1
|
Sun L, Li X, Xu F, Chen Y, Li X, Yang Z, Yang Y, Wang K, Ren T, Lin Z, Wang H, Wang X, Lu Y, Song Z, Cheng ZL, Wu D. A critical role of N 4-acetylation of cytidine in mRNA by NAT10 in T cell expansion and antiviral immunity. Nat Immunol 2025; 26:619-634. [PMID: 40045031 PMCID: PMC11957992 DOI: 10.1038/s41590-025-02100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 01/26/2025] [Indexed: 04/02/2025]
Abstract
Following activation, naive T cells exit quiescence and require global translation for rapid expansion, yet the underlying mechanisms remain unclear. Here, we show that during T cell activation, cells upregulate the expression of N-acetyltransferase 10 (NAT10), an enzyme responsible for N4-acetylcytidine (ac4C) modification of mRNAs. ac4C-modified Myc mRNAs show higher translation efficiency, enabling rapid synthesis of MYC protein and supporting robust T cell expansion. Conditional deletion of Nat10 in mouse T cells causes severe cell cycle arrest and limitation of cell expansion due to MYC deficiency, ultimately exacerbating infection in an acute lymphocytic choriomeningitis virus model. Additionally, T cells from older individuals with lower NAT10 levels show proliferative defects, which may partially account for impaired antiviral responses in older individuals. This study reveals a mechanism governing T cell expansion, signal-dependent mRNA degradation induction and the potential in vivo biological significance of ac4C modification in T cell-mediated immune responses.
Collapse
Affiliation(s)
- Lu Sun
- Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Medical Oncology, Shanghai Cancer Center & Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoyan Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Feixiang Xu
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuwen Chen
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xushuo Li
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zhicheng Yang
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Ying Yang
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Ke Wang
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Tianyi Ren
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zihao Lin
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiangdong Wang
- Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Lu
- Institute of Metabolism and Regenerative Medicine, Digestive Endoscopic Center, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhenju Song
- Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Zhou-Li Cheng
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China.
| | - Duojiao Wu
- Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, Shanghai, China.
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Chan L, Pinedo K, Stabile MA, Hamlin RE, Pienkos SM, Ratnasiri K, Yang S, Blomkalns AL, Nadeau KC, Pulendran B, O'Hara R, Rogers AJ, Holmes SP, Blish CA. Prior vaccination prevents overactivation of innate immune responses during COVID-19 breakthrough infection. Sci Transl Med 2025; 17:eadq1086. [PMID: 39879318 DOI: 10.1126/scitranslmed.adq1086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/10/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025]
Abstract
At this stage in the COVID-19 pandemic, most infections are "breakthrough" infections that occur in individuals with prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure. To refine long-term vaccine strategies against emerging variants, we examined both innate and adaptive immunity in breakthrough infections. We performed single-cell transcriptomic, proteomic, and functional profiling of primary and breakthrough infections to compare immune responses from unvaccinated and vaccinated individuals during the SARS-CoV-2 Delta wave. Breakthrough infections were characterized by a less activated transcriptomic profile in monocytes and natural killer cells, with induction of pathways limiting monocyte migratory potential and natural killer cell proliferation. Furthermore, we observed a female-specific increase in transcriptomic and proteomic activation of multiple innate immune cell subsets during breakthrough infections. These insights suggest that prior SARS-CoV-2 vaccination prevents overactivation of innate immune responses during breakthrough infections with discernible sex-specific patterns and underscore the potential of harnessing vaccines in mitigating pathologic immune responses resulting from overactivation.
Collapse
Affiliation(s)
- Leslie Chan
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kassandra Pinedo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mikayla A Stabile
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rebecca E Hamlin
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shaun M Pienkos
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kalani Ratnasiri
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Samuel Yang
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andra L Blomkalns
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kari C Nadeau
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruth O'Hara
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Angela J Rogers
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Susan P Holmes
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Catherine A Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
3
|
Lerman I, Bu Y, Singh R, Silverman HA, Bhardwaj A, Mann AJ, Widge A, Palin J, Puleo C, Lim H. Next generation bioelectronic medicine: making the case for non-invasive closed-loop autonomic neuromodulation. Bioelectron Med 2025; 11:1. [PMID: 39833963 PMCID: PMC11748337 DOI: 10.1186/s42234-024-00163-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
The field of bioelectronic medicine has advanced rapidly from rudimentary electrical therapies to cutting-edge closed-loop systems that integrate real-time physiological monitoring with adaptive neuromodulation. Early innovations, such as cardiac pacemakers and deep brain stimulation, paved the way for these sophisticated technologies. This review traces the historical and technological progression of bioelectronic medicine, culminating in the emerging potential of closed-loop devices for multiple disorders of the brain and body. We emphasize both invasive techniques, such as implantable devices for brain, spinal cord and autonomic regulation, while we introduce new prospects for non-invasive neuromodulation, including focused ultrasound and newly developed autonomic neurography enabling precise detection and titration of inflammatory immune responses. The case for closed-loop non-invasive autonomic neuromodulation (incorporating autonomic neurography and splenic focused ultrasound stimulation) is presented through its applications in conditions such as sepsis and chronic inflammation, illustrating its capacity to revolutionize personalized healthcare. Today, invasive or non-invasive closed-loop systems have yet to be developed that dynamically modulate autonomic nervous system function by responding to real-time physiological and molecular signals; it represents a transformative approach to therapeutic interventions and major opportunity by which the bioelectronic field may advance. Knowledge gaps remain and likely contribute to the lack of available closed loop autonomic neuromodulation systems, namely, (1) significant exogenous and endogenous noise that must be filtered out, (2) potential drift in the signal due to temporal change in disease severity and/or therapy induced neuroplasticity, and (3) confounding effects of exogenous therapies (e.g., concurrent medications that dysregulate autonomic nervous system functions). Leveraging continuous feedback and real-time adjustments may overcome many of these barriers, and these next generation systems have the potential to stand at the forefront of precision medicine, offering new avenues for individualized and adaptive treatment.
Collapse
Affiliation(s)
- Imanuel Lerman
- Department of Electrical and Computer Engineering, University of California San Diego, Atkinson Hall, 3195 Voigt Dr., La Jolla, CA, 92093, USA.
- Center for Stress and Mental Health (CESAMH) VA San Diego, La Jolla, CA, 92093, USA.
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, 92093, USA.
- InflammaSense Incorporated Head Quarters, La Jolla, CA, 92093, USA.
| | - Yifeng Bu
- InflammaSense Incorporated Head Quarters, La Jolla, CA, 92093, USA
| | - Rahul Singh
- InflammaSense Incorporated Head Quarters, La Jolla, CA, 92093, USA
| | | | - Anuj Bhardwaj
- SecondWave Systems Incorporated, Head Quarters, Minneapolis-Saint Paul, MN, 55104, USA
| | - Alex J Mann
- hVIVO Limited, Head Quarters, London, E14 5NR, UK
| | - Alik Widge
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, 55454, USA
| | - Joseph Palin
- Convergent Research Inc, Head Quarters, Cambridge, MA, 02138-1121, USA
| | - Christopher Puleo
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Rensselaer, NY, 12180, USA
| | - Hubert Lim
- SecondWave Systems Incorporated, Head Quarters, Minneapolis-Saint Paul, MN, 55104, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Otolaryngology, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
4
|
Hou Z, Ming Y, Liu J, Wang Z. Potential Biomarkers for Predicting the Risk of Developing Into Long COVID After COVID-19 Infection. Immun Inflamm Dis 2025; 13:e70137. [PMID: 39853911 PMCID: PMC11760981 DOI: 10.1002/iid3.70137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/17/2024] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Long COVID, a heterogeneous condition characterized by a range of physical and neuropsychiatric presentations, can be presented with a proportion of COVID-19-infected individuals. METHODS Transcriptomic data sets of those within gene expression profiles of COVID-19, long COVID, and healthy controls were retrieved from the GEO database. Differentially expressed genes (DEGs) falling under COVID-19 and long COVID were identified with R packages, and contemporaneously conducted module detection was performed with the Modular Pharmacology Platform (http://112.86.129.72:48081/). The integration of both DEGs and differentially expressed module-genes (DEMGs) regarding long COVID and COVID-19 was intersected by following Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). RESULTS There were 11 and 62 differentially expressed modules, 1837 and 179 DEGs, as well as 103 and 508 DEMGs acquiring identified for both COVID-19 and long COVID, notably enriched in the immune-correlated signaling pathways. The immune infiltrating cells of long COVID and COVID-19 were comparatively and respectively assessed via CIBERSORT, ssGSEA, and xCell algorithms. Subsequently, the screening of hub genes involved employing the SVM-RFE, RF, XGBoost algorithms, and logistic regression analysis. Among the 67 candidate genes were processed with machine learning algorithms and logistic regression, a subgroup consisting of CEP55, CDCA2, MELK, and DEPDC1B, was at last identified as potential biomarkers for predicting the risk of the progression into long COVID after COVID-19 infections. The predicting performance of the potential biomarkers was quantified with a ROC value of 0.8762542, which proved the combination of potential biomarkers provided the highest performance. CONCLUSIONS In summary, we identified a subgroup of potential biomarkers for predicting the risk of the progression into long COVID after COVID-19 infection, which could be partly elucidation of the associated molecular mechanisms for long COVID.
Collapse
Affiliation(s)
- Zhiyong Hou
- Institute of Basic Research in Clinical MedicineChina Academy of Chinese Medical SciencesBeijingChina
| | - Yu Ming
- Institute of Basic Research in Clinical MedicineChina Academy of Chinese Medical SciencesBeijingChina
| | - Jun Liu
- Institute of Basic Research in Clinical MedicineChina Academy of Chinese Medical SciencesBeijingChina
| | - Zhong Wang
- Institute of Basic Research in Clinical MedicineChina Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
5
|
Chhibbar P, Guha Roy P, Harioudh MK, McGrail DJ, Yang D, Singh H, Hinterleitner R, Gong YN, Yi SS, Sahni N, Sarkar SN, Das J. Uncovering cell-type-specific immunomodulatory variants and molecular phenotypes in COVID-19 using structurally resolved protein networks. Cell Rep 2024; 43:114930. [PMID: 39504244 DOI: 10.1016/j.celrep.2024.114930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/22/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
Immunomodulatory variants that lead to the loss or gain of specific protein interactions often manifest only as organismal phenotypes in infectious disease. Here, we propose a network-based approach to integrate genetic variation with a structurally resolved human protein interactome network to prioritize immunomodulatory variants in COVID-19. We find that, in addition to variants that pass genome-wide significance thresholds, variants at the interface of specific protein-protein interactions, even though they do not meet genome-wide thresholds, are equally immunomodulatory. The integration of these variants with single-cell epigenomic and transcriptomic data prioritizes myeloid and T cell subsets as the most affected by these variants across both the peripheral blood and the lung compartments. Of particular interest is a common coding variant that disrupts the OAS1-PRMT6 interaction and affects downstream interferon signaling. Critically, our framework is generalizable across infectious disease contexts and can be used to implicate immunomodulatory variants that do not meet genome-wide significance thresholds.
Collapse
Affiliation(s)
- Prabal Chhibbar
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Integrative Systems Biology PhD Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Priyamvada Guha Roy
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Human Genetics PhD Program, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Munesh K Harioudh
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno Oncology, Cleveland Clinic, Cleveland, OH, USA; Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Donghui Yang
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Harinder Singh
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Reinhard Hinterleitner
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yi-Nan Gong
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - S Stephen Yi
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Department of Biomedical Engineering, Oden Institute for Computational Engineering and Sciences (ICES) and Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, Houston, TX, USA; Program in Quantitative and Computational Biosciences (QCB), Baylor College of Medicine, Houston, TX, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Saumendra N Sarkar
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jishnu Das
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Liu T, Long W, Cao Z, Wang Y, He CH, Zhang L, Strittmatter SM, Zhao H. CosGeneGate selects multi-functional and credible biomarkers for single-cell analysis. Brief Bioinform 2024; 26:bbae626. [PMID: 39592241 PMCID: PMC11596696 DOI: 10.1093/bib/bbae626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/07/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
MOTIVATION Selecting representative genes or marker genes to distinguish cell types is an important task in single-cell sequencing analysis. Although many methods have been proposed to select marker genes, the genes selected may have redundancy and/or do not show cell-type-specific expression patterns to distinguish cell types. RESULTS Here, we present a novel model, named CosGeneGate, to select marker genes for more effective marker selections. CosGeneGate is inspired by combining the advantages of selecting marker genes based on both cell-type classification accuracy and marker gene specific expression patterns. We demonstrate the better performance of the marker genes selected by CosGeneGate for various downstream analyses than the existing methods with both public datasets and newly sequenced datasets. The non-redundant marker genes identified by CosGeneGate for major cell types and tissues in human can be found at the website as follows: https://github.com/VivLon/CosGeneGate/blob/main/marker gene list.xlsx.
Collapse
Affiliation(s)
- Tianyu Liu
- Department of Biostatistics, Yale University, New Haven, CT, 06520, United States
- Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, United States
| | - Wenxin Long
- Department of Biostatistics, Yale University, New Haven, CT, 06520, United States
- Department of Statistics, The Pennsylvania State University, University Park, PA, 16820, United States
| | - Zhiyuan Cao
- Department of Biostatistics, Yale University, New Haven, CT, 06520, United States
- Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, United States
- Program of Health Informatics, Yale University, New Haven, CT, 06520, United States
| | - Yuge Wang
- Department of Biostatistics, Yale University, New Haven, CT, 06520, United States
| | - Chuan Hua He
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06520, United States
| | - Le Zhang
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06520, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, United States
| | - Stephen M Strittmatter
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06520, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, United States
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale University School of Medicine, New Haven, CT, 06520, United States
| | - Hongyu Zhao
- Department of Biostatistics, Yale University, New Haven, CT, 06520, United States
- Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, United States
| |
Collapse
|
7
|
Moore AR, Zheng H, Ganesan A, Hasin-Brumshtein Y, Maddali MV, Levitt JE, van der Poll T, Scicluna BP, Giamarellos-Bourboulis EJ, Kotsaki A, Martin-Loeches I, Garduno A, Rothman RE, Sevransky J, Wright DW, Atreya MR, Moldawer LL, Efron PA, Marcela K, Karvunidis T, Giannini HM, Meyer NJ, Sweeney TE, Rogers AJ, Khatri P. International multi-cohort analysis identifies novel framework for quantifying immune dysregulation in critical illness: results of the SUBSPACE consortium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623298. [PMID: 39605502 PMCID: PMC11601436 DOI: 10.1101/2024.11.12.623298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Progress in the management of critical care syndromes such as sepsis, Acute Respiratory Distress Syndrome (ARDS), and trauma has slowed over the last two decades, limited by the inherent heterogeneity within syndromic illnesses. Numerous immune endotypes have been proposed in sepsis and critical care, however the overlap of the endotypes is unclear, limiting clinical translation. The SUBSPACE consortium is an international consortium that aims to advance precision medicine through the sharing of transcriptomic data. By evaluating the overlap of existing immune endotypes in sepsis across over 6,000 samples, we developed cell-type specific signatures to quantify dysregulation in these immune compartments. Myeloid and lymphoid dysregulation were associated with disease severity and mortality across all cohorts. This dysregulation was not only observed in sepsis but also in ARDS, trauma, and burn patients, indicating a conserved mechanism across various critical illness syndromes. Moreover, analysis of randomized controlled trial data revealed that myeloid and lymphoid dysregulation is linked to differential mortality in patients treated with anakinra or corticosteroids, underscoring its prognostic and therapeutic significance. In conclusion, this novel immunology-based framework for quantifying cellular compartment dysregulation offers a valuable tool for prognosis and therapeutic decision-making in critical illness.
Collapse
Affiliation(s)
- Andrew R Moore
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA
| | - Hong Zheng
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA
| | - Ananthakrishnan Ganesan
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA
| | | | - Manoj V Maddali
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA
| | - Joseph E Levitt
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
| | | | | | - Antigone Kotsaki
- 4 Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Greece
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St James’s Hospital, Dublin, Ireland
- Hospital Clinic, Universitat de Barcelona, IDIBAPS, CIBERES, Barcelona, Spain
| | - Alexis Garduno
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St James’s Hospital, Dublin, Ireland
| | - Richard E. Rothman
- Department of Emergency Medicine, The Johns Hopkins University, Baltimore, MD
| | | | - David W Wright
- Department of Emergency Medicine, Emory University, Atlanta, GA
| | - Mihir R. Atreya
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, College of Medicine, OH
| | - Lyle L. Moldawer
- Sepsis and Critical Illness Research Center and the SPIES Consortium, University of Florida College of Medicine, Gainesville, FL
| | - Philip A Efron
- Sepsis and Critical Illness Research Center and the SPIES Consortium, University of Florida College of Medicine, Gainesville, FL
| | - Kralovcova Marcela
- 1 Department of Internal Medicine, Faculty of Medicine, Teaching Hospital and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Thomas Karvunidis
- 1 Department of Internal Medicine, Faculty of Medicine, Teaching Hospital and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Heather M. Giannini
- Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia PA
| | - Nuala J. Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia PA
| | | | - Angela J Rogers
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA
| |
Collapse
|
8
|
Song HW, Jo HY, Kim SC, Choi SS. Immunopathological markers and cell types linked to COVID-19 symptom manifestation. BMC Infect Dis 2024; 24:1237. [PMID: 39497098 PMCID: PMC11533414 DOI: 10.1186/s12879-024-10139-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/28/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Numerous studies have investigated the molecular properties that contribute to the symptoms of COVID-19, such as the virus's genetic makeup, its replication mechanisms, and how it interacts with host cells. However, identifying the immunopathological properties, such as the immune system's response, cytokine levels, and the presence of specific biomarkers, that are associated with the severity of the infection remains crucial for developing effective treatments and preventions. METHODS We analyzed blood protein factor profiles from 420 individuals to identify features differentiating between test-negative healthy, asymptomatic, and symptomatic individuals using statistical comparison and the least absolute shrinkage and selection operator (i.e., LASSO) algorithm. Additionally, we examined single-cell RNA sequencing data from 141 individuals to identify specific cell types associated with the COVID-19 symptoms. RESULTS Healthy individuals who tested negative had distinct blood protein factor levels compared to asymptomatic individuals. We identified two key protein factors, Serpin A10 and Complement C9, that differentiate between asymptomatic and symptomatic patients. Symptomatic patients showed lower levels of CD4+ T naïve, CD4+ T effector & memory, and CD8+ T naïve cells, along with higher levels of CD14+ classical monocytes compared to asymptomatic patients. Additionally, CD16+ non-classical monocytes, major producers of C1QA/B/C, appeared to contribute to the observed Complement C9 levels. CONCLUSIONS These findings advance our understanding of the immunopathological mechanisms underlying COVID-19 and may inform the development of targeted therapies and preventative measures. Future research should focus on further elucidating these mechanisms and exploring their potential clinical applications in managing COVID-19 severity.
Collapse
Affiliation(s)
- Ha Won Song
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Korea
| | - Hye-Yeong Jo
- Division of Healthcare and Artificial Intelligence, Department of Precision Medicine, Korea National Institute of Health, Osong, 28159, Korea
| | - Sang Cheol Kim
- Division of Healthcare and Artificial Intelligence, Department of Precision Medicine, Korea National Institute of Health, Osong, 28159, Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Korea.
| |
Collapse
|
9
|
Ustiuzhanina MO, Boyko AA, Vavilova JD, Siniavin AE, Streltsova MA, Astrakhantseva IV, Drutskaya MS, Chudakov DM, Kovalenko EI. The Antigen-Specific Response of NK Cells to SARS-CoV-2 Correlates With KIR2DS4 Expression. J Med Virol 2024; 96:e70057. [PMID: 39540437 DOI: 10.1002/jmv.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Natural killer (NK) cells play a pivotal role in the immune response against viral infections, including SARS-CoV-2. However, our understanding of memory NK cell responses in the context of SARS-CoV-2 remains limited. To address this, we investigated the memory-like response of NK cells to SARS-CoV-2 peptides, presented by autologous cells. Blood samples from 45 donors underwent analysis for SARS-CoV-2 IgG antibodies, categorizing them into four groups based on the antibody kind and level. NK cells from SARS-CoV-2-experienced donors demonstrated enhanced degranulation and activation levels, IFNγ production and proliferative potential in response to SARS-CoV-2 peptides. Investigation of highly proliferating NK cells demonstrated the formation of distinct clusters depending on the SARS-CoV-2 peptide supplementation and the donor group. RNA sequencing revealed differential gene expression patterns, highlighting metabolism, protein transport, and immune response genes. Notably, KIR2DS4 expression correlated with enhanced IFNγ production, degranulation and proliferation levels, suggesting a role in SARS-CoV-2 recognition. Collectively, these findings provide detailed insights into antigen-specific NK cell responses to SARS-CoV-2 peptides, indicating potential mechanisms underlying NK cell activation in antiviral immunity.
Collapse
Affiliation(s)
- M O Ustiuzhanina
- Department of Genomics of Adaptive Immunity, Department of immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - A A Boyko
- Department of Genomics of Adaptive Immunity, Department of immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - J D Vavilova
- Department of Genomics of Adaptive Immunity, Department of immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - A E Siniavin
- Department of Genomics of Adaptive Immunity, Department of immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Arbovirus and Experimental Production Department, Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - M A Streltsova
- Department of Genomics of Adaptive Immunity, Department of immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - I V Astrakhantseva
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, Russia
| | - M S Drutskaya
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - D M Chudakov
- Department of Genomics of Adaptive Immunity, Department of immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department Bioinformatics, Abu Dhabi Stem Cell Center, Al Muntazah, Abu Dhabi, United Arab Emirates
| | - E I Kovalenko
- Department of Genomics of Adaptive Immunity, Department of immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
Günter M, Mueller KAL, Salazar MJ, Gekeler S, Prang C, Harm T, Gawaz MP, Autenrieth SE. Immune signature of patients with cardiovascular disease predicts increased risk for a severe course of COVID-19. Eur J Immunol 2024; 54:e2451145. [PMID: 39094122 DOI: 10.1002/eji.202451145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection can lead to life-threatening clinical manifestations. Patients with cardiovascular disease (CVD) are at higher risk for severe courses of COVID-19. So far, however, there are hardly any strategies for predicting the course of SARS-CoV-2 infection in CVD patients at hospital admission. Thus, we investigated whether this prediction is achievable by prospectively analysing the blood immunophenotype of 94 nonvaccinated participants, including uninfected and acutely SARS-CoV-2-infected CVD patients and healthy donors, using a 36-colour spectral flow cytometry panel. Unsupervised data analysis revealed little differences between healthy donors and CVD patients, whereas the distribution of the cell populations changed dramatically in SARS-CoV-2-infected CVD patients. The latter had more mature NK cells, activated monocyte subsets, central memory CD4+ T cells, and plasmablasts but fewer dendritic cells, CD16+ monocytes, innate lymphoid cells, and CD8+ T-cell subsets. Moreover, we identified an immune signature characterised by CD161+ T cells, intermediate effector CD8+ T cells, and natural killer T (NKT) cells that is predictive for CVD patients with a severe course of COVID-19. Thus, intensified immunophenotype analyses can help identify patients at risk of severe COVID-19 at hospital admission, improving clinical outcomes through specific treatment.
Collapse
Affiliation(s)
- Manina Günter
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
- German Cancer Research Centre, Research Group Dendritic Cells in Infection and Cancer, Heidelberg, Germany
| | - Karin Anne Lydia Mueller
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Mathew J Salazar
- German Cancer Research Centre, Research Group Dendritic Cells in Infection and Cancer, Heidelberg, Germany
| | - Sarah Gekeler
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Carolin Prang
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Tobias Harm
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Meinrad Paul Gawaz
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Stella E Autenrieth
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
- German Cancer Research Centre, Research Group Dendritic Cells in Infection and Cancer, Heidelberg, Germany
| |
Collapse
|
11
|
de Los Rios Kobara I, Jayewickreme R, Lee MJ, Wilk AJ, Blomkalns AL, Nadeau KC, Yang S, Rogers AJ, Blish CA. Interferon-mediated NK cell activation is associated with limited neutralization breadth during SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619639. [PMID: 39484382 PMCID: PMC11527016 DOI: 10.1101/2024.10.22.619639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Best known for their ability to kill infected or malignant cells, natural killer (NK) cells are also underappreciated regulators of the antibody response to viral infection. In mice, NK cells can kill T follicular helper (Tfh) cells, decreasing somatic hypermutation and vaccine responses. Although human NK cell activation correlates with poor vaccine response, the mechanisms of human NK cell regulation of adaptive immunity are poorly understood. We found that in human ancestral SARS-CoV-2 infection, broad neutralizers, who were capable of neutralizing Alpha, Beta, and Delta, had fewer NK cells that expressed inhibitory and immaturity markers whereas NK cells from narrow neutralizers were highly activated and expressed interferon-stimulated genes (ISGs). ISG-mediated activation in NK cells from healthy donors increased cytotoxicity and functional responses to induced Tfh-like cells. This work reveals that NK cell activation and dysregulated inflammation may play a role in poor antibody response to SARS-CoV-2 and opens exciting avenues for designing improved vaccines and adjuvants to target emerging pathogens.
Collapse
|
12
|
Barbon S, Armellin F, Passerini V, De Angeli S, Primerano S, Del Pup L, Durante E, Macchi V, De Caro R, Parnigotto PP, Veronesi A, Porzionato A. Innate immune response in COVID-19: single-cell multi-omics profile of NK lymphocytes in a clinical case series. Cell Commun Signal 2024; 22:496. [PMID: 39407208 PMCID: PMC11476714 DOI: 10.1186/s12964-024-01867-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) represents the biggest global health emergency in recent decades. The host immune response to SARS-CoV-2 seems to play a key role in disease pathogenesis and clinical manifestations, with Natural Killer (NK) lymphocytes being among the targets of virus-induced regulation. METHODS This study performed a single-cell multi-omics analysis of transcripts and proteins of NK lymphocytes in COVID-19 patients, for the characterization of the innate immunological response to infection. NK cells were isolated from peripheral blood samples collected from adult subjects divided into 3 study groups: (1) non-infected subjects (Naïve group, n = 3), (2) post COVID-19 convalescent subjects (Healed group, n = 3) and (3) patients that were vaccinated against SARS-CoV-2 (Vaccine group, n = 3). Cells were then analysed by the BD Rhapsody System for the single-cell multi-omics investigation of transcriptome and membrane proteins. RESULTS The bioinformatic analysis identified 5 cell clusters which differentially expressed gene/protein markers, defining NK cell subsets as "Active NK cells" and "Mature NK cells". Calculating the relative proportion of each cluster within patient groups, more than 40% of the Naïve group cell population was found to belong to Mature NKs, whereas more than 75% of the Vaccine group cell population belonged to the cluster of Active NKs. Regarding the Healed group, it seemed to show intermediate phenotype between Active and Mature NK cells. Differential expression of specific genes, proteins and signaling pathways was detected comparing the profile of the 3 experimental groups, revealing a more activated NK cell phenotype in vaccinated patients versus recovered individuals. CONCLUSIONS The present study detected differential expression of NK cell markers in relation to SARS-CoV-2 infection and vaccine administration, suggesting the possibility to identify key molecular targets for clinical-diagnostic use of the individual response to viral infection and/or re-infection.
Collapse
Affiliation(s)
- Silvia Barbon
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Via Gabelli 65, 35121, Padova, Italy.
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling - T.E.S. Onlus, Padova, Italy.
| | - Fabrizio Armellin
- Complex Operative Unit of Transfusion Medicine - Marca Trevigiana Local Unit of Health and Social Services 2, Treviso Hospital, Piazzale dell'Ospedale 1, 31100, Treviso, Italy
| | - Verena Passerini
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling - T.E.S. Onlus, Padova, Italy
| | - Sergio De Angeli
- Complex Operative Unit of Transfusion Medicine - Marca Trevigiana Local Unit of Health and Social Services 2, Treviso Hospital, Piazzale dell'Ospedale 1, 31100, Treviso, Italy
| | - Simona Primerano
- Complex Operative Unit of Transfusion Medicine - Marca Trevigiana Local Unit of Health and Social Services 2, Treviso Hospital, Piazzale dell'Ospedale 1, 31100, Treviso, Italy
| | - Laura Del Pup
- Complex Operative Unit of Transfusion Medicine - Marca Trevigiana Local Unit of Health and Social Services 2, Treviso Hospital, Piazzale dell'Ospedale 1, 31100, Treviso, Italy
| | - Elisabetta Durante
- Complex Operative Unit of Transfusion Medicine - Marca Trevigiana Local Unit of Health and Social Services 2, Treviso Hospital, Piazzale dell'Ospedale 1, 31100, Treviso, Italy
| | - Veronica Macchi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Via Gabelli 65, 35121, Padova, Italy
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Via Gabelli 65, 35121, Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling - T.E.S. Onlus, Padova, Italy
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling - T.E.S. Onlus, Padova, Italy
| | - Arianna Veronesi
- Complex Operative Unit of Transfusion Medicine - Marca Trevigiana Local Unit of Health and Social Services 2, Treviso Hospital, Piazzale dell'Ospedale 1, 31100, Treviso, Italy.
| | - Andrea Porzionato
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Via Gabelli 65, 35121, Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling - T.E.S. Onlus, Padova, Italy
| |
Collapse
|
13
|
Shi Q, Zhang P, Hu Q, Zhang T, Hou R, Yin S, Zou Y, Chen F, Jiao S, Si L, Zheng B, Chen Y, Zhan T, Liu Y, Zhu W, Qi N. Role of TOMM34 on NF-κB activation-related hyperinflammation in severely ill patients with COVID-19 and influenza. EBioMedicine 2024; 108:105343. [PMID: 39276680 PMCID: PMC11418153 DOI: 10.1016/j.ebiom.2024.105343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Highly pathogenic respiratory RNA viruses such as SARS-CoV-2 and its associated syndrome COVID-19 pose a tremendous threat to the global public health. Innate immune responses to SARS-CoV-2 depend mainly upon the NF-κB-mediated inflammation. Identifying unknown host factors driving the NF-κB activation and inflammation is crucial for the development of immune intervention strategies. METHODS Published single-cell RNA sequencing (scRNA-seq) data was used to analyze the differential transcriptome profiles of bronchoalveolar lavage (BAL) cells between healthy individuals (n = 27) and patients with severe COVID-19 (n = 21), as well as the differential transcriptome profiles of peripheral blood mononuclear cells (PBMCs) between healthy individuals (n = 22) and severely ill patients with COVID-19 (n = 45) or influenza (n = 16). Loss-of-function and gain-of-function assays were performed in diverse viruses-infected cells and male mice models to identify the role of TOMM34 in antiviral innate immunity. FINDINGS TOMM34, together with a list of genes encoding pro-inflammatory cytokines and antiviral immune proteins, was transcriptionally upregulated in circulating monocytes, lung epithelium and innate immune cells from individuals with severe COVID-19 or influenza. Deficiency of TOMM34/Tomm34 significantly impaired the type I interferon responses and NF-κB-mediated inflammation in various human/murine cell lines, murine bone marrow-derived macrophages (BMDMs) and in vivo. Mechanistically, TOMM34 recruits TRAF6 to facilitate the K63-linked polyubiquitination of NEMO upon viral infection, thus promoting the downstream NF-κB activation. INTERPRETATION In this study, viral induction of TOMM34 is positively correlated with the hyperinflammation in severely ill patients with COVID-19 and influenza. Our findings also highlight the physiological role of TOMM34 in the innate antiviral signallings. FUNDING A full list of funding sources can be found in the acknowledgements section.
Collapse
Affiliation(s)
- Qiwen Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Pengfei Zhang
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
| | - Qingtao Hu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Tianxin Zhang
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
| | - Ruixia Hou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shengxiang Yin
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
| | - Yilin Zou
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
| | - Fenghua Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Shuang Jiao
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
| | - Lanlan Si
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Bangjin Zheng
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
| | - Yichao Chen
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
| | - Tingzhu Zhan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yongxiang Liu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China.
| | - Wenting Zhu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China.
| | - Nan Qi
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China; Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China.
| |
Collapse
|
14
|
Dwivedi A, Ui Mhaonaigh A, Carroll M, Khosravi B, Batten I, Ballantine RS, Hendricken Phelan S, O’Doherty L, George AM, Sui J, Hawerkamp HC, Fallon PG, Noppe E, Mason S, Conlon N, Ni Cheallaigh C, Finlay CM, Little MA, Bioresource OBOTSJATTAR(STTAR. Emergence of dysfunctional neutrophils with a defect in arginase-1 release in severe COVID-19. JCI Insight 2024; 9:e171659. [PMID: 39253969 PMCID: PMC11385094 DOI: 10.1172/jci.insight.171659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/18/2024] [Indexed: 09/11/2024] Open
Abstract
Neutrophilia occurs in patients infected with SARS-CoV-2 (COVID-19) and is predictive of poor outcomes. Here, we link heterogenous neutrophil populations to disease severity in COVID-19. We identified neutrophils with features of cellular aging and immunosuppressive capacity in mild COVID-19 and features of neutrophil immaturity and activation in severe disease. The low-density neutrophil (LDN) number in circulating blood correlated with COVID-19 severity. Many of the divergent neutrophil phenotypes in COVID-19 were overrepresented in the LDN fraction and were less detectable in normal-density neutrophils. Functionally, neutrophils from patients with severe COVID-19 displayed defects in neutrophil extracellular trap formation and reactive oxygen species production. Soluble factors secreted by neutrophils from these patients inhibited T cell proliferation. Neutrophils from patients with severe COVID-19 had increased expression of arginase-1 protein, a feature that was retained in convalescent patients. Despite this increase in intracellular expression, there was a reduction in arginase-1 release by neutrophils into serum and culture supernatants. Furthermore, neutrophil-mediated T cell suppression was independent of arginase-1. Our results indicate the presence of dysfunctional, activated, and immature neutrophils in severe COVID-19.
Collapse
Affiliation(s)
| | | | | | | | - Isabella Batten
- Department of Medical Gerontology, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | - Laura O’Doherty
- Wellcome Trust, Clinical Research Facility
- Department of Infectious Diseases; and
| | | | - Jacklyn Sui
- Department of Medical Gerontology, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Department of Immunology, St James’s Hospital, Dublin, Ireland
| | | | - Padraic G. Fallon
- School of Medicine, Trinity Biomedical Sciences Institute
- Department of Immunology, Trinity Translational Medicine Institute; and
| | - Elnè Noppe
- Department of Critical Care, Tallaght University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Sabina Mason
- Department of Critical Care, Tallaght University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Niall Conlon
- Department of Infectious Diseases; and
- Department of Immunology, St James’s Hospital, Dublin, Ireland
| | | | | | | | | |
Collapse
|
15
|
Wang L, Guo Q, Acharya S, Zheng X, Huynh V, Whitmore B, Yimit A, Malhotra M, Chatterji S, Rosin N, Labit E, Chipak C, Gorzo K, Haidey J, Elliott DA, Ram T, Zhang Q, Kuipers H, Gordon G, Biernaskie J, Guo J. Primary cilia signaling in astrocytes mediates development and regional-specific functional specification. Nat Neurosci 2024; 27:1708-1720. [PMID: 39103557 DOI: 10.1038/s41593-024-01726-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/09/2024] [Indexed: 08/07/2024]
Abstract
Astrocyte diversity is greatly influenced by local environmental modulation. Here we report that the majority of astrocytes across the mouse brain possess a singular primary cilium localized to the cell soma. Comparative single-cell transcriptomics reveals that primary cilia mediate canonical SHH signaling to modulate astrocyte subtype-specific core features in synaptic regulation, intracellular transport, energy and metabolism. Independent of canonical SHH signaling, primary cilia are important regulators of astrocyte morphology and intracellular signaling balance. Dendritic spine analysis and transcriptomics reveal that perturbation of astrocytic cilia leads to disruption of neuronal development and global intercellular connectomes in the brain. Mice with primary ciliary-deficient astrocytes show behavioral deficits in sensorimotor function, sociability, learning and memory. Our results uncover a critical role for primary cilia in transmitting local cues that drive the region-specific diversification of astrocytes within the developing brain.
Collapse
Affiliation(s)
- Lizheng Wang
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Qianqian Guo
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sandesh Acharya
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Xiao Zheng
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vanessa Huynh
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Brandon Whitmore
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Askar Yimit
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mehr Malhotra
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Siddharth Chatterji
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Rosin
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Surgery, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Elodie Labit
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Surgery, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Colten Chipak
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kelsea Gorzo
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Jordan Haidey
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - David A Elliott
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tina Ram
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Qingrun Zhang
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Hedwich Kuipers
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Grant Gordon
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Jeff Biernaskie
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Surgery, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jiami Guo
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
16
|
Lenart M, Rutkowska-Zapała M, Siedlar M. NK-cell receptor modulation in viral infections. Clin Exp Immunol 2024; 217:151-158. [PMID: 38767592 PMCID: PMC11239562 DOI: 10.1093/cei/uxae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024] Open
Abstract
Natural killer (NK) cells play a crucial role in controlling viral infections. The ability to kill infected cells without prior immunization, yet being tolerant to self, healthy cells, depends on the balance of germ-line encoded surface receptors. NK-cell receptors are divided into either activating, leading to activation of NK cell and its cytotoxic and pro-inflammatory activity, or inhibitory, providing tolerance for a target cell. The signals from inhibitory receptors dominate and NK-cell activation requires stimulation of activating receptors. In viral infections, NK-cell interaction with infected cells can result in activation, memory-like NK-cell differentiation, or NK-cell exhaustion, which constitutes one of the viral immune evasion mechanisms. All of these states are associated with the modulation of NK-cell receptor expression. In this review, we summarize the current knowledge of NK-cell receptors and their role in viral infection control, as well as the alterations of their expression observed in acute or chronic infections. We present recently discovered SARS-CoV-2-mediated modulation of NK-cell receptor expression and compare them with other human viral infections. Finally, since modulation of NK-cell receptor activation gives a promising addition to currently used antiviral therapies, we briefly discuss the clinical significance and future perspective of the application of agonists or antagonists of activating and inhibitory receptors, respectively. In sum, our review shows that although much is known about NK-cell receptor biology, a deeper understanding of NK-cell receptors role in viral infections is still needed.
Collapse
Affiliation(s)
- Marzena Lenart
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka, Krakow, Poland
| | - Magdalena Rutkowska-Zapała
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka, Krakow, Poland
| |
Collapse
|
17
|
Wang Y, Thistlethwaite W, Tadych A, Ruf-Zamojski F, Bernard DJ, Cappuccio A, Zaslavsky E, Chen X, Sealfon SC, Troyanskaya OG. Automated single-cell omics end-to-end framework with data-driven batch inference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.01.564815. [PMID: 37961197 PMCID: PMC10635042 DOI: 10.1101/2023.11.01.564815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
To facilitate single-cell multi-omics analysis and improve reproducibility, we present SPEEDI (Single-cell Pipeline for End to End Data Integration), a fully automated end-to-end framework for batch inference, data integration, and cell type labeling. SPEEDI introduces data-driven batch inference and transforms the often heterogeneous data matrices obtained from different samples into a uniformly annotated and integrated dataset. Without requiring user input, it automatically selects parameters and executes pre-processing, sample integration, and cell type mapping. It can also perform downstream analyses of differential signals between treatment conditions and gene functional modules. SPEEDI's data-driven batch inference method works with widely used integration and cell-typing tools. By developing data-driven batch inference, providing full end-to-end automation, and eliminating parameter selection, SPEEDI improves reproducibility and lowers the barrier to obtaining biological insight from these valuable single-cell datasets. The SPEEDI interactive web application can be accessed at https://speedi.princeton.edu/.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Computer Science, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
- These authors contributed equally
| | - William Thistlethwaite
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
- These authors contributed equally
| | - Alicja Tadych
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Antonio Cappuccio
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Zaslavsky
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xi Chen
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Stuart C. Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olga G. Troyanskaya
- Department of Computer Science, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
- Lead contact
| |
Collapse
|
18
|
Song S, Zeng L, Xu J, Shi L, Lu L, Ling Y, Zhang L. Proteomic lung analysis revealed hyper-activation of neutrophil extracellular trap formation in cases of fatal COVID-19. Heliyon 2024; 10:e31878. [PMID: 38882332 PMCID: PMC11177151 DOI: 10.1016/j.heliyon.2024.e31878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024] Open
Abstract
The molecular pathology of lung injury in patients with Corona Virus Disease 2019 (COVID-19) remain unclear. In this study, we performed a proteomic study of lung tissues from seven patients with COVID-19, and eight without. Lung parenchymal tissues with COVID-19 were obtained from autopsy samples, while control samples were obtained from paracancerous tissues. Proteins were extracted using phenol extraction. A tandem mass tag-based quantitative proteomic approach combined with bioinformatic analysis was used to detect proteomic changes in the SARS-CoV-2-infected lung tissues. A total of 6,602, and 6,549 proteins were identified in replicates 1 and 2, respectively. Of these, 307, and 278, respectively, were identified as differentially expressed proteins (DEPs). In total, 216 DEPs were identified in this study. These proteins were enriched in 189 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The downregulated proteins are mainly involved in focal adhesion (n = 5), and the PI3K-Akt signaling pathway (n = 4). The upregulated proteins were related to neutrophil extracellular trap (NET) formation (n = 16), and the phagosome pathway (n = 11). The upregulated proteins in these two pathways interact with one another. Further immunohistochemistry verified NET enrichment in the tissues with COVID-19 compared to the controls. Our results systematically outlined the proteomic profiles of the lung's response to SARS-CoV-2 infection and indicated that NET formation was hyper-activated. These results will hopefully provide new evidence for understanding the mechanism behind fatal COVID-19.
Collapse
Affiliation(s)
- Shu Song
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Liyan Zeng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
- Intelligent Medicine Institute, Fudan University, Shanghai, 200032, China
| | - Jingjing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Lei Shi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Lingqing Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yun Ling
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Lijun Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| |
Collapse
|
19
|
Ma MT, Jiang Q, Chen CH, Badeti S, Wang X, Zeng C, Evans D, Bodnar B, Marras SAE, Tyagi S, Bharaj P, Yehia G, Romanienko P, Hu W, Liu SL, Shi L, Liu D. S309-CAR-NK cells bind the Omicron variants in vitro and reduce SARS-CoV-2 viral loads in humanized ACE2-NSG mice. J Virol 2024; 98:e0003824. [PMID: 38767356 PMCID: PMC11237809 DOI: 10.1128/jvi.00038-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/11/2024] [Indexed: 05/22/2024] Open
Abstract
Recent progress on chimeric antigen receptor (CAR)-NK cells has shown promising results in treating CD19-positive lymphoid tumors with minimal toxicities [including graft versus host disease (GvHD) and cytokine release syndrome (CRS) in clinical trials. Nevertheless, the use of CAR-NK cells in combating viral infections has not yet been fully explored. Previous studies have shown that CAR-NK cells expressing S309 single-chain fragment variable (scFv), hereinafter S309-CAR-NK cells, can bind to SARS-CoV-2 wildtype pseudotyped virus (PV) and effectively kill cells expressing wild-type spike protein in vitro. In this study, we further demonstrate that the S309-CAR-NK cells can bind to different SARS-CoV-2 variants, including the B.1.617.2 (Delta), B.1.621 (Mu), and B.1.1.529 (Omicron) variants in vitro. We also show that S309-CAR-NK cells reduce virus loads in the NOD/SCID gamma (NSG) mice expressing the human angiotensin-converting enzyme 2 (hACE2) receptor challenged with SARS-CoV-2 wild-type (strain USA/WA1/2020). Our study demonstrates the potential use of S309-CAR-NK cells for inhibiting infection by SARS-CoV-2 and for the potential treatment of COVID-19 patients unresponsive to otherwise currently available therapeutics. IMPORTANCE Chimeric antigen receptor (CAR)-NK cells can be "off-the-shelf" products that treat various diseases, including cancer, infections, and autoimmune diseases. In this study, we engineered natural killer (NK) cells to express S309 single-chain fragment variable (scFv), to target the Spike protein of SARS-CoV-2, hereinafter S309-CAR-NK cells. Our study shows that S309-CAR-NK cells are effective against different SARS-CoV-2 variants, including the B.1.617.2 (Delta), B.1.621 (Mu), and B.1.1.529 (Omicron) variants. The S309-CAR-NK cells can (i) directly bind to SARS-CoV-2 pseudotyped virus (PV), (ii) competitively bind to SARS-CoV-2 PV with 293T cells expressing the human angiotensin-converting enzyme 2 (hACE2) receptor (293T-hACE2 cells), (iii) specifically target and lyse A549 cells expressing the spike protein, and (iv) significantly reduce the viral loads of SARS-CoV-2 wild-type (strain USA/WA1/2020) in the lungs of NOD/SCID gamma (NSG) mice expressing hACE2 (hACE2-NSG mice). Altogether, the current study demonstrates the potential use of S309-CAR-NK immunotherapy as an alternative treatment for COVID-19 patients.
Collapse
Affiliation(s)
- Minh Tuyet Ma
- Department of Pathology, Immunology, and Laboratory Medicine, South Orange Avenue, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, USA
| | - Qingkui Jiang
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Chih-Hsiung Chen
- Department of Pathology, Immunology, and Laboratory Medicine, South Orange Avenue, Newark, New Jersey, USA
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, USA
| | - Saiaditya Badeti
- Department of Pathology, Immunology, and Laboratory Medicine, South Orange Avenue, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, USA
| | - Xuening Wang
- Department of Pathology, Immunology, and Laboratory Medicine, South Orange Avenue, Newark, New Jersey, USA
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, USA
| | - Cong Zeng
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
| | - Deborah Evans
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Brittany Bodnar
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Salvatore A E Marras
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Sanjay Tyagi
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Preeti Bharaj
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Ghassan Yehia
- Genome Editing Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Peter Romanienko
- Genome Editing Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Wenhui Hu
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Lanbo Shi
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Dongfang Liu
- Department of Pathology, Immunology, and Laboratory Medicine, South Orange Avenue, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, USA
| |
Collapse
|
20
|
Wu TTH, Travaglini KJ, Rustagi A, Xu D, Zhang Y, Andronov L, Jang S, Gillich A, Dehghannasiri R, Martínez-Colón GJ, Beck A, Liu DD, Wilk AJ, Morri M, Trope WL, Bierman R, Weissman IL, Shrager JB, Quake SR, Kuo CS, Salzman J, Moerner W, Kim PS, Blish CA, Krasnow MA. Interstitial macrophages are a focus of viral takeover and inflammation in COVID-19 initiation in human lung. J Exp Med 2024; 221:e20232192. [PMID: 38597954 PMCID: PMC11009983 DOI: 10.1084/jem.20232192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/09/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024] Open
Abstract
Early stages of deadly respiratory diseases including COVID-19 are challenging to elucidate in humans. Here, we define cellular tropism and transcriptomic effects of SARS-CoV-2 virus by productively infecting healthy human lung tissue and using scRNA-seq to reconstruct the transcriptional program in "infection pseudotime" for individual lung cell types. SARS-CoV-2 predominantly infected activated interstitial macrophages (IMs), which can accumulate thousands of viral RNA molecules, taking over 60% of the cell transcriptome and forming dense viral RNA bodies while inducing host profibrotic (TGFB1, SPP1) and inflammatory (early interferon response, CCL2/7/8/13, CXCL10, and IL6/10) programs and destroying host cell architecture. Infected alveolar macrophages (AMs) showed none of these extreme responses. Spike-dependent viral entry into AMs used ACE2 and Sialoadhesin/CD169, whereas IM entry used DC-SIGN/CD209. These results identify activated IMs as a prominent site of viral takeover, the focus of inflammation and fibrosis, and suggest targeting CD209 to prevent early pathology in COVID-19 pneumonia. This approach can be generalized to any human lung infection and to evaluate therapeutics.
Collapse
Affiliation(s)
- Timothy Ting-Hsuan Wu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Kyle J. Travaglini
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Arjun Rustagi
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Duo Xu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Yue Zhang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, San Francisco, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Leonid Andronov
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - SoRi Jang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Astrid Gillich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Roozbeh Dehghannasiri
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Giovanny J. Martínez-Colón
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Aimee Beck
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Dan Liu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Aaron J. Wilk
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Winston L. Trope
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Rob Bierman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Irving L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph B. Shrager
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Stephen R. Quake
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Christin S. Kuo
- Department of Pediatrics, Pulmonary Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia Salzman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - W.E. Moerner
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Peter S. Kim
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Catherine A. Blish
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Mark A. Krasnow
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, San Francisco, CA, USA
| |
Collapse
|
21
|
Lee MJ, de los Rios Kobara I, Barnard TR, Vales Torres X, Tobin NH, Ferbas KG, Rimoin AW, Yang OO, Aldrovandi GM, Wilk AJ, Fulcher JA, Blish CA. NK Cell-Monocyte Cross-talk Underlies NK Cell Activation in Severe COVID-19. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1693-1705. [PMID: 38578283 PMCID: PMC11102029 DOI: 10.4049/jimmunol.2300731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
NK cells in the peripheral blood of severe COVID-19 patients exhibit a unique profile characterized by activation and dysfunction. Previous studies have identified soluble factors, including type I IFN and TGF-β, that underlie this dysregulation. However, the role of cell-cell interactions in modulating NK cell function during COVID-19 remains unclear. To address this question, we combined cell-cell communication analysis on existing single-cell RNA sequencing data with in vitro primary cell coculture experiments to dissect the mechanisms underlying NK cell dysfunction in COVID-19. We found that NK cells are predicted to interact most strongly with monocytes and that this occurs via both soluble factors and direct interactions. To validate these findings, we performed in vitro cocultures in which NK cells from healthy human donors were incubated with monocytes from COVID-19+ or healthy donors. Coculture of healthy NK cells with monocytes from COVID-19 patients recapitulated aspects of the NK cell phenotype observed in severe COVID-19, including decreased expression of NKG2D, increased expression of activation markers, and increased proliferation. When these experiments were performed in a Transwell setting, we found that only CD56bright CD16- NK cells were activated in the presence of severe COVID-19 patient monocytes. O-link analysis of supernatants from Transwell cocultures revealed that cultures containing severe COVID-19 patient monocytes had significantly elevated levels of proinflammatory cytokines and chemokines, as well as TGF-β. Collectively, these results demonstrate that interactions between NK cells and monocytes in the peripheral blood of COVID-19 patients contribute to NK cell activation and dysfunction in severe COVID-19.
Collapse
Affiliation(s)
- Madeline J. Lee
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Stanford Immunology Program, Stanford University School of Medicine, Palo Alto, CA
| | - Izumi de los Rios Kobara
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Stanford Immunology Program, Stanford University School of Medicine, Palo Alto, CA
| | - Trisha R. Barnard
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
| | - Xariana Vales Torres
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Stanford Immunology Program, Stanford University School of Medicine, Palo Alto, CA
| | - Nicole H. Tobin
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Kathie G. Ferbas
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Anne W. Rimoin
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA
| | - Otto O. Yang
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Grace M. Aldrovandi
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Aaron J. Wilk
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Palo Alto, CA
| | - Jennifer A. Fulcher
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Catherine A. Blish
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
22
|
Zhang L, Nishi H, Kinoshita K. Multi-Omics Profiling Reveals Phenotypic and Functional Heterogeneity of Neutrophils in COVID-19. Int J Mol Sci 2024; 25:3841. [PMID: 38612651 PMCID: PMC11011481 DOI: 10.3390/ijms25073841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Accumulating evidence has revealed unexpected phenotypic heterogeneity and diverse functions of neutrophils in several diseases. Coronavirus disease (COVID-19) can alter the leukocyte phenotype based on disease severity, including neutrophil activation in severe cases. However, the plasticity of neutrophil phenotypes and their relative impact on COVID-19 pathogenesis has not been well addressed. This study aimed to identify and validate the heterogeneity of neutrophils in COVID-19 and evaluate the functions of each subpopulation. We analyzed public single-cell RNA-seq, bulk RNA-seq, and proteome data from healthy donors and patients with COVID-19 to investigate neutrophil subpopulations and their response to disease pathogenesis. We identified eight neutrophil subtypes: pro-neutrophil, pre-neutrophil, immature neutrophil, and five mature neutrophil subpopulations. The subtypes exhibited distinct features, including diverse activation signatures and multiple enriched pathways. The pro-neutrophil subtype was associated with severe and fatal disease, while the pre-neutrophil subtype was particularly abundant in mild/moderate disease. One of the mature neutrophil subtypes showed consistently large fractions in patients with different disease severity. Bulk RNA-seq dataset analyses using a cellular deconvolution approach validated the relative abundances of neutrophil subtypes and the expansion of pro-neutrophils in severe COVID-19 patients. Cell-cell communication analysis revealed representative ligand-receptor interactions among the identified neutrophil subtypes. Further investigation into transcription factors and differential protein abundance revealed the regulatory network differences between healthy donors and patients with severe COVID-19. Overall, we demonstrated the complex interactions among heterogeneous neutrophil subtypes and other blood cell types during COVID-19 disease. Our work has great value in terms of both clinical and public health as it furthers our understanding of the phenotypic and functional heterogeneity of neutrophils and other cell populations in multiple diseases.
Collapse
Affiliation(s)
- Lin Zhang
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Miyagi, Japan
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Miyagi, Japan
| | - Hafumi Nishi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Miyagi, Japan
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Miyagi, Japan
- Faculty of Core Research, Ochanomizu University, Tokyo 112-8610, Japan
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Miyagi, Japan
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Miyagi, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Miyagi, Japan
- Department of In Silico Analyses, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Miyagi, Japan
| |
Collapse
|
23
|
Carregari VC, Reis-de-Oliveira G, Crunfli F, Smith BJ, de Souza GF, Muraro SP, Saia-Cereda VM, Vendramini PH, Baldasso PA, Silva-Costa LC, Zuccoli GS, Brandão-Teles C, Antunes A, Valença AF, Davanzo GG, Virgillio-da-Silva JV, Dos Reis Araújo T, Guimarães RC, Chaim FDM, Chaim EA, Kawagosi Onodera CM, Ludwig RG, Saccon TD, Damásio ARL, Leiria LOS, Vinolo MAR, Farias AS, Moraes-Vieira PM, Mori MA, Módena JLP, Martins-de-Souza D. Diving into the proteomic atlas of SARS-CoV-2 infected cells. Sci Rep 2024; 14:7375. [PMID: 38548777 PMCID: PMC10978884 DOI: 10.1038/s41598-024-56328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
The COVID-19 pandemic was initiated by the rapid spread of a SARS-CoV-2 strain. Though mainly classified as a respiratory disease, SARS-CoV-2 infects multiple tissues throughout the human body, leading to a wide range of symptoms in patients. To better understand how SARS-CoV-2 affects the proteome from cells with different ontologies, this work generated an infectome atlas of 9 cell models, including cells from brain, blood, digestive system, and adipocyte tissue. Our data shows that SARS-CoV-2 infection mainly trigger dysregulations on proteins related to cellular structure and energy metabolism. Despite these pivotal processes, heterogeneity of infection was also observed, highlighting many proteins and pathways uniquely dysregulated in one cell type or ontological group. These data have been made searchable online via a tool that will permit future submissions of proteomic data ( https://reisdeoliveira.shinyapps.io/Infectome_App/ ) to enrich and expand this knowledgebase.
Collapse
Affiliation(s)
- Victor C Carregari
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Bradley J Smith
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gabriela Fabiano de Souza
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Stéfanie Primon Muraro
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Veronica M Saia-Cereda
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Pedro H Vendramini
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Paulo A Baldasso
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Lícia C Silva-Costa
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Giuliana S Zuccoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - André Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Aline F Valença
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gustavo G Davanzo
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - João Victor Virgillio-da-Silva
- Department of Pharmacology, Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Center for Research in Inflammatory Diseases, Ribeirão Preto, SP, Brazil
| | | | - Raphael Campos Guimarães
- Center for Research in Inflammatory Diseases, Ribeirão Preto, SP, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, São Paulo, Brazil
| | | | - Elinton Adami Chaim
- Department of Surgery, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | | | - Raissa Guimarães Ludwig
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Tatiana Dandolini Saccon
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - André R L Damásio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luiz Osório S Leiria
- Department of Pharmacology, Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Center for Research in Inflammatory Diseases, Ribeirão Preto, SP, Brazil
| | - Marco Aurélio R Vinolo
- Obesity and Comorbidities Research Center (OCRC), Campinas, São Paulo, Brazil
- Hematology-Hemotherapy Center, University of Campinas, Campinas, SP, Brazil
- Laboratory of Immunoinflammation, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Alessandro S Farias
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, 05403-000, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, 04501-000, Brazil
- Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Pedro M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, São Paulo, Brazil
- Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Pharmacology, Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Laboratory of Immunoinflammation, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José Luiz P Módena
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
- D'Or Institute for Research and Education (IDOR), São Paulo, 04501-000, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
24
|
Swann JW, Olson OC, Passegué E. Made to order: emergency myelopoiesis and demand-adapted innate immune cell production. Nat Rev Immunol 2024:10.1038/s41577-024-00998-7. [PMID: 38467802 DOI: 10.1038/s41577-024-00998-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 03/13/2024]
Abstract
Definitive haematopoiesis is the process by which haematopoietic stem cells, located in the bone marrow, generate all haematopoietic cell lineages in healthy adults. Although highly regulated to maintain a stable output of blood cells in health, the haematopoietic system is capable of extensive remodelling in response to external challenges, prioritizing the production of certain cell types at the expense of others. In this Review, we consider how acute insults, such as infections and cytotoxic drug-induced myeloablation, cause molecular, cellular and metabolic changes in haematopoietic stem and progenitor cells at multiple levels of the haematopoietic hierarchy to drive accelerated production of the mature myeloid cells needed to resolve the initiating insult. Moreover, we discuss how dysregulation or subversion of these emergency myelopoiesis mechanisms contributes to the progression of chronic inflammatory diseases and cancer.
Collapse
Affiliation(s)
- James W Swann
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Oakley C Olson
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY, USA.
| |
Collapse
|
25
|
Wilk AJ, Shalek AK, Holmes S, Blish CA. Comparative analysis of cell-cell communication at single-cell resolution. Nat Biotechnol 2024; 42:470-483. [PMID: 37169965 PMCID: PMC10638471 DOI: 10.1038/s41587-023-01782-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/05/2023] [Indexed: 05/13/2023]
Abstract
Inference of cell-cell communication from single-cell RNA sequencing data is a powerful technique to uncover intercellular communication pathways, yet existing methods perform this analysis at the level of the cell type or cluster, discarding single-cell-level information. Here we present Scriabin, a flexible and scalable framework for comparative analysis of cell-cell communication at single-cell resolution that is performed without cell aggregation or downsampling. We use multiple published atlas-scale datasets, genetic perturbation screens and direct experimental validation to show that Scriabin accurately recovers expected cell-cell communication edges and identifies communication networks that can be obscured by agglomerative methods. Additionally, we use spatial transcriptomic data to show that Scriabin can uncover spatial features of interaction from dissociated data alone. Finally, we demonstrate applications to longitudinal datasets to follow communication pathways operating between timepoints. Our approach represents a broadly applicable strategy to reveal the full structure of niche-phenotype relationships in health and disease.
Collapse
Affiliation(s)
- Aaron J Wilk
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA.
| | - Alex K Shalek
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Catherine A Blish
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
26
|
Healey AM, Fenner KN, O'Dell CT, Lawrence BP. Aryl hydrocarbon receptor activation alters immune cell populations in the lung and bone marrow during coronavirus infection. Am J Physiol Lung Cell Mol Physiol 2024; 326:L313-L329. [PMID: 38290163 PMCID: PMC11281796 DOI: 10.1152/ajplung.00236.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
Respiratory viral infections are one of the major causes of illness and death worldwide. Symptoms associated with respiratory infections can range from mild to severe, and there is limited understanding of why there is large variation in severity. Environmental exposures are a potential causative factor. The aryl hydrocarbon receptor (AHR) is an environment-sensing molecule expressed in all immune cells. Although there is considerable evidence that AHR signaling influences immune responses to other immune challenges, including respiratory pathogens, less is known about the impact of AHR signaling on immune responses during coronavirus (CoV) infection. In this study, we report that AHR activation significantly altered immune cells in the lungs and bone marrow of mice infected with a mouse CoV. AHR activation transiently reduced the frequency of multiple cells in the mononuclear phagocyte system, including monocytes, interstitial macrophages, and dendritic cells in the lung. In the bone marrow, AHR activation altered myelopoiesis, as evidenced by a reduction in granulocyte-monocyte progenitor cells and an increased frequency of myeloid-biased progenitor cells. Moreover, AHR activation significantly affected multiple stages of the megakaryocyte lineage. Overall, these findings indicate that AHR activation modulates multiple aspects of the immune response to a CoV infection. Given the significant burden of respiratory viruses on human health, understanding how environmental exposures shape immune responses to infection advances our knowledge of factors that contribute to variability in disease severity and provides insight into novel approaches to prevent or treat disease.NEW & NOTEWORTHY Our study reveals a multifaceted role for aryl hydrocarbon receptor (AHR) signaling in the immune response to coronavirus (CoV) infection. Sustained AHR activation during in vivo mouse CoV infection altered the frequency of mature immune cells in the lung and modulated emergency hematopoiesis, specifically myelopoiesis and megakaryopoiesis, in bone marrow. This provides new insight into immunoregulation by the AHR and extends our understanding of how environmental exposures can impact host responses to respiratory viral infections.
Collapse
Affiliation(s)
- Alicia M Healey
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - Kristina N Fenner
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - Colleen T O'Dell
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - B Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| |
Collapse
|
27
|
Jogi HR, Smaraki N, Nayak SS, Rajawat D, Kamothi DJ, Panigrahi M. Single cell RNA-seq: a novel tool to unravel virus-host interplay. Virusdisease 2024; 35:41-54. [PMID: 38817399 PMCID: PMC11133279 DOI: 10.1007/s13337-024-00859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/12/2024] [Indexed: 06/01/2024] Open
Abstract
Over the last decade, single cell RNA sequencing (scRNA-seq) technology has caught the momentum of being a vital revolutionary tool to unfold cellular heterogeneity by high resolution assessment. It evades the inadequacies of conventional sequencing technology which was able to detect only average expression level among cell populations. In the era of twenty-first century, several epidemic and pandemic viruses have emerged. Being an intracellular entity, viruses totally rely on host. Complex virus-host dynamics result when the virus tend to obtain factors from host cell required for its replication and establishment of infection. As a prevailing tool, scRNA-seq is able to understand virus-host interplay by comprehensive transcriptome profiling. Because of technological and methodological advancement, this technology is capable to recognize viral genome and host cell response heterogeneity. Further development in analytical methods with multiomics approach and increased availability of accessible scRNA-seq datasets will improve the understanding of viral pathogenesis that can be helpful for development of novel antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Harsh Rajeshbhai Jogi
- Division of Veterinary Microbiology, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Nabaneeta Smaraki
- Division of Veterinary Microbiology, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Divya Rajawat
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Dhaval J. Kamothi
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| |
Collapse
|
28
|
Ratnasiri K, Zheng H, Toh J, Yao Z, Duran V, Donato M, Roederer M, Kamath M, Todd JPM, Gagne M, Foulds KE, Francica JR, Corbett KS, Douek DC, Seder RA, Einav S, Blish CA, Khatri P. Systems immunology of transcriptional responses to viral infection identifies conserved antiviral pathways across macaques and humans. Cell Rep 2024; 43:113706. [PMID: 38294906 PMCID: PMC10915397 DOI: 10.1016/j.celrep.2024.113706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/02/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Viral pandemics and epidemics pose a significant global threat. While macaque models of viral disease are routinely used, it remains unclear how conserved antiviral responses are between macaques and humans. Therefore, we conducted a cross-species analysis of transcriptomic data from over 6,088 blood samples from macaques and humans infected with one of 31 viruses. Our findings demonstrate that irrespective of primate or viral species, there are conserved antiviral responses that are consistent across infection phase (acute, chronic, or latent) and viral genome type (DNA or RNA viruses). Leveraging longitudinal data from experimental challenges, we identify virus-specific response kinetics such as host responses to Coronaviridae and Orthomyxoviridae infections peaking 1-3 days earlier than responses to Filoviridae and Arenaviridae viral infections. Our results underscore macaque studies as a powerful tool for understanding viral pathogenesis and immune responses that translate to humans, with implications for viral therapeutic development and pandemic preparedness.
Collapse
Affiliation(s)
- Kalani Ratnasiri
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Epidemiology and Population Health, Stanford University, Stanford, CA 94305, USA
| | - Hong Zheng
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jiaying Toh
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zhiyuan Yao
- Department of Microbiology and Immunology, Stanford University, CA 94305, USA
| | - Veronica Duran
- Department of Microbiology and Immunology, Stanford University, CA 94305, USA
| | - Michele Donato
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Megha Kamath
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John-Paul M Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph R Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shirit Einav
- Department of Microbiology and Immunology, Stanford University, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Catherine A Blish
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Purvesh Khatri
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
29
|
Fernández-Soto D, García-Jiménez ÁF, Casasnovas JM, Valés-Gómez M, Reyburn HT. Elevated levels of cell-free NKG2D-ligands modulate NKG2D surface expression and compromise NK cell function in severe COVID-19 disease. Front Immunol 2024; 15:1273942. [PMID: 38410511 PMCID: PMC10895954 DOI: 10.3389/fimmu.2024.1273942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction It is now clear that coronavirus disease 19 (COVID-19) severity is associated with a dysregulated immune response, but the relative contributions of different immune cells is still not fully understood. SARS CoV-2 infection triggers marked changes in NK cell populations, but there are contradictory reports as to whether these effector lymphocytes play a protective or pathogenic role in immunity to SARS-CoV-2. Methods To address this question we have analysed differences in the phenotype and function of NK cells in SARS-CoV-2 infected individuals who developed either very mild, or life-threatening COVID-19 disease. Results Although NK cells from patients with severe disease appeared more activated and the frequency of adaptive NK cells was increased, they were less potent mediators of ADCC than NK cells from patients with mild disease. Further analysis of peripheral blood NK cells in these patients revealed that a population of NK cells that had lost expression of the activating receptor NKG2D were a feature of patients with severe disease and this correlated with elevated levels of cell free NKG2D ligands, especially ULBP2 and ULBP3 in the plasma of critically ill patients. In vitro, culture in NKG2DL containing patient sera reduced the ADCC function of healthy donor NK cells and this could be blocked by NKG2DL-specific antibodies. Discussion These observations of reduced NK function in severe disease are consistent with the hypothesis that defects in immune surveillance by NK cells permit higher levels of viral replication, rather than that aberrant NK cell function contributes to immune system dysregulation and immunopathogenicity.
Collapse
Affiliation(s)
- Daniel Fernández-Soto
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Álvaro F. García-Jiménez
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - José M. Casasnovas
- Department of Macromolecular Structures, National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Mar Valés-Gómez
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Hugh T. Reyburn
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
30
|
May L, Chu CF, Zielinski CE. Single-Cell RNA Sequencing Reveals HIF1A as a Severity-Sensitive Immunological Scar in Circulating Monocytes of Convalescent Comorbidity-Free COVID-19 Patients. Cells 2024; 13:300. [PMID: 38391913 PMCID: PMC10886588 DOI: 10.3390/cells13040300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
COVID-19, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is characterized by a wide range of clinical symptoms and a poorly predictable disease course. Although in-depth transcriptomic investigations of peripheral blood samples from COVID-19 patients have been performed, the detailed molecular mechanisms underlying an asymptomatic, mild or severe disease course, particularly in patients without relevant comorbidities, remain poorly understood. While previous studies have mainly focused on the cellular and molecular dissection of ongoing COVID-19, we set out to characterize transcriptomic immune cell dysregulation at the single-cell level at different time points in patients without comorbidities after disease resolution to identify signatures of different disease severities in convalescence. With single-cell RNA sequencing, we reveal a role for hypoxia-inducible factor 1-alpha (HIF1A) as a severity-sensitive long-term immunological scar in circulating monocytes of convalescent COVID-19 patients. Additionally, we show that circulating complexes formed by monocytes with either T cells or NK cells represent a characteristic cellular marker in convalescent COVID-19 patients irrespective of their preceding symptom severity. Together, these results provide cellular and molecular correlates of recovery from COVID-19 and could help in immune monitoring and in the design of new treatment strategies.
Collapse
Affiliation(s)
- Lilly May
- Leibniz Institute for Natural Products Research and Infection Biology, Department of Infection Immunology, 07745 Jena, Germany; (L.M.); (C.-F.C.)
- Center for Translational Cancer Research (TranslaTUM) & Institute of Virology, Technical University of Munich, 81675 Munich, Germany
| | - Chang-Feng Chu
- Leibniz Institute for Natural Products Research and Infection Biology, Department of Infection Immunology, 07745 Jena, Germany; (L.M.); (C.-F.C.)
- Center for Translational Cancer Research (TranslaTUM) & Institute of Virology, Technical University of Munich, 81675 Munich, Germany
| | - Christina E. Zielinski
- Leibniz Institute for Natural Products Research and Infection Biology, Department of Infection Immunology, 07745 Jena, Germany; (L.M.); (C.-F.C.)
- Center for Translational Cancer Research (TranslaTUM) & Institute of Virology, Technical University of Munich, 81675 Munich, Germany
- Department of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
31
|
Wilk AJ, Marceau JO, Kazer SW, Fleming I, Miao VN, Galvez-Reyes J, Kimata JT, Shalek AK, Holmes S, Overbaugh J, Blish CA. Pro-inflammatory feedback loops define immune responses to pathogenic Lentivirus infection. Genome Med 2024; 16:24. [PMID: 38317183 PMCID: PMC10840164 DOI: 10.1186/s13073-024-01290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The Lentivirus human immunodeficiency virus (HIV) causes chronic inflammation and AIDS in humans, with variable rates of disease progression between individuals driven by both host and viral factors. Similarly, simian lentiviruses vary in their pathogenicity based on characteristics of both the host species and the virus strain, yet the immune underpinnings that drive differential Lentivirus pathogenicity remain incompletely understood. METHODS We profile immune responses in a unique model of differential lentiviral pathogenicity where pig-tailed macaques are infected with highly genetically similar variants of SIV that differ in virulence. We apply longitudinal single-cell transcriptomics to this cohort, along with single-cell resolution cell-cell communication techniques, to understand the immune mechanisms underlying lentiviral pathogenicity. RESULTS Compared to a minimally pathogenic lentiviral variant, infection with a highly pathogenic variant results in a more delayed, broad, and sustained activation of inflammatory pathways, including an extensive global interferon signature. Conversely, individual cells infected with highly pathogenic Lentivirus upregulated fewer interferon-stimulated genes at a lower magnitude, indicating that highly pathogenic Lentivirus has evolved to partially escape from interferon responses. Further, we identify CXCL10 and CXCL16 as important molecular drivers of inflammatory pathways specifically in response to highly pathogenic Lentivirus infection. Immune responses to highly pathogenic Lentivirus infection are characterized by amplifying regulatory circuits of pro-inflammatory cytokines with dense longitudinal connectivity. CONCLUSIONS Our work presents a model of lentiviral pathogenicity where failures in early viral control mechanisms lead to delayed, sustained, and amplifying pro-inflammatory circuits, which in turn drives disease progression.
Collapse
Affiliation(s)
- Aaron J Wilk
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Joshua O Marceau
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Samuel W Kazer
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Ira Fleming
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Vincent N Miao
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, MA, 02115, USA
| | - Jennyfer Galvez-Reyes
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Jason T Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Alex K Shalek
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA, 94305, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Catherine A Blish
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
32
|
McClain MT, Zhbannikov I, Satterwhite LL, Henao R, Giroux NS, Ding S, Burke TW, Tsalik EL, Nix C, Balcazar JP, Petzold EA, Shen X, Woods CW. Epigenetic and transcriptional responses in circulating leukocytes are associated with future decompensation during SARS-CoV-2 infection. iScience 2024; 27:108288. [PMID: 38179063 PMCID: PMC10765013 DOI: 10.1016/j.isci.2023.108288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 08/03/2023] [Accepted: 10/18/2023] [Indexed: 01/06/2024] Open
Abstract
To elucidate host response elements that define impending decompensation during SARS-CoV-2 infection, we enrolled subjects hospitalized with COVID-19 who were matched for disease severity and comorbidities at the time of admission. We performed combined single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) on peripheral blood mononuclear cells (PBMCs) at admission and compared subjects who improved from their moderate disease with those who later clinically decompensated and required invasive mechanical ventilation or died. Chromatin accessibility and transcriptomic immune profiles were markedly altered between the two groups, with strong signals in CD4+ T cells, inflammatory T cells, dendritic cells, and NK cells. Multiomic signature scores at admission were tightly associated with future clinical deterioration (auROC 1.0). Epigenetic and transcriptional changes in PBMCs reveal early, broad immune dysregulation before typical clinical signs of decompensation are apparent and thus may act as biomarkers to predict future severity in COVID-19.
Collapse
Affiliation(s)
- Micah T. McClain
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710, USA
- Durham Veterans Affairs Medical Center, Durham, NC 27705, USA
| | - Ilya Zhbannikov
- Department of Medicine, Clinical Research Unit, Duke University Medical Center, Durham, NC 27710, USA
| | - Lisa L. Satterwhite
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Ricardo Henao
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicholas S. Giroux
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Shengli Ding
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Thomas W. Burke
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Christina Nix
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710, USA
| | - Jorge Prado Balcazar
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Elizabeth A. Petzold
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710, USA
| | - Xiling Shen
- Terasaki Institute for Biological Innovation, Los Angeles, CA 90024, USA
| | - Christopher W. Woods
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710, USA
- Durham Veterans Affairs Medical Center, Durham, NC 27705, USA
| |
Collapse
|
33
|
Ganguly D. Multi-omics studies in interpreting the evolving standard model for immune functions. Brief Funct Genomics 2024; 23:75-81. [PMID: 36905355 DOI: 10.1093/bfgp/elad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 03/12/2023] Open
Abstract
A standard model that is able to generalize data on myriad involvement of the immune system in organismal physio-pathology and to provide a unified evolutionary teleology for immune functions in multicellular organisms remains elusive. A number of such 'general theories of immunity' have been proposed based on contemporaneously available data, starting with the usual description of self-nonself discrimination, followed by the 'danger model' and the more recent 'discontinuity theory.' More recent data deluge on involvement of immune mechanisms in a wide variety of clinical contexts, a number of which fail to get readily accommodated into the available teleologic standard models, makes deriving a standard model of immunity more challenging. But technological advances enabling multi-omics investigations into an ongoing immune response, covering genome, epigenome, coding and regulatory transcriptome, proteome, metabolome and tissue-resident microbiome, bring newer opportunities for developing a more integrative insight into immunocellular mechanisms within different clinical contexts. The new ability to map the heterogeneity of composition, trajectory and endpoints of immune responses, in both health and disease, also necessitates incorporation into the potential standard model of immune functions, which again can only be achieved through multi-omics probing of immune responses and integrated analyses of the multi-dimensional data.
Collapse
Affiliation(s)
- Dipyaman Ganguly
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
34
|
Fei X, Zhu M, Li X. Characterization of Cell Type Abundance and Gene Expression Timeline from Burned Skin Bulk Transcriptomics by Deconvolution. J Burn Care Res 2024; 45:205-215. [PMID: 37956340 DOI: 10.1093/jbcr/irad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Indexed: 11/15/2023]
Abstract
Currently, no timeline of cell heterogeneity in thermally injured skin has been reported. In this study, we proposed an approach to deconvoluting cell type abundance and expression from skin bulk transcriptomics with cell type signature matrix constructed by combining independent normal skin and peripheral blood scRNA-seq datasets. Using CIBERSORTx group mode deconvolution, we identified perturbed cell type fractions and cell type-specific gene expression in three stages postthermal injury. We found an increase in cell proportions and cell type-specific gene expression perturbation of neutrophils, macrophages, and endothelial cells and a decrease in CD4+ T cells, keratinocytes, melanocyte, and fibroblast cells, and cell type-specific gene expression perturbation postburn injury. Keratinocyte, fibroblast, and macrophage up regulated genes were dynamically enriched in overlapping and distinct Gene Ontology biological processes including acute phase response, leukocyte migration, metabolic, morphogenesis, and development process. Down-regulated genes were enriched in Wnt signaling, mesenchymal cell differentiation, gland and axon development, epidermal morphogenesis, and fatty acid and glucose metabolic process. We noticed an increase in the expression of CCL7, CCL2, CCL20, CCR1, CCR5, CCXL8, CXCL2, CXCL3, MMP1, MMP8, MMP3, IL24, IL6, IL1B, IL18R1, and TGFBR1 and a decrease in expression of CCL27, CCR10, CCR6, CCR8, CXCL9, IL37, IL17, IL7, IL11R, IL17R, TGFBR3, FGFR1-4, and IGFR1 in keratinocytes and/or fibroblasts. The inferred timeline of wound healing and CC and CXC genes in keratinocyte was validated on independent dataset GSE174661 of purified keratinocytes. The timeline of different cell types postburn may facilitate therapeutic timing.
Collapse
Affiliation(s)
- Xiaoyi Fei
- School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui 230009, People's Republic of China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- Oncology Translational Medicine Research Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Min Zhu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- Oncology Translational Medicine Research Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- School of Mathematics and Computer Science, Tongling University, Tongling, Anhui 244061, People's Republic of China
| | - Xueling Li
- School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui 230009, People's Republic of China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- Oncology Translational Medicine Research Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- School of Mathematics and Computer Science, Tongling University, Tongling, Anhui 244061, People's Republic of China
| |
Collapse
|
35
|
Ravkov EV, Williams ESCP, Elgort M, Barker AP, Planelles V, Spivak AM, Delgado JC, Lin L, Hanley TM. Reduced monocyte proportions and responsiveness in convalescent COVID-19 patients. Front Immunol 2024; 14:1329026. [PMID: 38250080 PMCID: PMC10797708 DOI: 10.3389/fimmu.2023.1329026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction The clinical manifestations of acute severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection and coronavirus disease 2019 (COVID-19) suggest a dysregulation of the host immune response that leads to inflammation, thrombosis, and organ dysfunction. It is less clear whether these dysregulated processes persist during the convalescent phase of disease or during long COVID. We sought to examine the effects of SARS-CoV-2 infection on the proportions of classical, intermediate, and nonclassical monocytes, their activation status, and their functional properties in convalescent COVID-19 patients. Methods Peripheral blood mononuclear cells (PBMCs) from convalescent COVID-19 patients and uninfected controls were analyzed by multiparameter flow cytometry to determine relative percentages of total monocytes and monocyte subsets. The expression of activation markers and proinflammatory cytokines in response to LPS treatment were measured by flow cytometry and ELISA, respectively. Results We found that the percentage of total monocytes was decreased in convalescent COVID-19 patients compared to uninfected controls. This was due to decreased intermediate and non-classical monocytes. Classical monocytes from convalescent COVID-19 patients demonstrated a decrease in activation markers, such as CD56, in response to stimulation with bacterial lipopolysaccharide (LPS). In addition, classical monocytes from convalescent COVID-19 patients showed decreased expression of CD142 (tissue factor), which can initiate the extrinsic coagulation cascade, in response to LPS stimulation. Finally, we found that monocytes from convalescent COVID-19 patients produced less TNF-α and IL-6 in response to LPS stimulation, than those from uninfected controls. Conclusion SARS-CoV-2 infection exhibits a clear effect on the relative proportions of monocyte subsets, the activation status of classical monocytes, and proinflammatory cytokine production that persists during the convalescent phase of disease.
Collapse
Affiliation(s)
- Eugene V. Ravkov
- ARUP Laboratories Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
| | - Elizabeth S. C. P. Williams
- Department of Internal Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Marc Elgort
- ARUP Laboratories Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
| | - Adam P. Barker
- ARUP Laboratories Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
- Department of Pathology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Vicente Planelles
- Department of Pathology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Adam M. Spivak
- Department of Internal Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Julio C. Delgado
- ARUP Laboratories Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
- Department of Pathology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Leo Lin
- ARUP Laboratories Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
- Department of Pathology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Timothy M. Hanley
- ARUP Laboratories Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
- Department of Pathology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
36
|
Barmada A, Handfield LF, Godoy-Tena G, de la Calle-Fabregat C, Ciudad L, Arutyunyan A, Andrés-León E, Hoo R, Porter T, Oszlanczi A, Richardson L, Calero-Nieto FJ, Wilson NK, Marchese D, Sancho-Serra C, Carrillo J, Presas-Rodríguez S, Ramo-Tello C, Ruiz-Sanmartin A, Ferrer R, Ruiz-Rodriguez JC, Martínez-Gallo M, Munera-Campos M, Carrascosa JM, Göttgens B, Heyn H, Prigmore E, Casafont-Solé I, Solanich X, Sánchez-Cerrillo I, González-Álvaro I, Raimondo MG, Ramming A, Martin J, Martínez-Cáceres E, Ballestar E, Vento-Tormo R, Rodríguez-Ubreva J. Single-cell multi-omics analysis of COVID-19 patients with pre-existing autoimmune diseases shows aberrant immune responses to infection. Eur J Immunol 2024; 54:e2350633. [PMID: 37799110 DOI: 10.1002/eji.202350633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
In COVID-19, hyperinflammatory and dysregulated immune responses contribute to severity. Patients with pre-existing autoimmune conditions can therefore be at increased risk of severe COVID-19 and/or associated sequelae, yet SARS-CoV-2 infection in this group has been little studied. Here, we performed single-cell analysis of peripheral blood mononuclear cells from patients with three major autoimmune diseases (rheumatoid arthritis, psoriasis, or multiple sclerosis) during SARS-CoV-2 infection. We observed compositional differences between the autoimmune disease groups coupled with altered patterns of gene expression, transcription factor activity, and cell-cell communication that substantially shape the immune response under SARS-CoV-2 infection. While enrichment of HLA-DRlow CD14+ monocytes was observed in all three autoimmune disease groups, type-I interferon signaling as well as inflammatory T cell and monocyte responses varied widely between the three groups of patients. Our results reveal disturbed immune responses to SARS-CoV-2 in patients with pre-existing autoimmunity, highlighting important considerations for disease treatment and follow-up.
Collapse
Affiliation(s)
- Anis Barmada
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | | | - Gerard Godoy-Tena
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
| | | | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
| | - Anna Arutyunyan
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Eduardo Andrés-León
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Regina Hoo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Tarryn Porter
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Agnes Oszlanczi
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Laura Richardson
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Fernando J Calero-Nieto
- Department of Haematology and Wellcome & MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Nicola K Wilson
- Department of Haematology and Wellcome & MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Domenica Marchese
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Carmen Sancho-Serra
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Silvia Presas-Rodríguez
- MS Unit, Department of Neurology, Germans Trias i Pujol University Hospital, Barcelona, Spain
| | - Cristina Ramo-Tello
- MS Unit, Department of Neurology, Germans Trias i Pujol University Hospital, Barcelona, Spain
| | - Adolfo Ruiz-Sanmartin
- Department of Intensive Care, Hospital Universitari Vall d'Hebron, Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Ricard Ferrer
- Department of Intensive Care, Hospital Universitari Vall d'Hebron, Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Juan Carlos Ruiz-Rodriguez
- Department of Intensive Care, Hospital Universitari Vall d'Hebron, Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Mónica Martínez-Gallo
- Division of Immunology, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Mónica Munera-Campos
- Dermatology Service, Germans Trias i Pujol University Hospital, LCMN, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
| | - Jose Manuel Carrascosa
- Dermatology Service, Germans Trias i Pujol University Hospital, LCMN, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
| | - Berthold Göttgens
- Department of Haematology and Wellcome & MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Ivette Casafont-Solé
- Department of Rheumatology, Germans Trias i Pujol University Hospital, LCMN, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
- Department of Infectious Diseases, Germans Trias i Pujol University Hospital, Barcelona, Spain
| | - Xavier Solanich
- Department of Internal Medicine, Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | - Maria Gabriella Raimondo
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Javier Martin
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Eva Martínez-Cáceres
- Division of Immunology, Germans Trias i Pujol University Hospital, LCMN, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
- Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma, Barcelona, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
| |
Collapse
|
37
|
Swaminath S, Russell AB. The use of single-cell RNA-seq to study heterogeneity at varying levels of virus-host interactions. PLoS Pathog 2024; 20:e1011898. [PMID: 38236826 PMCID: PMC10796064 DOI: 10.1371/journal.ppat.1011898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
The outcome of viral infection depends on the diversity of the infecting viral population and the heterogeneity of the cell population that is infected. Until almost a decade ago, the study of these dynamic processes during viral infection was challenging and limited to certain targeted measurements. Presently, with the use of single-cell sequencing technology, the complex interface defined by the interactions of cells with infecting virus can now be studied across the breadth of the transcriptome in thousands of individual cells simultaneously. In this review, we will describe the use of single-cell RNA sequencing (scRNA-seq) to study the heterogeneity of viral infections, ranging from individual virions to the immune response between infected individuals. In addition, we highlight certain key experimental limitations and methodological decisions that are critical to analyzing scRNA-seq data at each scale.
Collapse
Affiliation(s)
- Sharmada Swaminath
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Alistair B. Russell
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
38
|
Len JS, Koh CWT, Chan KR. The Functional Roles of MDSCs in Severe COVID-19 Pathogenesis. Viruses 2023; 16:27. [PMID: 38257728 PMCID: PMC10821470 DOI: 10.3390/v16010027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Severe COVID-19 is a major cause of morbidity and mortality worldwide, especially among those with co-morbidities, the elderly, and the immunocompromised. However, the molecular determinants critical for severe COVID-19 progression remain to be fully elucidated. Meta-analyses of transcriptomic RNAseq and single-cell sequencing datasets comparing severe and mild COVID-19 patients have demonstrated that the early expansion of myeloid-derived suppressor cells (MDSCs) could be a key feature of severe COVID-19 progression. Besides serving as potential early prognostic biomarkers for severe COVID-19 progression, several studies have also indicated the functional roles of MDSCs in severe COVID-19 pathogenesis and possibly even long COVID. Given the potential links between MDSCs and severe COVID-19, we examine the existing literature summarizing the characteristics of MDSCs, provide evidence of MDSCs in facilitating severe COVID-19 pathogenesis, and discuss the potential therapeutic avenues that can be explored to reduce the risk and burden of severe COVID-19. We also provide a web app where users can visualize the temporal changes in specific genes or MDSC-related gene sets during severe COVID-19 progression and disease resolution, based on our previous study.
Collapse
Affiliation(s)
- Jia Soon Len
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore;
| | - Clara W. T. Koh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Kuan Rong Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
| |
Collapse
|
39
|
Paris D, Palomba L, Albertini MC, Tramice A, Motta L, Giammattei E, Ambrosino P, Maniscalco M, Motta A. The biomarkers' landscape of post-COVID-19 patients can suggest selective clinical interventions. Sci Rep 2023; 13:22496. [PMID: 38110483 PMCID: PMC10728085 DOI: 10.1038/s41598-023-49601-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/10/2023] [Indexed: 12/20/2023] Open
Abstract
In COVID-19 clinical symptoms can persist even after negativization also in individuals who have had mild or moderate disease. We here investigated the biomarkers that define the post-COVID-19 clinical state analyzing the exhaled breath condensate (EBC) of 38 post COVID-19 patients and 38 sex and age-matched healthy controls via nuclear magnetic resonance (NMR)-based metabolomics. Predicted gene-modulated microRNAs (miRNAs) related to COVID-19 were quantified from EBC of 10 patients and 10 controls. Finally, clinical parameters from all post-COVID-19 patients were correlated with metabolomic data. Post-COVID-19 patients and controls showed different metabolic phenotype ("metabotype"). From the metabolites, by using enrichment analysis we identified miRNAs that resulted up-regulated (hsa-miR146a-5p) and down-regulated (hsa-miR-126-3p and hsa-miR-223-3p) in post-COVID-19. Taken together, our multiomics data indicate that post-COVID-19 patients before rehabilitation are characterized by persistent inflammation, dysregulation of liver, endovascular thrombotic and pulmonary processes, and physical impairment, which should be the primary clinical targets to contrast the post-acute sequelae of COVID-19.
Collapse
Affiliation(s)
- Debora Paris
- Institute of Biomolecular Chemistry, National Research Council, 80078, Pozzuoli (Naples), Italy
| | - Letizia Palomba
- Department of Biomolecular Sciences, "Carlo Bo" University, 61029, Urbino, Italy
| | | | - Annabella Tramice
- Institute of Biomolecular Chemistry, National Research Council, 80078, Pozzuoli (Naples), Italy
| | - Lorenzo Motta
- Neuroradiology Unit, Ospedale Santa Maria Della Misericordia, 45100, Rovigo, Italy
- IRCCS Istituto Delle Scienze Neurologiche (Padiglione G), via Altura 3, 40139, Bologna, Italy
| | - Eleonora Giammattei
- Department of Biomolecular Sciences, "Carlo Bo" University, 61029, Urbino, Italy
| | - Pasquale Ambrosino
- Directorate of Telese Terme Institute, Istituti Clinici Scientifici Maugeri IRCCS, 82037, Telese Terme (Benevento), Italy
| | - Mauro Maniscalco
- Pulmonary Rehabilitation Unit of the Telese Terme Institute, Istituti Clinici Scientifici Maugeri IRCCS, 82037, Telese Terme (Benevento), Italy.
- Department of Clinical Medicine and Surgery, Section of Respiratory Disease, University of Naples Federico II, 80131, Naples, Italy.
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, 80078, Pozzuoli (Naples), Italy.
| |
Collapse
|
40
|
Alkobtawi M, Ngô QT, Chapuis N, Fontaine RH, El Khoury M, Tihy M, Hachem N, Jary A, Calvez V, Fontenay M, Tsatsaris V, Aractingi S, Oulès B. Enhanced fetal hematopoiesis in response to symptomatic SARS-CoV-2 infection during pregnancy. COMMUNICATIONS MEDICINE 2023; 3:177. [PMID: 38082066 PMCID: PMC10713620 DOI: 10.1038/s43856-023-00406-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/15/2023] [Indexed: 04/21/2025] Open
Abstract
BACKGROUND Pregnant women and their fetuses are particularly susceptible to respiratory pathogens. How they respond to SARS-CoV-2 infection is still under investigation. METHODS We studied the transcriptome and phenotype of umbilical cord blood cells in pregnant women infected or not with SARS-CoV-2. RESULTS Here we show that symptomatic maternal COVID-19 is associated with a transcriptional erythroid cell signature as compared with asymptomatic and uninfected mothers. We observe an expansion of fetal hematopoietic multipotent progenitors skewed towards erythroid differentiation that display increased clonogenicity. There was no difference in inflammatory cytokines levels in the cord blood upon maternal SARS-CoV-2 infection. Interestingly, we show an activation of hypoxia pathway in cord blood cells from symptomatic COVID-19 mothers, suggesting that maternal hypoxia may be triggering this fetal stress hematopoiesis. CONCLUSIONS Overall, these results show a fetal hematopoietic response to symptomatic COVID-19 in pregnant mothers in the absence of vertically transmitted SARS-CoV-2 infection which is likely to be a mechanism of fetal adaptation to the maternal infection and reduced oxygen supply.
Collapse
Affiliation(s)
- Mansour Alkobtawi
- Université Paris Cité, CNRS UMR 8104, INSERM U1016, Institut Cochin, Cutaneous Biology Lab, Paris, France
| | - Qui Trung Ngô
- Université Paris Cité, CNRS UMR 8104, INSERM U1016, Institut Cochin, Cutaneous Biology Lab, Paris, France
| | - Nicolas Chapuis
- Université Paris Cité, CNRS UMR 8104, INSERM U1016, Institut Cochin, Normal and Pathological Hematopoiesis Lab, Paris, France
- Laboratory of Hematology, Hôpital Cochin, AP-HP.Centre-Université Paris Cité, Paris, France
| | - Romain H Fontaine
- Université Paris Cité, CNRS UMR 8104, INSERM U1016, Institut Cochin, Cutaneous Biology Lab, Paris, France
| | - Mira El Khoury
- Sorbonne University, INSERM UMR-S 938, Saint-Antoine Research Center, CRSA, AP-HP, Saint-Antoine Hospital, Paris, France
| | - Matthieu Tihy
- Department of Pathology, Hôpitaux Universitaires Genève, Genève, Switzerland
| | - Nawa Hachem
- Sorbonne University, INSERM UMR-S 938, Saint-Antoine Research Center, CRSA, AP-HP, Saint-Antoine Hospital, Paris, France
| | - Aude Jary
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Service de Virologie, Paris, France
| | - Vincent Calvez
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Service de Virologie, Paris, France
| | - Michaela Fontenay
- Université Paris Cité, CNRS UMR 8104, INSERM U1016, Institut Cochin, Normal and Pathological Hematopoiesis Lab, Paris, France
- Laboratory of Hematology, Hôpital Cochin, AP-HP.Centre-Université Paris Cité, Paris, France
| | - Vassilis Tsatsaris
- Department of Obstetrics, Maternité Port Royal, Hôpital Cochin, AP-HP.Centre-Université Paris Cité, Paris, France
- FHU PREMA, Paris, France
- Université Paris Cité, INSERM U1139, Pathophysiology & Pharmacotoxicology of the Human Placenta, Paris, France
| | - Sélim Aractingi
- Université Paris Cité, CNRS UMR 8104, INSERM U1016, Institut Cochin, Cutaneous Biology Lab, Paris, France.
- Department of Dermatology, Hôpital Cochin, AP-HP.Centre-Université Paris Cité, Paris, France.
| | - Bénédicte Oulès
- Université Paris Cité, CNRS UMR 8104, INSERM U1016, Institut Cochin, Cutaneous Biology Lab, Paris, France
- Department of Dermatology, Hôpital Cochin, AP-HP.Centre-Université Paris Cité, Paris, France
| |
Collapse
|
41
|
Atreya MR, Huang M, Moore AR, Zheng H, Hasin-Brumshtein Y, Fitzgerald JC, Weiss SL, Cvijanovich NZ, Bigham MT, Jain PN, Schwarz AJ, Lutfi R, Nowak J, Thomas NJ, Quasney M, Dahmer MK, Baines T, Haileselassie B, Lautz AJ, Stanski NL, Standage SW, Kaplan JM, Zingarelli B, Sweeney TE, Khatri P, Sanchez-Pinto LN, Kamaleswaran R. Derivation, validation, and transcriptomic assessment of pediatric septic shock phenotypes identified through latent profile analyses: Results from a prospective multi-center observational cohort. RESEARCH SQUARE 2023:rs.3.rs-3692289. [PMID: 38105983 PMCID: PMC10723552 DOI: 10.21203/rs.3.rs-3692289/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Background Sepsis poses a grave threat, especially among children, but treatments are limited due to clinical and biological heterogeneity among patients. Thus, there is an urgent need for precise subclassification of patients to guide therapeutic interventions. Methods We used clinical, laboratory, and biomarker data from a prospective multi-center pediatric septic shock cohort to derive phenotypes using latent profile analyses. Thereafter, we trained a support vector machine model to assign phenotypes in a hold-out validation set. We tested interactions between phenotypes and common sepsis therapies on clinical outcomes and conducted transcriptomic analyses to better understand the phenotype-specific biology. Finally, we compared whether newly identified phenotypes overlapped with established gene-expression endotypes and tested the utility of an integrated subclassification scheme. Findings Among 1,071 patients included, we identified two phenotypes which we named 'inflamed' (19.5%) and an 'uninflamed' phenotype (80.5%). The 'inflamed' phenotype had an over 4-fold risk of 28-day mortality relative to those 'uninflamed'. Transcriptomic analysis revealed overexpression of genes implicated in the innate immune response and suggested an overabundance of developing neutrophils, pro-T/NK cells, and NK cells among those 'inflamed'. There was no significant overlap between endotypes and phenotypes. However, an integrated subclassification scheme demonstrated varying survival probabilities when comparing endophenotypes. Interpretation Our research underscores the reproducibility of latent profile analyses to identify clinical and biologically informative pediatric septic shock phenotypes with high prognostic relevance. Pending validation, an integrated subclassification scheme, reflective of the different facets of the host response, holds promise to inform targeted intervention among those critically ill.
Collapse
Affiliation(s)
- Mihir R Atreya
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45627, USA
| | - Min Huang
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew R Moore
- Stanford Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA
| | - Hong Zheng
- Stanford Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Stanford, 94305, CA
| | | | | | - Scott L Weiss
- Nemours Children's Health, Wilmington, DE, 19803, USA
| | | | | | - Parag N Jain
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Adam J Schwarz
- Children's Hospital of Orange County, Orange, CA, 92868, USA
| | - Riad Lutfi
- Riley Hospital for Children, Indianapolis, IN, 46202, USA
| | - Jeffrey Nowak
- Children's Hospital and Clinics of Minnesota, Minneapolis, MN, 55404, USA
| | - Neal J Thomas
- Penn State Hershey Children's Hospital, Hershey, PA, 17033, USA
| | - Michael Quasney
- C.S Mott Children's Hospital, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mary K Dahmer
- C.S Mott Children's Hospital, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Torrey Baines
- University of Florida Health Shands Children's Hospital, Gainesville, FL, 32610, USA
| | | | - Andrew J Lautz
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45627, USA
| | - Natalja L Stanski
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45627, USA
| | - Stephen W Standage
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45627, USA
| | - Jennifer M Kaplan
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45627, USA
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45627, USA
| | | | - Purvesh Khatri
- Stanford Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Stanford, 94305, CA
| | - L Nelson Sanchez-Pinto
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
- Department of Health and Biomedical Informatics, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
| | - Rishikesan Kamaleswaran
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, 30322, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, 30322, GA, USA
| |
Collapse
|
42
|
Kelly EJ, Oliver MA, Carney BC, Kolachana S, Moffatt LT, Shupp JW. Neutrophil Extracellular Traps Are Induced by Coronavirus 2019 Disease-Positive Patient Plasma and Persist Longitudinally: A Possible Link to Endothelial Dysfunction as Measured by Syndecan-1. Surg Infect (Larchmt) 2023; 24:887-896. [PMID: 38011327 DOI: 10.1089/sur.2023.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Background: Neutrophil extracellular trap (NET) formation is a mechanism that neutrophils possess to respond to host infection or inflammation. However, dysregulation of NETosis has been implicated in many disease processes. Although the exact mechanisms of their involvement remain largely unknown, this study aimed to elucidate NET formation over the time course of coronavirus disease 2019 (COVID-19) infection and their possible role in endothelial injury. Patients and Methods: Plasma samples from COVID-19-positive patients were obtained at six timepoints during hospitalization. Neutrophils were extracted from healthy donors and treated with COVID-19-positive patient plasma. Myeloperoxidase (MPO) assay was used to assess for NETosis. Syndecan-1 (SDC-1) enzyme-linked immunosorbent assay (ELISA) was run using the same samples. Immunocytochemistry allowed for further quantification of NETosis byproducts MPO and citrullinated histone 3 (CitH3). The receiver operating characteristic (ROC) curve discriminated between admission levels of SDC-1 and MPO in predicting 30-day mortality and need for ventilator support. Results: Sixty-three patients with COVID-19 were analyzed. Myeloperoxidase was upregulated at day 3, 7, and 14 (p = 0.0087, p = 0.0144, p = 0.0421). Syndecan-1 levels were elevated at day 7 and 14 (p = 0.0188, p = 0.0026). Neutrophils treated with day 3, 7, and 14 plasma expressed increased levels of MPO (p < 0.001). Immunocytochemistry showed neutrophils treated with day 3, 7, and 14 plasma expressed higher levels of MPO (p < 0.001) and higher levels of CitH3 when treated with day 7 and 14 plasma (p < 0.01 and p < 0.05). Admission SDC-1 and MPO levels were found to be independent predictors of 30-day mortality and need for ventilator support. Conclusions: Neutrophil dysregulation can be detrimental to the host. Our study shows that COVID-19 plasma induces substantial amounts of NET formation that persists over the course of the disease. Patients also exhibit increased SDC-1 levels that implicate endothelial injury in the pathogenesis of COVID-19 infection. Furthermore, MPO and SDC-1 plasma levels are predictive of poor outcomes.
Collapse
Affiliation(s)
- Edward J Kelly
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, DC, USA
| | - Mary A Oliver
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
| | - Bonnie C Carney
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
- Department of Surgery and Biochemistry, Georgetown University School of Medicine, Washington, DC, USA
| | - Sindhura Kolachana
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
| | - Lauren T Moffatt
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
- Department of Surgery and Biochemistry, Georgetown University School of Medicine, Washington, DC, USA
| | - Jeffrey W Shupp
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, DC, USA
- Department of Surgery and Biochemistry, Georgetown University School of Medicine, Washington, DC, USA
| |
Collapse
|
43
|
Li M, Yuan Y, Zou T, Hou Z, Jin L, Wang B. Development trends of human organoid-based COVID-19 research based on bibliometric analysis. Cell Prolif 2023; 56:e13496. [PMID: 37218396 PMCID: PMC10693193 DOI: 10.1111/cpr.13496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), a global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed a catastrophic threat to human health worldwide. Human stem cell-derived organoids serve as a promising platform for exploring SARS-CoV-2 infection. Several review articles have summarized the application of human organoids in COVID-19, but the research status and development trend of this field have seldom been systematically and comprehensively studied. In this review, we use bibliometric analysis method to identify the characteristics of organoid-based COVID-19 research. First, an annual trend of publications and citations, the most contributing countries or regions and organizations, co-citation analysis of references and sources and research hotspots are determined. Next, systematical summaries of organoid applications in investigating the pathology of SARS-CoV-2 infection, vaccine development and drug discovery, are provided. Lastly, the current challenges and future considerations of this field are discussed. The present study will provide an objective angle to identify the current trend and give novel insights for directing the future development of human organoid applications in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
- Southwest Hospital/Southwest Eye HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yuhan Yuan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| | - Ting Zou
- Southwest Hospital/Southwest Eye HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Zongkun Hou
- School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine)Guizhou Medical UniversityGuiyangChina
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| |
Collapse
|
44
|
Momayyezi P, Bilev E, Ljunggren HG, Hammer Q. Viral escape from NK-cell-mediated immunosurveillance: A lesson for cancer immunotherapy? Eur J Immunol 2023; 53:e2350465. [PMID: 37526136 DOI: 10.1002/eji.202350465] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Natural killer (NK) cells are innate lymphocytes that participate in immune responses against virus-infected cells and tumors. As a countermeasure, viruses and tumors employ strategies to evade NK-cell-mediated immunosurveillance. In this review, we examine immune evasion strategies employed by viruses, focusing on examples from human CMV and severe acute respiratory syndrome coronavirus 2. We explore selected viral evasion mechanisms categorized into three classes: (1) providing ligands for the inhibitory receptor NKG2A, (2) downregulating ligands for the activating receptor NKG2D, and (3) inducing the immunosuppressive cytokine transforming growth factor (TGF)-β. For each class, we draw parallels between immune evasion by viruses and tumors, reviewing potential opportunities for overcoming evasion in cancer therapy. We suggest that in-depth investigations of host-pathogen interactions between viruses and NK cells will not only deepen our understanding of viral immune evasion but also shed light on how NK cells counter such evasion attempts. Thus, due to the parallels of immune evasion by viruses and tumors, we propose that insights gained from antiviral NK-cell responses may serve as valuable lessons that can be leveraged for designing future cancer immunotherapies.
Collapse
Affiliation(s)
- Pouria Momayyezi
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Eleni Bilev
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| |
Collapse
|
45
|
Hammer Q, Cuapio A, Bister J, Björkström NK, Ljunggren HG. NK cells in COVID-19-from disease to vaccination. J Leukoc Biol 2023; 114:507-512. [PMID: 36976012 DOI: 10.1093/jleuko/qiad031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023] Open
Abstract
Natural killer cells participate in the host innate immune response to viral infection. Conversely, natural killer cell dysfunction and hyperactivation can contribute to tissue damage and immunopathology. Here, we review recent studies with respect to natural killer cell activity during infection with SARS-CoV-2. Discussed are initial reports of patients hospitalized with COVID-19, which revealed prompt natural killer cell activation during the acute disease state. Another hallmark of COVID-19, early on observed, was a decrease in numbers of natural killer cells in the circulation. Data from patients with acute SARS-CoV-2 infection as well as from in vitro models demonstrated strong anti-SARS-CoV-2 activity by natural killer cells, likely through direct cytotoxicity as well as indirectly by secreting cytokines. Additionally, we describe the molecular mechanisms underlying natural killer cell recognition of SARS-CoV-2-infected cells, which involve triggering of multiple activating receptors, including NKG2D, as well as loss of inhibition through NKG2A. Discussed is also the ability of natural killer cells to respond to SARS-CoV-2 infection via antibody-dependent cellular cytotoxicity. With respect to natural killer cells in the pathogenesis of COVID-19, we review studies demonstrating how hyperactivation and misdirected NK cell responses could contribute to disease course. Finally, while knowledge is still rather limited, we discuss current insights suggesting a contribution of an early natural killer cell activation response in the generation of immunity against SARS-CoV-2 following vaccination with anti-SARS-CoV-2 mRNA vaccines.
Collapse
Affiliation(s)
- Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels allé 8, Stockholms län, 141 52 Huddinge, Sweden
| | - Angelica Cuapio
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels allé 8, Stockholms län, 141 52 Huddinge, Sweden
| | - Jonna Bister
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels allé 8, Stockholms län, 141 52 Huddinge, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels allé 8, Stockholms län, 141 52 Huddinge, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels allé 8, Stockholms län, 141 52 Huddinge, Sweden
| |
Collapse
|
46
|
Zhang L, Nishi H, Kinoshita K. Single-cell RNA-seq public data reveal the gene regulatory network landscape of respiratory epithelial and peripheral immune cells in COVID-19 patients. Front Immunol 2023; 14:1194614. [PMID: 37936693 PMCID: PMC10627007 DOI: 10.3389/fimmu.2023.1194614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Infection with SARS-CoV-2 leads to coronavirus disease 2019 (COVID-19), which can result in acute respiratory distress syndrome and multiple organ failure. However, its comprehensive influence on pathological immune responses in the respiratory epithelium and peripheral immune cells is not yet fully understood. Methods In this study, we analyzed multiple public scRNA-seq datasets of nasopharyngeal swabs and peripheral blood to investigate the gene regulatory networks (GRNs) of healthy individuals and COVID-19 patients with mild/moderate and severe disease, respectively. Cell-cell communication networks among cell types were also inferred. Finally, validations were conducted using bulk RNA-seq and proteome data. Results Similar and dissimilar regulons were identified within or between epithelial and immune cells during COVID-19 severity progression. The relative transcription factors (TFs) and their targets were used to construct GRNs among different infection sites and conditions. Between respiratory epithelial and peripheral immune cells, different TFs tended to be used to regulate the activity of a cell between healthy individuals and COVID-19 patients, although they had some TFs in common. For example, XBP1, FOS, STAT1, and STAT2 were activated in both the epithelial and immune cells of virus-infected individuals. In contrast, severe COVID-19 cases exhibited activation of CEBPD in peripheral immune cells, while CEBPB was exclusively activated in respiratory epithelial cells. Moreover, in patients with severe COVID-19, although some inflammatory genes, such as S100A8/A9, were found to be upregulated in both respiratory epithelial and peripheral immune cells, their relative regulators can differ in terms of cell types. The cell-cell communication analysis suggested that epidermal growth factor receptor signaling among epithelia contributes to mild/moderate disease, and chemokine signaling among immune cells contributes to severe disease. Conclusion This study identified cell type- and condition-specific regulons in a wide range of cell types from the initial infection site to the peripheral blood, and clarified the diverse mechanisms of maladaptive responses to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Lin Zhang
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Hafumi Nishi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- Faculty of Core Research, Ochanomizu University, Tokyo, Japan
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
- Department of In Silico Analyses, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| |
Collapse
|
47
|
Lee MJ, Blish CA. Defining the role of natural killer cells in COVID-19. Nat Immunol 2023; 24:1628-1638. [PMID: 37460639 PMCID: PMC10538371 DOI: 10.1038/s41590-023-01560-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/08/2023] [Indexed: 09/20/2023]
Abstract
Natural killer (NK) cells are critical effectors of antiviral immunity. Researchers have therefore sought to characterize the NK cell response to coronavirus disease 2019 (COVID-19) and the virus that causes it, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The NK cells of patients with severe COVID-19 undergo extensive phenotypic and functional changes. For example, the NK cells from critically ill patients with COVID-19 are highly activated and exhausted, with poor cytotoxic function and cytokine production upon stimulation. The NK cell response to SARS-CoV-2 is also modulated by changes induced in virally infected cells, including the ability of a viral peptide to bind HLA-E, preventing NK cells from receiving inhibitory signals, and the downregulation of major histocompatibility complex class I and ligands for the activating receptor NKG2D. These changes have important implications for the ability of infected cells to escape NK cell killing. The implications of these findings for antibody-dependent NK cell activity in COVID-19 are also reviewed. Despite these advances in the understanding of the NK cell response to SARS-CoV-2, there remain critical gaps in our current understanding and a wealth of avenues for future research on this topic.
Collapse
Affiliation(s)
- Madeline J Lee
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Catherine A Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
48
|
Gupta MK, Peng H, Li Y, Xu CJ. The role of DNA methylation in personalized medicine for immune-related diseases. Pharmacol Ther 2023; 250:108508. [PMID: 37567513 DOI: 10.1016/j.pharmthera.2023.108508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Epigenetics functions as a bridge between host genetic & environmental factors, aiding in human health and diseases. Many immune-related diseases, including infectious and allergic diseases, have been linked to epigenetic mechanisms, particularly DNA methylation. In this review, we summarized an updated overview of DNA methylation and its importance in personalized medicine, and demonstrated that DNA methylation has excellent potential for disease prevention, diagnosis, and treatment in a personalized manner. The future implications and limitations of the DNA methylation study have also been well-discussed.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - He Peng
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Yang Li
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Internal Medicine and Radboud Institute for Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Internal Medicine and Radboud Institute for Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
49
|
Blutt SE, Coarfa C, Neu J, Pammi M. Multiomic Investigations into Lung Health and Disease. Microorganisms 2023; 11:2116. [PMID: 37630676 PMCID: PMC10459661 DOI: 10.3390/microorganisms11082116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Diseases of the lung account for more than 5 million deaths worldwide and are a healthcare burden. Improving clinical outcomes, including mortality and quality of life, involves a holistic understanding of the disease, which can be provided by the integration of lung multi-omics data. An enhanced understanding of comprehensive multiomic datasets provides opportunities to leverage those datasets to inform the treatment and prevention of lung diseases by classifying severity, prognostication, and discovery of biomarkers. The main objective of this review is to summarize the use of multiomics investigations in lung disease, including multiomics integration and the use of machine learning computational methods. This review also discusses lung disease models, including animal models, organoids, and single-cell lines, to study multiomics in lung health and disease. We provide examples of lung diseases where multi-omics investigations have provided deeper insight into etiopathogenesis and have resulted in improved preventative and therapeutic interventions.
Collapse
Affiliation(s)
- Sarah E. Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Josef Neu
- Department of Pediatrics, Section of Neonatology, University of Florida, Gainesville, FL 32611, USA;
| | - Mohan Pammi
- Department of Pediatrics, Section of Neonatology, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| |
Collapse
|
50
|
Abstract
Advances in single-cell proteomics technologies have resulted in high-dimensional datasets comprising millions of cells that are capable of answering key questions about biology and disease. The advent of these technologies has prompted the development of computational tools to process and visualize the complex data. In this review, we outline the steps of single-cell and spatial proteomics analysis pipelines. In addition to describing available methods, we highlight benchmarking studies that have identified advantages and pitfalls of the currently available computational toolkits. As these technologies continue to advance, robust analysis tools should be developed in tandem to take full advantage of the potential biological insights provided by these data.
Collapse
Affiliation(s)
- Sophia M Guldberg
- Department of Otolaryngology-Head and Neck Surgery and Department of Microbiology and Immunology, University of California, San Francisco, California, USA;
- Biomedical Sciences Graduate Program, University of California, San Francisco, California, USA
- Gladstone-UCSF Institute for Genomic Immunology, San Francisco, California, USA
| | - Trine Line Hauge Okholm
- Department of Otolaryngology-Head and Neck Surgery and Department of Microbiology and Immunology, University of California, San Francisco, California, USA;
- Gladstone-UCSF Institute for Genomic Immunology, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Elizabeth E McCarthy
- Department of Otolaryngology-Head and Neck Surgery and Department of Microbiology and Immunology, University of California, San Francisco, California, USA;
- Biomedical Sciences Graduate Program, University of California, San Francisco, California, USA
- Institute for Human Genetics; Division of Rheumatology, Department of Medicine; Medical Scientist Training Program; and Biological and Medical Informatics Graduate Program, University of California, San Francisco, California, USA
| | - Matthew H Spitzer
- Department of Otolaryngology-Head and Neck Surgery and Department of Microbiology and Immunology, University of California, San Francisco, California, USA;
- Gladstone-UCSF Institute for Genomic Immunology, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|