1
|
He W, Cui K, Farooq MA, Huang N, Zhu S, Jiang D, Zhang X, Chen J, Liu Y, Xu G. TCR-T cell therapy for solid tumors: challenges and emerging solutions. Front Pharmacol 2025; 16:1493346. [PMID: 40129944 PMCID: PMC11931055 DOI: 10.3389/fphar.2025.1493346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
With the use of T cell receptor T cells (TCR-T cells) and chimeric antigen receptor T cells (CAR-T cells), T-cell immunotherapy for cancer has advanced significantly in recent years. CAR-T cell therapy has demonstrated extraordinary success when used to treat hematologic malignancies. Nevertheless, there are several barriers that prevent this achievement from being applied to solid tumors, such as challenges with tumor targeting and inadequate transit and adaption of genetically modified T-cells, especially in unfavorable tumor microenvironments The deficiencies of CAR-T cell therapy in the treatment of solid tumors are compensated for by TCR-T cells, which have a stronger homing ability to initiate intracellular commands, 90% of the proteins can be used as developmental targets, and they can recognize target antigens more broadly. As a result, TCR-T cells may be more effective in treating solid tumors. In this review, we discussed the structure of TCR-T and have outlined the drawbacks of TCR-T in cancer therapy, and suggested potential remedies. This review is crucial in understanding the current state and future potential of TCR-T cell therapy. We emphasize how important it is to use combinatorial approaches, combining new combinations of various emerging strategies with over-the-counter therapies designed for TCR-T, to increase the anti-tumor efficacy of TCR-T inside the TME and maximize treatment safety, especially when it comes to solid tumor immunotherapies.
Collapse
Affiliation(s)
- Wanjun He
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Kai Cui
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Muhammad Asad Farooq
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Na Huang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Songshan Zhu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Dan Jiang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Xiqian Zhang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
- Yinchuan Guolong Orthopedic Hospital, Yinchuan, China
| | - Jian Chen
- Yinchuan Guolong Orthopedic Hospital, Yinchuan, China
| | - Yinxia Liu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Guangxian Xu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
2
|
Tang X, Zhang W, Zhang Z. Developing T Cell Epitope-Based Vaccines Against Infection: Challenging but Worthwhile. Vaccines (Basel) 2025; 13:135. [PMID: 40006681 PMCID: PMC11861332 DOI: 10.3390/vaccines13020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
T cell epitope-based vaccines are designed to elicit long-lived pathogen-specific memory T cells that can quickly activate protective effector functions in response to subsequent infections. These vaccines have the potential to provide sustained protection against mutated variants, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which are increasingly capable of evading neutralizing antibodies. Recent advancements in epitope discovery, T cell receptor analysis, and bioinformatics have enabled the precise selection of epitopes and the sophisticated design of epitope-based vaccines. This review outlines the development process for T cell epitope-based vaccines. We summarize the current progress in T cell epitope discovery technologies, highlighting the advantages and disadvantages of each method. We also examine advancements in the design and optimization of epitope-based vaccines, particularly through bioinformatics tools. Additionally, we discuss the challenges of validating the accurate processing and presentation of individual epitopes and establishing suitable rodent models to evaluate vaccine immunogenicity and protective efficacy.
Collapse
Affiliation(s)
- Xian Tang
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, China; (X.T.); (W.Z.)
| | - Wei Zhang
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, China; (X.T.); (W.Z.)
| | - Zheng Zhang
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, China; (X.T.); (W.Z.)
- Guangdong Key Laboratory for Anti-Infection Drug Quality Evaluation, Shenzhen 518112, China
| |
Collapse
|
3
|
Huang J, Yang K, Gao L, He Q, Ge S. Microbial community composition in subgingival plaques and heterogeneity of tumor tissue TCRβ CDR3 repertoire in patients with moderate-to-severe periodontitis and oral squamous cell carcinoma. Technol Health Care 2025; 33:25-51. [PMID: 39331118 DOI: 10.3233/thc-240218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
BACKGROUND The human oral cavity contains over 700 types of bacteria that may protect the body against colonization by exogenous pathogens and maintain relative homeostasis. However, alterations in the immune status can disrupt the balance between microorganisms and the host, inducing various diseases such as oral cancer and diabetes mellitus. The mechanism underlying this process is not clearly understood. OBJECTIVE The purpose of this study was to investigate the relationships between subgingival bacteria, T-cell receptor β-chain complementarity-determining region 3 (TCRβ CDR3), and the development oforal squamous cell carcinoma (OSCC). METHODS We grouped patients as "healthy periodontal" (H), "moderate-to-severe chronic periodontitis" (C), and "moderate-to-severe chronic periodontitis with OSCC" (T). Bacterial groups were "subgingival plaque" (bp) and "gingival/tumor tissue" (g). We also recorded patients' age, gender, attachment level (AL), bleeding on probing (BOP), and probing depth (PD). We extracted and sequenced RNA from plaques, gingival tissues, tumors, and teeth. We performed high-throughput sequencing on TCRβ CDR3 and plaque bacteria. RESULTS Synergistetes and Veillonella parvula were more abundant in the H group than in the T group. Granulicatella, Peptostreptococcus, and Streptococcus infantis were enriched in the T-bp group. AL, BOP, and PD were positively correlated with Granulicatella, Peptostreptococcus, and Pseudomonas but negatively correlated with Prevotella nigrescens and V. parvula. TCRβ CDR3 diversity was C > H > T. TCR β-chain Variable gene (TRBV)20-1 usage varied among the H, C, and T groups. TRBV2 and TRBV5-1 usage was greater in the T group than in the C group. TRBJ1-1, TRBJ1-2, TRBJ2-2, TRBJ2-7, and TRBJ2-5 were most frequently used. CONCLUSIONS These trends and the reduction of gingival Synergistetes were correlated with OSCC. TCRβ CDR3 diversity was the lowest in patients in the T group, and there were considerable changes in the expression of TRBV2 and TRBJ. Therefore, plaque bacterial composition can influence TCRβ CDR3.
Collapse
|
4
|
Chen XT, Leisegang M, Gavvovidis I, Pollack SM, Lorenz FKM, Schumacher TN, Daumke O, Blankenstein T. Generation of effective and specific human TCRs against tumor/testis antigen NY-ESO-1 in mice with humanized T cell recognition system. Front Immunol 2024; 15:1524629. [PMID: 39776913 PMCID: PMC11703889 DOI: 10.3389/fimmu.2024.1524629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Generation of high avidity T cell receptors (TCRs) reactive to tumor-associated antigens (TAA) is impaired by tolerance mechanisms, which is an obstacle to effective T cell therapies for cancer treatment. NY-ESO-1, a human cancer-testis antigen, represents an attractive target for such therapies due to its broad expression in different cancer types and the restricted expression in normal tissues. Utilizing transgenic mice with a diverse human TCR repertoire, we isolated effective TCRs against NY-ESO-1157-165 restricted to HLA-A*02:01. We compared the functions of the murine-derived TCR with human-derived TCRs and an affinity matured TCR, using in vitro co-culture and in vivo adoptive T cell transfer in tumor-bearing mice. Alanine scan, x-scan, LCL assay were employed to address the cross-reactivity of the NY-ESO-1157-165 specific TCRs. We also used human tissue cDNA library and human primary cells to assess the safety of adoptive T cell therapies targeting NY-ESO-1 antigen in the clinic. One of the murine-derived human TCRs, TCR-ESO, exhibited higher functional avidity compared to human-derived NY-ESO-1157-165 specific TCRs. TCR-ESO appeared to have similar efficiency in antigen recognition as an in vitro affinity-matured TCR, TCR 1G4-α95LY, which was applied in clinical trials. TCR-ESO showed little cross-reactivity, in contrast to TCR 1G4-α95LY. Our data indicate that highly effective TCRs against NY-ESO-1 are likely deleted in humans due to tolerance mechanisms, and that the TCR gene loci transgenic mice represent a reliable source to isolate effective and highly-specific TCRs for adoptive T cell therapies.
Collapse
Affiliation(s)
- Xiaojing Tina Chen
- Molecular Immunology and Gene Therapy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute of Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Matthias Leisegang
- David and Etta Jonas Center for Cellular Therapy, the University of Chicago, Chicago, IL, United States
- Institute of Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ioannis Gavvovidis
- Molecular Immunology and Gene Therapy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute of Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Seth M. Pollack
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, United States
| | - Felix K. M. Lorenz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Ton N. Schumacher
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Hematology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Oliver Daumke
- Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Thomas Blankenstein
- Molecular Immunology and Gene Therapy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
5
|
Liang C, Sun L, Zhu Y, Wu J, Zhao A, Huang T, Yan F, He K. Local chicken breeds exhibit abundant TCR-V segments but similar repertoire diversity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 157:105196. [PMID: 38762097 DOI: 10.1016/j.dci.2024.105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/22/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
The thymus-derived lymphocytes of jawed vertebrates have four T-cell receptor (TCR) chains that play a significant role in immunity. As chickens have commercial value, their immune systems require a great deal of attention. Local chicken breeds are an essential part of poultry genetic resources in China. Here, we used high-throughput sequencing to analyze the TCRα and TCRβ repertoires and their relative expression levels in the native chicken breeds Baier Buff, Longyou Partridge, Xiaoshan, and Xianju. We found that TCR Vα and TCR Vβ were expressed and included 17, 19, 17, and six segments of the Vα2, Vα3, Vβ1, and Vβ2 subgroups, respectively. V-J pairing was biased; Jα11 was utilized by nearly all Vα segments and was the most commonly used. Breed-specific V segments and V-J pairings were detected as well. The results of the principal coordinate analysis (PCoA) as well as the V-J pairing and CDR3 diversity analyses suggested that the four local chicken breeds did not significantly differ in terms of TCR diversity. Hence, they expressed not significant differentiation, and they are rich genetic resources for the development and utilization of immune-related poultry breeding.
Collapse
Affiliation(s)
- Chunhong Liang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, 311300, China
| | - Lin Sun
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, 311300, China
| | - Ying Zhu
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Jianqing Wu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, 311300, China
| | - Ayong Zhao
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, 311300, China
| | - Tao Huang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, 311300, China
| | - Feifei Yan
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, 311300, China
| | - Ke He
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, 311300, China.
| |
Collapse
|
6
|
Li XD, Lu Y, Luo CY, Xin WG, Kang X, Lin YC, Lin LB. Lacticaseibacillus chiayiensis mediate intestinal microbiome and microbiota-derived metabolites regulating the growth and immunity of chicks. Vet Microbiol 2024; 290:109969. [PMID: 38211362 DOI: 10.1016/j.vetmic.2023.109969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/06/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024]
Abstract
Emerging evidence confirms beneficial properties of probiotics in promoting growth and immunity of farmed chicken. However, the molecular mechanisms underlying the host-microbiome interactions mediated by probiotics are not fully understood. In this study, the internal mechanisms of Lacticaseibacillus chiayiensis-mediated host-microbiome interactions and to elucidate how it promotes host growth were investigated by additional supplementation with L. chiayiensis. We conducted experiments, including intestinal cytokines, digestive enzymes test, intestinal microbiome, metabolome and transcriptome analysis. The results showed that chickens fed L. chiayiensis exhibited higher body weight gain and digestive enzyme activity, and lower pro-inflammatory cytokines, compared to controls. Microbiota sequencing analysis showed that the gut microbiota structure was reshaped with L. chiayiensis supplementation. Specifically, Lactobacillus and Escherichia increased in abundance and Enterococcus, Lactococcus, Corynebacterium, Weissella and Gallicola decreased. In addition, the bacterial community diversity was significantly increased compared to controls. Metabolomic and transcriptomic analyses revealed that higher bile acids and N-acyl amides concentrations and lower carbohydrates concentrations in L. chiayiensis-fed chickens. Meanwhile, the expression of genes related to nutrient transport and absorption in the intestine was upregulated, which reflected the enhanced digestion and absorption of nutrients in chickens supplemented with L. chiayiensis. Moreover, supplementation of L. chiayiensis down-regulated genes involved in inflammation-related, mainly involved in NF-κB signaling pathway and MHC-II mediated antigen presentation process. Cumulatively, these findings highlight that host-microbiota crosstalk enhances the host growth phenotype in two ways: by enhancing bile acid metabolism and digestive enzyme activity, and reducing the occurrence of intestinal inflammation to promote nutrient absorption and maintain intestinal health. This provides a basis for the application of LAB as an alternative to antibiotics in animal husbandry.
Collapse
Affiliation(s)
- Xin-Dong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming 650500, Yunnan, China
| | - Yao Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming 650500, Yunnan, China
| | - Cheng-Ying Luo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming 650500, Yunnan, China
| | - Wei-Gang Xin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming 650500, Yunnan, China
| | - Xin Kang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming 650500, Yunnan, China
| | - Yi-Cen Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming 650500, Yunnan, China.
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming 650500, Yunnan, China.
| |
Collapse
|
7
|
Li R, Wang J, Li X, Liang Y, Jiang Y, Zhang Y, Xu P, Deng L, Wang Z, Sun T, Wu J, Xie H, Wang Y. T-cell receptor sequencing reveals hepatocellular carcinoma immune characteristics according to Barcelona Clinic liver cancer stages within liver tissue and peripheral blood. Cancer Sci 2024; 115:94-108. [PMID: 37962061 PMCID: PMC10823291 DOI: 10.1111/cas.16013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Analysis of T-cell receptor (TCR) repertoires in different stages of hepatocellular carcinoma (HCC) might help to elucidate its pathogenesis and progression. This study aimed to investigate TCR profiles in liver biopsies and peripheral blood mononuclear cells (PBMCs) in different Barcelona Clinic liver cancer (BCLC) stages of HCC. Ten patients in early stage (BCLC_A), 10 patients in middle stage (BCLC_B), and 10 patients in late stage (BCLC_C) cancer were prospectively enrolled. The liver tumor tissues, adjacent tissues, and PBMCs of each patient were collected and examined by TCR β sequencing. Based on the ImMunoGeneTics (IMGT) database, we aligned the V, D, J, and C gene segments and identified the frequency of CDR3 sequences and amino acids sequence. Diversity of TCR in PBMCs was higher than in both tumor tissues and adjacent tissues, regardless of BCLC stage and postoperative recurrence. TCR clonality was increased in T cells from peripheral blood in advanced HCC, compared with the early and middle stages. No statistical differences were observed between different BCLC stages, either in tumors or adjacent tissues. TCR clonality revealed no significant difference between recurrent tumor and non-recurrent tumor, therefore PBMCs was better to be representative of TCR characteristics in different stages of HCC compared to tumor tissues. Clonal expansion of T cells was associated with low risk of recurrence in HCC patients.
Collapse
Affiliation(s)
- Rui Li
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Junxiao Wang
- Interventional Radiology, The Fifth Medical CenterChinese PLA General HospitalBeijingChina
- Aerospace Medical Center, Aerospace Center HospitalPeking University Aerospace Clinical CollegeBeijingChina
| | - Xiubin Li
- Department of Urology, The Third Medical CenterChinese PLA General HospitalBeijingChina
| | - Yining Liang
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Yiyun Jiang
- Department of Pathology and Hepatology, The Fifth Medical CenterChinese PLA General HospitalBeijingChina
| | - Yuwei Zhang
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Pengfei Xu
- Hangzhou ImmuQuad BiotechnologiesHangzhouChina
| | - Ling Deng
- Hangzhou ImmuQuad BiotechnologiesHangzhouChina
| | - Zhe Wang
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Tao Sun
- Hangzhou ImmuQuad BiotechnologiesHangzhouChina
- Institute of Wenzhou, Zhejiang UniversityWenzhouChina
| | - Jian Wu
- Department of Laboratory MedicineThe Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhouChina
| | - Hui Xie
- Interventional Radiology, The Fifth Medical CenterChinese PLA General HospitalBeijingChina
| | - Yijin Wang
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
8
|
Plewa N, Poncette L, Blankenstein T. Generation of TGFβR2(-1) neoantigen-specific HLA-DR4-restricted T cell receptors for cancer therapy. J Immunother Cancer 2023; 11:jitc-2022-006001. [PMID: 36822673 PMCID: PMC9950979 DOI: 10.1136/jitc-2022-006001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Adoptive transfer of patient's T cells, engineered to express a T cell receptor (TCR) with defined novel antigen specificity, is a convenient form of cancer therapy. In most cases, major histocompatibility complex (MHC) I-restricted TCRs are expressed in CD8+ T cells and the development of CD4+ T cells engineered to express an MHC II-restricted TCR lacks behind. Critical is the choice of the target antigen, whether the epitope is efficiently processed and binds with high affinity to MHC molecules. A mutation in the transforming growth factor β receptor 2 (TGFβR2(-1)) gene creates a frameshift peptide caused by the deletion of one adenine (-1) within a microsatellite sequence. This somatic mutation is recurrent in microsatellite instable colorectal and gastric cancers and, therefore, is a truly tumor-specific antigen detected in many patients. METHODS ABabDR4 mice, which express a diverse human TCR repertoire restricted to human MHC II molecule HLA-DRA/DRB1*0401 (HLA-DR4), were immunized with the TGFβR2(-1) peptide and TGFβR2(-1)-specific TCRs were isolated from responding CD4+ T cells. The TGFβR2(-1)-specific TCRs were expressed in human CD4+ T cells and their potency and safety profile were assessed by co-cultures and other functional assays. RESULTS We demonstrated that TGFβR2(-1) neoantigen is immunogenic and elicited CD4+ T cell responses in ABabDR4 mice. When expressed in human CD4+ T cells, the HLA-DR4 restricted TGFβR2(-1)-specific TCRs induced IFNy expression at low TGFβR2(-1) peptide amounts. The TGFβR2(-1)-specific TCRs recognized HLA-DR4+ lymphoblastoid cells, which endogenously processed and presented the neoantigen, and colorectal cancer cell lines SW48 and HCT116 naturally expressing the TGFβR2(-1) mutation. No MHC II alloreactivity or cross-reactivity to peptides with a similar TCR-recognition motif were observed, indicating the safety of the TCRs. CONCLUSIONS The data suggest that HLA-DR4-restricted TCRs specific for the TGFβR2(-1) recurrent neoantigen can be valuable candidates for adoptive T cell therapy of a sizeable number of patients with cancer.
Collapse
Affiliation(s)
- Natalia Plewa
- Max Delbruck Centre for Molecular Medicine, Berlin, Germany
| | - Lucia Poncette
- Max Delbruck Centre for Molecular Medicine, Berlin, Germany
| | | |
Collapse
|
9
|
Shevyrev DV, Tereshchenko VP, Sennikov SV. The Enigmatic Nature of the TCR-pMHC Interaction: Implications for CAR-T and TCR-T Engineering. Int J Mol Sci 2022; 23:ijms232314728. [PMID: 36499057 PMCID: PMC9740949 DOI: 10.3390/ijms232314728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
The interaction of the T-cell receptor (TCR) with a peptide in the major histocompatibility complex (pMHC) plays a central role in the adaptive immunity of higher chordates. Due to the high specificity and sensitivity of this process, the immune system quickly recognizes and efficiently responds to the appearance of foreign and altered self-antigens. This is important for ensuring anti-infectious and antitumor immunity, in addition to maintaining self-tolerance. The most common parameter used for assessing the specificity of TCR-pMHC interaction is affinity. This thermodynamic characteristic is widely used not only in various theoretical aspects, but also in practice, for example, in the engineering of various T-cell products with a chimeric (CAR-T) or artificial (TCR-engineered T-cell) antigen receptor. However, increasing data reveal the fact that, in addition to the thermodynamic component, the specificity of antigen recognition is based on the kinetics and mechanics of the process, having even greater influence on the selectivity of the process and T lymphocyte activation than affinity. Therefore, the kinetic and mechanical aspects of antigen recognition should be taken into account when designing artificial antigen receptors, especially those that recognize antigens in the MHC complex. This review describes the current understanding of the nature of the TCR-pMHC interaction, in addition to the thermodynamic, kinetic, and mechanical principles underlying the specificity and high sensitivity of this interaction.
Collapse
Affiliation(s)
- D. V. Shevyrev
- Laboratory of molecular Immunology, Research Institute for Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
- Center for Cell Technology and Immunology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Correspondence: ; Tel.: +7-9231345505
| | - V. P. Tereshchenko
- Laboratory of molecular Immunology, Research Institute for Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
- Center for Cell Technology and Immunology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - S. V. Sennikov
- Laboratory of molecular Immunology, Research Institute for Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| |
Collapse
|
10
|
de Souza-Silva TG, Gollob KJ, Dutra WO. T-cell receptor variable region usage in Chagas disease: A systematic review of experimental and human studies. PLoS Negl Trop Dis 2022; 16:e0010546. [PMID: 36107855 PMCID: PMC9477334 DOI: 10.1371/journal.pntd.0010546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
T cells recognize their ligand, the peptide major histocompatibility complex (MHC), via the T-cell receptor (TCR), which is composed of covalently linked α and β or γ and δ chains. This recognition is critical for T-cell ontogeny and controls the selection, activation, and function of T lymphocytes. Specific TCR αβ variable regions have been associated with immunopathogenesis of Chagas disease. Here, we present a systematic review that compiles experimental in vivo and human data regarding the preferential expression of variable alpha (Vα) and variable beta (Vβ) chain regions in Trypanosoma cruzi infection. The original studies indexed in PubMed/Medline, Scopus, and Web of Science databases were screened according to the PRISMA strategy. The analysis showed that expression of TCR Vα subfamilies were evaluated in one human study, and, unlike TCR Vβ, TCR Vα presented a more restricted usage. Despite the great variability in the usage of TCR Vβ regions in human Chagas disease, a down-regulation of TCR Vβ5 expression by T cells from patients in the acute phase of the disease was shown. Opposingly, this TCR region was found overly expressed in CD4+ T cells from chronic Chagas patients. It was also demonstrated that murine Vβ9+ T cells derived from nonlymphoid organs of T. cruzi-infected animals had a modulatory profile, while splenic Vβ9+ T cells produced inflammatory cytokines, indicating that although they display the same TCR Vβ region usage, these cells are functionally distinct. Despite the limitations of few papers and year of publication of the studies, compiling the data derived from them reveals that further investigation of TCR usage will point to their potential role in protective or pathogenic responses, as biomarkers of disease progression, and in the search for dominant peptides potentially useful for the development of vaccines or therapies. Chagas disease is a neglected tropical disease, caused by infection with Trypanosoma cruzi. Differential expression of certain T-cell receptor (TCR) variable regions has been associated with the immunopathogenesis of Chagas disease. Here, we present a systematic review that compiled experimental in vivo and human data regarding the preferential expression of TCR alpha and beta chain variable regions in Chagas disease. The original studies indexed in the PubMed/Medline, Scopus, and Web of Science databases were screened according to the PRISMA strategy. Despite the great variability in the use of TCR Vβ in T. cruzi infection, the outcomes indicate that there is a down-regulation of TCR Vβ5 expression in T cells from patients in the acute phase of Chagas disease. However, this region is preferentially expressed by CD4+ T cells from chronic Chagas patients. Additionally, it has been demonstrated that murine Vβ9+ T cells derived from nonlymphoid organs displayed a modulatory profile, while splenic Vβ9+ T cells produced inflammatory cytokines, indicating that although they express the same TCR Vβ region, these cells are functionally distinct. Information on TCR expression, specificity and function have critical impact on vaccine design.
Collapse
Affiliation(s)
- Thaiany Goulart de Souza-Silva
- Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Kenneth J. Gollob
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Belo Horizonte, Minas Gerais, Brazil
| | - Walderez O. Dutra
- Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
11
|
Moore MJ, Zhong M, Hansen J, Gartner H, Grant C, Huang M, Harris FM, Tu N, Bowerman NA, Edelmann KH, Barry T, Herbin O, Tay CS, DiLillo DJ, Decker CE, Levenkova N, Shevchuk J, Dhanik A, Meagher KA, Karr A, Roos J, Lee WY, Suh D, Eckersdorff M, Meagher TC, Koss M, Esau L, Sleeman MA, Babb R, Chen G, Kyratsous CA, Poueymirou WT, McWhirter JR, Voronina VA, Guo C, Gurer C, Yancopoulos GD, Murphy AJ, Macdonald LE. Humanization of T cell-mediated immunity in mice. Sci Immunol 2021; 6:eabj4026. [PMID: 34919442 DOI: 10.1126/sciimmunol.abj4026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Michael J Moore
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Maggie Zhong
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Johanna Hansen
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Hans Gartner
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Craig Grant
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Mei Huang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Faith M Harris
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Naxin Tu
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Natalie A Bowerman
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Kurt H Edelmann
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Thomas Barry
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Olivier Herbin
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Chin-Siean Tay
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - David J DiLillo
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Corinne E Decker
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Natasha Levenkova
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - James Shevchuk
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Ankur Dhanik
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Karoline A Meagher
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Amanda Karr
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Jan Roos
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Wen-Yi Lee
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - David Suh
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Mark Eckersdorff
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - T Craig Meagher
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Matthew Koss
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Lakeisha Esau
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Matthew A Sleeman
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Robert Babb
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Gang Chen
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | | | | | - John R McWhirter
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Vera A Voronina
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Chunguang Guo
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Cagan Gurer
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | | | - Andrew J Murphy
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Lynn E Macdonald
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| |
Collapse
|
12
|
Hess NJ, Brown ME, Capitini CM. GVHD Pathogenesis, Prevention and Treatment: Lessons From Humanized Mouse Transplant Models. Front Immunol 2021; 12:723544. [PMID: 34394131 PMCID: PMC8358790 DOI: 10.3389/fimmu.2021.723544] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/15/2021] [Indexed: 01/14/2023] Open
Abstract
Graft-vs-host disease (GVHD) is the most common cause of non-relapse mortality following allogeneic hematopoietic stem cell transplantation (HSCT) despite advances in conditioning regimens, HLA genotyping and immune suppression. While murine studies have yielded important insights into the cellular responses of GVHD, differences between murine and human biology has hindered the translation of novel therapies into the clinic. Recently, the field has expanded the ability to investigate primary human T cell responses through the transplantation of human T cells into immunodeficient mice. These xenogeneic HSCT models benefit from the human T cell receptors, CD4 and CD8 proteins having cross-reactivity to murine MHC in addition to several cytokines and co-stimulatory proteins. This has allowed for the direct assessment of key factors in GVHD pathogenesis to be investigated prior to entering clinical trials. In this review, we will summarize the current state of clinical GVHD research and discuss how xenogeneic HSCT models will aid in advancing the current pipeline of novel GVHD prophylaxis therapies into the clinic.
Collapse
Affiliation(s)
- Nicholas J. Hess
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Matthew E. Brown
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Christian M. Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| |
Collapse
|
13
|
Tieppo P, Papadopoulou M, Gatti D, McGovern N, Chan JKY, Gosselin F, Goetgeluk G, Weening K, Ma L, Dauby N, Cogan A, Donner C, Ginhoux F, Vandekerckhove B, Vermijlen D. The human fetal thymus generates invariant effector γδ T cells. J Exp Med 2020; 217:132616. [PMID: 31816633 PMCID: PMC7062527 DOI: 10.1084/jem.20190580] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 09/13/2019] [Accepted: 10/29/2019] [Indexed: 12/28/2022] Open
Abstract
Tieppo et al. show that the human fetal thymus generates invariant γδ T cells with programmed effector functions. This is due to an intrinsic property of fetal HSPCs caused by high expression of the RNA-binding protein Lin28b. In the mouse thymus, invariant γδ T cells are generated at well-defined times during development and acquire effector functions before exiting the thymus. However, whether such thymic programming and age-dependent generation of invariant γδ T cells occur in humans is not known. Here we found that, unlike postnatal γδ thymocytes, human fetal γδ thymocytes were functionally programmed (e.g., IFNγ, granzymes) and expressed low levels of terminal deoxynucleotidyl transferase (TdT). This low level of TdT resulted in a low number of N nucleotide insertions in the complementarity-determining region-3 (CDR3) of their TCR repertoire, allowing the usage of short homology repeats within the germline-encoded VDJ segments to generate invariant/public cytomegalovirus-reactive CDR3 sequences (TRGV8-TRJP1-CATWDTTGWFKIF, TRDV2-TRDD3-CACDTGGY, and TRDV1-TRDD3-CALGELGD). Furthermore, both the generation of invariant TCRs and the intrathymic acquisition of effector functions were due to an intrinsic property of fetal hematopoietic stem and precursor cells (HSPCs) caused by high expression of the RNA-binding protein Lin28b. In conclusion, our data indicate that the human fetal thymus generates, in an HSPC/Lin28b-dependent manner, invariant γδ T cells with programmed effector functions.
Collapse
Affiliation(s)
- Paola Tieppo
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Bruxelles, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Bruxelles, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Deborah Gatti
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Bruxelles, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Naomi McGovern
- Department of Pathology and Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Jerry K Y Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore.,Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,OBGYN-Academic Clinical Program, Duke-National University of Singapore, Duke-National University of Singapore Medical School, Singapore
| | - Françoise Gosselin
- Department of Obstetrics and Gynecology, Hôpital Erasme, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Glenn Goetgeluk
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Karin Weening
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Ling Ma
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Bruxelles, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Nicolas Dauby
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.,Department of Infectious Diseases, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Alexandra Cogan
- Department of Obstetrics and Gynecology, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Catherine Donner
- Department of Obstetrics and Gynecology, Hôpital Erasme, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Bart Vandekerckhove
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Bruxelles, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
14
|
MHC-II alleles shape the CDR3 repertoires of conventional and regulatory naïve CD4 + T cells. Proc Natl Acad Sci U S A 2020; 117:13659-13669. [PMID: 32482872 DOI: 10.1073/pnas.2003170117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
T cell maturation and activation depend upon T cell receptor (TCR) interactions with a wide variety of antigenic peptides displayed in a given major histocompatibility complex (MHC) context. Complementarity-determining region 3 (CDR3) is the most variable part of the TCRα and -β chains, which govern interactions with peptide-MHC complexes. However, it remains unclear how the CDR3 landscape is shaped by individual MHC context during thymic selection of naïve T cells. We established two mouse strains carrying distinct allelic variants of H2-A and analyzed thymic and peripheral production and TCR repertoires of naïve conventional CD4+ T (Tconv) and naïve regulatory CD4+ T (Treg) cells. Compared with tuberculosis-resistant C57BL/6 (H2-Ab) mice, the tuberculosis-susceptible H2-Aj mice had fewer CD4+ T cells of both subsets in the thymus. In the periphery, this deficiency was only apparent for Tconv and was compensated for by peripheral reconstitution for Treg We show that H2-Aj favors selection of a narrower and more convergent repertoire with more hydrophobic and strongly interacting amino acid residues in the middle of CDR3α and CDR3β, suggesting more stringent selection against a narrower peptide-MHC-II context. H2-Aj and H2-Ab mice have prominent reciprocal differences in CDR3α and CDR3β features, probably reflecting distinct modes of TCR fitting to MHC-II variants. These data reveal the mechanics and extent of how MHC-II shapes the naïve CD4+ T cell CDR3 landscape, which essentially defines adaptive response to infections and self-antigens.
Collapse
|
15
|
Zvyagin IV, Tsvetkov VO, Chudakov DM, Shugay M. An overview of immunoinformatics approaches and databases linking T cell receptor repertoires to their antigen specificity. Immunogenetics 2019; 72:77-84. [PMID: 31741011 DOI: 10.1007/s00251-019-01139-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/16/2019] [Indexed: 11/26/2022]
Abstract
Recent advances in molecular and bioinformatic methods have greatly improved our ability to study the formation of an adaptive immune response towards foreign pathogens, self-antigens, and cancer neoantigens. T cell receptors (TCR) are the key players in this process that recognize peptides presented by major histocompatibility complex (MHC). Owing to the huge diversity of both TCR sequence variants and peptides they recognize, accumulation and complex analysis of large amounts of TCR-antigen specificity data is required for understanding the structure and features of adaptive immune responses towards pathogens, vaccines, cancer, as well as autoimmune responses. In the present review, we summarize recent efforts on gathering and interpreting TCR-antigen specificity data and outline the critical role of tighter integration with other immunoinformatics data sources that include epitope MHC restriction, TCR repertoire structure models, and TCR/peptide/MHC structural data. We suggest that such integration can lead to the ability to accurately annotate individual TCR repertoires, efficiently estimate epitope and neoantigen immunogenicity, and ultimately, in silico identify TCRs specific to yet unstudied antigens and predict self-peptides related to autoimmunity.
Collapse
Affiliation(s)
- Ivan V Zvyagin
- Pirogov Russian Medical State University, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Vasily O Tsvetkov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Dmitry M Chudakov
- Pirogov Russian Medical State University, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Mikhail Shugay
- Pirogov Russian Medical State University, Moscow, Russia.
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.
| |
Collapse
|
16
|
Khosravi-Maharlooei M, Obradovic A, Misra A, Motwani K, Holzl M, Seay HR, DeWolf S, Nauman G, Danzl N, Li H, Ho SH, Winchester R, Shen Y, Brusko TM, Sykes M. Crossreactive public TCR sequences undergo positive selection in the human thymic repertoire. J Clin Invest 2019; 129:2446-2462. [PMID: 30920391 DOI: 10.1172/jci124358] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We investigated human T-cell repertoire formation using high throughput TCRβ CDR3 sequencing in immunodeficient mice receiving human hematopoietic stem cells (HSCs) and human thymus grafts. Replicate humanized mice generated diverse and highly divergent repertoires. Repertoire narrowing and increased CDR3β sharing was observed during thymocyte selection. While hydrophobicity analysis implicated self-peptides in positive selection of the overall repertoire, positive selection favored shorter shared sequences that had reduced hydrophobicity at positions 6 and 7 of CDR3βs, suggesting weaker interactions with self-peptides than unshared sequences, possibly allowing escape from negative selection. Sharing was similar between autologous and allogeneic thymi and occurred between different cell subsets. Shared sequences were enriched for allo-crossreactive CDR3βs and for Type 1 diabetes-associated autoreactive CDR3βs. Single-cell TCR-sequencing showed increased sharing of CDR3αs compared to CDR3βs between mice. Our data collectively implicate preferential positive selection for shared human CDR3βs that are highly cross-reactive. While previous studies suggested a role for recombination bias in producing "public" sequences in mice, our study is the first to demonstrate a role for thymic selection. Our results implicate positive selection for promiscuous TCRβ sequences that likely evade negative selection, due to their low affinity for self-ligands, in the abundance of "public" human TCRβ sequences.
Collapse
Affiliation(s)
- Mohsen Khosravi-Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Aleksandar Obradovic
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Aditya Misra
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Keshav Motwani
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Markus Holzl
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Howard R Seay
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Susan DeWolf
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Grace Nauman
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA.,Department of Microbiology and Immunology, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Nichole Danzl
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Haowei Li
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Siu-Hong Ho
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA
| | | | - Yufeng Shen
- Center for Computational Biology and Bioinformatics, and
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA.,Department of Microbiology and Immunology, Columbia University Medical Center, Columbia University, New York, New York, USA.,Department of Surgery, Columbia University Medical Center, Columbia University, New York, New York, USA
| |
Collapse
|
17
|
Mao XF, Chen XP, Jin YB, Cui JH, Pan YM, Lai CY, Lin KR, Ling F, Luo W. The variations of TRBV genes usages in the peripheral blood of a healthy population are associated with their evolution and single nucleotide polymorphisms. Hum Immunol 2018; 80:195-203. [PMID: 30576702 DOI: 10.1016/j.humimm.2018.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 11/16/2022]
Abstract
T cell receptors (TCRs) are a class of T cell surface molecules that recognize the antigen-derived peptides presented by the major histocompatibility complex (MHC) and are able to trigger a series of immune responses. TCRs are important members of the adaptive immune system that arose in the jawed fish 500 million years ago. T cell receptor beta variable (TRBV) genes have been widely used to characterize TCR repertoires. Studying the evolution of TRBV may help us to better understand the adaptive immune system. To investigate TRBV evolution and its impacts on the usages of TRBV genes in human populations, we compared the TRBV genes and their homologous sequences among humans, mouse, rhesus and chimpanzee, analyzed the single-nucleotide polymorphisms (SNPs) located at TRBV loci, and sequenced TCR repertoires in the peripheral blood of 97 healthy donors. We found that functional TRBVs are more evolutionarily conserved but possess more SNPs in human populations than do nonfunctional (pseudo) TRBVs. Based on the conservation levels in the four species, we classified the functional TRBVs into 2 groups: old (conserved between mouse and humans) and new (conserved only in primates). The new TRBVs evolve faster and possess more SNPs than the old TRBVs. The variations in TRBV genes frequencies in the peripheral blood of healthy donors are negatively correlated with SNP density. These observations suggest that TRBV usages may be influenced by TCR-MHC co-evolution.
Collapse
Affiliation(s)
- Xiao-Fan Mao
- Clinical Research Institute, Sun Yat-Sen University Foshan Hospital, Foshan, China; Department of Molecular Biology, School of Bioengineering and Biotechnology, South China University of Technology, Guangzhou, China
| | - Xiang-Ping Chen
- Clinical Research Institute, Sun Yat-Sen University Foshan Hospital, Foshan, China
| | - Ya-Bin Jin
- Clinical Research Institute, Sun Yat-Sen University Foshan Hospital, Foshan, China
| | - Jin-Huan Cui
- Clinical Research Institute, Sun Yat-Sen University Foshan Hospital, Foshan, China
| | - Ying-Ming Pan
- Clinical Research Institute, Sun Yat-Sen University Foshan Hospital, Foshan, China
| | - Chun-Yan Lai
- Center of Health Management, Sun Yat-Sen University Foshan Hospital, Foshan, China
| | - Kai-Rong Lin
- Clinical Research Institute, Sun Yat-Sen University Foshan Hospital, Foshan, China
| | - Fei Ling
- Department of Molecular Biology, School of Bioengineering and Biotechnology, South China University of Technology, Guangzhou, China.
| | - Wei Luo
- Clinical Research Institute, Sun Yat-Sen University Foshan Hospital, Foshan, China.
| |
Collapse
|
18
|
Isser A, Schneck JP. High-affinity T cell receptors for adoptive cell transfer. J Clin Invest 2018; 129:69-71. [PMID: 30530992 DOI: 10.1172/jci125471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adoptive cell transfer (ACT) of engineered T cell receptors (TCRs) for cancer immunotherapy has evolved from simple gene transfer of isolated TCRs to various affinity enhancement techniques that overcome limitations imposed by central and peripheral tolerance on TCR affinity. In the current issue of the JCI, Poncette et al. used mice with human TCRαβ and HLA gene loci to discover CD4+ TCRs of optimal affinity for cancer testis antigen (CTA) NY-ESO-1. They combined this TCR with a previously discovered NY-ESO-1-specific CD8+ TCR in an ACT fibrosarcoma tumor model to demonstrate the importance of T cell help in mediating antitumor responses.
Collapse
Affiliation(s)
| | - Jonathan P Schneck
- Department of Pathology, Medicine and Oncology, and.,Immunology Program, Institute of Cellular Engineering, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Poncette L, Chen X, Lorenz FK, Blankenstein T. Effective NY-ESO-1-specific MHC II-restricted T cell receptors from antigen-negative hosts enhance tumor regression. J Clin Invest 2018; 129:324-335. [PMID: 30530988 DOI: 10.1172/jci120391] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 10/25/2018] [Indexed: 02/01/2023] Open
Abstract
Adoptive transfer of T cell receptor-engineered (TCR-engineered) T cells is a promising approach in cancer therapy but needs improvement for more effective treatment of solid tumors. While most clinical approaches have focused on CD8+ T cells, the importance of CD4+ T cells in mediating tumor regression has become apparent. Regarding shared (self) tumor antigens, it is unclear whether the human CD4+ T cell repertoire has been shaped by tolerance mechanisms and lacks highly functional TCRs suitable for therapy. Here, TCRs against the tumor-associated antigen NY-ESO-1 were isolated either from human CD4+ T cells or from mice that express a diverse human TCR repertoire with HLA-DRA/DRB1*0401 restriction and are NY-ESO-1 negative. NY-ESO-1-reactive TCRs from the mice showed superior recognition of tumor cells and higher functional activity compared with TCRs from humans. We identified a candidate TCR, TCR-3598_2, which was expressed in CD4+ T cells and caused tumor regression in combination with NY-ESO-1-redirected CD8+ T cells in a mouse model of adoptive T cell therapy. These data suggest that MHC II-restricted TCRs against NY-ESO-1 from a nontolerant nonhuman host are of optimal affinity and that the combined use of MHC I- and II-restricted TCRs against NY-ESO-1 can make adoptive T cell therapy more effective.
Collapse
Affiliation(s)
- Lucia Poncette
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Xiaojing Chen
- Institute of Immunology, Charité Campus Berlin Buch, Berlin, Germany
| | | | - Thomas Blankenstein
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Institute of Immunology, Charité Campus Berlin Buch, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
20
|
Medler TR, Murugan D, Horton W, Kumar S, Cotechini T, Forsyth AM, Leyshock P, Leitenberger JJ, Kulesz-Martin M, Margolin AA, Werb Z, Coussens LM. Complement C5a Fosters Squamous Carcinogenesis and Limits T Cell Response to Chemotherapy. Cancer Cell 2018; 34:561-578.e6. [PMID: 30300579 PMCID: PMC6246036 DOI: 10.1016/j.ccell.2018.09.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/17/2018] [Accepted: 09/05/2018] [Indexed: 01/11/2023]
Abstract
Complement is a critical component of humoral immunity implicated in cancer development; however, its biological contributions to tumorigenesis remain poorly understood. Using the K14-HPV16 transgenic mouse model of squamous carcinogenesis, we report that urokinase (uPA)+ macrophages regulate C3-independent release of C5a during premalignant progression, which in turn regulates protumorigenic properties of C5aR1+ mast cells and macrophages, including suppression of CD8+ T cell cytotoxicity. Therapeutic inhibition of C5aR1 via the peptide antagonist PMX-53 improved efficacy of paclitaxel chemotherapy associated with increased presence and cytotoxic properties of CXCR3+ effector memory CD8+ T cells in carcinomas, dependent on both macrophage transcriptional programming and IFNγ. Together, these data identify C5aR1-dependent signaling as an important immunomodulatory program in neoplastic tissue tractable for combinatorial cancer immunotherapy.
Collapse
Affiliation(s)
- Terry R Medler
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Knight Cancer Research Building Room 3030, 2720 SW Moody Avenue, #KC-CDCB, Portland, OR 97201-5042, USA
| | - Dhaarini Murugan
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Knight Cancer Research Building Room 3030, 2720 SW Moody Avenue, #KC-CDCB, Portland, OR 97201-5042, USA
| | - Wesley Horton
- Department of Biomedical Engineering, Program in Computational Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sushil Kumar
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Knight Cancer Research Building Room 3030, 2720 SW Moody Avenue, #KC-CDCB, Portland, OR 97201-5042, USA
| | - Tiziana Cotechini
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Knight Cancer Research Building Room 3030, 2720 SW Moody Avenue, #KC-CDCB, Portland, OR 97201-5042, USA
| | - Alexandra M Forsyth
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Knight Cancer Research Building Room 3030, 2720 SW Moody Avenue, #KC-CDCB, Portland, OR 97201-5042, USA
| | - Patrick Leyshock
- Department of Biomedical Engineering, Program in Computational Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Justin J Leitenberger
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Molly Kulesz-Martin
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Knight Cancer Research Building Room 3030, 2720 SW Moody Avenue, #KC-CDCB, Portland, OR 97201-5042, USA; Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Adam A Margolin
- Department of Biomedical Engineering, Program in Computational Biology, Oregon Health & Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Zena Werb
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, Parker Immunotherapy Cancer Institute, University of California, San Francisco, CA 94143, USA
| | - Lisa M Coussens
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Knight Cancer Research Building Room 3030, 2720 SW Moody Avenue, #KC-CDCB, Portland, OR 97201-5042, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|