1
|
Parker HR, Edgar JE, Goulder PJ. Autovaccination revisited: potential to boost antiviral immunity and facilitate HIV-1 cure/remission in children. Curr Opin HIV AIDS 2025; 20:271-278. [PMID: 40105005 PMCID: PMC11970616 DOI: 10.1097/coh.0000000000000924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
PURPOSE OF REVIEW To review the concept of autovaccination as a strategy to boost anti-HIV-1 immunity and improve immune control, especially as a means to facilitate cure/remission in paediatric HIV-1 infection, where effective interventions in clinical testing remain limited compared to adults. RECENT FINDINGS Early autovaccination studies, conducted 15-25 years ago, suggested potential immunological benefits from exposure to autologous virus in both children and adults, specifically when antiretroviral therapy (ART) was initiated during acute infection. More recent work in nonhuman primates (NHPs) has shown that early ART initiation can significantly reduce the viral setpoint following treatment interruption, primarily through CD8 + T-cell responses, and prevent early immune escape - a phenomenon commonly observed in ART-naive acute infections. Additionally, NHP studies indicate that multiple, short analytical treatment interruptions (ATIs) can delay viral rebound and further lower the viral setpoint via enhanced CD8 + T-cell responses. SUMMARY Recent studies in NHP support the potential for autovaccination via short ATIs to enhance antiviral immunity and improve immune control of HIV-1. With well tolerated, well monitored ATI protocols, autovaccination could be a valuable approach to facilitating cure/remission in children living with HIV (LWH), in whom very early-ART initiation and early-life immunity are associated with low viral reservoirs and high cure/remission potential.
Collapse
Affiliation(s)
- Harriet R. Parker
- Peter Medawar Building for Pathogen Research, Department of Paediatrics
| | - Julia E. Edgar
- Peter Medawar Building for Pathogen Research, Department of Paediatrics
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philip J.R. Goulder
- Peter Medawar Building for Pathogen Research, Department of Paediatrics
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Africa Health Research Institute, Durban, South Africa
| |
Collapse
|
2
|
Wen Z, Li P, Yuan Y, Wang C, Li M, Wang H, Shi M, He Y, Cui M, Chen L, Sun C. Purging viral latency by a bifunctional HSV-vectored therapeutic vaccine in chronically SIV-infected macaques. eLife 2025; 13:RP95964. [PMID: 40266253 PMCID: PMC12017772 DOI: 10.7554/elife.95964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
The persistence of latent viral reservoirs remains the major obstacle to eradicating human immunodeficiency virus (HIV). We herein found that ICP34.5 can act as an antagonistic factor for the reactivation of HIV latency by herpes simplex virus type I (HSV-1), and thus recombinant HSV-1 with ICP34.5 deletion could more effectively reactivate HIV latency than its wild-type counterpart. Mechanistically, HSV-ΔICP34.5 promoted the phosphorylation of HSF1 by decreasing the recruitment of protein phosphatase 1 (PP1α), thus effectively binding to the HIV LTR to reactivate the latent reservoirs. In addition, HSV-ΔICP34.5 enhanced the phosphorylation of IKKα/β through the degradation of IκBα, leading to p65 accumulation in the nucleus to elicit NF-κB pathway-dependent reactivation of HIV latency. Then, we constructed the recombinant HSV-ΔICP34.5 expressing simian immunodeficiency virus (SIV) env, gag, or the fusion antigen sPD1-SIVgag as a therapeutic vaccine, aiming to achieve a functional cure by simultaneously reactivating viral latency and eliciting antigen-specific immune responses. Results showed that these constructs effectively elicited SIV-specific immune responses, reactivated SIV latency, and delayed viral rebound after the interruption of antiretroviral therapy (ART) in chronically SIV-infected rhesus macaques. Collectively, these findings provide insights into the rational design of HSV-vectored therapeutic strategies for pursuing an HIV functional cure.
Collapse
Affiliation(s)
- Ziyu Wen
- School of Public Health (Shenzhen), Sun Yat-sen UniversityShenzhenChina
| | - Pingchao Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of SciencesGuangzhouChina
| | - Yue Yuan
- School of Public Health (Shenzhen), Sun Yat-sen UniversityShenzhenChina
| | - Congcong Wang
- School of Public Health (Shenzhen), Sun Yat-sen UniversityShenzhenChina
| | - Minchao Li
- School of Public Health (Shenzhen), Sun Yat-sen UniversityShenzhenChina
| | - Haohang Wang
- School of Public Health (Shenzhen), Sun Yat-sen UniversityShenzhenChina
| | - Minjuan Shi
- School of Public Health (Shenzhen), Sun Yat-sen UniversityShenzhenChina
| | - Yizi He
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of SciencesGuangzhouChina
| | - Mingting Cui
- School of Public Health (Shenzhen), Sun Yat-sen UniversityShenzhenChina
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of SciencesGuangzhouChina
| | - Caijun Sun
- School of Public Health (Shenzhen), Sun Yat-sen UniversityShenzhenChina
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of EducationGuangzhouChina
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen UniversityShenzhenChina
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen UniversityGuangzhouChina
| |
Collapse
|
3
|
Ding Y, Yan J, Huang L, Yu J, Wu Y, Shen C, Fang A. Large-scale screening of HIV-1 T-cell epitopes restricted by 12 prevalent HLA-A allotypes in Northeast Asia and universal detection of HIV-1-specific CD8 + T cells. Front Microbiol 2025; 16:1529721. [PMID: 40008047 PMCID: PMC11850406 DOI: 10.3389/fmicb.2025.1529721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Background Although the immune response of host T cells to human immunodeficiency virus (HIV) significantly influences the progression of the infection, the development of T-cell-based vaccines and therapies, as well as the clinical evaluation of specific T-cell functions, is currently markedly hindered by the absence of broad-spectrum, functionally validated HIV T-cell epitopes that account for the polymorphisms of the human leukocyte antigen (HLA) within an indicated geographic population. This study aimed to identify T-cell epitopes derived from the GP160, GAG, and POL proteins of the HIV-1 strain, specifically linked to 12 prevalent HLA-A allotypes, that collectively represent approximately 91% of the total gene frequency in Northeast Asian populations. Methods A total of 134 epitopes were predicted in silico and selected as potential candidates for further validation. Subsequently, peripheral blood mononuclear cells (PBMCs) were collected from 96 individuals with HIV-1 and cocultured ex vivo with each epitope candidate peptide, followed by the detection of activated CD8+ T cells. Peripheral blood mononuclear cells (PBMCs) were collected from 96 individuals with HIV-1 and cocultured ex vivo with each candidate peptide epitope, followed by the detection of activated CD8+ T cells. A total of 69 epitopes were validated as real-world HIV T-cell epitopes presented by 12 dominant HLA-A allotypes. Furthermore, the HLA-A cross-restriction for each epitope candidate was identified through peptide competitive binding assays using 12 transfected HMy2.CIR cell lines. Results A total of 45 epitopes demonstrated high affinity, while 31 epitopes displayed intermediate affinity. A broad-spectrum CD8+ T-cell epitope library containing 141 validated epitope peptides was used to universally detect HIV-1-specific CD8+ T cells via peptide-PBMC ex vivo coculture and intracellular IFN-γ staining. In 52 people with HIV-1, the number of reactive HIV-1 specific CD8+ T cells was significantly higher in the CD4+ T-cell-high patient group compared to the CD4+ T-cell-low patient group, and it correlated with the CD4+ T-cell-low patient group (<200/μL). Conclusion This study provides a broad-spectrum CD8+ T-cell epitope library aimed at developing a T-cell-directed HIV vaccine that offers high population coverage in Northeast Asia. In addition, it establishes a universal detection method for the clinical assessment of HIV-1-specific CD8+ T-cell responses.
Collapse
Affiliation(s)
- Yan Ding
- Department of Clinical Laboratory, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jialai Yan
- School of Medical Technology, Anhui Medical College, Hefei, Anhui, China
| | - Ling Huang
- Department of Clinical Laboratory, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jinhong Yu
- Department of Clinical Laboratory, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yandan Wu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Chuanlai Shen
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Anning Fang
- School of Basic Medicine, Anhui Medical College, Hefei, Anhui, China
| |
Collapse
|
4
|
Nag M, Fogle JE, Pillay S, Del Prete GQ, De Paris K. Tissue-Specific DNA Methylation Changes in CD8 + T Cells During Chronic Simian Immunodeficiency Virus Infection of Infant Rhesus Macaques. Viruses 2024; 16:1839. [PMID: 39772149 PMCID: PMC11680437 DOI: 10.3390/v16121839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Robust CD8+ T cell responses are critical for the control of HIV infection in both adults and children. Our understanding of the mechanisms driving these responses is based largely on studies of cells circulating in peripheral blood in adults, but the regulation of CD8+ T cell responses in tissue sites is poorly understood, particularly in pediatric infections. DNA methylation is an epigenetic modification that regulates gene transcription. Hypermethylated gene promoters are associated with transcriptional silencing and, conversely, hypomethylated promoters indicate gene activation. In this study, we evaluated DNA methylation signatures of CD8+ T cells isolated from several different anatomic compartments during pediatric AIDS-virus infection by utilizing the SIVmac239/251 infected infant rhesus macaque model. We performed a stepwise methylation analysis starting with total cellular DNA, to immunomodulatory cytokine promoters, to specific CpG sites within the cytokine promoters in CD8+ T cells isolated from peripheral blood, lymph nodes, and intestinal tissue during the chronic phase of infection. Tissue-specific methylation patterns were determined for transcriptionally active promoters of key immunomodulatory cytokines: interferon gamma (IFNγ), interleukin-2 (IL-2), and tumor necrosis factor alpha (TNFα). In this study, we observed tissue-specific differences in CD8+ T cell modulation by DNA methylation in SIV-infected infant macaques, highlighting the importance of evaluating cells from both blood and tissues to obtain a complete picture of CD8+ T cell regulation during pediatric HIV infection.
Collapse
Affiliation(s)
- Mukta Nag
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA (K.D.P.)
| | | | - Santhoshan Pillay
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA (K.D.P.)
| | - Gregory Q. Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA (K.D.P.)
| |
Collapse
|
5
|
Bengu N, Cromhout G, Adland E, Govender K, Herbert N, Lim N, Fillis R, Sprenger K, Vieira V, Kannie S, van Lobenstein J, Chinniah K, Kapongo C, Bhoola R, Krishna M, Mchunu N, Pascucci GR, Cotugno N, Palma P, Tagarro A, Rojo P, Roider J, Garcia-Guerrero MC, Ochsenbauer C, Groll A, Reddy K, Giaquinto C, Rossi P, Hong S, Dong K, Ansari MA, Puertas MC, Ndung'u T, Capparelli E, Lichterfeld M, Martinez-Picado J, Kappes JC, Archary M, Goulder P. Sustained aviremia despite anti-retroviral therapy non-adherence in male children after in utero HIV transmission. Nat Med 2024; 30:2796-2804. [PMID: 38843818 PMCID: PMC11485204 DOI: 10.1038/s41591-024-03105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
After sporadic reports of post-treatment control of HIV in children who initiated combination anti-retroviral therapy (cART) early, we prospectively studied 284 very-early-cART-treated children from KwaZulu-Natal, South Africa, after vertical HIV transmission to assess control of viremia. Eighty-four percent of the children achieved aviremia on cART, but aviremia persisting to 36 or more months was observed in only 32%. We observed that male infants have lower baseline plasma viral loads (P = 0.01). Unexpectedly, a subset (n = 5) of males maintained aviremia despite unscheduled complete discontinuation of cART lasting 3-10 months (n = 4) or intermittent cART adherence during 17-month loss to follow-up (n = 1). We further observed, in vertically transmitted viruses, a negative correlation between type I interferon (IFN-I) resistance and viral replication capacity (VRC) (P < 0.0001) that was markedly stronger for males than for females (r = -0.51 versus r = -0.07 for IFN-α). Although viruses transmitted to male fetuses were more IFN-I sensitive and of higher VRC than those transmitted to females in the full cohort (P < 0.0001 and P = 0.0003, respectively), the viruses transmitted to the five males maintaining cART-free aviremia had significantly lower replication capacity (P < 0.0001). These data suggest that viremic control can occur in some infants with in utero-acquired HIV infection after early cART initiation and may be associated with innate immune sex differences.
Collapse
Affiliation(s)
- Nomonde Bengu
- Queen Nandi Regional Hospital, Empangeni, South Africa
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Gabriela Cromhout
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Paediatrics, University of KwaZulu-Natal, Durban, South Africa
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, UK
| | | | | | - Nicholas Lim
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Rowena Fillis
- Harry Gwala Regional Hospital, Pietermaritzburg, South Africa
| | - Kenneth Sprenger
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | | | - Samantha Kannie
- General Justice Gizenga Mpanza Regional Hospital, Stanger, South Africa
| | | | | | | | - Roopesh Bhoola
- Harry Gwala Regional Hospital, Pietermaritzburg, South Africa
| | - Malini Krishna
- Harry Gwala Regional Hospital, Pietermaritzburg, South Africa
| | - Noxolo Mchunu
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Giuseppe Rubens Pascucci
- Clinical Immunology and Vaccinology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- Probiomics S.r.l., Rome, Italy
| | - Nicola Cotugno
- Clinical Immunology and Vaccinology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- University of Rome Tor Vergata, Rome, Italy
| | - Paolo Palma
- Clinical Immunology and Vaccinology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- University of Rome Tor Vergata, Rome, Italy
| | - Alfredo Tagarro
- Fundación de Investigación Biomédica Hospital 12 de Octubre, Instituto de Investigación 12 de Octubre (imas12), Madrid, Spain
- Department of Pediatrics, Infanta Sofia University Hospital and Henares University Hospital Foundation for Biomedical Research and Innovation, Madrid, Spain
- Universidad Europea de Madrid, Madrid, Spain
| | - Pablo Rojo
- Fundación de Investigación Biomédica Hospital 12 de Octubre, Instituto de Investigación 12 de Octubre (imas12), Madrid, Spain
| | | | | | | | | | - Kavidha Reddy
- Africa Health Research Institute, Durban, South Africa
| | | | - Paolo Rossi
- Clinical Immunology and Vaccinology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- University of Rome Tor Vergata, Rome, Italy
| | - Seohyun Hong
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Krista Dong
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - M Azim Ansari
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Maria C Puertas
- IrsiCaixa AIDS Research Institute, Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
- Division of Infection and Immunity, University College London, London, UK
| | | | | | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Infectious Diseases and Immunity Department, University of Vic-Central University of Catalonia, Vic, Spain
| | - John C Kappes
- University of Alabama at Birmingham, Birmingham, AL, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL, USA
| | - Moherndran Archary
- Department of Paediatrics, University of KwaZulu-Natal, Durban, South Africa
| | - Philip Goulder
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- Africa Health Research Institute, Durban, South Africa.
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA.
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Highlighting opportunities/potential for immunotherapy by understanding dynamics of HIV control during pediatric HIV infection with and without antiretroviral therapy (ART), as modeled in Simian immunodeficiency virus (SIV) and Simian-human immunodeficiency virus (SHIV)-infected rhesus macaques and observed in clinical trials. This review outlines mode of transmission, pathogenesis of pediatric HIV, unique aspects of the infant immune system, infant macaque models and immunotherapies. RECENT FINDINGS During the earliest stages of perinatal HIV infection, the infant immune system is characterized by a unique environment defined by immune tolerance and lack of HIV-specific T cell responses which contribute to disease progression. Moreover, primary lymphoid organs such as the thymus appear to play a distinct role in HIV pathogenesis in children living with HIV (CLWH). Key components of the immune system determine the degree of viral control, targets for strategies to induce viral control, and the response to immunotherapy. The pursuit of highly potent broadly neutralizing antibodies (bNAbs) and T cell vaccines has revolutionized the approach to HIV cure. Administration of HIV-1-specific bNAbs, targeting the highly variable envelope improves humoral immunity, and T cell vaccines induce or improve T cell responses such as the cytotoxic effects of HIV-1-specific CD8+ T cells, both of which are promising options towards virologic control and ART-free remission as evidenced by completed and ongoing clinical trials. SUMMARY Understanding early events during HIV infection and disease progression in CLWH serves as a foundation for predicting or targeting later outcomes by harnessing the immune system's natural responses. The developing pediatric immune system offers multiple opportunities for specific long-term immunotherapies capable of improving quality of life during adolescence and adulthood.
Collapse
Affiliation(s)
- Tehillah T. Chinunga
- Program in Immunology and Molecular Pathogenesis, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University
| | - Susan P. Ribeiro
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine
- Emory Vaccine Center
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Kyobe S, Kisitu G, Mwesigwa S, Farirai J, Katagirya E, Retshabile G, Williams L, Mirembe A, Ketumile L, Wayengera M, Mukisa J, Sebetso G, Diphoko T, Amujal M, Kigozi E, Katabazi F, Oceng R, Mlotshwa B, Morapedi K, Nsangi B, Wampande E, Tsimako M, Brown C, Kasvosve I, Joloba M, Anabwani G, Mpoloka S, Mardon G, Kekitiinwa A, Hanchard NA, Kyosiimire-Lugemwa J, Matshaba M, Kiragga D. Long-term non-progression and risk factors for disease progression among children living with HIV in Botswana and Uganda: A retrospective cohort study. Int J Infect Dis 2024; 139:132-140. [PMID: 38036259 PMCID: PMC10843817 DOI: 10.1016/j.ijid.2023.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023] Open
Abstract
OBJECTIVES We utilize a large retrospective study cohort derived from electronic medical records to estimate the prevalence of long-term non-progression (LTNP) and determine the factors associated with progression among children infected with HIV in Botswana and Uganda. METHODS Electronic medical records from large tertiary HIV clinical centers in Botswana and Uganda were queried to identify LTNP children 0-18 years enrolled between June 2003 and May 2014 and extract demographic and nutritional parameters. Multivariate subdistribution hazard analyses were used to examine demographic factors and nutritional status in progression in the pre-antiretroviral therapy era. RESULTS Between the two countries, 14,246 antiretroviral therapy-naïve children infected with HIV were enrolled into clinical care. The overall proportion of LTNP was 6.3% (9.5% in Botswana vs 5.9% in Uganda). The median progression-free survival for the cohort was 6.3 years, although this was lower in Botswana than in Uganda (6.6 vs 8.8 years; P <0.001). At baseline, the adjusted subdistribution hazard ratio (aHRsd) of progression was increased among underweight children (aHRsd 1.42; 95% confidence interval [CI]: 1.32-1.53), enrolled after 2010 (aHRsd 1.32; 95% CI 1.22-1.42), and those from Botswana (aHRsd 2; 95% CI 1.91-2.10). CONCLUSIONS In our study, the prevalence of pediatric LTNP was lower than that observed among adult populations, but progression-free survival was higher than expected. Underweight, year of enrollment into care, and country of origin are independent predictors of progression among children.
Collapse
Affiliation(s)
- Samuel Kyobe
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda.
| | - Grace Kisitu
- Baylor College of Medicine Children's Foundation Uganda, Kampala, Uganda
| | - Savannah Mwesigwa
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - John Farirai
- Botswana-Baylor Children's Clinical Centre of Excellence, Gaborone, Botswana
| | - Eric Katagirya
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Gaone Retshabile
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Lesedi Williams
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Angela Mirembe
- Baylor College of Medicine Children's Foundation Uganda, Kampala, Uganda
| | - Lesego Ketumile
- Botswana-Baylor Children's Clinical Centre of Excellence, Gaborone, Botswana
| | - Misaki Wayengera
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - John Mukisa
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Gaseene Sebetso
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Thabo Diphoko
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Marion Amujal
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Edgar Kigozi
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Fred Katabazi
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Ronald Oceng
- Baylor College of Medicine Children's Foundation Uganda, Kampala, Uganda
| | - Busisiwe Mlotshwa
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Koketso Morapedi
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Betty Nsangi
- Baylor College of Medicine Children's Foundation Uganda, Kampala, Uganda
| | - Edward Wampande
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Chester Brown
- University of Tennessee Health Science Center, Memphis, USA
| | - Ishmael Kasvosve
- School of Allied Health Professionals, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Moses Joloba
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Gabriel Anabwani
- Baylor College of Medicine Children's Foundation Uganda, Kampala, Uganda
| | - Sununguko Mpoloka
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Graeme Mardon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, USA
| | - Adeodata Kekitiinwa
- Baylor College of Medicine Children's Foundation Uganda, Kampala, Uganda; Pediatric Retrovirology, Department of Pediatrics, Baylor College of Medicine, Houston, USA
| | - Neil A Hanchard
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, USA; USDA/ARS/Children's Nutrition Research Center, Baylor College of Medicine, Houston, USA; Childhood Complex Disease Genomics Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | | | - Mogomotsi Matshaba
- Botswana-Baylor Children's Clinical Centre of Excellence, Gaborone, Botswana; Pediatric Retrovirology, Department of Pediatrics, Baylor College of Medicine, Houston, USA
| | - Dithan Kiragga
- Baylor College of Medicine Children's Foundation Uganda, Kampala, Uganda; Pediatric Retrovirology, Department of Pediatrics, Baylor College of Medicine, Houston, USA
| |
Collapse
|
8
|
Schulz VE, Tuff JF, Tough RH, Lewis L, Chimukangara B, Garrett N, Abdool Karim Q, Abdool Karim SS, McKinnon LR, Kharsany ABM, McLaren PJ. Host genetic variation at a locus near CHD1L impacts HIV sequence diversity in a South African population. J Virol 2023; 97:e0095423. [PMID: 37747237 PMCID: PMC10617395 DOI: 10.1128/jvi.00954-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/04/2023] [Indexed: 09/26/2023] Open
Abstract
IMPORTANCE It has been previously shown that genetic variants near CHD1L on chromosome 1 are associated with reduced HIV VL in African populations. However, the impact of these variants on viral diversity and how they restrict viral replication are unknown. We report on a regional association analysis in a South African population and show evidence of selective pressure by variants near CHD1L on HIV RT and gag. Our findings provide further insight into how genetic variability at this locus contributes to host control of HIV in a South African population.
Collapse
Affiliation(s)
- Vanessa E. Schulz
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Sexually Transmitted and Bloodborne Infections Division, JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Jeffrey F. Tuff
- Sexually Transmitted and Bloodborne Infections Division, JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Riley H. Tough
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Sexually Transmitted and Bloodborne Infections Division, JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Lara Lewis
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Benjamin Chimukangara
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
- Department of Virology, University of KwaZulu-Natal, Durban, South Africa
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Salim S. Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Lyle R. McKinnon
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Ayesha B. M. Kharsany
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Science, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Paul J. McLaren
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Sexually Transmitted and Bloodborne Infections Division, JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Herbert NG, Goulder PJR. Impact of early antiretroviral therapy, early life immunity and immune sex differences on HIV disease and posttreatment control in children. Curr Opin HIV AIDS 2023; 18:229-236. [PMID: 37421384 PMCID: PMC10399946 DOI: 10.1097/coh.0000000000000807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
PURPOSE OF REVIEW To review recent insights into the factors affecting HIV disease progression in children living with HIV, contrasting outcomes: following early ART initiation with those in natural, antiretroviral therapy (ART)-naive infection; in children versus adults; and in female individuals versus male individuals. RECENT FINDINGS Early life immune polarization and several factors associated with mother-to-child transmission of HIV result in an ineffective HIV-specific CD8+ T-cell response and rapid disease progression in most children living with HIV. However, the same factors result in low immune activation and antiviral efficacy mediated mainly through natural killer cell responses in children and are central features of posttreatment control. By contrast, rapid activation of the immune system and generation of a broad HIV-specific CD8+ T-cell response in adults, especially in the context of 'protective' HLA class I molecules, are associated with superior disease outcomes in ART-naive infection but not with posttreatment control. The higher levels of immune activation in female individuals versus male individuals from intrauterine life onwards increase HIV infection susceptibility in females in utero and may favour ART-naive disease outcomes rather than posttreatment control. SUMMARY Early-life immunity and factors associated with mother-to-child transmission typically result in rapid HIV disease progression in ART-naive infection but favour posttreatment control in children following early ART initiation.
Collapse
Affiliation(s)
- Nicholas G Herbert
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
10
|
Mokaleng B, Choga WT, Bareng OT, Maruapula D, Ditshwanelo D, Kelentse N, Mokgethi P, Moraka NO, Motswaledi MS, Tawe L, Koofhethile CK, Moyo S, Zachariah M, Gaseitsiwe S. No Difference in the Prevalence of HIV-1 gag Cytotoxic T-Lymphocyte-Associated Escape Mutations in Viral Sequences from Early and Late Parts of the HIV-1 Subtype C Pandemic in Botswana. Vaccines (Basel) 2023; 11:1000. [PMID: 37243104 PMCID: PMC10221913 DOI: 10.3390/vaccines11051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
HIV is known to accumulate escape mutations in the gag gene in response to the immune response from cytotoxic T lymphocytes (CTLs). These mutations can occur within an individual as well as at a population level. The population of Botswana exhibits a high prevalence of HLA*B57 and HLA*B58, which are associated with effective immune control of HIV. In this retrospective cross-sectional investigation, HIV-1 gag gene sequences were analyzed from recently infected participants across two time periods which were 10 years apart: the early time point (ETP) and late time point (LTP). The prevalence of CTL escape mutations was relatively similar between the two time points-ETP (10.6%) and LTP (9.7%). The P17 protein had the most mutations (9.4%) out of the 36 mutations that were identified. Three mutations (A83T, K18R, Y79H) in P17 and T190A in P24 were unique to the ETP sequences at a prevalence of 2.4%, 4.9%, 7.3%, and 5%, respectively. Mutations unique to the LTP sequences were all in the P24 protein, including T190V (3%), E177D (6%), R264K (3%), G248D (1%), and M228L (11%). Mutation K331R was statistically higher in the ETP (10%) compared to the LTP (1%) sequences (p < 0.01), while H219Q was higher in the LTP (21%) compared to the ETP (5%) (p < 0.01). Phylogenetically, the gag sequences clustered dependently on the time points. We observed a slower adaptation of HIV-1C to CTL immune pressure at a population level in Botswana. These insights into the genetic diversity and sequence clustering of HIV-1C can aid in the design of future vaccine strategies.
Collapse
Affiliation(s)
- Baitshepi Mokaleng
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone 999106, Botswana; (M.S.M.); (L.T.); (M.Z.)
| | - Wonderful Tatenda Choga
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone 999106, Botswana; (M.S.M.); (L.T.); (M.Z.)
| | - Ontlametse Thato Bareng
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone 999106, Botswana; (M.S.M.); (L.T.); (M.Z.)
| | - Dorcas Maruapula
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
| | - Doreen Ditshwanelo
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
| | - Nametso Kelentse
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
| | - Patrick Mokgethi
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- Department of Biological Sciences, Faculty of Science, University of Botswana, Gaborone 999106, Botswana
| | - Natasha Onalenna Moraka
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone 999106, Botswana; (M.S.M.); (L.T.); (M.Z.)
| | - Modisa Sekhamo Motswaledi
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone 999106, Botswana; (M.S.M.); (L.T.); (M.Z.)
| | - Leabaneng Tawe
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone 999106, Botswana; (M.S.M.); (L.T.); (M.Z.)
| | - Catherine Kegakilwe Koofhethile
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Matshediso Zachariah
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone 999106, Botswana; (M.S.M.); (L.T.); (M.Z.)
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
11
|
Vieira V, Lim N, Singh A, Leitman E, Dsouza R, Adland E, Muenchhoff M, Roider J, Marin Lopez M, Carabelli J, Giandhari J, Groll A, Jooste P, Prado JG, Thobakgale C, Dong K, Kiepiela P, Prendergast AJ, Tudor-Williams G, Frater J, Walker BD, Ndung’u T, Ramsuran V, Leslie A, Kløverpris HN, Goulder P. Slow progression of pediatric HIV associates with early CD8+ T cell PD-1 expression and a stem-like phenotype. JCI Insight 2023; 8:e156049. [PMID: 36602861 PMCID: PMC9977437 DOI: 10.1172/jci.insight.156049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
HIV nonprogression despite persistent viremia is rare among adults who are naive to antiretroviral therapy (ART) but relatively common among ART-naive children. Previous studies indicate that ART-naive pediatric slow progressors (PSPs) adopt immune evasion strategies similar to those described in natural hosts of SIV. However, the mechanisms underlying this immunophenotype are not well understood. In a cohort of early-treated infants who underwent analytical treatment interruption (ATI) after 12 months of ART, expression of PD-1 on CD8+ T cells immediately before ATI was the main predictor of slow progression during ATI. PD-1+CD8+ T cell frequency was also negatively correlated with CCR5 and HLA-DR expression on CD4+ T cells and predicted stronger HIV-specific T lymphocyte responses. In the CD8+ T cell compartment of PSPs, we identified an enrichment of stem-like TCF-1+PD-1+ memory cells, whereas pediatric progressors and viremic adults had a terminally exhausted PD-1+CD39+ population. TCF-1+PD-1+ expression on CD8+ T cells was associated with higher proliferative activity and stronger Gag-specific effector functionality. These data prompted the hypothesis that the proliferative burst potential of stem-like HIV-specific cytotoxic cells could be exploited in therapeutic strategies to boost the antiviral response and facilitate remission in infants who received early ART with a preserved and nonexhausted T cell compartment.
Collapse
Affiliation(s)
- Vinicius Vieira
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Nicholas Lim
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Alveera Singh
- Africa Health Research Institute, Durban, South Africa
| | - Ellen Leitman
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Reena Dsouza
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Maximilian Muenchhoff
- Max von Pettenkofer-Institute, Department of Virology, Ludwig-Maximilians-University, Munich, Germany
- German Center for Infection Research, Munich, Germany
| | - Julia Roider
- German Center for Infection Research, Munich, Germany
- Department of Infectious Diseases, Ludwig-Maximilians-University, Munich, Germany
| | | | | | - Jennifer Giandhari
- KwaZulu-Natal Research Innovation and Sequencing Platform, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Andreas Groll
- Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - Pieter Jooste
- Department of Paediatrics, Kimberley Hospital, Kimberley, South Africa
| | - Julia G. Prado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute, Badalona, Spain; Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Christina Thobakgale
- Faculty of Health Sciences, Centre for HIV and STIs, National Institute for Communicable Diseases, University of the Witwatersrand, Johannesburg, South Africa
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Krista Dong
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Photini Kiepiela
- South African Medical Research Council, Durban, South Africa
- Wits Health Consortium, Johannesburg, South Africa
| | - Andrew J. Prendergast
- Blizard Institute, Queen Mary University of London, London, United Kingdom
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Gareth Tudor-Williams
- Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Oxford, United Kingdom
| | - Bruce D. Walker
- Africa Health Research Institute, Durban, South Africa
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Thumbi Ndung’u
- Africa Health Research Institute, Durban, South Africa
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Alasdair Leslie
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Henrik N. Kløverpris
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
12
|
Vieira VA, Herbert N, Cromhout G, Adland E, Goulder P. Role of Early Life Cytotoxic T Lymphocyte and Natural Killer Cell Immunity in Paediatric HIV Cure/Remission in the Anti-Retroviral Therapy Era. Front Immunol 2022; 13:886562. [PMID: 35634290 PMCID: PMC9130627 DOI: 10.3389/fimmu.2022.886562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Only three well-characterised cases of functional cure have been described in paediatric HIV infection over the past decade. This underlines the fact that early initiation of combination antiretroviral therapy (cART), whilst minimising the size of the viral reservoir, is insufficient to achieve cure, unless other factors contribute. In this review, we consider these additional factors that may facilitate functional cure in paediatric infection. Among the early life immune activity, these include HIV-specific cytotoxic T-lymphocyte (CTL) and natural killer (NK) cell responses. The former have less potent antiviral efficacy in paediatric compared with adult infection, and indeed, in early life, NK responses have greater impact in suppressing viral replication than CTL. This fact may contribute to a greater potential for functional cure to be achieved in paediatric versus adult infection, since post-treatment control in adults is associated less with highly potent CTL activity, and more with effective antiviral NK cell responses. Nonetheless, antiviral CTL responses can play an increasingly effective role through childhood, especially in individuals expressing then 'protective' HLA-I molecules HLA-B*27/57/58:01/8101. The role of the innate system on preventing infection, in shaping the particular viruses transmitted, and influencing outcome is discussed. The susceptibility of female fetuses to in utero mother-to-child transmission, especially in the setting of recent maternal infection, is a curiosity that also provides clues to mechanisms by which cure may be achieved, since initial findings are that viral rebound is less frequent among males who interrupt cART. The potential of broadly neutralising antibody therapy to facilitate cure in children who have received early cART is discussed. Finally, we draw attention to the impact of the changing face of the paediatric HIV epidemic on cure potential. The effect of cART is not limited to preventing AIDS and reducing the risk of transmission. cART also affects which mothers transmit. No longer are mothers who transmit those who carry genes associated with poor immune control of HIV. In the cART era, a high proportion (>70% in our South African study) of transmitting mothers are those who seroconvert in pregnancy or who for social reasons are diagnosed late in pregnancy. As a result, now, genes associated with poor immune control of HIV are not enriched in mothers who transmit HIV to their child. These changes will likely influence the effectiveness of HLA-associated immune responses and therefore cure potential among children.
Collapse
Affiliation(s)
- Vinicius A. Vieira
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Nicholas Herbert
- Africa Health Research Institute (AHRI), Nelson R Mandela School of Medicine, Durban, South Africa
| | - Gabriela Cromhout
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Emily Adland
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom,Africa Health Research Institute (AHRI), Nelson R Mandela School of Medicine, Durban, South Africa,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa,*Correspondence: Philip Goulder,
| |
Collapse
|
13
|
Preservation of lymphocyte functional fitness in perinatally-infected and treated HIV+ pediatric patients displaying sub-optimal viral control. COMMUNICATIONS MEDICINE 2022; 2. [PMID: 35434722 PMCID: PMC9012494 DOI: 10.1038/s43856-022-00085-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Host–pathogen dynamics associated with HIV infection are quite distinct in children versus adults. We interrogated the functional fitness of the lymphocyte responses in two cohorts of perinatally infected HIV+ pediatric subjects with early anti-retroviral therapy (ART) initiation but divergent patterns of virologic control. We hypothesized that sub-optimal viral control would compromise immune functional fitness.
Methods
The immune responses in the two HIV+ cohorts (n = 6 in each cohort) were benchmarked against the responses measured in age-range matched, uninfected healthy control subjects (n = 11) by utilizing tests for normality, and comparison [the Kruskal–Wallis test, and the two-tailed Mann–Whitney U test (where appropriate)]. Lymphocyte responses were examined by intra-cellular cytokine secretion, degranulation assays as well as phosflow. A subset of these data were further queried by an automated clustering algorithm. Finally, we evaluated the humoral immune responses to four childhood vaccines in all three cohorts.
Results
We demonstrate that contrary to expectations pediatric HIV+ patients with sub-optimal viral control display no significant deficits in immune functional fitness. In fact, the patients that display better virologic control lack functional Gag-specific T cell responses and compared to healthy controls they display signaling deficits and an enrichment of mitogen-stimulated CD3 negative and positive lymphocyte clusters with suppressed cytokine production.
Conclusions
These results highlight the immune resilience in HIV+ children on ART with sub-optimal viral control. With respect to HIV+ children on ART with better viral control, our data suggest that this cohort might potentially benefit from targeted interventions that might mitigate cell-mediated immune functional quiescence.
Collapse
|
14
|
Vieira VA, Millar J, Adland E, Muenchhoff M, Roider J, Guash CF, Peluso D, Thomé B, Garcia-Guerrero MC, Puertas MC, Bamford A, Brander C, Carrington M, Martinez-Picado J, Frater J, Tudor-Williams G, Goulder P. Robust HIV-specific CD4+ and CD8+ T-cell responses distinguish elite control in adolescents living with HIV from viremic nonprogressors. AIDS 2022; 36:95-105. [PMID: 34581306 PMCID: PMC8654249 DOI: 10.1097/qad.0000000000003078] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Elite controllers are therapy-naive individuals living with HIV capable of spontaneous control of plasma viraemia for at least a year. Although viremic nonprogressors are more common in vertical HIV-infection than in adults' infection, elite control has been rarely characterized in the pediatric population. DESIGN We analyzed the T-cell immunophenotype and the HIV-specific response by flow cytometry in four pediatric elite controllers (PECs) compared with age-matched nonprogressors (PNPs), progressors and HIV-exposed uninfected (HEUs) adolescents. RESULTS PECs T-cell populations had lower immune activation and exhaustion levels when compared with progressors, reflected by a more sustained and preserved effector function. The HIV-specific T-cell responses among PECs were characterized by high-frequency Gag-specific CD4+ T-cell activity, and markedly more polyfunctional Gag-specific CD8+ activity, compared with PNPs and progressors. These findings were consistently observed even in the absence of protective HLA-I molecules such as HLA-B∗27/57/81. CONCLUSION Pediatric elite control is normally achieved after years of infection, and low immune activation in PNPs precedes the increasing ability of CD8+ T-cell responses to achieve immune control of viraemia over the course of childhood, whereas in adults, high immune activation in acute infection predicts subsequent CD8+ T-cell mediated immune control of viremia, and in adult elite controllers, low immune activation is therefore the consequence of the rapid CD8+ T-cell mediated immune control generated after acute infection. This distinct strategy adopted by PECs may help identify pathways that facilitate remission in posttreatment controllers, in whom protective HLA-I molecules are not the main factor.
Collapse
Affiliation(s)
| | - Jane Millar
- Department of Paediatrics, University of Oxford, Oxford, UK
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal (UKZN), Durban, South Africa
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Maximilian Muenchhoff
- Max von Pettenkofer-Institute, Department of Virology, Ludwig-Maximilians-University
- German Center for Infection Research (DZIF)
| | - Julia Roider
- German Center for Infection Research (DZIF)
- Department of Infectious Diseases, Ludwig-Maximilians-University, Munich, Germany
| | - Claudia Fortuny Guash
- Unidad de Enfermedades Infecciosas, Servicio de Pediatría, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | | | - Beatriz Thomé
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina Preventiva, São Paulo, Brazil
| | | | | | - Alasdair Bamford
- Great Ormond Street Hospital for Children NHS Foundation Trust
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Christian Brander
- IrsiCaixa - AIDS Research Institute, Badalona, Spain
- Universitat de Vic-Universitat Central de Catalunya, Vic
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Mary Carrington
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts
- Basic Science Program, Frederick National Laboratory for Cancer Research in the Laboratory of Integrative Cancer Immunology, Bethesda, Maryland, USA
| | - Javier Martinez-Picado
- IrsiCaixa - AIDS Research Institute, Badalona, Spain
- Universitat de Vic-Universitat Central de Catalunya, Vic
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - John Frater
- Nuffield Department of Medicine, University of Oxford
- Oxford NIHR Biomedical Research Centre, Oxford
| | | | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, UK
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal (UKZN), Durban, South Africa
| |
Collapse
|
15
|
Two distinct mechanisms leading to loss of virological control in the rare group of antiretroviral therapy-naïve, transiently aviraemic children living with HIV. J Virol 2021; 96:e0153521. [PMID: 34757843 PMCID: PMC8791270 DOI: 10.1128/jvi.01535-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
HIV-specific CD8+ T-cells play a central role in immune control of adult HIV, but their contribution in paediatric infection is less well-characterised. Previously, we identified a group of ART-naïve children with persistently undetectable plasma viraemia, termed 'elite controllers', and a second group who achieved aviraemia only transiently. To investigate the mechanisms of failure to maintain aviraemia, we characterized in three transient aviraemics (TAs), each of whom expressed the disease-protective HLA-B*81:01, longitudinal HIV-specific T-cell activity and viral sequences. In two TAs, a CD8+ T-cell response targeting the immunodominant epitope TPQDLNTML ('Gag-TL9') was associated with viral control, followed by viral rebound and the emergence of escape variants with lower replicative capacity. Both TAs mounted variant-specific responses, but only at low functional avidity, resulting in immunological progression. By contrast, in TA-3, intermittent viraemic episodes followed aviraemia without virus escape or a diminished CD4+ T-cell count. High quality and magnitude of the CD8+ T-cell response was associated with aviraemia. We therefore identify two distinct mechanisms of loss of viral control. In one scenario, CD8+ T-cell responses initially cornered low replicative capacity escape variants, but with insufficient avidity to prevent viraemia and disease progression. In the other, loss of viral control was associated neither with virus escape nor progression, but with a decrease in the quality of the CD8+ T-cell response, followed by recovery of viral control in association with improved antiviral response. These data suggest the potential for a consistently strong and polyfunctional antiviral response to achieve long-term viral control without escape. IMPORTANCE Very early initiation of antiretroviral therapy (ART) in paediatric HIV infection offers a unique opportunity to limit the size and diversity of the viral reservoir. However, only exceptionally is ART alone sufficient to achieve remission. Additional interventions are therefore required that likely include contributions from host immunity. The HIV-specific T-cell response plays a central role in immune control of adult HIV, often mediated through protective alleles such as HLA-B*57/58:01/81:01. However, due to the tolerogenic and type 2 biased immune response in early life, HLA-I-mediated immune suppression of viraemia is seldom observed in children. We describe a rare group of HLA-B*81:01-positive, ART-naïve children who achieved aviraemia, albeit only transiently, and investigate the role of the CD8+ T-cell response in the establishment and loss of viral control. We identify a mechanism by which the HIV-specific response can achieve viraemic control without viral escape, that can be explored in strategies to achieve remission.
Collapse
|
16
|
Vieira VA, Adland E, Malone DFG, Martin MP, Groll A, Ansari MA, Garcia-Guerrero MC, Puertas MC, Muenchhoff M, Guash CF, Brander C, Martinez-Picado J, Bamford A, Tudor-Williams G, Ndung’u T, Walker BD, Ramsuran V, Frater J, Jooste P, Peppa D, Carrington M, Goulder PJR. An HLA-I signature favouring KIR-educated Natural Killer cells mediates immune control of HIV in children and contrasts with the HLA-B-restricted CD8+ T-cell-mediated immune control in adults. PLoS Pathog 2021; 17:e1010090. [PMID: 34793581 PMCID: PMC8639058 DOI: 10.1371/journal.ppat.1010090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 11/04/2021] [Indexed: 12/30/2022] Open
Abstract
Natural Killer (NK) cells contribute to HIV control in adults, but HLA-B-mediated T-cell activity has a more substantial impact on disease outcome. However, the HLA-B molecules influencing immune control in adults have less impact on paediatric infection. To investigate the contribution NK cells make to immune control, we studied >300 children living with HIV followed over two decades in South Africa. In children, HLA-B alleles associated with adult protection or disease-susceptibility did not have significant effects, whereas Bw4 (p = 0.003) and low HLA-A expression (p = 0.002) alleles were strongly associated with immunological and viral control. In a comparator adult cohort, Bw4 and HLA-A expression contributions to HIV disease outcome were dwarfed by those of protective and disease-susceptible HLA-B molecules. We next investigated the immunophenotype and effector functions of NK cells in a subset of these children using flow cytometry. Slow progression and better plasma viraemic control were also associated with high frequencies of less terminally differentiated NKG2A+NKp46+CD56dim NK cells strongly responsive to cytokine stimulation and linked with the immunogenetic signature identified. Future studies are indicated to determine whether this signature associated with immune control in early life directly facilitates functional cure in children.
Collapse
Affiliation(s)
- Vinicius A. Vieira
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | | | - Maureen P. Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Andreas Groll
- Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - M. Azim Ansari
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Mari C. Puertas
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER en Enfermedades Infecciosas, Madrid, Spain
| | - Maximilian Muenchhoff
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Claudia Fortuny Guash
- Infectious Diseases and Systemic Inflammatory Response in Pediatrics, Infectious Diseases Unit, Department of Pediatrics, Sant Joan de Déu Hospital Research Foundation, Barcelona, Spain
- Center for Biomedical Network Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Pediatrics, University of Barcelona, Barcelona, Spain
- Translational Research Network in Pediatric Infectious Diseases (RITIP), Madrid, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER en Enfermedades Infecciosas, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER en Enfermedades Infecciosas, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Alasdair Bamford
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | | | - Thumbi Ndung’u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute (AHRI), Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Bruce D. Walker
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute (AHRI), Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Oxford, United Kingdom
| | - Pieter Jooste
- Department of Paediatrics, Kimberley Hospital, Kimberley, South Africa
| | - Dimitra Peppa
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Philip J. R. Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
17
|
Olusola BA, Olaleye DO, Odaibo GN. Non-synonymous Substitutions in HIV-1 GAG Are Frequent in Epitopes Outside the Functionally Conserved Regions and Associated With Subtype Differences. Front Microbiol 2021; 11:615721. [PMID: 33505382 PMCID: PMC7829476 DOI: 10.3389/fmicb.2020.615721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/15/2020] [Indexed: 12/22/2022] Open
Abstract
In 2019, 38 million people lived with HIV-1 infection resulting in 690,000 deaths. Over 50% of this infection and its associated deaths occurred in Sub-Saharan Africa. The West African region is a known hotspot of the HIV-1 epidemic. There is a need to develop an HIV-1 vaccine if the HIV epidemic would be effectively controlled. Few protective cytotoxic T Lymphocytes (CTL) epitopes within the HIV-1 GAG (HIV_gagconsv) have been previously identified to be functionally conserved among the HIV-1 M group. These epitopes are currently the focus of universal HIV-1 T cell-based vaccine studies. However, these epitopes' phenotypic and genetic properties have not been observed in natural settings for HIV-1 strains circulating in the West African region. This information is critical as the usefulness of universal HIV-1 vaccines in the West African region depends on these epitopes' occurrence in strains circulating in the area. This study describes non-synonymous substitutions within and without HIV_gagconsv genes isolated from 10 infected Nigerians at the early stages of HIV-1 infection. Furthermore, we analyzed these substitutions longitudinally in five infected individuals from the early stages of infection till after seroconversion. We identified three non-synonymous substitutions within HIV_gagconsv genes isolated from early HIV infected individuals. Fourteen and nineteen mutations outside the HIV_gagconsv were observed before and after seroconversion, respectively, while we found four mutations within the HIV_gagconsv. These substitutions include previously mapped CTL epitope immune escape mutants. CTL immune pressure likely leaves different footprints on HIV-1 GAG epitopes within and outside the HIV_gagconsv. This information is crucial for universal HIV-1 vaccine designs for use in the West African region.
Collapse
Affiliation(s)
| | | | - Georgina N. Odaibo
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
18
|
Materne EC, Lilleri D, Garofoli F, Lombardi G, Furione M, Zavattoni M, Gibson L. Cytomegalovirus-Specific T Cell Epitope Recognition in Congenital Cytomegalovirus Mother-Infant Pairs. Front Immunol 2020; 11:568217. [PMID: 33329532 PMCID: PMC7732427 DOI: 10.3389/fimmu.2020.568217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/09/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Congenital cytomegalovirus (cCMV) infection is the most common infection acquired before birth and from which about 20% of infants develop permanent neurodevelopmental effects regardless of presence or absence of symptoms at birth. Viral escape from host immune control may be a mechanism of CMV transmission and infant disease severity. We sought to identify and compare CMV epitopes recognized by mother-infant pairs. We also hypothesized that if immune escape were occurring, then one pattern of longitudinal CD8 T cell responses restricted by shared HLA alleles would be maternal loss (by viral escape) and infant gain (by viral reversion to wildtype) of CMV epitope recognition. Methods: The study population consisted of 6 women with primary CMV infection during pregnancy and their infants with cCMV infection. CMV UL83 and UL123 peptides with known or predicted restriction by maternal MHC class I alleles were identified, and a subset was selected for testing based on several criteria. Maternal or infant cells were stimulated with CMV peptides in the IFN-γ ELISpot assay. Results: Overall, 14 of 25 (56%; 8 UL83 and 6 UL123) peptides recognized by mother-infant pairs were not previously reported as CD8 T cell epitopes. Of three pairs with longitudinal samples, one showed maternal loss and infant gain of responses to a CMV epitope restricted by a shared HLA allele. Conclusions: CD8 T cell responses to multiple novel CMV epitopes were identified, particularly in infants. Moreover, the hypothesized pattern of CMV immune escape was observed in one mother-infant pair. These findings emphasize that knowledge of paired CMV epitope recognition allows exploration of viral immune escape that may operate within the maternal-fetal system. Our work provides rationale for future studies of this potential mechanism of CMV transmission during pregnancy or clinical outcomes of infants with cCMV infection.
Collapse
Affiliation(s)
- Emma C Materne
- University of Massachusetts Medical School, Worcester, MA, United States
| | - Daniele Lilleri
- Unità Operativa Complessa (UOC) Laboratorio Genetica - Trapiantologia e Malattie Cardiovascolari, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Francesca Garofoli
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Giuseppina Lombardi
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Milena Furione
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Maurizio Zavattoni
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Laura Gibson
- University of Massachusetts Medical School, Worcester, MA, United States.,Department of Medicine, UMass Memorial Medical Center, Worcester, MA, United States.,Department of Pediatrics, UMass Memorial Medical Center, Worcester, MA, United States
| |
Collapse
|
19
|
Pediatric HIV: the Potential of Immune Therapeutics to Achieve Viral Remission and Functional Cure. Curr HIV/AIDS Rep 2020; 17:237-248. [PMID: 32356090 DOI: 10.1007/s11904-020-00495-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW In the absence of antiretroviral therapy (ART), more than 50% of perinatally HIV-infected children die by 2 years of age. Early ART from infancy is therefore a global recommendation and significantly improves immune health, child survival, and disease outcome. However, even early treatment does not prevent or eradicate the latent reservoir necessitating life-long ART. Adherence to life-long ART is challenging for children and longstanding ART during chronic HIV infection led to higher risks of non-AIDS co-morbidities and virologic failure in infected children. Thus, HIV-infected children are an important population for consideration for immune-based interventions to achieve ART-free remission and functional cure. This review summarizes how the uniqueness of the early life immune system can be harnessed for the development of ART-free remission and functional cure, which means complete virus control in absence of ART. In addition, recent advances in therapeutics in the HIV cure field and their potential for the treatment of pediatric HIV infections are discussed. RECENT FINDINGS Preclinical studies and clinical trials demonstrated that immune-based interventions target HIV replication, limit size of virus reservoir, maintain virus suppression, and delay time to virus rebound. However, these studies have been performed so far only in carefully selected HIV-infected adults, highlighting the need to evaluate the efficacy of immune-based therapeutics in HIV-infected children and to design interventions tailored to the early life maturing immune system. Immune-based therapeutics alone or in combination with ART should be actively explored as potential strategies to achieve viral remission and functional cure in HIV-infected pediatric populations.
Collapse
|
20
|
Sex-specific innate immune selection of HIV-1 in utero is associated with increased female susceptibility to infection. Nat Commun 2020; 11:1767. [PMID: 32286302 PMCID: PMC7156749 DOI: 10.1038/s41467-020-15632-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/16/2020] [Indexed: 12/31/2022] Open
Abstract
Female children and adults typically generate more efficacious immune responses to vaccines and infections than age-matched males, but also suffer greater immunopathology and autoimmune disease. We here describe, in a cohort of > 170 in utero HIV-infected infants from KwaZulu-Natal, South Africa, fetal immune sex differences resulting in a 1.5–2-fold increased female susceptibility to intrauterine HIV infection. Viruses transmitted to females have lower replicative capacity (p = 0.0005) and are more type I interferon-resistant (p = 0.007) than those transmitted to males. Cord blood cells from females of HIV-uninfected sex-discordant twins are more activated (p = 0.01) and more susceptible to HIV infection in vitro (p = 0.03). Sex differences in outcome include superior maintenance of aviraemia among males (p = 0.007) that is not explained by differential antiretroviral therapy adherence. These data demonstrate sex-specific innate immune selection of HIV associated with increased female susceptibility to in utero infection and enhanced functional cure potential among infected males. Sex differences in the immune response to vaccines and infections have been well described in children and adults. Here the authors describe, in a cohort of 177 HIV-infected infants, innate immune sex differences in fetal life that increase female susceptibility to intrauterine HIV infection and increase the chances of subsequent HIV remission in infected males.
Collapse
|
21
|
Currenti J, Chopra A, John M, Leary S, McKinnon E, Alves E, Pilkinton M, Smith R, Barnett L, McDonnell WJ, Lucas M, Noel F, Mallal S, Conrad JA, Kalams SA, Gaudieri S. Deep sequence analysis of HIV adaptation following vertical transmission reveals the impact of immune pressure on the evolution of HIV. PLoS Pathog 2019; 15:e1008177. [PMID: 31821379 PMCID: PMC6924686 DOI: 10.1371/journal.ppat.1008177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/20/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022] Open
Abstract
Human immunodeficiency virus (HIV) can adapt to an individual’s T cell immune response via genomic mutations that affect antigen recognition and impact disease outcome. These viral adaptations are specific to the host’s human leucocyte antigen (HLA) alleles, as these molecules determine which peptides are presented to T cells. As HLA molecules are highly polymorphic at the population level, horizontal transmission events are most commonly between HLA-mismatched donor/recipient pairs, representing new immune selection environments for the transmitted virus. In this study, we utilised a deep sequencing approach to determine the HIV quasispecies in 26 mother-to-child transmission pairs where the potential for founder viruses to be pre-adapted is high due to the pairs being haplo-identical at HLA loci. This scenario allowed the assessment of specific HIV adaptations following transmission in either a non-selective immune environment, due to recipient HLA mismatched to original selecting HLA, or a selective immune environment, mediated by matched donor/recipient HLA. We show that the pattern of reversion or fixation of HIV adaptations following transmission provides insight into the replicative cost, and likely compensatory networks, associated with specific adaptations in vivo. Furthermore, although transmitted viruses were commonly heavily pre-adapted to the child’s HLA genotype, we found evidence of de novo post-transmission adaptation, representing new epitopes targeted by the child’s T cell response. High-resolution analysis of HIV adaptation is relevant when considering vaccine and cure strategies for individuals exposed to adapted viruses via transmission or reactivated from reservoirs. Highly mutable pathogens utilise genetic variations within T cell epitopes as a mechanism of immune escape (viral adaptation). The diversity of the human leucocyte antigen (HLA) molecules that present viral targets to T cells in human populations partially protects against rapid population-level accumulation of human immunodeficiency virus (HIV) adaptations through horizontal transmissions. In contrast, vertical transmissions occur between haplo-identical mother/child pairs, and potentially include adaptive changes through father-mother-child transmission, representing a pathway to complete pre-adaptation to HLA alleles in child hosts over only two transmission events. We utilised next-generation sequencing to examine HIV evolution in the unique setting of vertical HIV transmission. We predict the in vivo replicative cost and immune benefit of specific HIV adaptations that could be used to inform vaccine design and cure strategies to combat viral immune adaptation.
Collapse
Affiliation(s)
- Jennifer Currenti
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Mina John
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Elizabeth McKinnon
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Eric Alves
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Mark Pilkinton
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Rita Smith
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Louise Barnett
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Wyatt J. McDonnell
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Michaela Lucas
- School of Medicine, University of Western Australia, Crawley, Western Australia, Australia
| | | | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Joseph A. Conrad
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Spyros A. Kalams
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Silvana Gaudieri
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
22
|
Hutchinson JM, Mesa KA, Alexander DL, Yu B, O'Rourke SM, Limoli KL, Wrin T, Deeks SG, Berman PW. Unusual Cysteine Content in V1 Region of gp120 From an Elite Suppressor That Produces Broadly Neutralizing Antibodies. Front Immunol 2019; 10:1021. [PMID: 31156622 PMCID: PMC6530427 DOI: 10.3389/fimmu.2019.01021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/23/2019] [Indexed: 01/21/2023] Open
Abstract
Although it is now possible to produce recombinant HIV envelope glycoproteins (Envs) with epitopes recognized by the 5–6 major classes of broadly neutralizing antibodies (bNAbs), these have failed to consistently stimulate the formation of bNAbs in immunized animals or humans. In an effort to identify new immunogens better able to elicit bNAbs, we are studying Envs derived from rare individuals who possess bNAbs and are able to control their infection without the need for anti-retroviral drugs (elite supressors or ES), hypothesizing that in at least some people the antibodies may mediate durable virus control. Because virus evolution in people with the ES only phenotype was reported to be limited, we reasoned the Env proteins recovered from these individuals may more closely resemble the Envs that gave rise to bNAbs compared to the highly diverse viruses isolated from normal progressors. Using a phenotypic assay, we screened 25 controllers and identified two for more detailed investigation. In this study, we examined 20 clade B proviral sequences isolated from an African American woman, who had the rare bNAb/ES phenotype. Phylogenetic analysis of proviral envelope sequences demonstrated low genetic diversity. Envelope proteins were unusual in that most possessed two extra cysteines within an elongated V1 region. In this report, we examine the impact of the extra cysteines on the binding to bNAbs, virus infectivity, and sensitivity to neutralization. These data suggest structural motifs in V1 can affect infectivity, and that rare viruses may be prevented from developing escape.
Collapse
Affiliation(s)
- Jennie M Hutchinson
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Kathryn A Mesa
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - David L Alexander
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Bin Yu
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Sara M O'Rourke
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Kay L Limoli
- Monogram Biosciences, South San Francisco, CA, United States
| | - Terri Wrin
- Monogram Biosciences, South San Francisco, CA, United States
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Phillip W Berman
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
23
|
A child with perinatal HIV infection and long-term sustained virological control following antiretroviral treatment cessation. Nat Commun 2019; 10:412. [PMID: 30679439 PMCID: PMC6345921 DOI: 10.1038/s41467-019-08311-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 01/03/2019] [Indexed: 11/27/2022] Open
Abstract
Understanding HIV remission in rare individuals who initiated antiretroviral therapy (ART) soon after infection and then discontinued, may inform HIV cure interventions. Here we describe features of virus and host of a perinatally HIV-1 infected child with long-term sustained virological control. The child received early limited ART in the Children with HIV Early antiRetroviral therapy (CHER) trial. At age 9.5 years, diagnostic tests for HIV are negative and the child has characteristics similar to uninfected children that include a high CD4:CD8 ratio, low T cell activation and low CCR5 expression. Virus persistence (HIV-1 DNA and plasma RNA) is confirmed with sensitive methods, but replication-competent virus is not detected. The child has weak HIV-specific antibody and T cell responses. Furthermore, we determine his HLA and KIR genotypes. This case aids in understanding post-treatment control and may help design of future intervention strategies. Some perinatally HIV infected children who have received early antiretroviral therapy (ART) show long-term sustained virological control after ART cessation. Here the authors describe a case who, at age 9.5 years, shows normal CD4:CD8 T cell ratios and has no detectable levels of replication-competent virus.
Collapse
|
24
|
Pan E, Feng F, Li P, Yang Q, Ma X, Wu C, Zhao J, Yan H, Chen R, Chen L, Sun C. Immune Protection of SIV Challenge by PD-1 Blockade During Vaccination in Rhesus Monkeys. Front Immunol 2018; 9:2415. [PMID: 30405615 PMCID: PMC6206945 DOI: 10.3389/fimmu.2018.02415] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/28/2018] [Indexed: 12/31/2022] Open
Abstract
Though immune correlates for protection are still under investigation, potent cytotoxic T lymphocyte responses are desirable for an ideal HIV-1 vaccine. PD-1 blockade enhances SIV-specific CD8+ T cells. However, little information has been reported about how it affects the immunogenicity and protection of prophylactic SIV vaccines in nonhuman primates. Here, we show that PD-1 blockade during vaccination substantially improved protective efficacy in SIV challenged macaques. The PD-1 pathway was blocked using a monoclonal antibody specific to human PD-1. Administration of this antibody effectively augmented and sustained vaccine-induced SIV-specific T cell responses for more than 42 weeks after first immunization in rhesus monkeys, as compared with SIV vaccination only. Importantly, after intrarectally repeated low-dosage challenge with highly pathogenic SIVmac239, monkeys with PD-1 blockade during vaccination achieved full protection against incremental viral doses of up to 50,000 TICD50. These findings highlight the importance of PD-1 blockade during vaccination for the development of HIV vaccines.
Collapse
Affiliation(s)
- Enxiang Pan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fengling Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Pingchao Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qing Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiuchang Ma
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Chunxiu Wu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jin Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China
| | | | - Rulei Chen
- Genor Biopharma Co. Ltd., Shanghai, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,The Guangzhou 8th People's Hospital & The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Caijun Sun
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China
| |
Collapse
|
25
|
Li W, Balachandran YL, Hao Y, Hao X, Li R, Nan Z, Zhang H, Shao Y, Liu Y. Amantadine Surface-Modified Silver Nanorods Improves Immunotherapy of HIV Vaccine Against HIV-Infected Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28494-28501. [PMID: 30085647 DOI: 10.1021/acsami.8b10948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Surface modifications can endow nanomaterials with presupposed immunoregulatory functions to optimize vaccine-induced immune responses. In this work, we modified an immunoregulatory molecule, amantadine (Ada), on the outermost layer of PVP-PEG-coated silver nanorods (Ada-PVP-PEG silver nanorods). Such Ada surface-modified silver nanorods promote HIV vaccine-triggered cytotoxic lymphocytes (CTLs) to produce around eightfold stronger tumor necrosis factor alpha (TNF-α) in vivo. The enhancement of HIV-specific CTL-derived TNF-α significantly facilitates the death of HIV-infected cells (from 28.86 to 84.19%) and reduces HIV production (around sixfold). This work supports the critical role of surface modifications of nanomaterials in fundamentally improving the immunotherapy of HIV vaccine against HIV-infected cells.
Collapse
Affiliation(s)
- Weiyu Li
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education , Beijing University of Agriculture , Beijing 102206 , China
| | - Yekkuni L Balachandran
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , P. R. China
| | - Yanling Hao
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention , Chinese Center for Disease Control and Prevention , Beijing 100190 , China
| | - Xie Hao
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education , Beijing University of Agriculture , Beijing 102206 , China
| | - Runzhi Li
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education , Beijing University of Agriculture , Beijing 102206 , China
| | - Zhangjie Nan
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education , Beijing University of Agriculture , Beijing 102206 , China
| | - Hongying Zhang
- College of Tobacco Science , Henan Agricultural University , Zhengzhou 450002 , China
| | - Yiming Shao
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention , Chinese Center for Disease Control and Prevention , Beijing 100190 , China
| | - Ye Liu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
26
|
Clemens EB, van de Sandt C, Wong SS, Wakim LM, Valkenburg SA. Harnessing the Power of T Cells: The Promising Hope for a Universal Influenza Vaccine. Vaccines (Basel) 2018; 6:vaccines6020018. [PMID: 29587436 PMCID: PMC6027237 DOI: 10.3390/vaccines6020018] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Next-generation vaccines that utilize T cells could potentially overcome the limitations of current influenza vaccines that rely on antibodies to provide narrow subtype-specific protection and are prone to antigenic mismatch with circulating strains. Evidence from animal models shows that T cells can provide heterosubtypic protection and are crucial for immune control of influenza virus infections. This has provided hope for the design of a universal vaccine able to prime against diverse influenza virus strains and subtypes. However, multiple hurdles exist for the realisation of a universal T cell vaccine. Overall primary concerns are: extrapolating human clinical studies, seeding durable effective T cell resident memory (Trm), population human leucocyte antigen (HLA) coverage, and the potential for T cell-mediated immune escape. Further comprehensive human clinical data is needed during natural infection to validate the protective role T cells play during infection in the absence of antibodies. Furthermore, fundamental questions still exist regarding the site, longevity and duration, quantity, and phenotype of T cells needed for optimal protection. Standardised experimental methods, and eventually simplified commercial assays, to assess peripheral influenza-specific T cell responses are needed for larger-scale clinical studies of T cells as a correlate of protection against influenza infection. The design and implementation of a T cell-inducing vaccine will require a consensus on the level of protection acceptable in the community, which may not provide sterilizing immunity but could protect the individual from severe disease, reduce the length of infection, and potentially reduce transmission in the community. Therefore, increasing the standard of care potentially offered by T cell vaccines should be considered in the context of pandemic preparedness and zoonotic infections, and in combination with improved antibody vaccine targeting methods. Current pandemic vaccine preparedness measures and ongoing clinical trials under-utilise T cell-inducing vaccines, reflecting the myriad questions that remain about how, when, where, and which T cells are needed to fight influenza virus infection. This review aims to bring together basic fundamentals of T cell biology with human clinical data, which need to be considered for the implementation of a universal vaccine against influenza that harnesses the power of T cells.
Collapse
Affiliation(s)
- E Bridie Clemens
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Carolien van de Sandt
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Sook San Wong
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Linda M Wakim
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Sophie A Valkenburg
- HKU Pasteur Research Pole, School of Public Health, University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|