1
|
Liu Y, Wu J, Zhou J, Guo J, Ren D, Bai Y, Hu D. TFCP2 is recognized as a dynamic monitoring index of pneumoconiosis by combining radiomics with transcriptomics. Int Immunopharmacol 2025; 153:114457. [PMID: 40101424 DOI: 10.1016/j.intimp.2025.114457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/16/2025] [Accepted: 03/08/2025] [Indexed: 03/20/2025]
Abstract
OBJECTIVE Herein, we employed a novel integrated radiomics and transcriptomics approach to identify key biomarkers for pneumoconiosis. Specifically, we combined thoracic Computed Tomography (CT) imaging-based phenomics and peripheral blood gene expression analysis to improve early diagnosis and risk stratification of pneumoconiosis. METHODS The study cohort comprised individuals with diagnosed pneumoconiosis and healthy coal miners. Participants were categorized into low-, medium-, and high-risk groups, as well as a pneumoconiosis group, based on radiomics scoring. Peripheral blood samples were collected for transcriptome sequencing analysis, and key genes were selected through differential expression and trend analysis. Mfuzz clustering analysis and KEGG pathway enrichment analysis were utilized to further investigate gene expression patterns and functions. The expression of key genes was verified using real-time quantitative PCR and western blotting. The diagnostic value of key genes was assessed using Receiver Operating Characteristic (ROC) analysis. A mouse model was constructed to assess the role of TFCP2 in pneumoconiosis and to explore its potential mechanisms. RESULTS Our findings revealed that heterogeneous gene expression patterns correlated with an increased pneumoconiosis risk. Additionally, TFCP2 emerged as a significant biomarker (AUC = 0.799), with its expression levels increasing with pneumoconiosis risk. Furthermore, TFCP2 upregulation correlated closely with Extracellular Matrix (ECM)-receptor interactions and AGE-RAGE signaling pathways, which have been associated with fibrosis and inflammatory responses in lung tissue. Moreover, silencing TFCP2 in a mouse model improved silica-induced pulmonary fibrosis, with USP22 identified as a downstream target gene of TFCP2. CONCLUSION TFCP2 may serve as a potential biomarker and therapeutic target for the progression of pneumoconiosis. Its high expression in lung epithelial cells may exacerbate pulmonary fibrosis by promoting EMT and ECM deposition. This study provides new molecular targets for the early diagnosis and treatment of pneumoconiosis.
Collapse
Affiliation(s)
- Yafeng Liu
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, PR China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, PR China
| | - Jing Wu
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, PR China; Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, PR China.
| | - Jiawei Zhou
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, PR China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, PR China
| | - Jianqiang Guo
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, PR China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, PR China
| | - Dingfei Ren
- Joint Research Center for Occupational Medicine and Health of IHM, Anhui University of Science and Technology, Huainan, PR China; Occupational Control Hospital of Huaihe Energy Group, Huainan, PR China.
| | - Ying Bai
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, PR China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, PR China
| | - Dong Hu
- The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), School of Medicine, Huainan, PR China; Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China..
| |
Collapse
|
2
|
Yang H, Sun T, Sun Z, Wang H, Liu D, Wu D, Qin T, Zhou M. Unravelling the role of ubiquitin-specific proteases in breast carcinoma: insights into tumour progression and immune microenvironment modulation. World J Surg Oncol 2025; 23:60. [PMID: 39979972 PMCID: PMC11841324 DOI: 10.1186/s12957-025-03667-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/19/2025] [Indexed: 02/22/2025] Open
Abstract
Breast cancer is a prevalent malignancy worldwide, and its treatment has increasingly shifted towards precision medicine, with immunotherapy emerging as a key therapeutic strategy. Deubiquitination, an essential epigenetic modification, is regulated by deubiquitinating enzymes (DUBs) and plays a critical role in immune function and tumor progression. Ubiquitin-specific proteases (USPs), a prominent subgroup of DUBs, are involved in regulating immune cell functions, antigen processing, and T cell development in the context of breast cancer. Certain USPs also modulate the differentiation of immune cells, such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs), within the breast cancer immune microenvironment. Furthermore, several USPs influence the expression of PD-L1, thus affecting the efficacy of immune checkpoint inhibitors. The overexpression of USPs may promote immune evasion, contributing to the development of treatment resistance. This review elucidates the role of USPs in modulating the immune microenvironment and immune responses in breast cancer. Additionally, it discusses effective strategies for combining USP inhibitors with other therapeutic agents to enhance treatment outcomes. Therefore, targeting USPs presents the potential to enhance the efficacy of immunotherapy and overcome drug resistance, offering a more effective treatment strategy for breast cancer patients.
Collapse
Affiliation(s)
- Huiyuan Yang
- Qingdao Municipal Hospital Affiliated with Qingdao University, Qingdao, Shandong Province, 266011, China
| | - Tingting Sun
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong Province, 266011, China
| | - Zhenni Sun
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong Province, 266011, China
| | - Haining Wang
- Department of Oncology, No. 971 Hospital of the People's Liberation Army Navy, Qingdao, 266001, China
| | - Dongjie Liu
- Department of Second Recuperation, Dalian Rehabilitation Recuperation Center of Joint Logistics Support Force of PLA, Dalian, 116013, China
| | - Dapeng Wu
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong Province, 266011, China.
| | - Tao Qin
- Qingdao Municipal Hospital Affiliated with Qingdao University, Qingdao, Shandong Province, 266011, China.
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong Province, 266011, China.
| | - Mi Zhou
- Qingdao Municipal Hospital Affiliated with Qingdao University, Qingdao, Shandong Province, 266011, China.
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong Province, 266011, China.
| |
Collapse
|
3
|
Zhou Y, Chu P, Wang Y, Li N, Gao Q, Wang S, Wei J, Xue G, Zhao Y, Jia H, Song J, Zhang Y, Pang Y, Zhu H, Sun J, Ma S, Su C, Hu B, Zhao Z, Zhang H, Lu J, Wang J, Wang H, Sun Z, Fang D. Epinephrine promotes breast cancer metastasis through a ubiquitin-specific peptidase 22-mediated lipolysis circuit. SCIENCE ADVANCES 2024; 10:eado1533. [PMID: 39151008 PMCID: PMC11328899 DOI: 10.1126/sciadv.ado1533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/10/2024] [Indexed: 08/18/2024]
Abstract
Chronic stress-induced epinephrine (EPI) accelerates breast cancer progression and metastasis, but the molecular mechanisms remain unclear. Herein, we found a strong positive correlation between circulating EPI levels and the tumoral expression of ubiquitin-specific peptidase 22 (USP22) in patients with breast cancer. USP22 facilitated EPI-induced breast cancer progression and metastasis by enhancing adipose triglyceride lipase (ATGL)-mediated lipolysis. Targeted USP22 deletion decreased ATGL expression and lipolysis, subsequently inhibiting EPI-mediated breast cancer lung metastasis. USP22 acts as a bona fide deubiquitinase for the Atgl gene transcription factor FOXO1, and EPI architects a lipolysis signaling pathway to stabilize USP22 through AKT-mediated phosphorylation. Notably, USP22 phosphorylation levels are positively associated with EPI and with downstream pathways involving both FOXO1 and ATGL in breast cancers. Pharmacological USP22 inhibition synergized with β-blockers in treating preclinical xenograft breast cancer models. This study reveals a molecular pathway behind EPI's tumor-promoting effects and provides a strong rationale for combining USP22 inhibition with β-blockers to treat aggressive breast cancer.
Collapse
Affiliation(s)
- Yuanzhang Zhou
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Peng Chu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
- Dalian College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Ya Wang
- Department of Breast Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116044, China
| | - Na Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Qiong Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
- Department of Pathology & Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shengnan Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
- Department of Pathology & Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Juncheng Wei
- Department of Pathology & Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Guoqing Xue
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Yue Zhao
- Department of Clinical Laboratory, Dalian Municipal Central Hospital, Dalian 116000, China
| | - Huijun Jia
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Jiankun Song
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Yue Zhang
- Department of Breast Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116044, China
| | - Yujie Pang
- Department of Breast Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116044, China
| | - Houyu Zhu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Jia Sun
- Dalian College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Suxian Ma
- Dalian College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Chen Su
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Bingjin Hu
- Dalian College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zhuoyue Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Hui Zhang
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Janice Lu
- Department of Medicine & Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jian Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Hongjiang Wang
- Department of Breast Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116044, China
| | - Zhaolin Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
- Dalian College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Deyu Fang
- Department of Pathology & Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
4
|
Zhang Y, Wang Z, Lu Y, Sanchez DJ, Li J, Wang L, Meng X, Chen J, Kien TT, Zhong M, Gao W, Ding X. Region-Specific CD16 + Neutrophils Promote Colorectal Cancer Progression by Inhibiting Natural Killer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403414. [PMID: 38790136 PMCID: PMC11304263 DOI: 10.1002/advs.202403414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/30/2024] [Indexed: 05/26/2024]
Abstract
The colon is the largest compartment of the immune system, with innate immune cells exposed to antigens in the environment. However, the mechanisms by which the innate immune system is instigated are poorly defined in colorectal cancer (CRC). Here, a population of CD16+ neutrophils that specifically accumulate in CRC tumor tissues by imaging mass cytometry (IMC), immune fluorescence, and flow cytometry, which demonstrated pro-tumor activity by disturbing natural killer (NK) cells are identified. It is found that these CD16+ neutrophils possess abnormal cholesterol accumulation due to activation of the CD16/TAK1/NF-κB axis, which upregulates scavenger receptors for cholesterol intake including CD36 and LRP1. Consequently, these region-specific CD16+ neutrophils not only competitively inhibit cholesterol intake of NK cells, which interrupts NK lipid raft formation and blocks their antitumor signaling but also release neutrophil extracellular traps (NETs) to induce the death of NK cells. Furthermore, CD16-knockout reverses the pro-tumor activity of neutrophils and restored NK cell cytotoxicity. Collectively, the findings suggest that CRC region-specific CD16+ neutrophils can be a diagnostic marker and potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
- Med‐X Research Institute & School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Zien Wang
- State Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
- Med‐X Research Institute & School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Yu Lu
- State Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - David J. Sanchez
- Pharmaceutical Sciences DepartmentCollege of PharmacyWestern University of Health Sciences309 East 2nd StreetHPC 225PomonaCA90025USA
| | - Jiaojiao Li
- School of Biomedical EngineeringFaculty of Engineering and ITUniversity of Technology SydneySydneyNSW2007Australia
| | - Linghao Wang
- Med‐X Research Institute & School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Xiaoxue Meng
- Med‐X Research Institute & School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Jianjun Chen
- Department of Gastrointestinal SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Tran Trung Kien
- Oncology departmentUniversity Medical Shing Mark Hospital1054 Highway 51, Long Binh Tan Ward, Bien Hoa CityDong Nai76000Vietnam
| | - Ming Zhong
- Department of Gastrointestinal SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Wei‐Qiang Gao
- State Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
- Med‐X Research Institute & School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| |
Collapse
|
5
|
Li L, McAllister F, Maitra A. The liver casts a wide NET for metastatic pancreatic cancer. Nat Med 2024; 30:2125-2126. [PMID: 38992125 DOI: 10.1038/s41591-024-03112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Affiliation(s)
- Le Li
- Department of Genetics, University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Florencia McAllister
- Department of Genetics, University of Texas MD Anderson Cancer Centre, Houston, TX, USA.
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Centre, Houston, TX, USA.
- Department of Immunology, University of Texas MD Anderson Cancer Centre, Houston, TX, USA.
| | - Anirban Maitra
- Department of Pathology, University of Texas MD Anderson Cancer Centre, Houston, TX, USA.
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Centre, Houston, TX, USA.
- Sheikh Ahmed Centre for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Centre, Houston, TX, USA.
| |
Collapse
|
6
|
Bian X, Wang W, Abudurexiti M, Zhang X, Ma W, Shi G, Du L, Xu M, Wang X, Tan C, Sun H, He X, Zhang C, Zhu Y, Zhang M, Ye D, Wang J. Integration Analysis of Single-Cell Multi-Omics Reveals Prostate Cancer Heterogeneity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305724. [PMID: 38483933 PMCID: PMC11095148 DOI: 10.1002/advs.202305724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/25/2024] [Indexed: 05/16/2024]
Abstract
Prostate cancer (PCa) is an extensive heterogeneous disease with a complex cellular ecosystem in the tumor microenvironment (TME). However, the manner in which heterogeneity is shaped by tumors and stromal cells, or vice versa, remains poorly understood. In this study, single-cell RNA sequencing, spatial transcriptomics, and bulk ATAC-sequence are integrated from a series of patients with PCa and healthy controls. A stemness subset of club cells marked with SOX9highARlow expression is identified, which is markedly enriched after neoadjuvant androgen-deprivation therapy (ADT). Furthermore, a subset of CD8+CXCR6+ T cells that function as effector T cells is markedly reduced in patients with malignant PCa. For spatial transcriptome analysis, machine learning and computational intelligence are comprehensively utilized to identify the cellular diversity of prostate cancer cells and cell-cell communication in situ. Macrophage and neutrophil state transitions along the trajectory of cancer progression are also examined. Finally, the immunosuppressive microenvironment in advanced PCa is found to be associated with the infiltration of regulatory T cells (Tregs), potentially induced by an FAP+ fibroblast subset. In summary, the cellular heterogeneity is delineated in the stage-specific PCa microenvironment at single-cell resolution, uncovering their reciprocal crosstalk with disease progression, which can be helpful in promoting PCa diagnosis and therapy.
Collapse
Affiliation(s)
- Xiaojie Bian
- Department of UrologyFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Wenfeng Wang
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Mierxiati Abudurexiti
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of UrologyShanghai Pudong New Area Gongli HospitalShanghai200135China
| | - Xingming Zhang
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Weiwei Ma
- Department of UrologyFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Guohai Shi
- Department of UrologyFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Leilei Du
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Midie Xu
- Department of PathologyFudan University Shanghai Cancer CenterShanghai200032China
| | - Xin Wang
- Department of PathologyFudan University Shanghai Cancer CenterShanghai200032China
| | - Cong Tan
- Department of PathologyFudan University Shanghai Cancer CenterShanghai200032China
| | - Hui Sun
- Department of PathologyFudan University Shanghai Cancer CenterShanghai200032China
| | - Xiadi He
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMA02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMA02115USA
| | - Chenyue Zhang
- Department of Integrated TherapyFudan University Shanghai Cancer CenterShanghai200032China
| | - Yao Zhu
- Department of UrologyFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Min Zhang
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease InstituteShanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Dingwei Ye
- Department of UrologyFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Jianhua Wang
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| |
Collapse
|
7
|
Zhang Y, Song J, Zhou Y, Jia H, Zhou T, Sun Y, Gao Q, Zhao Y, Pan Y, Sun Z, Chu P. Discovery of selective and potent USP22 inhibitors via structure-based virtual screening and bioassays exerting anti-tumor activity. Bioorg Chem 2023; 141:106842. [PMID: 37769523 DOI: 10.1016/j.bioorg.2023.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/20/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
Ubiquitin-specific protease 22 (USP22) plays a prominent role in tumor development, invasion, metastasis and immune reprogramming, which has been proposed as a potential therapeutic target for cancer. Herein, we employed a structure-based discovery and biological evaluation and discovered that Rottlerin (IC50 = 2.53 μM) and Morusin (IC50 = 8.29 μM) and as selective and potent USP22 inhibitors. Treatment of HCT116 cells and A375 cells with each of the two compounds resulted in increased monoubiquitination of histones H2A and H2B, as well as reduced protein expression levels of Sirt1 and PD-L1, all of which are known as USP22 substrates. Additionally, our study demonstrated that the administration of Rottlerin or Morusin resulted in an increase H2Bub levels, while simultaneously reducing the expression of Sirt1 and PD-L1 in a manner dependent on USP22. Furthermore, Rottlerin and Morusin were found to enhance the degradation of PD-L1 and Sirt1, as well as increase the polyubiquitination of endogenous PD-L1 and Sirt1 in HCT116 cells. Moreover, in an in vivo syngeneic tumor model, Rottlerin and Morusin exhibited potent antitumor activity, which was accompanied by an enhanced infiltration of T cells into the tumor tissues. Using in-depth molecular dynamics (MD) and binding free energy calculation, conserved residue Leu475 and non-conserved residue Arg419 were proven to be crucial for the binding affinity and inhibitory function of USP22 inhibitors. In summary, our study established a highly efficient approach for USP22-specific inhibitor discovery, which lead to identification of two selective and potent USP22 inhibitors as potential drugs in anticancer therapy.
Collapse
Affiliation(s)
- Yue Zhang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Jiankun Song
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Yuanzhang Zhou
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Huijun Jia
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Tianyu Zhou
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yingbo Sun
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Qiong Gao
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Yue Zhao
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Yujie Pan
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zhaolin Sun
- College of Pharmacy, Dalian Medical University, Dalian 116044, China; Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China.
| | - Peng Chu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
8
|
Wang S, Liu K, Han X, Cheng Y, Zhao E, Brat DJ, Sun Z, Fang D. ATXN3 deubiquitinates YAP1 to promote tumor growth. Am J Cancer Res 2023; 13:4222-4234. [PMID: 37818078 PMCID: PMC10560956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/11/2023] [Indexed: 10/12/2023] Open
Abstract
The ubiquitin-specific peptidase Ataxin-3 (ATXN3) has emerged as a potential oncogene in a variety of human cancers. However, the molecular mechanisms underlying how ATXN3 achieves its tumorigenic functions remain largely undefined. Herein, we report that targeted deletion of the ATXN3 gene in cancer cells by the CRISPR-Cas9 system resulted in decreased protein expression of Yes-associated protein 1 (YAP1) without altering its mRNA transcription. Interestingly, genetic ATXN3 suppression selectively inhibited the expression levels of YAP1 target genes including the connective tissue growth factor (Ctgf) and cysteine-rich angiogenic inducer 61 (Cyr61), both of which have important functions in cell adhesion, migration, proliferation and angiogenesis. Consequently, ATXN3 suppression resulted in reduced cancer cell growth and migration, which can also be largely rescued by YAP1 reconstitution. At the molecular level, ATNX3 interacts with the WW domains of YAP1 to protect YAP1 from ubiquitination-mediated degradation. Immunohistology analysis revealed a strong positive correlation between ATXN3 and YAP1 protein expression in human breast and pancreatic cancers. Collectively, our study defines ATXN3 as a previously unknown YAP1 deubiquitinase in tumorigenesis and provides a rationale for ATXN3 targeting in antitumor chemotherapy.
Collapse
Affiliation(s)
- Shengnan Wang
- College of Basic Medical Sciences, Dalian Medical UniversityDalian 116044, Liaoning, China
- Department of Pathology, Northwestern University Feinberg School of MedicineChicago, IL 60611, USA
| | - Kun Liu
- Department of Pathology, Northwestern University Feinberg School of MedicineChicago, IL 60611, USA
| | - Xiaohua Han
- Department of Physiology, School of Basic Medicine, Qingdao UniversityNingxia Road 308, Qingdao 266071, Shandong, China
| | - Yang Cheng
- College of Basic Medical Sciences, Dalian Medical UniversityDalian 116044, Liaoning, China
- Department of Pathology, Northwestern University Feinberg School of MedicineChicago, IL 60611, USA
| | - Emily Zhao
- Weinberg College of Arts and Sciences, Northwestern UniversityEvanston, IL 60201, USA
| | - Daniel J Brat
- Department of Pathology, Northwestern University Feinberg School of MedicineChicago, IL 60611, USA
| | - Zhaolin Sun
- College of Basic Medical Sciences, Dalian Medical UniversityDalian 116044, Liaoning, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of MedicineChicago, IL 60611, USA
| |
Collapse
|
9
|
Gao H, Yin J, Ji C, Yu X, Xue J, Guan X, Zhang S, Liu X, Xing F. Targeting ubiquitin specific proteases (USPs) in cancer immunotherapy: from basic research to preclinical application. J Exp Clin Cancer Res 2023; 42:225. [PMID: 37658402 PMCID: PMC10472646 DOI: 10.1186/s13046-023-02805-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023] Open
Abstract
Tumors have evolved in various mechanisms to evade the immune system, hindering the antitumor immune response and facilitating tumor progression. Immunotherapy has become a potential treatment strategy specific to different cancer types by utilizing multifarious molecular mechanisms to enhance the immune response against tumors. Among these mechanisms, the ubiquitin-proteasome system (UPS) is a significant non-lysosomal pathway specific to protein degradation, regulated by deubiquitinating enzymes (DUBs) that counterbalance ubiquitin signaling. Ubiquitin-specific proteases (USPs), the largest DUB family with the strongest variety, play critical roles in modulating immune cell function, regulating immune response, and participating in antigen processing and presentation during tumor progression. According to recent studies, the expressions of some USP family members in tumor cells are involved in tumor immune escape and immune microenvironment. This review explores the potential of targeting USPs as a new approach for cancer immunotherapy, highlighting recent basic and preclinical studies investigating the applications of USP inhibitors. By providing insights into the structure and function of USPs in cancer immunity, this review aims at assisting in developing new therapeutic approaches for enhancing the immunotherapy efficacy.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jianqiao Yin
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ce Ji
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiaopeng Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xin Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Shuang Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xun Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
10
|
You M, Liu J, Li J, Ji C, Ni H, Guo W, Zhang J, Jia W, Wang Z, Zhang Y, Yao Y, Yu G, Ji H, Wang X, Han D, Du X, Xu MM, Yu S. Mettl3-m 6A-Creb1 forms an intrinsic regulatory axis in maintaining iNKT cell pool and functional differentiation. Cell Rep 2023; 42:112584. [PMID: 37267102 DOI: 10.1016/j.celrep.2023.112584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/07/2023] [Accepted: 05/15/2023] [Indexed: 06/04/2023] Open
Abstract
N6-methyladenosine (m6A) methyltransferase Mettl3 is involved in conventional T cell immunity; however, its role in innate immune cells remains largely unknown. Here, we show that Mettl3 intrinsically regulates invariant natural killer T (iNKT) cell development and function in an m6A-dependent manner. Conditional ablation of Mettl3 in CD4+CD8+ double-positive (DP) thymocytes impairs iNKT cell proliferation, differentiation, and cytokine secretion, which synergistically causes defects in B16F10 melanoma resistance. Transcriptomic and epi-transcriptomic analyses reveal that Mettl3 deficiency disturbs the expression of iNKT cell-related genes with altered m6A modification. Strikingly, Mettl3 modulates the stability of the Creb1 transcript, which in turn controls the protein and phosphorylation levels of Creb1. Furthermore, conditional targeting of Creb1 in DP thymocytes results in similar phenotypes of iNKT cells lacking Mettl3. Importantly, ectopic expression of Creb1 largely rectifies such developmental defects in Mettl3-deficient iNKT cells. These findings reveal that the Mettl3-m6A-Creb1 axis plays critical roles in regulating iNKT cells at the post-transcriptional layer.
Collapse
Affiliation(s)
- Menghao You
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jingjing Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China; Department of Basic Medical Sciences, School of Medicine, Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, THU-PKU Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ce Ji
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Haochen Ni
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenhui Guo
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiarui Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Weiwei Jia
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhao Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yajiao Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yingpeng Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guotao Yu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Huanyu Ji
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaohu Wang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dali Han
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuguang Du
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Meng Michelle Xu
- Department of Basic Medical Sciences, School of Medicine, Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, THU-PKU Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Shuyang Yu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Jiang Y, Hong K, Zhao Y, Xu K. Emerging role of deubiquitination modifications of programmed death-ligand 1 in cancer immunotherapy. Front Immunol 2023; 14:1228200. [PMID: 37415977 PMCID: PMC10321661 DOI: 10.3389/fimmu.2023.1228200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
Immune evasion is essential for carcinogenesis and cancer progression. Programmed death-ligand 1 (PD-L1), a critical immune checkpoint molecule, interacts with programmed death receptor-1 (PD-1) on immune cells to suppress anti-tumor immune responses. In the past decade, antibodies targeting PD-1/PD-L1 have tremendously altered cancer treatment paradigms. Post-translational modifications have been reported as key regulators of PD-L1 expression. Among these modifications, ubiquitination and deubiquitination are reversible processes that dynamically control protein degradation and stabilization. Deubiquitinating enzymes (DUBs) are responsible for deubiquitination and have emerged as crucial players in tumor growth, progression, and immune evasion. Recently, studies have highlighted the participation of DUBs in deubiquitinating PD-L1 and modulating its expression. Here, we review the recent developments in deubiquitination modifications of PD-L1 and focus on the underlying mechanisms and effects on anti-tumor immunity.
Collapse
Affiliation(s)
- Yao Jiang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Hong
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingchao Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Xu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Wang H, Langlais D, Nijnik A. Histone H2A deubiquitinases in the transcriptional programs of development and hematopoiesis: a consolidated analysis. Int J Biochem Cell Biol 2023; 157:106384. [PMID: 36738766 DOI: 10.1016/j.biocel.2023.106384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Monoubiquitinated lysine 119 of histone H2A (H2AK119ub) is a highly abundant epigenetic mark, associated with gene repression and deposited on chromatin by the polycomb repressor complex 1 (PRC1), which is an essential regulator of diverse transcriptional programs in mammalian development and tissue homeostasis. While multiple deubiquitinases (DUBs) with catalytic activity for H2AK119ub (H2A-DUBs) have been identified, we lack systematic analyses of their roles and cross-talk in transcriptional regulation. Here, we address H2A-DUB functions in epigenetic regulation of mammalian development and tissue maintenance by conducting a meta-analysis of 248 genomics datasets from 32 independent studies, focusing on the mouse model and covering embryonic stem cells (ESCs), hematopoietic, and immune cell lineages. This covers all the publicly available datasets that map genomic H2A-DUB binding and H2AK119ub distributions (ChIP-Seq), and all datasets assessing dysregulation in gene expression in the relevant H2A-DUB knockout models (RNA-Seq). Many accessory datasets for PRC1-2 and DUB-interacting proteins are also analyzed and interpreted, as well as further data assessing chromatin accessibility (ATAC-Seq) and transcriptional activity (RNA-seq). We report co-localization in the binding of H2A-DUBs BAP1, USP16, and to a lesser extent others that is conserved across different cell-types, and also the enrichment of antagonistic PRC1-2 protein complexes at the same genomic locations. Such conserved sites enriched for the H2A-DUBs and PRC1-2 are proximal to transcriptionally active genes that engage in housekeeping cellular functions. Nevertheless, they exhibit H2AK119ub levels significantly above the genomic average that can undergo further increase with H2A-DUB knockout. This indicates a cooperation between H2A-DUBs and PRC1-2 in the modulation of housekeeping transcriptional programs, conserved across many cell types, likely operating through their antagonistic effects on H2AK119ub and the regulation of local H2AK119ub turnover. Our study further highlights existing knowledge gaps and discusses important directions for future work.
Collapse
Affiliation(s)
- HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, McGill University, QC, Canada
| | - David Langlais
- McGill University Research Centre on Complex Traits, McGill University, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada; McGill Genome Centre, Montreal, QC, Canada.
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, McGill University, QC, Canada.
| |
Collapse
|
13
|
USP22 upregulates ZEB1-mediated VEGFA transcription in hepatocellular carcinoma. Cell Death Dis 2023; 14:194. [PMID: 36906615 PMCID: PMC10008583 DOI: 10.1038/s41419-023-05699-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/13/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common solid tumor with high rate of recurrence and mortality. Anti-angiogenesis drugs have been used for the therapy of HCC. However, anti-angiogenic drug resistance commonly occurs during HCC treatment. Thus, identification of a novel VEGFA regulator would be better understanding for HCC progression and anti-angiogenic therapy resistance. Ubiquitin specific protease 22 (USP22) as a deubiquitinating enzyme, participates in a variety of biological processes in numerous tumors. While the molecular mechanism underlying the effects of USP22 on angiogenesis is still needed to be clarified. Here, our results demonstrated that USP22 acts as a co-activator of VEGFA transcription. Importantly, USP22 is involved in maintenance of ZEB1 stability via its deubiquitinase activity. USP22 was recruited to ZEB1-binding elements on the promoter of VEGFA, thereby altering histone H2Bub levels, to enhance ZEB1-mediated VEGFA transcription. USP22 depletion decreased cell proliferation, migration, Vascular Mimicry (VM) formation, and angiogenesis. Furthermore, we provided the evidence to show that knockdown of USP22 inhibited HCC growth in tumor-bearing nude mice. In addition, the expression of USP22 is positively correlated with that of ZEB1 in clinical HCC samples. Our findings suggest that USP22 participates in the promotion of HCC progression, if not all, at least partially via up-regulation of VEGFA transcription, providing a novel therapeutic target for anti-angiogenic drug resistance in HCC.
Collapse
|
14
|
Guo J, Zhao J, Fu W, Xu Q, Huang D. Immune Evasion and Drug Resistance Mediated by USP22 in Cancer: Novel Targets and Mechanisms. Front Immunol 2022; 13:918314. [PMID: 35935969 PMCID: PMC9347222 DOI: 10.3389/fimmu.2022.918314] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of ubiquitination is involved in various processes in cancer occurrence and development, including cell cycle arrest, cell proliferation, apoptosis, invasion, metastasis, and immunity. Ubiquitination plays an important role not only at the transcriptional and post-translational levels but also at the protein level. When ubiquitination is in a pathological state, abnormally activated biological processes will not only induce cancer progression but also induce immune evasion. The main function of deubiquitinases (DUBs) is to remove ubiquitin chains from substrates, changing the biological activity of the substrates. It has great potential to improve the prognosis of cancer by targeting DUB to regulate proteome. Ubiquitin-specific peptidase 22 (USP22) belongs to the ubiquitin-specific protease (USP) family of DUBs and has been reported to be related to various physiological and pathological processes. USP22 is abnormally expressed in various malignant tumors such as prostate cancer, lung cancer, liver cancer, and colorectal cancer, which suggests that USP22 may play an important role in tumors. USP22 may stabilize programmed death ligand 1 (PD-L1) by deubiquitination while also regulating T-cell infiltration into tumors. Regulatory T cells (Tregs) are a unique class of immunosuppressive CD4+ T cells that primarily suppress the immune system by expressing the master transcription factor forkhead box protein 3 (FOXP3). USP22 was found to be a positive regulator of stable FOXP3 expression. Treg-specific ablation of USP22 leads to reduced tumor volume in multiple cancer models. This suggests that USP22 may regulate tumor resistance to immunotherapy. In this article, we review and summarize the biological functions of USP22 in multiple signal transduction pathways during tumorigenesis, immune evasion, and drug resistance. Furthermore, we propose a new possibility of combining USP22 with chemotherapeutic, targeted, and immunosuppressive drugs in the treatment of cancer.
Collapse
Affiliation(s)
- Jinhui Guo
- Qingdao Medical College, Qingdao University, Qingdao, China
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jie Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Wen Fu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Qiuran Xu
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Dongsheng Huang
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
15
|
Chen Y, Zhou D, Yao Y, Sun Y, Yao F, Ma L. Monoubiquitination in Homeostasis and Cancer. Int J Mol Sci 2022; 23:ijms23115925. [PMID: 35682605 PMCID: PMC9180643 DOI: 10.3390/ijms23115925] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Monoubiquitination is a post-translational modification (PTM), through which a single ubiquitin molecule is covalently conjugated to a lysine residue of the target protein. Monoubiquitination regulates the activity, subcellular localization, protein-protein interactions, or endocytosis of the substrate. In doing so, monoubiquitination is implicated in diverse cellular processes, including gene transcription, endocytosis, signal transduction, cell death, and DNA damage repair, which in turn regulate cell-cycle progression, survival, proliferation, and stress response. In this review, we summarize the functions of monoubiquitination and discuss how this PTM modulates homeostasis and cancer.
Collapse
Affiliation(s)
- Yujie Chen
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
| | - Dandan Zhou
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
| | - Yinan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- Correspondence: (F.Y.); (L.M.)
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Correspondence: (F.Y.); (L.M.)
| |
Collapse
|
16
|
Jing T, Wang B, Yang Z, Liu Y, Xu G, Xu X, Jiao K, Chen Z, Xiang L, Zhang L, Liu Y. Deubiquitination of the repressor E2F6 by USP22 facilitates AKT activation and tumor growth in hepatocellular carcinoma. Cancer Lett 2021; 518:266-277. [PMID: 34339800 DOI: 10.1016/j.canlet.2021.07.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/16/2021] [Accepted: 07/28/2021] [Indexed: 01/20/2023]
Abstract
Dysregulated ubiquitination of tumor-related proteins plays a critical role in tumor development and progression. The deubiquitinase USP22 is aberrantly expressed in certain types of cancer and contributes to aggressive tumor progression. However, the precise mechanism underlying the pro-tumorigenic function of USP22 in hepatocellular carcinoma (HCC) remains unclear. Here, we report that E2F6, a pocket protein-independent transcription repressor, is essential for HCC cell growth, and that its activities are controlled by USP22-mediated deubiquitination. USP22 interacts with and stabilizes E2F6, resulting in the transcriptional repression of phosphatase DUSP1. Moreover, the process involving DUSP1 repression by E2F6 strengthens AKT activation in HCC cells. Therefore, these findings provide mechanistic insights into the USP22-mediated control of oncogenic AKT signaling, emphasizing the importance of USP22-E2F6 regulation in HCC development.
Collapse
Affiliation(s)
- Tiantian Jing
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Boshi Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Zhaojuan Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Yun Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Guiqin Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Xiaoli Xu
- Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, 200030, China
| | - Kun Jiao
- Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, 200030, China
| | - Zehong Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Lvzhu Xiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China.
| | - Yongzhong Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China.
| |
Collapse
|
17
|
Guo JN, Xia BR, Deng SH, Yang C, Pi YN, Cui BB, Jin WL. Deubiquitinating Enzymes Orchestrate the Cancer Stem Cell-Immunosuppressive Niche Dialogue: New Perspectives and Therapeutic Potential. Front Cell Dev Biol 2021; 9:680100. [PMID: 34179009 PMCID: PMC8220152 DOI: 10.3389/fcell.2021.680100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer stem cells (CSCs) are sparks for igniting tumor recurrence and the instigators of low response to immunotherapy and drug resistance. As one of the important components of tumor microenvironment, the tumor associated immune microenvironment (TAIM) is driving force for the heterogeneity, plasticity and evolution of CSCs. CSCs create the inhibitory TAIM (ITAIM) mainly through four stemness-related signals (SRSs), including Notch-nuclear factor-κB axis, Hedgehog, Wnt and signal transducer and activator of transcription. Ubiquitination and deubiquitination in proteins related to the specific stemness of the CSCs have a profound impact on the regulation of ITAIM. In regulating the balance between ubiquitination and deubiquitination, it is crucial for deubiquitinating enzymes (DUBs) to cleave ubiquitin chains from substrates. Ubiquitin-specific peptidases (USPs) comprise the largest family of DUBs. Growing evidence suggests that they play novel functions in contribution of ITAIM, including regulating tumor immunogenicity, activating stem cell factors, upregulating the SRSs, stabilizing anti-inflammatory receptors, and regulating anti-inflammatory cytokines. These overactive or abnormal signaling may dampen antitumor immune responses. The inhibition of USPs could play a regulatory role in SRSs and reversing ITAIM, and also have great potential in improving immune killing ability against tumor cells, including CSCs. In this review, we focus on the USPs involved in CSCs signaling pathways and regulating ITAIM, which are promising therapeutic targets in antitumor therapy.
Collapse
Affiliation(s)
- Jun-Nan Guo
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bai-Rong Xia
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Anhui Provincial Cancer Hospital, University of Science and Technology of China, Hefei, China
| | - Shen-Hui Deng
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chang Yang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ya-Nan Pi
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bin-Bin Cui
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wei-Lin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Institute of Cancer Neuroscience, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| |
Collapse
|
18
|
Yan R, Chu J, Zhou Y, Shan W, Hu Y, Lin M, Zhao Y, Sun R, Wang Z, Lv L, Wang L, Yao J, Zhang N. Ubiquitin-specific protease 22 ameliorates chronic alcohol-associated liver disease by regulating BRD4. Pharmacol Res 2021; 168:105594. [PMID: 33826947 DOI: 10.1016/j.phrs.2021.105594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/19/2021] [Accepted: 03/31/2021] [Indexed: 11/22/2022]
Abstract
Alcohol-associated liver disease (ALD) is a liver system disease caused by alcohol abuse, and it involves complex processes ranging from steatosis to fibrosis, cirrhosis and hepatocellular carcinoma. Steatosis and inflammation are the main phenomena involved in ALD. Ubiquitin-specific protease 22 (USP22) plays an important role in liver steatosis; however, its functional contribution to ALD remains unclear. USP22-silenced mice were fed a Lieber-DeCarli liquid diet. AML-12 and HEK293T cells were used to detect the interaction between USP22 and BRD4. Here, we report that hepatic USP22 expression was dramatically upregulated in mice with ALD. Inflammation and steatosis were significantly ameliorated following USP22 silencing in vivo, as indicated by decreased IL-6 and IL-1β levels. We further showed that the overexpression of USP22 increased inflammation, while knocking down BRD4 suppressed the inflammatory response in AML-12 cells. Notably, USP22 functioned as a BRD4 deubiquitinase to facilitate BRD4 inflammatory functions. More importantly, the expression levels of USP22 and BRD4 in patients with ALD were significantly increased. In conclusion, USP22 acts a key pathogenic factor in ALD by deubiquitinating BRD4, which facilitates the inflammatory response and aggravates ALD.
Collapse
Affiliation(s)
- Ran Yan
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116000, China; Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Junyi Chu
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116000, China; Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Yuanzhang Zhou
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Wen Shan
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China; Department of Pharmacy, The Third Hospital of Dalian Medical University, Dalian 116600, China
| | - Yan Hu
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116000, China
| | - Musen Lin
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116000, China
| | - Yan Zhao
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Ruimin Sun
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Zhecheng Wang
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Li Lv
- Department of Pathology, The Second Hospital of Dalian Medical University, Dalian 116000, China
| | - Liming Wang
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Dalian Medical University, Dalian 116000, China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China.
| | - Ning Zhang
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116000, China.
| |
Collapse
|
19
|
Feng T, Ling S, Xu C, Ying L, Su D, Xu X. Ubiquitin-specific peptidase 22 in cancer. Cancer Lett 2021; 514:30-37. [PMID: 33989708 DOI: 10.1016/j.canlet.2021.05.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/21/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023]
Abstract
Recently, many studies have shown that deubiquitination modification of proteins is of great significance in major physiological processes such as cell proliferation, apoptosis, and differentiation. The ubiquitin-specific peptidase (USP) family is one of the most numerous and structurally diverse of the deubiquitinates known to date. USP22, an important member of the USP family, has been found to be closely associated with tumor cell cycle regulation, stemness maintenance, invasion and metastasis, chemoresistance, and immune regulation. We focus on recent advances regarding USP22's function in cancer and discuss the prospect of USP22 in this review.
Collapse
Affiliation(s)
- Tingting Feng
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Cancer Research Institute, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Department of Colorectal Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Sunbin Ling
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Chenyang Xu
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Lisha Ying
- Cancer Research Institute, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Dan Su
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
20
|
Regulation of Histone Ubiquitination in Response to DNA Double Strand Breaks. Cells 2020; 9:cells9071699. [PMID: 32708614 PMCID: PMC7407225 DOI: 10.3390/cells9071699] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Eukaryotic cells are constantly exposed to both endogenous and exogenous stressors that promote the induction of DNA damage. Of this damage, double strand breaks (DSBs) are the most lethal and must be efficiently repaired in order to maintain genomic integrity. Repair of DSBs occurs primarily through one of two major pathways: non-homologous end joining (NHEJ) or homologous recombination (HR). The choice between these pathways is in part regulated by histone post-translational modifications (PTMs) including ubiquitination. Ubiquitinated histones not only influence transcription and chromatin architecture at sites neighboring DSBs but serve as critical recruitment platforms for repair machinery as well. The reversal of these modifications by deubiquitinating enzymes (DUBs) is increasingly being recognized in a number of cellular processes including DSB repair. In this context, DUBs ensure proper levels of ubiquitin, regulate recruitment of downstream effectors, dictate repair pathway choice, and facilitate appropriate termination of the repair response. This review outlines the current understanding of histone ubiquitination in response to DSBs, followed by a comprehensive overview of the DUBs that catalyze the removal of these marks.
Collapse
|