3-negative malignant mesothelioma cells treated with 5-aza-2'-deoxycytidine resulted in reexpression of RIPK3 and chemosensitization. Ectopic expression of RIPK3 also resulted in chemosensitization and led to necroptosis, the latter demonstrated by phosphorylation of downstream target MLKL and confirmed by rescue experiments. Mining of RIPK3 expression and survival outcomes among patients with malignant mesothelioma available from The Cancer Genome Atlas repository revealed that promoter methylation of RIPK3 is associated with reduced RIPK3 expression and poor prognosis. CONCLUSIONS These data suggest that RIPK3 acts as a tumor suppressor in malignant mesothelioma by triggering necroptosis and that epigenetic silencing of RIPK3 by DNA methylation impairs necroptosis and contributes to chemoresistance and poor survival in this incurable disease.
Collapse
Affiliation(s)
- Yinfei Tan
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Genomics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Eleonora Sementino
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mitchell Cheung
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Suraj Peri
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Craig W Menges
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | - Ting Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | - Lauren A Fox
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Eric A Ross
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Suresh Ramanathan
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Suresh C Jhanwar
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Raja M Flores
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Joseph R Testa
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania. .,Genomics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
43
|
Di Grazia A, Marafini I, Pedini G, Di Fusco D, Laudisi F, Dinallo V, Rosina E, Stolfi C, Franzè E, Sileri P, Sica G, Monteleone G, Bagni C, Monteleone I. The Fragile X Mental Retardation Protein Regulates RIPK1 and Colorectal Cancer Resistance to Necroptosis. Cell Mol Gastroenterol Hepatol 2020; 11:639-658. [PMID: 33091622 PMCID: PMC7806864 DOI: 10.1016/j.jcmgh.2020.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS The fragile X mental retardation protein (FMRP) affects multiple steps of the mRNA metabolism during brain development and in different neoplastic processes. However, the contribution of FMRP in colon carcinogenesis has not been investigated. METHODS FMR1 mRNA transcript and FMRP protein expression were analyzed in human colon samples derived from patients with sporadic colorectal cancer (CRC) and healthy subjects. We used a well-established mouse model of sporadic CRC induced by azoxymethane to determine the possible role of FMRP in CRC. To address whether FMRP controls cancer cell survival, we analyzed cell death pathway in CRC human epithelial cell lines and in patient-derived colon cancer organoids in presence or absence of a specific FMR1 antisense oligonucleotide or siRNA. RESULTS We document a significant increase of FMRP in human CRC relative to non-tumor tissues. Next, using an inducible mouse model of CRC, we observed a reduction of colonic tumor incidence and size in the Fmr1 knockout mice. The abrogation of FMRP induced spontaneous cell death in human CRC cell lines activating the necroptotic pathway. Indeed, specific immunoprecipitation experiments on human cell lines and CRC samples indicated that FMRP binds receptor-interacting protein kinase 1 (RIPK1) mRNA, suggesting that FMRP acts as a regulator of necroptosis pathway through the surveillance of RIPK1 mRNA metabolism. Treatment of human CRC cell lines and patient-derived colon cancer organoids with the FMR1 antisense resulted in up-regulation of RIPK1. CONCLUSIONS Altogether, these data support a role for FMRP in controlling RIPK1 expression and necroptotic activation in CRC.
Collapse
Affiliation(s)
- Antonio Di Grazia
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Irene Marafini
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Giorgia Pedini
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Davide Di Fusco
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Federica Laudisi
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Vincenzo Dinallo
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Eleonora Rosina
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Eleonora Franzè
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Pierpaolo Sileri
- Department of Surgery, University of Rome 'Tor Vergata', Rome, Italy
| | - Giuseppe Sica
- Department of Surgery, University of Rome 'Tor Vergata', Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Claudia Bagni
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy; Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
| | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy.
| |
Collapse
|
44
|
Necroptosis in Intestinal Inflammation and Cancer: New Concepts and Therapeutic Perspectives. Biomolecules 2020; 10:biom10101431. [PMID: 33050394 PMCID: PMC7599789 DOI: 10.3390/biom10101431] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
Necroptosis is a caspases-independent programmed cell death displaying intermediate features between necrosis and apoptosis. Albeit some physiological roles during embryonic development such tissue homeostasis and innate immune response are documented, necroptosis is mainly considered a pro-inflammatory cell death. Key actors of necroptosis are the receptor-interacting-protein-kinases, RIPK1 and RIPK3, and their target, the mixed-lineage-kinase-domain-like protein, MLKL. The intestinal epithelium has one of the highest rates of cellular turnover in a process that is tightly regulated. Altered necroptosis at the intestinal epithelium leads to uncontrolled microbial translocation and deleterious inflammation. Indeed, necroptosis plays a role in many disease conditions and inhibiting necroptosis is currently considered a promising therapeutic strategy. In this review, we focus on the molecular mechanisms of necroptosis as well as its involvement in human diseases. We also discuss the present developing therapies that target necroptosis machinery.
Collapse
|
45
|
Gadiyar V, Lahey KC, Calianese D, Devoe C, Mehta D, Bono K, Desind S, Davra V, Birge RB. Cell Death in the Tumor Microenvironment: Implications for Cancer Immunotherapy. Cells 2020; 9:cells9102207. [PMID: 33003477 PMCID: PMC7599747 DOI: 10.3390/cells9102207] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023] Open
Abstract
The physiological fate of cells that die by apoptosis is their prompt and efficient removal by efferocytosis. During these processes, apoptotic cells release intracellular constituents that include purine nucleotides, lysophosphatidylcholine (LPC), and Sphingosine-1-phosphate (S1P) that induce migration and chemo-attraction of phagocytes as well as mitogens and extracellular membrane-bound vesicles that contribute to apoptosis-induced compensatory proliferation and alteration of the extracellular matrix and the vascular network. Additionally, during efferocytosis, phagocytic cells produce a number of anti-inflammatory and resolving factors, and, together with apoptotic cells, efferocytic events have a homeostatic function that regulates tissue repair. These homeostatic functions are dysregulated in cancers, where, aforementioned events, if not properly controlled, can lead to cancer progression and immune escape. Here, we summarize evidence that apoptosis and efferocytosis are exploited in cancer, as well as discuss current translation and clinical efforts to harness signals from dying cells into therapeutic strategies.
Collapse
|
46
|
Karki R, Sharma BR, Lee E, Banoth B, Malireddi RKS, Samir P, Tuladhar S, Mummareddy H, Burton AR, Vogel P, Kanneganti TD. Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer. JCI Insight 2020; 5:136720. [PMID: 32554929 DOI: 10.1172/jci.insight.136720] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Interferon regulatory factor 1 (IRF1) regulates diverse biological functions, including modulation of cellular responses involved in tumorigenesis. Genetic mutations and altered IRF1 function are associated with several cancers. Although the function of IRF1 in the immunobiology of cancer is emerging, IRF1-specific mechanisms regulating tumorigenesis and tissue homeostasis in vivo are not clear. Here, we found that mice lacking IRF1 were hypersusceptible to colorectal tumorigenesis. IRF1 functions in both the myeloid and epithelial compartments to confer protection against AOM/DSS-induced colorectal tumorigenesis. We further found that IRF1 also prevents tumorigenesis in a spontaneous mouse model of colorectal cancer. The attenuated cell death in the colons of Irf1-/- mice was due to defective pyroptosis, apoptosis, and necroptosis (PANoptosis). IRF1 does not regulate inflammation and the inflammasome in the colon. Overall, our study identified IRF1 as an upstream regulator of PANoptosis to induce cell death during colitis-associated tumorigenesis.
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ein Lee
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Balaji Banoth
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - R K Subbarao Malireddi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Parimal Samir
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shraddha Tuladhar
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Harisankeerth Mummareddy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Emory College of Arts and Sciences, Emory University, Atlanta, Georgia, USA
| | - Amanda R Burton
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Peter Vogel
- Animal Resources Center and Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | |
Collapse
|
47
|
Zhao XY, Wang XY, Wei QY, Xu YM, Lau ATY. Potency and Selectivity of SMAC/DIABLO Mimetics in Solid Tumor Therapy. Cells 2020; 9:cells9041012. [PMID: 32325691 PMCID: PMC7226512 DOI: 10.3390/cells9041012] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 02/05/2023] Open
Abstract
Aiming to promote cancer cell apoptosis is a mainstream strategy of cancer therapy. The second mitochondria-derived activator of caspase (SMAC)/direct inhibitor of apoptosis protein (IAP)-binding protein with low pI (DIABLO) protein is an essential and endogenous antagonist of inhibitor of apoptosis proteins (IAPs). SMAC mimetics (SMs) are a series of synthetically chemical compounds. Via database analysis and literature searching, we summarize the potential mechanisms of endogenous SMAC inefficiency, degradation, mutation, releasing blockage, and depression. We review the development of SMs, as well as preclinical and clinical outcomes of SMs in solid tumor treatment, and we analyze their strengths, weaknesses, opportunities, and threats from our point of view. We also highlight several questions in need of further investigation.
Collapse
Affiliation(s)
| | | | | | - Yan-Ming Xu
- Correspondence: (Y.-M.X.); (A.T.Y.L.); Tel.: +86-754-8890-0437 (Y.-M.X.); +86-754-8853-0052 (A.T.Y.L.)
| | - Andy T. Y. Lau
- Correspondence: (Y.-M.X.); (A.T.Y.L.); Tel.: +86-754-8890-0437 (Y.-M.X.); +86-754-8853-0052 (A.T.Y.L.)
| |
Collapse
|
48
|
Heib M, Rose-John S, Adam D. Necroptosis, ADAM proteases and intestinal (dys)function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 353:83-152. [PMID: 32381179 DOI: 10.1016/bs.ircmb.2020.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Recently, an unexpected connection between necroptosis and members of the a disintegrin and metalloproteinase (ADAM) protease family has been reported. Necroptosis represents an important cell death routine which helps to protect from viral, bacterial, fungal and parasitic infections, maintains adult T cell homeostasis and contributes to the elimination of potentially defective organisms before parturition. Equally important for organismal homeostasis, ADAM proteases control cellular processes such as development and differentiation, immune responses or tissue regeneration. Notably, necroptosis as well as ADAM proteases have been implicated in the control of inflammatory responses in the intestine. In this review, we therefore provide an overview of the physiology and pathophysiology of necroptosis, ADAM proteases and intestinal (dys)function, discuss the contribution of necroptosis and ADAMs to intestinal (dys)function, and review the current knowledge on the role of ADAMs in necroptotic signaling.
Collapse
Affiliation(s)
- Michelle Heib
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Stefan Rose-John
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| |
Collapse
|
49
|
Kämpfer AAM, Urbán P, La Spina R, Jiménez IO, Kanase N, Stone V, Kinsner-Ovaskainen A. Ongoing inflammation enhances the toxicity of engineered nanomaterials: Application of an in vitro co-culture model of the healthy and inflamed intestine. Toxicol In Vitro 2020; 63:104738. [PMID: 31760064 PMCID: PMC6961208 DOI: 10.1016/j.tiv.2019.104738] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/21/2019] [Accepted: 11/18/2019] [Indexed: 01/27/2023]
Abstract
Chronic inflammatory conditions can negatively impact intestinal barrier function and affect the epithelium's interaction with nano-sized materials. We demonstrate the application of a Caco-2/THP-1 co-culture mimicking the intestine in healthy (i.e. stable) or inflamed state in nanotoxicological research. The co-cultures were exposed to non-toxic concentrations of silver nanoparticles (AgNPs) or silver nitrate (AgNO3) for 24 h. The barrier integrity and cytokine release as well as necrotic and apoptotic cell death were investigated. AgNPs and AgNO3 most strongly affected the inflamed co-culture. Higher concentrations of AgNPs induced a significant increase in barrier integrity in the inflamed but not the stable co-culture. Necrotic and apoptotic cell death was detected in both conditions but were significantly more pronounced in the inflamed condition. The exposure to AgNO3 affected barrier integrity in all experimental set-ups, but caused nuclear condensation only in the Caco-2 monoculture and the inflamed co-culture. AgNPs reduced the release of monocyte chemoattractant protein-1 in the stable model. Clear differences were observed in the effects of AgNPs and AgNO3 in relation to the model's health status. The results suggest an increased vulnerability of the inflamed epithelial barrier towards AgNPs underlining the importance to consider the intestinal health status in the safety assessment of nanomaterials.
Collapse
Affiliation(s)
- Angela A M Kämpfer
- European Commission, Joint Research Centre (JRC), Ispra, Italy; Nano-Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Patricia Urbán
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Rita La Spina
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Nilesh Kanase
- Nano-Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Vicki Stone
- Nano-Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | | |
Collapse
|
50
|
Cell-Free DNA and Apoptosis: How Dead Cells Inform About the Living. Trends Mol Med 2020; 26:519-528. [PMID: 32359482 DOI: 10.1016/j.molmed.2020.01.012] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/13/2020] [Accepted: 01/24/2020] [Indexed: 12/12/2022]
Abstract
Cell-free DNA (cfDNA) is evolving into a widely used prognostic and predictive biomarker, particularly in oncology. However, its versatile clinical use precedes a profound understanding of the underlying biology of cfDNA release. There is much evidence to suggest that cfDNA is mainly derived from dying (i.e., apoptotic) cells. However, numerous cancer studies have shown that cfDNA is informative about acquired resistance to given therapies, which is present in living, proliferating tumor subclones. To explain this contradiction, we review current insights regarding cfDNA release, in particular the interplay between apoptosis and proliferation. We describe how improved knowledge about cfDNA biology could be used for novel therapeutic strategies and how this may affect patient management.
Collapse
|