1
|
Kiefer J, Zeller J, Schneider L, Thomé J, McFadyen JD, Hoerbrand IA, Lang F, Deiss E, Bogner B, Schaefer AL, Chevalier N, Horner VK, Kreuzaler S, Kneser U, Kauke-Navarro M, Braig D, Woollard KJ, Pomahac B, Peter K, Eisenhardt SU. C-reactive protein orchestrates acute allograft rejection in vascularized composite allotransplantation via selective activation of monocyte subsets. J Adv Res 2025; 72:401-420. [PMID: 38992424 DOI: 10.1016/j.jare.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/24/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
INTRODUCTION Despite advancements in transplant immunology and vascularized composite allotransplantation (VCA), the longevity of allografts remains hindered by the challenge of allograft rejection. The acute-phase response, an immune-inflammatory reaction to ischemia/reperfusion that occurs directly after allogeneic transplantation, serves as a catalyst for graft rejection. This immune response is orchestrated by acute-phase reactants through intricate crosstalk with the mononuclear phagocyte system. OBJECTIVE C-reactive protein (CRP), a well-known marker of inflammation, possesses pro-inflammatory properties and exacerbates ischemia/reperfusion injury. Thus, we investigated how CRP impacts acute allograft rejection. METHODS Prompted by clinical observations in facial VCAs, we employed a complex hindlimb transplantation model in rats to investigate the direct impact of CRP on transplant rejection. RESULTS Our findings demonstrate that CRP expedites allograft rejection and diminishes allograft survival by selectively activating non-classical monocytes. Therapeutic stabilization of CRP abrogates this activating effect on monocytes, thereby attenuating acute allograft rejection. Intravital imagining of graft-infiltrating, recipient-derived monocytes during the early phase of acute rejection corroborated their differential regulation by CRP and their pivotal role in driving the initial stages of graft rejection. CONCLUSION The differential activation of recipient-derived monocytes by CRP exacerbates the innate immune response and accelerates clinical allograft rejection. Thus, therapeutic targeting of CRP represents a novel and promising strategy for preventing acute allograft rejection and potentially mitigating chronic allograft rejection.
Collapse
Affiliation(s)
- Jurij Kiefer
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Johannes Zeller
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Laura Schneider
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Julia Thomé
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - James D McFadyen
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Isabel A Hoerbrand
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Friederike Lang
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Emil Deiss
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Balázs Bogner
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Anna-Lena Schaefer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Nina Chevalier
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Verena K Horner
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sheena Kreuzaler
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Heidelberg, Germany
| | - Martin Kauke-Navarro
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, USA
| | - David Braig
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Kevin J Woollard
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Bohdan Pomahac
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, USA
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - Steffen U Eisenhardt
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.
| |
Collapse
|
2
|
Silva Angulo F, Joseph CV, Delval L, Deruyter L, Heumel S, Bicharel M, Rodrigues PB, Sencio V, Bourguignon T, Machado MG, Fourcot M, Delhaye S, Salomé-Desnoulez S, Valet P, Adnot S, Wolowczuk I, Sirard JC, Pichavant M, Staels B, Haas JT, Gref R, Vandel J, Machelart A, Duez H, Pourcet B, Trottein F. Rev-erb-α antagonism in alveolar macrophages protects against pneumococcal infection in elderly mice. Cell Rep 2025; 44:115273. [PMID: 39908141 DOI: 10.1016/j.celrep.2025.115273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/08/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025] Open
Abstract
Circadian rhythms control the diurnal nature of many physiological, metabolic, and immune processes. We hypothesized that age-related impairments in circadian rhythms are associated with high susceptibility to bacterial respiratory tract infections. Our data show that the time-of-day difference in the control of Streptococcus pneumoniae infection is altered in elderly mice. A lung circadian transcriptome analysis revealed that aging alters the daily oscillations in the expression of a specific set of genes and that some pathways that are rhythmic in young-adult mice are non-rhythmic or time shifted in elderly mice. In particular, the circadian expression of the clock component Rev-erb-α and apelin/apelin receptor was altered in elderly mice. In young-adult mice, we discovered an interaction between Rev-erb-α and the apelinergic axis that controls host defenses against S. pneumoniae via alveolar macrophages. Pharmacological repression of Rev-erb-α in elderly mice resulted in greater resistance to pneumococcal infection. These data suggest the causative role of age-associated impairments in circadian rhythms on respiratory infections and have clinical relevance.
Collapse
MESH Headings
- Animals
- Macrophages, Alveolar/metabolism
- Macrophages, Alveolar/microbiology
- Macrophages, Alveolar/drug effects
- Macrophages, Alveolar/immunology
- Nuclear Receptor Subfamily 1, Group D, Member 1/antagonists & inhibitors
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
- Circadian Rhythm/genetics
- Pneumococcal Infections/prevention & control
- Pneumococcal Infections/immunology
- Pneumococcal Infections/metabolism
- Pneumococcal Infections/microbiology
- Pneumococcal Infections/genetics
- Mice
- Streptococcus pneumoniae
- Aging
- Mice, Inbred C57BL
- Male
- Lung/metabolism
- Lung/microbiology
Collapse
Affiliation(s)
- Fabiola Silva Angulo
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Claudine Vanessa Joseph
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Lou Delval
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Lucie Deruyter
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Séverine Heumel
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Marie Bicharel
- University Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, 59000 Lille, France
| | - Patricia Brito Rodrigues
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Valentin Sencio
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Tom Bourguignon
- University Paris Saclay, CNRS, UMR 8214 - Institute of Molecular Sciences, 91400 Orsay, France
| | - Marina Gomes Machado
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Marie Fourcot
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, 59000 Lille, France
| | - Stéphane Delhaye
- University Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, 59000 Lille, France
| | - Sophie Salomé-Desnoulez
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, 59000 Lille, France
| | - Philippe Valet
- University Paul Sabatier, University Toulouse, INSERM, CNRS, U1301 - UMR 5070 - Institut RESTORE, 31000 Toulouse, France
| | - Serge Adnot
- University Paris-Est Créteil, INSERM, U955, Institut Mondor de Recherche Biomédicale, 94010 Créteil, France
| | - Isabelle Wolowczuk
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Jean-Claude Sirard
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Muriel Pichavant
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Bart Staels
- University Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, 59000 Lille, France
| | - Joel T Haas
- University Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, 59000 Lille, France
| | - Ruxandra Gref
- University Paris Saclay, CNRS, UMR 8214 - Institute of Molecular Sciences, 91400 Orsay, France
| | - Jimmy Vandel
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, 59000 Lille, France
| | - Arnaud Machelart
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Hélène Duez
- University Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, 59000 Lille, France.
| | - Benoit Pourcet
- University Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, 59000 Lille, France.
| | - François Trottein
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France.
| |
Collapse
|
3
|
Lu J, Lu F, Peng Z, Zhang Z, Jiang W, Meng X, Yi X, Chen T, Fei Z, Wang Y, Yi J, Deng X, Zhang J, Wang Z, Xiao Q. Clodronate liposome-mediated macrophage depletion ameliorates iron overload-induced dry eye disease. Exp Eye Res 2025; 251:110204. [PMID: 39662663 DOI: 10.1016/j.exer.2024.110204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/08/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Dry eye disease (DED) is a prevalent ophthalmic disease that affects millions of people worldwide. Iron overload and macrophage inflammation have been implicated in the development of murine DED, though the specific role of macrophages under iron overload conditions remains unclear. This study aimed to establish a novel iron overload-induced mouse model of DED and investigate macrophage involvement. The model was induced via intraperitoneal injection of D-glucoside iron. Results showed that macrophage depletion via clodronate liposomes (CL) significantly mitigated iron deposit, decreased ocular surface inflammation, improved tear production and restored the structure of ocular surface tissues. Furthermore, CL specifically targeted pro-inflammatory M1 macrophages and reduced levels of the inflammatory cytokines IL-1β, IL-6, and TNF-α, effectively alleviating symptoms of DED. In conclusion, this study characterized a novel iron overload-induced DED mouse model and demenstrated that macrophage depletion mitigated the pathological changes in ocular surface and lacrimal gland tissues caused by iron overload, suggesting potential therapeutic strategies for further investigation in the treatment of DED.
Collapse
Affiliation(s)
- Jing Lu
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Fangfang Lu
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhengwu Peng
- The Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, Hunan, China
| | - Zihe Zhang
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Weijie Jiang
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xia Meng
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xin Yi
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Tuo Chen
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhigang Fei
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yu Wang
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jiahuan Yi
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xujie Deng
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jia Zhang
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhi Wang
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Qiguo Xiao
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
4
|
Jang JH, Sung JH, Huh JY. Diverse Functions of Macrophages in Obesity and Metabolic Dysfunction-Associated Steatotic Liver Disease: Bridging Inflammation and Metabolism. Immune Netw 2025; 25:e12. [PMID: 40078789 PMCID: PMC11896663 DOI: 10.4110/in.2025.25.e12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Macrophages play crucial roles in immune response and tissue homeostasis, with their functions becoming increasingly complex in obesity-mediated metabolic disorders. This review explores the extensive range of macrophage activities within adipose and liver tissues, emphasizing their contribution to the pathogenesis and progression of obesity and its related metabolic dysfunction-associated steatotic liver disease (MASLD). In the context of obesity, macrophages respond adaptively to lipid overloads and inflammatory cues in adipose tissue, profoundly influencing insulin resistance and metabolic homeostasis. Concurrently, their role in the liver extends to moderating inflammation and orchestrating fibrotic responses, integral to the development of MASLD. Highlighting the spectrum of macrophage phenotypes across these metabolic landscapes, we summarize their diverse roles in linking inflammatory processes with metabolic functions. This review advocates for a deeper understanding of macrophage subsets in metabolic tissues, proposing targeted research to harness their therapeutic potential in mitigating MASLD and other metabolic disorders.
Collapse
Affiliation(s)
- Jun Hee Jang
- Department of Life Science, Sogang University, Seoul 04107, Korea
- Center for Nano Materials, Sogang University, Seoul 04107, Korea
| | - Jin Hyun Sung
- Department of Life Science, Sogang University, Seoul 04107, Korea
- Center for Nano Materials, Sogang University, Seoul 04107, Korea
| | - Jin Young Huh
- Department of Life Science, Sogang University, Seoul 04107, Korea
- Center for Nano Materials, Sogang University, Seoul 04107, Korea
| |
Collapse
|
5
|
Xiao Q, Huang J, Zhu X, Shi M, Chen L, Chen L, Liu X, Liu R, Zhong Y. Formononetin ameliorates dextran sulfate sodium-induced colitis via enhancing antioxidant capacity, promoting tight junction protein expression and reshaping M1/M2 macrophage polarization balance. Int Immunopharmacol 2024; 142:113174. [PMID: 39288627 DOI: 10.1016/j.intimp.2024.113174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Ulcerative colitis (UC) is a complex, refractory inflammatory bowel disease characterized impared intestinal mucosal barrier and imbalanced M1/M2 macrophage polarization mediating its progression. Formononetin (FN), a bioactive isoflavone with established anti-inflammatory and immunomodulatory properties, shows promise in mitigating UC, yet its therapeutic and underlying mechanisms remain unclear. In this study, colitis was induced in mice by administering 2.5% (w/v) dextran sulfate sodium (DSS) solution for 7 days. Oral (25, 50, and 100 mg/kg) FN for 10 days significantly ameliorated colitis symptoms in a dose-dependent manner, by mitigating body weight loss, reducing disease activity index (DAI), colonic weight, and colonic weight index, while enhancing survival rates and colonic length. Histological analysis revealed FN remarkably suppressed inflammatory damage in colonic tissues. Furthermore, FN modulated the expression of pro- and anti-inflammatory cytokines and enhanced antioxidant capacity. Notably, FN treatment significantly enhanced the expression of tight junction (TJ) proteins (claudin-1, ZO-1, occludin) at both protein and mRNA levels in the colon tissues, suggesting improved intestinal barrier function. Crucially, FN inhibited macrophage infiltration in colonic tissues and rebalanced M1/M2 macrophage polarization. While, macrophage depletion largely abrogated FN's protective effects against colitis, indicating a crucial role for macrophages in mediating FN's therapeutic response. Overall, FN effectively alleviated colitis primarily via modulating inflammatory cytokine expression, enhancing antioxidant capacity, upregulating TJs proteins expression, and remodeling M1/M2 macrophage polarization equilibrium. These findings suggest that FN could be the next candidate to unlocking UC's treatment challenge.
Collapse
Affiliation(s)
- Qiuping Xiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Jiaqi Huang
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Xiyan Zhu
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Min Shi
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Liling Chen
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Lai Chen
- Institute of Cancer Research, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Xuan Liu
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Ronghua Liu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| | - Youbao Zhong
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| |
Collapse
|
6
|
Ritzel RM, Jiang D, McCullough LD. CAMs in command: aging brain macrophages fine-tune stroke immune responses. Trends Neurosci 2024; 47:965-967. [PMID: 39443199 PMCID: PMC11631633 DOI: 10.1016/j.tins.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Central nervous system-associated macrophages (CAMs) are a unique subset of immune cells located at the interface between the blood and the brain parenchyma. In a recent study in mice, Levard and colleagues found that CAMs regulate immune cell trafficking, endothelial activation, and antigen presentation following stroke exclusively in aged animals, underscoring the importance of using translationally relevant models for studying age-related diseases.
Collapse
Affiliation(s)
- Rodney M Ritzel
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Danye Jiang
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Gómez-Oro C, Latorre MC, Arribas-Poza P, Ibáñez-Escribano A, Baca-Cornejo KR, Gallego-Valle J, López-Escobar N, Mondéjar-Palencia M, Pion M, López-Fernández LA, Mercader E, Pérez-Milán F, Relloso M. Progesterone promotes CXCl2-dependent vaginal neutrophil killing by activating cervical resident macrophage-neutrophil crosstalk. JCI Insight 2024; 9:e177899. [PMID: 39298265 PMCID: PMC11529979 DOI: 10.1172/jci.insight.177899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
Vaginal infections in women of reproductive age represent a clinical dilemma with significant socioeconomic implications. The current understanding of mucosal immunity failure during early pathogenic invasions that allows the pathogen to grow and thrive is far from complete. Neutrophils infiltrate most tissues following circadian patterns as part of normal repair, regulation of microbiota, or immune surveillance and become more numerous after infection. Neutrophils are responsible for maintaining vaginal immunity. Specific to the vagina, neutrophils continuously infiltrate at high levels, although during ovulation, they retreat to avoid sperm damage and permit reproduction. Here we show that, after ovulation, progesterone promotes resident vaginal macrophage-neutrophil crosstalk by upregulating Yolk sac early fetal organs (FOLR2+) macrophage CXCl2 expression, in a TNFA-patrolling monocyte-derived macrophage-mediated (CX3CR1hiMHCIIhi-mediated) manner, to activate the neutrophils' capacity to eliminate sex-transmitted and opportunistic microorganisms. Indeed, progesterone plays an essential role in conciliating the balance between the commensal microbiota, sperm, and the threat of pathogens because progesterone not only promotes a flurry of neutrophils but also increases neutrophilic fury to restore immunity after ovulation to thwart pathogenic invasion after intercourse. Therefore, modest progesterone dysregulations could lead to a suboptimal neutrophilic response, resulting in insufficient mucosal defense and recurrent unresolved infections.
Collapse
Affiliation(s)
- Carla Gómez-Oro
- Laboratorio de InmunoReproducción, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Maria C. Latorre
- Laboratorio de InmunoReproducción, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Patricia Arribas-Poza
- Laboratorio de InmunoReproducción, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Alexandra Ibáñez-Escribano
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Katia R. Baca-Cornejo
- Laboratorio de InmunoReproducción, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | | | - Natalia López-Escobar
- Laboratorio de InmunoReproducción, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Mabel Mondéjar-Palencia
- Laboratorio de InmunoReproducción, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Marjorie Pion
- Laboratorio de InmunoRegulación, IiSGM, Madrid, Spain
| | - Luis A. López-Fernández
- Laboratorio de Farmacogenética, Grupo de Farmacia Hospitalaria y Farmacogenómica, IiSGM, Madrid, Spain
| | - Enrique Mercader
- Laboratorio de InmunoReproducción, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Unidad Cirugía Endocrino-metabólica, Servicio de Cirugía General y Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Federico Pérez-Milán
- Laboratorio de InmunoReproducción, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Unidad de Reproducción Asistida, Servicio de Obstetricia y Ginecología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Miguel Relloso
- Laboratorio de InmunoReproducción, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
8
|
Jin J, Wang Y, Liu Y, Chakrabarti S, Su Z. Cardiac resident macrophages: Spatiotemporal distribution, development, physiological functions, and their translational potential on cardiac diseases. Acta Pharm Sin B 2024; 14:1483-1493. [PMID: 38572111 PMCID: PMC10985034 DOI: 10.1016/j.apsb.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 12/29/2023] [Indexed: 04/05/2024] Open
Abstract
Cardiac resident macrophages (CRMs) are the main population of cardiac immune cells. The role of these cells in regeneration, functional remodeling, and repair after cardiac injury is always the focus of research. However, in recent years, their dynamic changes and contributions in physiological states have a significant attention. CRMs have specific phenotypes and functions in different cardiac chambers or locations of the heart and at different stages. They further show specific differentiation and development processes. The present review will summarize the new progress about the spatiotemporal distribution, potential developmental regulation, and their roles in cardiac development and aging as well as the translational potential of CRMs on cardiac diseases. Of course, the research tools for CRMs, their respective advantages and disadvantages, and key issues on CRMs will further be discussed.
Collapse
Affiliation(s)
- Jing Jin
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
- Institute for Medical Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Yurou Wang
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
- Institute for Medical Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Yueqin Liu
- Center Laboratory, the Fourth People's Hospital of Zhenjiang, Zhenjiang 212008, China
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 5C1, Canada
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
- Institute for Medical Immunology, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
9
|
Blank-Stein N, Mass E. Macrophage and monocyte subsets in response to ischemic stroke. Eur J Immunol 2023; 53:e2250233. [PMID: 37467166 DOI: 10.1002/eji.202250233] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Ischemic stroke is a leading cause of disability and mortality. Despite extensive efforts in stroke research, the only pharmacological treatment currently available is arterial recanalization, which has limited efficacy only in the acute phase of stroke. The neuroinflammatory response to stroke is believed to provide a wider time window than recanalization and has therefore been proposed as an attractive therapeutic target. In this review, we provide an overview of recent advances in the understanding of cellular and molecular responses of distinct macrophage populations following stroke, which may offer potential targets for therapeutic interventions. Specifically, we discuss the role of local responders in neuroinflammation, including the well-studied microglia as well as the emerging players, border-associated macrophages, and macrophages originating from the skull bone marrow. Additionally, we focus on the behavior of monocytes stemming from distant tissues such as the bone marrow and spleen. Finally, we highlight aging as a crucial factor modulating the immune response, which is often neglected in animal studies.
Collapse
Affiliation(s)
- Nelli Blank-Stein
- Developmental Biology of the Immune System, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Elvira Mass
- Developmental Biology of the Immune System, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|