1
|
Sakkas LI, Bogdanos DP, Chikanza IC. Sex Bias in Systemic Sclerosis: from Clinical to Immunological Differences. Clin Rev Allergy Immunol 2025; 68:51. [PMID: 40423726 PMCID: PMC12116864 DOI: 10.1007/s12016-025-09062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2025] [Indexed: 05/28/2025]
Abstract
Systemic sclerosis (SSc) is a chronic autoimmune disease characterized by microvasculopathy, extensive fibrosis, and autoantibodies. The disease affects mostly the female sex. In this review, we highlight sex bias in clinical manifestations in SSc, and the pathophysiological changes underlying this bias. Male sex is associated with the diffuse cutaneous form of the disease, digital ulcers, interstitial lung disease, and worse prognosis. These clinical differences can be attributed to sex hormones and sex chromosomes, as females differ from males in sex hormones (estrogens in females, androgens in males) and sex chromosomes (XX in females, XY in males). Estrogens in females generally have immunostimulatory and profibrotic effects, and androgens have immunosuppressive effects. The X-chromosome contains many immunity-related genes, but the double dose of X-linked genes in females is avoided by random inactivation of one X-chromosome (XCI). However, many X-linked immunity-related genes, including toll-like receptor (TLR)7, TLR8 and Bruton's tyrosine kinase (BTK), escape XCI resulting in a biallelic expression with pathophysiological implications. Also, autosomal genes are differentially expressed between sexes. Therefore, sex should be included in future studies on SSc to aid in forming predictive algorithms and helping therapeutic decisions in this difficult-to-treat disease.
Collapse
Affiliation(s)
- Lazaros I Sakkas
- Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, 41 500, Greece.
- Division of Rheumatology, IASO General Clinic, Larissa, Greece.
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Ian C Chikanza
- Paediatrics Department, University of Zimbabwe, Harare, Zimbabwe
- Department of Medicine, Catholic University, Harare, Zimbabwe
- International Arthritis and Hypermobility Centre, Harley Street Clinic, London, UK
| |
Collapse
|
2
|
Jimenez SA, Mendoza FA, Piera-Velazquez S. A review of recent studies on the pathogenesis of Systemic Sclerosis: focus on fibrosis pathways. Front Immunol 2025; 16:1551911. [PMID: 40308583 PMCID: PMC12040652 DOI: 10.3389/fimmu.2025.1551911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/07/2025] [Indexed: 05/02/2025] Open
Abstract
Systemic Sclerosis (SSc) is a systemic autoimmune disease of unknown etiology characterized by the development of frequently progressive cutaneous and internal organ fibrosis accompanied by severe vascular alterations. The pathogenesis of SSc is highly complex and, despite extensive investigation, has not been fully elucidated. Numerous studies have suggested that unknown etiologic factors cause multiple alterations in genetically receptive hosts, leading to SSc development and progression. These events may be functionally and pathologically interconnected and include: 1) Structural and functional microvascular and endothelial cell abnormalities; 2) Severe oxidative stress and high reactive oxygen species (3); Frequently progressive cutaneous and visceral fibrosis; 4) Transdifferentiation of various cell types into activated myofibroblasts, the cells ultimately responsible for the fibrotic process; 5) Establishment of a chronic inflammatory process in various affected tissues; 6) Release of cytokines, chemokines, and growth factors from the inflammatory cells; 7) Abnormalities in humoral and cellular immunity with the production of specific autoantibodies; and 8) Epigenetic alterations including changes in multiple non-coding RNAs. These events manifest with different levels of intensity in the affected organs and display remarkable individual variability, resulting in a wide heterogeneity in the extent and severity of clinical manifestations. Here, we will review some of the recent studies related to SSc pathogenesis.
Collapse
Affiliation(s)
- Sergio A. Jimenez
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Fabian A. Mendoza
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia, PA, United States
- Division of Rheumatology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
3
|
Lovell CD, Anguera MC. More X's, more problems: how contributions from the X chromosomes enhance female predisposition for autoimmunity. Curr Opin Immunol 2025; 93:102543. [PMID: 40020257 PMCID: PMC11909602 DOI: 10.1016/j.coi.2025.102543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 03/08/2025]
Abstract
Many autoimmune diseases exhibit a strong female bias. While sex hormones may influence sex bias in disease, recent studies suggest that the X chromosome itself directly contributes to female-biased susceptibility to autoimmunity. Females with two X chromosomes utilize X Chromosome Inactivation (XCI) to silence gene expression from one X chromosome, equalizing expression between the sexes. The X chromosome is highly enriched with immune-related genes, and recent work indicates that the fidelity of XCI maintenance in lymphocytes from female systemic lupus erythematosus patients is compromised, suggesting that aberrant X-linked gene expression contributes to autoimmune phenotypes. XCI is initiated and maintained by the long noncoding RNA XIST/Xist through its interactions with the inactive X chromosome and numerous interacting proteins, and recent studies also implicate XIST/Xist RNA in driving endosomal Toll-like receptor signaling and XIST/Xist RNA-protein complexes in serving as a source of autoantigens to respectively drive autoimmunity. Here, we will review these three distinct pathways that underscore the significance of X-linked genetics for understanding the origins of the female bias in autoimmune disease.
Collapse
Affiliation(s)
- Claudia D Lovell
- Department of Biomedical Science, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Montserrat C Anguera
- Department of Biomedical Science, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Chaudhary V, Mishra B, Ah Kioon MD, Du Y, Ivashkiv LB, Crow MK, Barrat FJ. Mechanosensing regulates pDC activation in the skin through NRF2 activation. J Exp Med 2025; 222:e20240852. [PMID: 39670996 PMCID: PMC11639951 DOI: 10.1084/jem.20240852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/25/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024] Open
Abstract
Plasmacytoid DCs (pDCs) infiltrate the skin, chronically produce type I interferon (IFN-I), and promote skin lesions and fibrosis in autoimmune patients. However, what controls their activation in the skin is unknown. Here, we report that increased stiffness inhibits the production of IFN-I by pDCs. Mechanistically, mechanosensing activates stress pathways including NRF2, which induces the pentose phosphate pathway and reduces pyruvate levels, a product necessary for pDC responses. Modulating NRF2 activity in vivo controlled the pDC response, leading to resolution or chronic induction of IFN-I in the skin. In systemic sclerosis (SSc) patients, although NRF2 was induced in skin-infiltrating pDCs, as compared with blood pDCs, the IFN response was maintained. We observed that CXCL4, a profibrotic chemokine elevated in fibrotic skin, was able to overcome stiffness-mediated IFN-I inhibition, allowing chronic IFN-I responses by pDCs in the skin. Hence, these data identify a novel regulatory mechanism exerted by the skin microenvironment and identify points of dysregulation of this mechanism in patients with skin inflammation and fibrosis.
Collapse
Affiliation(s)
- Vidyanath Chaudhary
- HSS Research Institute, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Bikash Mishra
- HSS Research Institute, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Marie Dominique Ah Kioon
- HSS Research Institute, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
| | - Yong Du
- HSS Research Institute, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Lionel B. Ivashkiv
- HSS Research Institute, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mary K. Crow
- HSS Research Institute, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, NY, USA
| | - Franck J. Barrat
- HSS Research Institute, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
5
|
Jiwrajka N, Anguera MC. pDCs, type 1 IFN, and the female predileXion of SSc. J Exp Med 2025; 222:e20242284. [PMID: 39820256 PMCID: PMC11740917 DOI: 10.1084/jem.20242284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
Systemic sclerosis (SSc) is a debilitating autoimmune disease that preferentially afflicts women. The molecular origins of this female bias are unclear. A new study of plasmacytoid dendritic cells from SSc patients by Du et al. (https://doi.org/10.1084/jem.20231809) suggests the X chromosome may play a key role.
Collapse
Affiliation(s)
- Nikhil Jiwrajka
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Rheumatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Montserrat C. Anguera
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|