1
|
Choi SM, Jung KC, Lee JI. Developmental trajectory of unconventional T cells of the cynomolgus macaque thymus. Heliyon 2024; 10:e39736. [PMID: 39524802 PMCID: PMC11543906 DOI: 10.1016/j.heliyon.2024.e39736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
As nonhuman primates are immunologically the closest model to humans, a comprehensive understanding of T-cell development in these species is crucial. However, the differentiation pathways in which thymocytes participate, along with their heterogeneity, remain poorly characterized. Using single-cell RNA sequencing, we thoroughly profiled the development of various T-cell lineages in the juvenile cynomolgus monkey thymus, identifying and characterizing 12 distinct thymic cell states or types. Interestingly, we identified two unexpected cell types, an agonist-selected and a memory-like cell population. The agonist-selected cell population expressed genes associated with strong TCR signaling, such as PDCD1, CD5, NFKBID, NFATC1, BCL2L11, and NR4A1 but exhibiting significantly higher PDCD1 expression compared with cells following the conventional developmental pathway. Additionally, we identified a substantial number of memory-like cell populations characterized by high CXCR3 and EOMES expression. Notably, this population also highly expressed the effector-associated markers, GZMK, NKG7, and GNLY, as well as the innate cell-associated markers, ZBTB16, TYROBP, KLRB1, KLRC1, and NCR3. The EOMES + memory-like cell population expressed highly PDCD1, indicating the presence of an agonist-selection footprint. Our findings provide insights into the agonist-selection pathway that allows self-reactive thymocytes to survive thymic selections and differentiate into various unconventional T-cell lineages.
Collapse
Affiliation(s)
- Sung Min Choi
- Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Kyeong Cheon Jung
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Jae Il Lee
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| |
Collapse
|
2
|
Naik AK, Dauphars DJ, Corbett E, Simpson L, Schatz DG, Krangel MS. RORγt up-regulates RAG gene expression in DP thymocytes to expand the Tcra repertoire. Sci Immunol 2024; 9:eadh5318. [PMID: 38489350 PMCID: PMC11005092 DOI: 10.1126/sciimmunol.adh5318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/21/2024] [Indexed: 03/17/2024]
Abstract
Recombination activating gene (RAG) expression increases as thymocytes transition from the CD4-CD8- double-negative (DN) to the CD4+CD8+ double-positive (DP) stage, but the physiological importance and mechanism of transcriptional up-regulation are unknown. Here, we show that a DP-specific component of the recombination activating genes antisilencer (DPASE) provokes elevated RAG expression in DP thymocytes. Mouse DP thymocytes lacking the DPASE display RAG expression equivalent to that in DN thymocytes, but this supports only a partial Tcra repertoire due to inefficient secondary Vα-Jα rearrangement. These data indicate that RAG up-regulation is required for a replete Tcra repertoire and that RAG expression is fine-tuned during lymphocyte development to meet the requirements of distinct antigen receptor loci. We further show that transcription factor RORγt directs RAG up-regulation in DP thymocytes by binding to the DPASE and that RORγt influences the Tcra repertoire by binding to the Tcra enhancer. These data, together with prior work showing RORγt to control Tcra rearrangement by regulating DP thymocyte proliferation and survival, reveal RORγt to orchestrate multiple pathways that support formation of the Tcra repertoire.
Collapse
Affiliation(s)
- Abani Kanta Naik
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - Danielle J Dauphars
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - Elizabeth Corbett
- Department of Immunobiology and Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Lunden Simpson
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - David G Schatz
- Department of Immunobiology and Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Michael S Krangel
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
3
|
Miyazaki M, Miyazaki K. The Function of E2A in B-Cell Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:97-113. [PMID: 39017841 DOI: 10.1007/978-3-031-62731-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Helix-loop-helix (HLH) transcription factors (TFs) play a key role in various cellular differentiation and function through the regulation of enhancer activity. E2A, a member of the mammalian E-protein family (class I HLH protein), is well known to play an important role in hematopoiesis, especially in adaptive lymphocyte development. E2A instructs B- and T-cell lineage development through the regulation of enhancer activity for B- or T-cell signature gene expression, including Rag1 and Rag2 (Rag1/2) genes. In this chapter, we mainly focus on the function of E2A in B-cell development and on the roles of E2A in establishing the enhancer landscape through the recruitment of EP300/KAT3B, chromatin remodeling complex, mediator, cohesion, and TET proteins. Finally, we demonstrate how E2A orchestrates the assembly of the Rag1/2 gene super-enhancer (SE) formation by changing the chromatin conformation across the Rag gene locus.
Collapse
Affiliation(s)
- Masaki Miyazaki
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Kazuko Miyazaki
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Allen D, Knop O, Itkowitz B, Kalter N, Rosenberg M, Iancu O, Beider K, Lee YN, Nagler A, Somech R, Hendel A. CRISPR-Cas9 engineering of the RAG2 locus via complete coding sequence replacement for therapeutic applications. Nat Commun 2023; 14:6771. [PMID: 37891182 PMCID: PMC10611791 DOI: 10.1038/s41467-023-42036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
RAG2-SCID is a primary immunodeficiency caused by mutations in Recombination-activating gene 2 (RAG2), a gene intimately involved in the process of lymphocyte maturation and function. ex-vivo manipulation of a patient's own hematopoietic stem and progenitor cells (HSPCs) using CRISPR-Cas9/rAAV6 gene editing could provide a therapeutic alternative to the only current treatment, allogeneic hematopoietic stem cell transplantation (HSCT). Here we show an innovative RAG2 correction strategy that replaces the entire endogenous coding sequence (CDS) for the purpose of preserving the critical endogenous spatiotemporal gene regulation and locus architecture. Expression of the corrective transgene leads to successful development into CD3+TCRαβ+ and CD3+TCRγδ+ T cells and promotes the establishment of highly diverse TRB and TRG repertoires in an in-vitro T-cell differentiation platform. Thus, our proof-of-concept study holds promise for safer gene therapy techniques of tightly regulated genes.
Collapse
Affiliation(s)
- Daniel Allen
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Orli Knop
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Bryan Itkowitz
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Nechama Kalter
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Michael Rosenberg
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Ortal Iancu
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Katia Beider
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, 5266202, Israel
| | - Yu Nee Lee
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, 5266202, Israel
| | - Arnon Nagler
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, 5266202, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, 5266202, Israel
| | - Ayal Hendel
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
5
|
Conserva MR, Redavid I, Anelli L, Zagaria A, Tarantini F, Cumbo C, Tota G, Parciante E, Coccaro N, Minervini CF, Minervini A, Specchia G, Musto P, Albano F. IKAROS in Acute Leukemia: A Positive Influencer or a Mean Hater? Int J Mol Sci 2023; 24:3282. [PMID: 36834692 PMCID: PMC9961161 DOI: 10.3390/ijms24043282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
One key process that controls leukemogenesis is the regulation of oncogenic gene expression by transcription factors acting as tumor suppressors. Understanding this intricate mechanism is crucial to elucidating leukemia pathophysiology and discovering new targeted treatments. In this review, we make a brief overview of the physiological role of IKAROS and the molecular pathway that contributes to acute leukemia pathogenesis through IKZF1 gene lesions. IKAROS is a zinc finger transcription factor of the Krüppel family that acts as the main character during hematopoiesis and leukemogenesis. It can activate or repress tumor suppressors or oncogenes, regulating the survival and proliferation of leukemic cells. More than 70% of Ph+ and Ph-like cases of acute lymphoblastic leukemia exhibit IKZF1 gene variants, which are linked to worse treatment outcomes in both childhood and adult B-cell precursor acute lymphoblastic leukemia. In the last few years, much evidence supporting IKAROS involvement in myeloid differentiation has been reported, suggesting that loss of IKZF1 might also be a determinant of oncogenesis in acute myeloid leukemia. Considering the complicated "social" network that IKAROS manages in hematopoietic cells, we aim to focus on its involvement and the numerous alterations of molecular pathways it can support in acute leukemias.
Collapse
Affiliation(s)
- Maria Rosa Conserva
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Immacolata Redavid
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Luisa Anelli
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Antonella Zagaria
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Francesco Tarantini
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Cosimo Cumbo
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Giuseppina Tota
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Elisa Parciante
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Nicoletta Coccaro
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Crescenzio Francesco Minervini
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Angela Minervini
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Giorgina Specchia
- School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Pellegrino Musto
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Francesco Albano
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| |
Collapse
|
6
|
Castiello MC, Brandas C, Capo V, Villa A. HyperIgE in hypomorphic recombination-activating gene defects. Curr Opin Immunol 2023; 80:102279. [PMID: 36529093 DOI: 10.1016/j.coi.2022.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Increased immunogloblulin-E (IgE) levels associated with eosinophilia represent a common finding observed in Omenn syndrome, a severe immunodeficiency caused by decreased V(D)J recombination, leading to restricted T- and B-cell receptor repertoire. V(D)J recombination is initiated by the lymphoid-restricted recombination-activating gene (RAG) recombinases. The lack of RAG proteins causes a block in lymphocyte differentiation, resulting in T-B- severe combined immunodeficiency. Conversely, hypomorphic mutations allow the generation of few T and B cells, leading to a spectrum of immunological phenotypes, in which immunodeficiency associates to inflammation, immune dysregulation, and autoimmunity. Elevated IgE levels are frequently observed in hypomorphic RAG patients. Here, we describe the role of RAG genes in lymphocyte differentiation and maintenance of immune tolerance.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan, Italy
| | - Chiara Brandas
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza, Italy
| | - Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan, Italy.
| |
Collapse
|
7
|
Anderson MK, da Rocha JDB. Direct regulation of TCR rearrangement and expression by E proteins during early T cell development. WIREs Mech Dis 2022; 14:e1578. [PMID: 35848146 PMCID: PMC9669112 DOI: 10.1002/wsbm.1578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/22/2022] [Accepted: 06/17/2022] [Indexed: 11/12/2022]
Abstract
γδ T cells are widely distributed throughout mucosal and epithelial cell-rich tissues and are an important early source of IL-17 in response to several pathogens. Like αβ T cells, γδ T cells undergo a stepwise process of development in the thymus that requires recombination of genome-encoded segments to assemble mature T cell receptor (TCR) genes. This process is tightly controlled on multiple levels to enable TCR segment assembly while preventing the genomic instability inherent in the double-stranded DNA breaks that occur during this process. Each TCR locus has unique aspects in its structure and requirements, with different types of regulation before and after the αβ/γδ T cell fate choice. It has been known that Runx and Myb are critical transcriptional regulators of TCRγ and TCRδ expression, but the roles of E proteins in TCRγ and TCRδ regulation have been less well explored. Multiple lines of evidence show that E proteins are involved in TCR expression at many different levels, including the regulation of Rag recombinase gene expression and protein stability, induction of germline V segment expression, chromatin remodeling, and restriction of the fetal and adult γδTCR repertoires. Importantly, E proteins interact directly with the cis-regulatory elements of the TCRγ and TCRδ loci, controlling the predisposition of a cell to become an αβ T cell or a γδ T cell, even before the lineage-dictating TCR signaling events. This article is categorized under: Immune System Diseases > Stem Cells and Development Immune System Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Michele K Anderson
- Department Immunology, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
8
|
Chromatin organizer SATB1 controls the cell identity of CD4 + CD8 + double-positive thymocytes by regulating the activity of super-enhancers. Nat Commun 2022; 13:5554. [PMID: 36138028 PMCID: PMC9500044 DOI: 10.1038/s41467-022-33333-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 09/14/2022] [Indexed: 11/19/2022] Open
Abstract
CD4+ and CD8+ double-positive (DP) thymocytes play a crucial role in T cell development in the thymus. DP cells rearrange the T cell receptor gene Tcra to generate T cell receptors with TCRβ. DP cells differentiate into CD4 or CD8 single-positive (SP) thymocytes, regulatory T cells, or invariant nature kill T cells (iNKT) in response to TCR signaling. Chromatin organizer SATB1 is highly expressed in DP cells and is essential in regulating Tcra rearrangement and differentiation of DP cells. Here we explored the mechanism of SATB1 orchestrating gene expression in DP cells. Single-cell RNA sequencing shows that Satb1 deletion changes the cell identity of DP thymocytes and down-regulates genes specifically and highly expressed in DP cells. Super-enhancers regulate the expressions of DP-specific genes, and our Hi-C data show that SATB1 deficiency in thymocytes reduces super-enhancer activity by specifically decreasing interactions among super-enhancers and between super-enhancers and promoters. Our results reveal that SATB1 plays a critical role in thymocyte development to promote the establishment of DP cell identity by globally regulating super-enhancers of DP cells at the chromatin architectural level.
Collapse
|
9
|
Miyazaki M, Miyazaki K. The E-Id Axis Specifies Adaptive and Innate Lymphoid Lineage Cell Fates. J Biochem 2022; 172:259-264. [PMID: 36000775 DOI: 10.1093/jb/mvac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Our bodies are constantly threatened with the invasion of pathogens, such as bacteria and virus. Immune responses against pathogens are evoked in collaboration with adaptive and innate immune systems. Adaptive immune cells including T and B cells recognize various antigens from pathogens through the antigen recognition receptors such as Immunoglobulin (Ig) and T cell receptor (TCR), and they evoke antigen-specific immune responses to eliminate the pathogens. This specific recognition of a variety of antigens relies on the V(D)J DNA recombination of Ig and TCR genes, which is generated by the Rag (recombination activation gene) 1/Rag2 protein complex. The expression of Rag1/2 genes are stringently controlled during the T and B cell development; Rag1/2 gene expression indicates the commitment towards adaptive lymphocyte lineages. In this review article, we will discuss the developmental bifurcation between adaptive and innate lymphoid cells, and the role of transcription factors, especially the E and Id proteins, upon the lineage commitment, and the regulation of Rag gene locus.
Collapse
Affiliation(s)
- Masaki Miyazaki
- Laboratory of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuko Miyazaki
- Laboratory of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Roels J, Van Hulle J, Lavaert M, Kuchmiy A, Strubbe S, Putteman T, Vandekerckhove B, Leclercq G, Van Nieuwerburgh F, Boehme L, Taghon T. Transcriptional dynamics and epigenetic regulation of E and ID protein encoding genes during human T cell development. Front Immunol 2022; 13:960918. [PMID: 35967340 PMCID: PMC9366357 DOI: 10.3389/fimmu.2022.960918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/05/2022] [Indexed: 12/05/2022] Open
Abstract
T cells are generated from hematopoietic stem cells through a highly organized developmental process, in which stage-specific molecular events drive maturation towards αβ and γδ T cells. Although many of the mechanisms that control αβ- and γδ-lineage differentiation are shared between human and mouse, important differences have also been observed. Here, we studied the regulatory dynamics of the E and ID protein encoding genes during pediatric human T cell development by evaluating changes in chromatin accessibility, histone modifications and bulk and single cell gene expression. We profiled patterns of ID/E protein activity and identified up- and downstream regulators and targets, respectively. In addition, we compared transcription of E and ID protein encoding genes in human versus mouse to predict both shared and unique activities in these species, and in prenatal versus pediatric human T cell differentiation to identify regulatory changes during development. This analysis showed a putative involvement of TCF3/E2A in the development of γδ T cells. In contrast, in αβ T cell precursors a pivotal pre-TCR-driven population with high ID gene expression and low predicted E protein activity was identified. Finally, in prenatal but not postnatal thymocytes, high HEB/TCF12 levels were found to counteract high ID levels to sustain thymic development. In summary, we uncovered novel insights in the regulation of E and ID proteins on a cross-species and cross-developmental level.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Child
- Epigenesis, Genetic
- Hematopoietic Stem Cells/metabolism
- Humans
- Mice
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Juliette Roels
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jolien Van Hulle
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Marieke Lavaert
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Anna Kuchmiy
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Steven Strubbe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Tom Putteman
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Georges Leclercq
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Lena Boehme
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- *Correspondence: Lena Boehme, ; Tom Taghon,
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- *Correspondence: Lena Boehme, ; Tom Taghon,
| |
Collapse
|
11
|
Aubrey M, Warburg ZJ, Murre C. Helix-Loop-Helix Proteins in Adaptive Immune Development. Front Immunol 2022; 13:881656. [PMID: 35634342 PMCID: PMC9134016 DOI: 10.3389/fimmu.2022.881656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The E/ID protein axis is instrumental for defining the developmental progression and functions of hematopoietic cells. The E proteins are dimeric transcription factors that activate gene expression programs and coordinate changes in chromatin organization. Id proteins are antagonists of E protein activity. Relative levels of E/Id proteins are modulated throughout hematopoietic development to enable the progression of hematopoietic stem cells into multiple adaptive and innate immune lineages including natural killer cells, B cells and T cells. In early progenitors, the E proteins promote commitment to the T and B cell lineages by orchestrating lineage specific programs of gene expression and regulating VDJ recombination of antigen receptor loci. In mature B cells, the E/Id protein axis functions to promote class switch recombination and somatic hypermutation. E protein activity further regulates differentiation into distinct CD4+ and CD8+ T cells subsets and instructs mature T cell immune responses. In this review, we discuss how the E/Id proteins define the adaptive immune system lineages, focusing on their role in directing developmental gene programs.
Collapse
Affiliation(s)
| | | | - Cornelis Murre
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
12
|
Hidaka R, Miyazaki K, Miyazaki M. The E-Id Axis Instructs Adaptive Versus Innate Lineage Cell Fate Choice and Instructs Regulatory T Cell Differentiation. Front Immunol 2022; 13:890056. [PMID: 35603170 PMCID: PMC9120639 DOI: 10.3389/fimmu.2022.890056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Immune responses are primarily mediated by adaptive and innate immune cells. Adaptive immune cells, such as T and B cells, evoke antigen-specific responses through the recognition of specific antigens. This antigen-specific recognition relies on the V(D)J recombination of immunoglobulin (Ig) and T cell receptor (TCR) genes mediated by recombination-activating gene (Rag)1 and Rag2 (Rag1/2). In addition, T and B cells employ cell type-specific developmental pathways during their activation processes, and the regulation of these processes is strictly regulated by the transcription factor network. Among these factors, members of the basic helix-loop-helix (bHLH) transcription factor mammalian E protein family, including E12, E47, E2-2, and HEB, orchestrate multiple adaptive immune cell development, while their antagonists, Id proteins (Id1-4), function as negative regulators. It is well established that a majority of T and B cell developmental trajectories are regulated by the transcriptional balance between E and Id proteins (the E-Id axis). E2A is critically required not only for B cell but also for T cell lineage commitment, whereas Id2 and Id3 enforce the maintenance of naïve T cells and naïve regulatory T (Treg) cells. Here, we review the current knowledge of E- and Id-protein function in T cell lineage commitment and Treg cell differentiation.
Collapse
|
13
|
Shiozawa S, Tsumiyama K, Miyazaki Y, Uto K, Sakurai K, Nakashima T, Matsuyama H, Doi A, Tarui M, Izumikawa M, Kimura M, Fujita Y, Satonaka C, Horiuchi T, Matsubara T, Oribe M, Yamane T, Kagawa H, Li QZ, Mizuno K, Mukai Y, Murakami K, Enya T, Tsukimoto S, Hakata Y, Miyazawa M, Shiozawa K. DOCK8-expressing T follicular helper cells newly generated beyond self-organized criticality cause systemic lupus erythematosus. iScience 2022; 25:103537. [PMID: 34977502 PMCID: PMC8689056 DOI: 10.1016/j.isci.2021.103537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/01/2021] [Accepted: 11/24/2021] [Indexed: 11/24/2022] Open
Abstract
Pathogens including autoantigens all failed to induce systemic lupus erythematosus (SLE). We, instead, studied the integrity of host's immune response that recognized pathogen. By stimulating TCR with an antigen repeatedly to levels that surpass host's steady-state response, self-organized criticality, SLE was induced in mice normally not prone to autoimmunity, wherein T follicular helper (Tfh) cells expressing the guanine nucleotide exchange factor DOCK8 on the cell surface were newly generated. DOCK8+Tfh cells passed through TCR re-revision and induced varieties of autoantibody and lupus lesions. They existed in splenic red pulp and peripheral blood of active lupus patients, which subsequently declined after therapy. Autoantibodies and disease were healed by anti-DOCK8 antibody in the mice including SLE-model (NZBxNZW) F1 mice. Thus, DOCK8+Tfh cells generated after repeated TCR stimulation by immunogenic form of pathogen, either exogenous or endogenous, in combination with HLA to levels that surpass system's self-organized criticality, cause SLE. Autoimmunity seldom takes place under integrated steady-state immune response Repeated invasion by pathogen, such as measles virus, is not exceptional but routine in life DOCK8+Tfh is generated upon TCR overstimulation by pathogen beyond self-organized criticality Newly generated DOCK8+Tfh induces autoantibodies and SLE, i.e., autoimmunity
Collapse
Affiliation(s)
- Shunichi Shiozawa
- Institute for Rheumatic Diseases, 944-25 Fujita, Katoshi 673-1462, Japan.,Department of Medicine, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874-0838, Japan.,Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan.,Department of Medicine, Rheumatology and Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25 Fujita, Katoshi 673-1462, Japan
| | - Ken Tsumiyama
- Institute for Rheumatic Diseases, 944-25 Fujita, Katoshi 673-1462, Japan.,Department of Medicine, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874-0838, Japan.,Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan.,Department of Medicine, Rheumatology and Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25 Fujita, Katoshi 673-1462, Japan
| | - Yumi Miyazaki
- Department of Medicine, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874-0838, Japan.,Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Kenichi Uto
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Keiichi Sakurai
- Institute for Rheumatic Diseases, 944-25 Fujita, Katoshi 673-1462, Japan.,Department of Medicine, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874-0838, Japan
| | - Toshie Nakashima
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Hiroko Matsuyama
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Ai Doi
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Miho Tarui
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Manabu Izumikawa
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Mai Kimura
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Yuko Fujita
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Chisako Satonaka
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Takahiko Horiuchi
- Department of Medicine, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874-0838, Japan
| | - Tsukasa Matsubara
- Department of Medicine, Rheumatology and Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25 Fujita, Katoshi 673-1462, Japan
| | - Motohiro Oribe
- Oribe Clinic, 1-8-15 Higashi-Odori, Oita 870-0823, Japan
| | - Takashi Yamane
- Department of Rheumatology, Kakogawa City Hospital, 439 Honmachi, Kakogawa 675-8611, Japan
| | - Hidetoshi Kagawa
- Department of Medicine, Red Cross Society Himeji Hospital, 1-12-1 Shimoteno, Himeji 670-8540, Japan
| | - Quan-Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, 6001 Forest Park Road/ND 6.504, Dallas, TX 75390-8814, USA
| | - Keiko Mizuno
- Drug Discovery Platform, KAN Research Institute, Inc., 6-8-2 Minatojimaminamicho, Kobe 650-0047, Japan
| | - Yohei Mukai
- Drug Discovery Platform, KAN Research Institute, Inc., 6-8-2 Minatojimaminamicho, Kobe 650-0047, Japan
| | - Kazuhiro Murakami
- Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsujima, Aobaku 981-8558, Japan
| | - Takuji Enya
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan.,Department of Pediatrics, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Shota Tsukimoto
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan.,Department of Anesthesiology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yoshiyuki Hakata
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Masaaki Miyazawa
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan.,Kindai University Anti-Aging Center, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Kazuko Shiozawa
- Department of Medicine, Rheumatology and Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25 Fujita, Katoshi 673-1462, Japan.,Rheumatology and Collagen Disease Center, Hyogo Prefectural Kakogawa Medical Center, 203 Kanno, Kakogawa 675-8555, Japan
| |
Collapse
|
14
|
Xia R, Cheng Y, Han X, Wei Y, Wei X. Ikaros Proteins in Tumor: Current Perspectives and New Developments. Front Mol Biosci 2021; 8:788440. [PMID: 34950704 PMCID: PMC8689071 DOI: 10.3389/fmolb.2021.788440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023] Open
Abstract
Ikaros is a zinc finger transcription factor (TF) of the Krüppel family member, which significantly regulates normal lymphopoiesis and tumorigenesis. Ikaros can directly initiate or suppress tumor suppressors or oncogenes, consequently regulating the survival and proliferation of cancer cells. Over recent decades, a series of studies have been devoted to exploring and clarifying the relationship between Ikaros and associated tumors. Therapeutic strategies targeting Ikaros have shown promising therapeutic effects in both pre-clinical and clinical trials. Nevertheless, the increasingly prominent problem of drug resistance targeted to Ikaros and its analog is gradually appearing in our field of vision. This article reviews the role of Ikaros in tumorigenesis, the mechanism of drug resistance, the progress of targeting Ikaros in both pre-clinical and clinical trials, and the potential use of associated therapy in cancer therapy.
Collapse
Affiliation(s)
- Ruolan Xia
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuejiao Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Yoshikawa G, Miyazaki K, Ogata H, Miyazaki M. The Evolution of Rag Gene Enhancers and Transcription Factor E and Id Proteins in the Adaptive Immune System. Int J Mol Sci 2021; 22:ijms22115888. [PMID: 34072618 PMCID: PMC8199221 DOI: 10.3390/ijms22115888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Adaptive immunity relies on the V(D)J DNA recombination of immunoglobulin (Ig) and T cell receptor (TCR) genes, which enables the recognition of highly diverse antigens and the elicitation of antigen-specific immune responses. This process is mediated by recombination-activating gene (Rag) 1 and Rag2 (Rag1/2), whose expression is strictly controlled in a cell type-specific manner; the expression of Rag1/2 genes represents a hallmark of lymphoid lineage commitment. Although Rag genes are known to be evolutionally conserved among jawed vertebrates, how Rag genes are regulated by lineage-specific transcription factors (TFs) and how their regulatory system evolved among vertebrates have not been fully elucidated. Here, we reviewed the current body of knowledge concerning the cis-regulatory elements (CREs) of Rag genes and the evolution of the basic helix-loop-helix TF E protein regulating Rag gene CREs, as well as the evolution of the antagonist of this protein, the Id protein. This may help to understand how the adaptive immune system develops along with the evolution of responsible TFs and enhancers.
Collapse
Affiliation(s)
- Genki Yoshikawa
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan;
| | - Kazuko Miyazaki
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan;
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan;
- Correspondence: (H.O.); (M.M.)
| | - Masaki Miyazaki
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan;
- Correspondence: (H.O.); (M.M.)
| |
Collapse
|
16
|
Bosticardo M, Pala F, Notarangelo LD. RAG deficiencies: Recent advances in disease pathogenesis and novel therapeutic approaches. Eur J Immunol 2021; 51:1028-1038. [PMID: 33682138 PMCID: PMC8325549 DOI: 10.1002/eji.202048880] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/13/2021] [Accepted: 03/03/2021] [Indexed: 12/26/2022]
Abstract
The RAG1 and RAG2 proteins initiate the process of V(D)J recombination and therefore play an essential role in adaptive immunity. While null mutations in the RAG genes cause severe combined immune deficiency with lack of T and B cells (T- B- SCID) and susceptibility to life-threatening, early-onset infections, studies in humans and mice have demonstrated that hypomorphic RAG mutations are associated with defects of central and peripheral tolerance resulting in immune dysregulation. In this review, we provide an overview of the extended spectrum of RAG deficiencies and their associated clinical and immunological phenotypes in humans. We discuss recent advances in the mechanisms that control RAG expression and function, the effects of perturbed RAG activity on lymphoid development and immune homeostasis, and propose novel approaches to correct this group of disorders.
Collapse
Affiliation(s)
- Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Rothenberg EV. Logic and lineage impacts on functional transcription factor deployment for T-cell fate commitment. Biophys J 2021; 120:4162-4181. [PMID: 33838137 PMCID: PMC8516641 DOI: 10.1016/j.bpj.2021.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 11/19/2022] Open
Abstract
Transcription factors are the major agents that read the regulatory sequence information in the genome to initiate changes in expression of specific genes, both in development and in physiological activation responses. Their actions depend on site-specific DNA binding and are largely guided by their individual DNA target sequence specificities. However, their action is far more conditional in a real developmental context than would be expected for simple reading of local genomic DNA sequence, which is common to all cells in the organism. They are constrained by slow-changing chromatin states and by interactions with other transcription factors, which affect their occupancy patterns of potential sites across the genome. These mechanisms lead to emergent discontinuities in function even for transcription factors with minimally changing expression. This is well revealed by diverse lineages of blood cells developing throughout life from hematopoietic stem cells, which use overlapping combinations of transcription factors to drive strongly divergent gene regulation programs. Here, using development of T lymphocytes from hematopoietic multipotent progenitor cells as a focus, recent evidence is reviewed on how binding specificity and dynamics, transcription factor cooperativity, and chromatin state changes impact the effective regulatory functions of key transcription factors including PU.1, Runx1, Notch-RBPJ, and Bcl11b.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California.
| |
Collapse
|
18
|
Miyazaki K, Miyazaki M. The Interplay Between Chromatin Architecture and Lineage-Specific Transcription Factors and the Regulation of Rag Gene Expression. Front Immunol 2021; 12:659761. [PMID: 33796120 PMCID: PMC8007930 DOI: 10.3389/fimmu.2021.659761] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Cell type-specific gene expression is driven through the interplay between lineage-specific transcription factors (TFs) and the chromatin architecture, such as topologically associating domains (TADs), and enhancer-promoter interactions. To elucidate the molecular mechanisms of the cell fate decisions and cell type-specific functions, it is important to understand the interplay between chromatin architectures and TFs. Among enhancers, super-enhancers (SEs) play key roles in establishing cell identity. Adaptive immunity depends on the RAG-mediated assembly of antigen recognition receptors. Hence, regulation of the Rag1 and Rag2 (Rag1/2) genes is a hallmark of adaptive lymphoid lineage commitment. Here, we review the current knowledge of 3D genome organization, SE formation, and Rag1/2 gene regulation during B cell and T cell differentiation.
Collapse
Affiliation(s)
- Kazuko Miyazaki
- Laboratory of Immunology, Institute for Frontier Life and Medial Sciences, Kyoto University, Kyoto, Japan
| | - Masaki Miyazaki
- Laboratory of Immunology, Institute for Frontier Life and Medial Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
19
|
Wang X, Rothenberg EV. Illuminating the core of adaptive immunity-how the regulatory genome controls Rag chromatin dynamics. Sci Immunol 2020; 5:eabd6427. [PMID: 32887844 DOI: 10.1126/sciimmunol.abd6427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 11/02/2022]
Abstract
E2A specifies adaptive immunity by instructing large-scale topological changes for Rag gene super-enhancer formation (see the related Research Article by Miyazaki et al.).
Collapse
Affiliation(s)
- Xun Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Graduate Program in Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
20
|
Miyazaki K, Watanabe H, Yoshikawa G, Chen K, Hidaka R, Aitani Y, Osawa K, Takeda R, Ochi Y, Tani-Ichi S, Uehata T, Takeuchi O, Ikuta K, Ogawa S, Kondoh G, Lin YC, Ogata H, Miyazaki M. The transcription factor E2A activates multiple enhancers that drive Rag expression in developing T and B cells. Sci Immunol 2020; 5:5/51/eabb1455. [PMID: 32887843 DOI: 10.1126/sciimmunol.abb1455] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/21/2020] [Indexed: 01/09/2023]
Abstract
Cell type-specific gene expression is driven by the interplay between lineage-specific transcription factors and cis-regulatory elements to which they bind. Adaptive immunity relies on RAG-mediated assembly of T cell receptor (TCR) and immunoglobulin (Ig) genes. Although Rag1 and Rag2 expression is largely restricted to adaptive lymphoid lineage cells, it remains unclear how Rag gene expression is regulated in a cell lineage-specific manner. Here, we identified three distinct cis-regulatory elements, a T cell lineage-specific enhancer (R-TEn) and the two B cell-specific elements, R1B and R2B By generating mice lacking either R-TEn or R1B and R2B, we demonstrate that these distinct sets of regulatory elements drive the expression of Rag genes in developing T and B cells. What these elements have in common is their ability to bind the transcription factor E2A. By generating a mouse strain that carries a mutation within the E2A binding site of R-TEn, we demonstrate that recruitment of E2A to this site is essential for orchestrating changes in chromatin conformation that drive expression of Rag genes in T cells. By mapping cis-regulatory elements and generating multiple mouse strains lacking distinct enhancer elements, we demonstrate expression of Rag genes in developing T and B cells to be driven by distinct sets of E2A-dependent cis-regulatory modules.
Collapse
Affiliation(s)
- Kazuko Miyazaki
- Laboratory of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Hitomi Watanabe
- Laboratory of Integrative Biological Sciences, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Genki Yoshikawa
- Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan
| | - Kenian Chen
- Baylor Institute for Immunology Research, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Reiko Hidaka
- Laboratory of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yuki Aitani
- Laboratory of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Kai Osawa
- Laboratory of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Rie Takeda
- Laboratory of Integrative Biological Sciences, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yotaro Ochi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Shizue Tani-Ichi
- Laboratory of Immune Regulation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Takuya Uehata
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.,Institute for the Advanced Study of Human Biology (WPI ASHBi), Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.,Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Gen Kondoh
- Laboratory of Integrative Biological Sciences, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yin C Lin
- Baylor Institute for Immunology Research, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan
| | - Masaki Miyazaki
- Laboratory of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
21
|
Seitz V, Kleo K, Dröge A, Schaper S, Elezkurtaj S, Bedjaoui N, Dimitrova L, Sommerfeld A, Berg E, von der Wall E, Müller U, Joosten M, Lenze D, Heimesaat MM, Baldus C, Zinser C, Cieslak A, Macintyre E, Stocking C, Hennig S, Hummel M. Evidence for a role of RUNX1 as recombinase cofactor for TCRβ rearrangements and pathological deletions in ETV6-RUNX1 ALL. Sci Rep 2020; 10:10024. [PMID: 32572036 PMCID: PMC7308335 DOI: 10.1038/s41598-020-65744-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 05/06/2020] [Indexed: 11/08/2022] Open
Abstract
T-cell receptor gene beta (TCRβ) gene rearrangement represents a complex, tightly regulated molecular mechanism involving excision, deletion and recombination of DNA during T-cell development. RUNX1, a well-known transcription factor for T-cell differentiation, has recently been described to act in addition as a recombinase cofactor for TCRδ gene rearrangements. In this work we employed a RUNX1 knock-out mouse model and demonstrate by deep TCRβ sequencing, immunostaining and chromatin immunoprecipitation that RUNX1 binds to the initiation site of TCRβ rearrangement and its homozygous inactivation induces severe structural changes of the rearranged TCRβ gene, whereas heterozygous inactivation has almost no impact. To compare the mouse model results to the situation in Acute Lymphoblastic Leukemia (ALL) we analyzed TCRβ gene rearrangements in T-ALL samples harboring heterozygous Runx1 mutations. Comparable to the Runx1+/- mouse model, heterozygous Runx1 mutations in T-ALL patients displayed no detectable impact on TCRβ rearrangements. Furthermore, we reanalyzed published sequence data from recurrent deletion borders of ALL patients carrying an ETV6-RUNX1 translocation. RUNX1 motifs were significantly overrepresented at the deletion ends arguing for a role of RUNX1 in the deletion mechanism. Collectively, our data imply a role of RUNX1 as recombinase cofactor for both physiological and aberrant deletions.
Collapse
Affiliation(s)
- V Seitz
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
- HS Diagnomics GmbH, Berlin, Germany
| | - K Kleo
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - A Dröge
- HS Diagnomics GmbH, Berlin, Germany
| | | | - S Elezkurtaj
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - N Bedjaoui
- University of Paris, Institute Necker-Enfants Malades (INEM), INSERM U1151, Laboratoire d'Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - L Dimitrova
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - A Sommerfeld
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - E Berg
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - E von der Wall
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - U Müller
- Heinrich-Pette-Institute, Leibniz-Institute for Experimental Virology, Hamburg, Germany
| | - M Joosten
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - D Lenze
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - M M Heimesaat
- Charité University Medicine Berlin, Institute of Microbiology, Infectious Diseases and Immunology, Berlin, Germany
| | - C Baldus
- University Medical Center Schleswig-Holstein, Department of Internal Medicine II, Kiel, Germany
| | - C Zinser
- Precigen Bioinformatics Germany GmbH, Munich, Germany
| | - A Cieslak
- University of Paris, Institute Necker-Enfants Malades (INEM), INSERM U1151, Laboratoire d'Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - E Macintyre
- University of Paris, Institute Necker-Enfants Malades (INEM), INSERM U1151, Laboratoire d'Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - C Stocking
- University Medical Center Eppendorf, Department of Stem Cell Transplantation, Hamburg, Germany
| | - S Hennig
- HS Diagnomics GmbH, Berlin, Germany
| | - M Hummel
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany.
| |
Collapse
|
22
|
Zhao H, Li Z, Zhu Y, Hao B. A linear-amplification VDJ-seq technique for quantification of immunoglobulin and T cell receptor diversity. Genome 2019; 63:145-153. [PMID: 31825677 DOI: 10.1139/gen-2019-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The V(D)J recombination is essential for generating a highly diverse repertoire of antigen receptors expressed on T and B lymphocytes. Here, we developed a linear-amplification VDJ-seq technique for quantifying V(D)J recombination of antigen receptor genes. This technique takes advantage of linear amplification using in vitro transcription and reverse transcription to avoid bias generated by the PCR amplification of low copy number of target DNA. The unrearranged alleles are removed by in vitro cleavage with the CRISPR-Cas9 system. The linear-amplification VDJ-seq assay was applied in quantification of the Vκ-Jκ recombination of the mouse Igκ gene with Jκ capture primers. The Jκ genes were detected in 95.86% of clean reads with more than half containing the Vκ gene, indicating high specificity of capturing and amplification. We also applied this approach to quantify the usage of Jα within the Trav12 gene family of the Tcra gene.
Collapse
Affiliation(s)
- Hao Zhao
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhaoqiang Li
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yongchang Zhu
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Bingtao Hao
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Henan Medical Genetics Institute, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan Province, P.R. China
| |
Collapse
|