1
|
Barclay AM, Ninaber DK, Limpens RWL, Walburg KV, Bárcena M, Hiemstra PS, Ottenhoff TH, van der Does AM, Joosten SA. Mycobacteria develop biofilms on airway epithelial cells and promote mucosal barrier disruption. iScience 2024; 27:111063. [PMID: 39502292 PMCID: PMC11536035 DOI: 10.1016/j.isci.2024.111063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/14/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Tuberculosis displays several features commonly linked to biofilm-associated infections, including recurrence of infection and resistance to antibiotic treatment. The respiratory epithelium represents the first line of defense against pathogens such as Mycobacterium tuberculosis (Mtb). Here, we use an air-liquid interface model of human primary bronchial epithelial cells (PBEC) to explore the capability of four species of mycobacteria (Mtb, M. bovis (BCG), M. avium, and M. smegmatis) to form biofilms on airway epithelial cells. Mtb, BCG, and M. smegmatis consistently formed biofilms with extracellular matrixes on PBEC cultures. Biofilms varied in biomass, matrix polysaccharide content, and bacterial metabolic activity between species. Exposure of PBEC to mycobacteria caused the disruption of the epithelial barrier and was accompanied by mostly apical non-apoptotic cell death. Structural analysis revealed pore-like structures in 7-day biofilms. Taken together, mycobacteria can form biofilms on human airway epithelial cells, and long-term infection negatively affects barrier function and promotes cell death.
Collapse
Affiliation(s)
- Amy M. Barclay
- Leiden University Center for Infectious Diseases, (LUCID), Leiden University Medical Center, Leiden, the Netherlands
| | - Dennis K. Ninaber
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ronald W.A. L. Limpens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Kimberley V. Walburg
- Leiden University Center for Infectious Diseases, (LUCID), Leiden University Medical Center, Leiden, the Netherlands
| | - Montserrat Bárcena
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Pieter S. Hiemstra
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom H.M. Ottenhoff
- Leiden University Center for Infectious Diseases, (LUCID), Leiden University Medical Center, Leiden, the Netherlands
| | - Anne M. van der Does
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Simone A. Joosten
- Leiden University Center for Infectious Diseases, (LUCID), Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
2
|
De K, Belardinelli JM, Pandurangan AP, Ehianeta T, Lian E, Palčeková Z, Lam H, Gonzalez-Juarrero M, Bryant JM, Blundell TL, Parkhill J, Floto RA, Lowary TL, Wheat WH, Jackson M. Lipoarabinomannan modification as a source of phenotypic heterogeneity in host-adapted Mycobacterium abscessus isolates. Proc Natl Acad Sci U S A 2024; 121:e2403206121. [PMID: 38630725 PMCID: PMC11046677 DOI: 10.1073/pnas.2403206121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Mycobacterium abscessus is increasingly recognized as the causative agent of chronic pulmonary infections in humans. One of the genes found to be under strong evolutionary pressure during adaptation of M. abscessus to the human lung is embC which encodes an arabinosyltransferase required for the biosynthesis of the cell envelope lipoglycan, lipoarabinomannan (LAM). To assess the impact of patient-derived embC mutations on the physiology and virulence of M. abscessus, mutations were introduced in the isogenic background of M. abscessus ATCC 19977 and the resulting strains probed for phenotypic changes in a variety of in vitro and host cell-based assays relevant to infection. We show that patient-derived mutational variations in EmbC result in an unexpectedly large number of changes in the physiology of M. abscessus, and its interactions with innate immune cells. Not only did the mutants produce previously unknown forms of LAM with a truncated arabinan domain and 3-linked oligomannoside chains, they also displayed significantly altered cording, sliding motility, and biofilm-forming capacities. The mutants further differed from wild-type M. abscessus in their ability to replicate and induce inflammatory responses in human monocyte-derived macrophages and epithelial cells. The fact that different embC mutations were associated with distinct physiologic and pathogenic outcomes indicates that structural alterations in LAM caused by nonsynonymous nucleotide polymorphisms in embC may be a rapid, one-step, way for M. abscessus to generate broad-spectrum diversity beneficial to survival within the heterogeneous and constantly evolving environment of the infected human airway.
Collapse
Affiliation(s)
- Kavita De
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| | - Juan M. Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| | - Arun Prasad Pandurangan
- Victor Phillip Dahdaleh Heart and Lung Research Institute, Biomedical Campus, Trumpington, CambridgeCB2 OBB, United Kingdom
| | - Teddy Ehianeta
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei11529, Taiwan
| | - Elena Lian
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| | - Zuzana Palčeková
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| | - Ha Lam
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| | - Josephine M. Bryant
- Parasites and Microbes Programme, Wellcome Sanger Institute, HinxtonCB10 1SA, United Kingdom
| | - Tom L. Blundell
- Victor Phillip Dahdaleh Heart and Lung Research Institute, Biomedical Campus, Trumpington, CambridgeCB2 OBB, United Kingdom
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - R. Andres Floto
- Victor Phillip Dahdaleh Heart and Lung Research Institute, Biomedical Campus, Trumpington, CambridgeCB2 OBB, United Kingdom
- Molecular Immunity Unit, Department of Medicine, Medical Research Council-Laboratory of Molecular Biology, University of Cambridge, Trumpington, CambridgeCB2 0QH, United Kingdom
- University of Cambridge Centre for AI in Medicine, Cambridge CB3 0WA, United Kingdom
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, CambridgeCB2 0AY, United Kingdom
| | - Todd L. Lowary
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei106, Taiwan
| | - William H. Wheat
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| |
Collapse
|
3
|
Wang H, Liu D, Zhou X. Effect of Mycolic Acids on Host Immunity and Lipid Metabolism. Int J Mol Sci 2023; 25:396. [PMID: 38203570 PMCID: PMC10778799 DOI: 10.3390/ijms25010396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 01/12/2024] Open
Abstract
Mycolic acids constitute pivotal constituents within the cell wall structure of Mycobacterium tuberculosis. Due to their structural diversity, the composition of mycolic acids exhibits substantial variations among different strains, endowing them with the distinctive label of being the 'signature' feature of mycobacterial species. Within Mycobacterium tuberculosis, the primary classes of mycolic acids include α-, keto-, and methoxy-mycolic acids. While these mycolic acids are predominantly esterified to the cell wall components (such as arabinogalactan, alginate, or glucose) of Mycobacterium tuberculosis, a fraction of free mycolic acids are secreted during in vitro growth of the bacterium. Remarkably, different types of mycolic acids possess varying capabilities to induce foamy macro-phages and trigger immune responses. Additionally, mycolic acids play a regulatory role in the lipid metabolism of host cells, thereby exerting influence over the progression of tuberculosis. Consequently, the multifaceted properties of mycolic acids shape the immune evasion strategy employed by Mycobacterium tuberculosis. A comprehensive understanding of mycolic acids is of paramount significance in the pursuit of developing tuberculosis therapeutics and unraveling the intricacies of its pathogenic mechanisms.
Collapse
Affiliation(s)
- Haoran Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100086, China; (H.W.); (D.L.)
- National Key Laboratory of Veterinary Public Health and Safety, Beijing 100086, China
| | - Dingpu Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100086, China; (H.W.); (D.L.)
- National Key Laboratory of Veterinary Public Health and Safety, Beijing 100086, China
| | - Xiangmei Zhou
- College of Veterinary Medicine, China Agricultural University, Beijing 100086, China; (H.W.); (D.L.)
- National Key Laboratory of Veterinary Public Health and Safety, Beijing 100086, China
| |
Collapse
|
4
|
Mishra R, Hannebelle M, Patil VP, Dubois A, Garcia-Mouton C, Kirsch GM, Jan M, Sharma K, Guex N, Sordet-Dessimoz J, Perez-Gil J, Prakash M, Knott GW, Dhar N, McKinney JD, Thacker VV. Mechanopathology of biofilm-like Mycobacterium tuberculosis cords. Cell 2023; 186:5135-5150.e28. [PMID: 37865090 PMCID: PMC10642369 DOI: 10.1016/j.cell.2023.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/26/2023] [Accepted: 09/14/2023] [Indexed: 10/23/2023]
Abstract
Mycobacterium tuberculosis (Mtb) cultured axenically without detergent forms biofilm-like cords, a clinical identifier of virulence. In lung-on-chip (LoC) and mouse models, cords in alveolar cells contribute to suppression of innate immune signaling via nuclear compression. Thereafter, extracellular cords cause contact-dependent phagocyte death but grow intercellularly between epithelial cells. The absence of these mechanopathological mechanisms explains the greater proportion of alveolar lesions with increased immune infiltration and dissemination defects in cording-deficient Mtb infections. Compression of Mtb lipid monolayers induces a phase transition that enables mechanical energy storage. Agent-based simulations demonstrate that the increased energy storage capacity is sufficient for the formation of cords that maintain structural integrity despite mechanical perturbation. Bacteria in cords remain translationally active despite antibiotic exposure and regrow rapidly upon cessation of treatment. This study provides a conceptual framework for the biophysics and function in tuberculosis infection and therapy of cord architectures independent of mechanisms ascribed to single bacteria.
Collapse
Affiliation(s)
- Richa Mishra
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Melanie Hannebelle
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Vishal P Patil
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Anaëlle Dubois
- BioElectron Microscopy Facility, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Gabriela M Kirsch
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Maxime Jan
- Bioinformatics Competence Centre, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Competence Centre, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Kunal Sharma
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Centre, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Competence Centre, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jessica Sordet-Dessimoz
- Histology Core Facility, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jesus Perez-Gil
- Department of Biochemistry, University Complutense Madrid, 28040 Madrid, Spain
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Graham W Knott
- BioElectron Microscopy Facility, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Neeraj Dhar
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - John D McKinney
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Vivek V Thacker
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
5
|
Freitas BCD, Meneguello JE, Eugenio LGF, Lemos R, Scodro RBDL, Siqueira VLD, Caleffi-Ferracioli KR, Cardoso RF. Cord factor producer Mycobacterium abscessus subsp. bolletii in asymptomatic immunocompetent host sputa samples. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
6
|
Kalsum S, Andersson B, Das J, Schön T, Lerm M. A high-throughput screening assay based on automated microscopy for monitoring antibiotic susceptibility of Mycobacterium tuberculosis phenotypes. BMC Microbiol 2021; 21:167. [PMID: 34090328 PMCID: PMC8178828 DOI: 10.1186/s12866-021-02212-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/30/2021] [Indexed: 11/10/2022] Open
Abstract
Background Efficient high-throughput drug screening assays are necessary to enable the discovery of new anti-mycobacterial drugs. The purpose of our work was to develop and validate an assay based on live-cell imaging which can monitor the growth of two distinct phenotypes of Mycobacterium tuberculosis and to test their susceptibility to commonly used TB drugs. Results Both planktonic and cording phenotypes were successfully monitored as fluorescent objects using the live-cell imaging system IncuCyte S3, allowing collection of data describing distinct characteristics of aggregate size and growth. The quantification of changes in total area of aggregates was used to define IC50 and MIC values of selected TB drugs which revealed that the cording phenotype grew more rapidly and displayed a higher susceptibility to rifampicin. In checkerboard approach, testing pair-wise combinations of sub-inhibitory concentrations of drugs, rifampicin, linezolid and pretomanid demonstrated superior growth inhibition of cording phenotype. Conclusions Our results emphasize the efficiency of using automated live-cell imaging and its potential in high-throughput whole-cell screening to evaluate existing and search for novel antimycobacterial drugs. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02212-3.
Collapse
Affiliation(s)
- Sadaf Kalsum
- Division of Inflammation and Infection, Lab 1, floor 12, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, SE-58185, Linköping, Sweden
| | - Blanka Andersson
- Division of Inflammation and Infection, Lab 1, floor 12, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, SE-58185, Linköping, Sweden
| | - Jyotirmoy Das
- Division of Inflammation and Infection, Lab 1, floor 12, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, SE-58185, Linköping, Sweden
| | - Thomas Schön
- Division of Clinical Microbiology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, SE-58185, Linköping, Sweden
| | - Maria Lerm
- Division of Inflammation and Infection, Lab 1, floor 12, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, SE-58185, Linköping, Sweden.
| |
Collapse
|
7
|
Abstract
Mycobacteria have unique cell envelopes, surface properties, and growth dynamics, which all play a part in the ability of these important pathogens to infect, evade host immunity, disseminate, and resist antibiotic challenges. Recent atomic force microscopy (AFM) studies have brought new insights into the nanometer-scale ultrastructural, adhesive, and mechanical properties of mycobacteria. The molecular forces with which mycobacterial adhesins bind to host factors, like heparin and fibronectin, and the hydrophobic properties of the mycomembrane have been unraveled by AFM force spectroscopy studies. Real-time correlative AFM and fluorescence imaging have delineated a complex interplay between surface ultrastructure, tensile stresses within the cell envelope, and cellular processes leading to division. The unique capabilities of AFM, which include subdiffraction-limit topographic imaging and piconewton force sensitivity, have great potential to resolve important questions that remain unanswered on the molecular interactions, surface properties, and growth dynamics of this important class of pathogens.
Collapse
|
8
|
Johansen MD, Kremer L. Large Extracellular Cord Formation in a Zebrafish Model of Mycobacterium kansasii Infection. J Infect Dis 2021; 222:1046-1050. [PMID: 32301995 DOI: 10.1093/infdis/jiaa187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium kansasii is a slow-growing nontuberculous mycobacteria responsible for coinfections particularly in patients with human immunodeficiency virus. To date, our knowledge of M. kansasii infection has been hampered owing to the lack of an effective animal model to study pathogenesis. In the current study, we showed that the zebrafish embryo is permissive to M. kansasii infection, resulting in chronic infection and formation of granulomas. On macrophage depletion, we identified M. kansasii forms extracellular cords, resulting in acute infection and rapid larval death. These findings highlight the feasibility of zebrafish for studying M. kansasii pathogenesis and for the first time identify extracellular cords in this species.
Collapse
Affiliation(s)
- Matt D Johansen
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique UMR 9004, Université de Montpellier, Montpellier, France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique UMR 9004, Université de Montpellier, Montpellier, France.,INSERM, Institut de Recherche en Infectiologie de Montpellier, Montpellier, France
| |
Collapse
|
9
|
Sebastian J, Nair RR, Swaminath S, Ajitkumar P. Mycobacterium tuberculosis Cells Surviving in the Continued Presence of Bactericidal Concentrations of Rifampicin in vitro Develop Negatively Charged Thickened Capsular Outer Layer That Restricts Permeability to the Antibiotic. Front Microbiol 2020; 11:554795. [PMID: 33391194 PMCID: PMC7773709 DOI: 10.3389/fmicb.2020.554795] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
Majority of the cells in the bacterial populations exposed to lethal concentrations of antibiotics for prolonged duration succumbs to the antibiotics' sterilizing activity. The remaining cells survive by diverse mechanisms that include reduced permeability of the antibiotics. However, in the cells surviving in the continued presence of lethal concentrations of antibiotics, it is not known whether any cell surface alterations occur that in turn may reduce permeability of the antibiotics. Here we report the presence of a highly negatively charged, hydrophilic, thickened capsular outer layer (TCOL) on a small proportion of the rifampicin surviving population (RSP) of Mycobacterium tuberculosis (Mtb) cells upon prolonged continuous exposure to bactericidal concentrations of rifampicin in vitro. The TCOL reduced the intracellular entry of 5-carboxyfluorescein-rifampicin (5-FAM-rifampicin), a fluorochrome-conjugated rifampicin permeability probe of negligible bacteriocidal activity but comparable properties. Gentle mechanical removal of the TCOL enabled significant increase in the 5-FAM-rifampicin permeability. Zeta potential measurements of the cells' surface charge and hexadecane assay for cell surface hydrophobicity showed that the TCOL imparted high negative charge and polar nature to the cells' surface. Flow cytometry using the MLP and RSP cells, stained with calcofluor white, which specifically binds glucose/mannose units in β (1 → 4) or β (1 → 3) linkages, revealed the presence of lower content of polysaccharides containing such residues in the TCOL. GC-MS analyses of the TCOL and the normal capsular outer layer (NCOL) of MLP cells showed elevated levels of α-D-glucopyranoside, mannose, arabinose, galactose, and their derivatives in the TCOL, indicating the presence of high content of polysaccharides with these residues. We hypothesize that the significantly high thickness and the elevated negative charge of the TCOL might have functioned as a physical barrier restricting the permeability of the relatively non-polar rifampicin. This might have reduced intracellular rifampicin concentration enabling the cells' survival in the continued presence of high doses of rifampicin. In the context of our earlier report on the de novo emergence of rifampicin-resistant genetic mutants of Mtb from the population surviving under lethal doses of the antibiotic, the present findings attain clinical significance if a subpopulation of the tubercle bacilli in tuberculosis patients possesses TCOL.
Collapse
Affiliation(s)
- Jees Sebastian
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Rashmi Ravindran Nair
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Sharmada Swaminath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | | |
Collapse
|
10
|
Hunter RL. The Pathogenesis of Tuberculosis-The Koch Phenomenon Reinstated. Pathogens 2020; 9:E813. [PMID: 33020397 PMCID: PMC7601602 DOI: 10.3390/pathogens9100813] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 12/24/2022] Open
Abstract
Research on the pathogenesis of tuberculosis (TB) has been hamstrung for half a century by the paradigm that granulomas are the hallmark of active disease. Human TB, in fact, produces two types of granulomas, neither of which is involved in the development of adult type or post-primary TB. This disease begins as the early lesion; a prolonged subclinical stockpiling of secreted mycobacterial antigens in foamy alveolar macrophages and nearby highly sensitized T cells in preparation for a massive necrotizing hypersensitivity reaction, the Koch Phenomenon, that produces caseous pneumonia that is either coughed out to form cavities or retained to become the focus of post-primary granulomas and fibrocaseous disease. Post-primary TB progresses if the antigens are continuously released and regresses when they are depleted. This revised paradigm is supported by nearly 200 years of research and suggests new approaches and animal models to investigate long standing mysteries of human TB and vaccines that inhibit the early lesion to finally end its transmission.
Collapse
Affiliation(s)
- Robert L Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
11
|
Biohazard levels and biosafety protection for Mycobacterium tuberculosis strains with different virulence. BIOSAFETY AND HEALTH 2020. [DOI: 10.1016/j.bsheal.2020.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Lerner TR, Queval CJ, Lai RP, Russell MR, Fearns A, Greenwood DJ, Collinson L, Wilkinson RJ, Gutierrez MG. Mycobacterium tuberculosis cords within lymphatic endothelial cells to evade host immunity. JCI Insight 2020; 5:136937. [PMID: 32369443 PMCID: PMC7259532 DOI: 10.1172/jci.insight.136937] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/15/2020] [Indexed: 01/18/2023] Open
Abstract
The ability of Mycobacterium tuberculosis to form serpentine cords is intrinsically related to its virulence, but specifically how M. tuberculosis cording contributes to pathogenesis remains obscure. Here, we show that several M. tuberculosis clinical isolates form intracellular cords in primary human lymphatic endothelial cells (hLECs) in vitro and in the lymph nodes of patients with tuberculosis. We identified via RNA-Seq a transcriptional program that activated, in infected-hLECs, cell survival and cytosolic surveillance of pathogens pathways. Consistent with this, cytosolic access was required for intracellular M. tuberculosis cording. Mycobacteria lacking ESX-1 type VII secretion system or phthiocerol dimycocerosates expression, which failed to access the cytosol, were indeed unable to form cords within hLECs. Finally, we show that M. tuberculosis cording is a size-dependent mechanism used by the pathogen to avoid its recognition by cytosolic sensors and evade either resting or IFN-γ-induced hLEC immunity. These results explain the long-standing association between M. tuberculosis cording and virulence and how virulent mycobacteria use intracellular cording as strategy to successfully adapt and persist in the lymphatic tracts.
Collapse
Affiliation(s)
| | | | | | - Matthew R.G. Russell
- Electron Microscopy Scientific Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Antony Fearns
- Host-pathogen interactions in tuberculosis laboratory
| | | | - Lucy Collinson
- Electron Microscopy Scientific Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Robert J. Wilkinson
- Tuberculosis laboratory, and,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town, Republic of South Africa.,Department of Medicine, Imperial College London, London, United Kingdom
| | | |
Collapse
|
13
|
Abstract
Free-living bacteria can assemble into multicellular structures called biofilms. Biofilms help bacteria tolerate multiple stresses, including antibiotics and the host immune system. Nontuberculous mycobacteria are a group of emerging opportunistic pathogens that utilize biofilms to adhere to household plumbing and showerheads and to avoid phagocytosis by host immune cells. Typically, bacteria regulate biofilm formation by controlling expression of adhesive structures to attach to surfaces and other bacterial cells. Mycobacteria harbor a unique cell wall built chiefly of long-chain mycolic acids that confers hydrophobicity and has been thought to cause constitutive aggregation in liquid media. Here we show that aggregation is instead a regulated process dictated by the balance of available carbon and nitrogen. Understanding that mycobacteria utilize metabolic cues to regulate the transition between planktonic and aggregated cells reveals an inroad to controlling biofilm formation through targeted therapeutics. Nontuberculous mycobacteria (NTM) are emerging opportunistic pathogens that colonize household water systems and cause chronic lung infections in susceptible patients. The ability of NTM to form surface-attached biofilms in the nonhost environment and corded aggregates in vivo is important to their ability to persist in both contexts. Underlying the development of these multicellular structures is the capacity of mycobacterial cells to adhere to one another. Unlike most other bacteria, NTM spontaneously and constitutively aggregate in vitro, hindering our ability to understand the transition between planktonic and aggregated cells. While culturing a model NTM, Mycobacterium smegmatis, in rich medium, we fortuitously discovered that planktonic cells accumulate after ∼3 days of growth. By providing selective pressure for bacteria that disperse earlier, we isolated a strain with two mutations in the oligopeptide permease operon (opp). A mutant lacking the opp operon (Δopp) disperses earlier than wild type (WT) due to a defect in nutrient uptake. Experiments with WT M. smegmatis revealed that growth as aggregates is favored when carbon is replete, but under conditions of low available carbon relative to available nitrogen, M. smegmatis grows as planktonic cells. By adjusting carbon and nitrogen sources in defined medium, we tuned the cellular C/N ratio such that M. smegmatis grows either as aggregates or as planktonic cells. C/N-mediated aggregation regulation is widespread among NTM with the possible exception of rough-colony Mycobacterium abscessus isolates. Altogether, we show that NTM aggregation is a controlled process that is governed by the relative availability of carbon and nitrogen for metabolism.
Collapse
|
14
|
Annaraj P D, Kadirvel P, Subramanian A, Anishetty S. Free enzyme dynamics of CmaA3 and CmaA2 cyclopropane mycolic acid synthases from Mycobacterium tuberculosis: Insights into residues with potential significance in cyclopropanation. J Mol Graph Model 2019; 91:61-71. [PMID: 31181453 DOI: 10.1016/j.jmgm.2019.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 10/26/2022]
Abstract
Mycolic acids are long chain alpha-alkyl beta-hydroxy fatty acids that are major constituents of the cell wall of Mycobacterium tuberculosis. M. tuberculosis produces three main types of mycolic acids, alpha mycolic acids and keto and methoxy mycolic acids. Cycloproponated mycolic acids make the cell wall less permeable, contribute to antibiotic resistance and host immunomodulation and protect from injury. Cyclopropanation is catalyzed by enzymes of the Cyclopropane Mycolic Acid Synthase (CMAS) family. In the current study, we addressed two CMAS enzymes, proximal alpha cyclopropane mycolic acid synthase (PcaA/CmaA3) and keto cyclopropane Mycolic acid synthase (CmaA2). All-atom Molecular Dynamics (MD) simulations were performed for these enzymes for a timeframe of 100ns each (in triplicate), using GROMACS. Based on the PDB structures of apo and holo states of related CMAS enzymes, we generated a framework which helped us correlate active or inactive states of the enzymes to different conformations sampled by the enzymes during MD simulations. Dynamics suggested that the free or unbound enzymes have intrinsic memory and sample different states of catalysis even in the absence of the substrate/cofactor. Additionally, we find that F200, P201 and W204 may have functional significance. MD simulation of CmaA2 was performed with the objective of gaining insights into the putative role of a loop insert. Analysis showed that acidic residues of this loop possibly play an important role during the active state by forming salt bridges. The insights gained in this study can potentially be utilized for design of effective inhibitors against CMAS enzymes.
Collapse
Affiliation(s)
- David Annaraj P
- Centre for Biotechnology, Anna University, Chennai, 600 025, India
| | | | | | | |
Collapse
|
15
|
Saelens JW, Viswanathan G, Tobin DM. Mycobacterial Evolution Intersects With Host Tolerance. Front Immunol 2019; 10:528. [PMID: 30967867 PMCID: PMC6438904 DOI: 10.3389/fimmu.2019.00528] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past 200 years, tuberculosis (TB) has caused more deaths than any other infectious disease, likely infecting more people than it has at any other time in human history. Mycobacterium tuberculosis (Mtb), the etiologic agent of TB, is an obligate human pathogen that has evolved through the millennia to become an archetypal human-adapted pathogen. This review focuses on the evolutionary framework by which Mtb emerged as a specialized human pathogen and applies this perspective to the emergence of specific lineages that drive global TB burden. We consider how evolutionary pressures, including transmission dynamics, host tolerance, and human population patterns, may have shaped the evolution of diverse mycobacterial genomes.
Collapse
Affiliation(s)
- Joseph W. Saelens
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Gopinath Viswanathan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - David M. Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
16
|
Walton EM, Cronan MR, Cambier CJ, Rossi A, Marass M, Foglia MD, Brewer WJ, Poss KD, Stainier DYR, Bertozzi CR, Tobin DM. Cyclopropane Modification of Trehalose Dimycolate Drives Granuloma Angiogenesis and Mycobacterial Growth through Vegf Signaling. Cell Host Microbe 2018; 24:514-525.e6. [PMID: 30308157 PMCID: PMC6201760 DOI: 10.1016/j.chom.2018.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/06/2018] [Accepted: 09/06/2018] [Indexed: 01/22/2023]
Abstract
Mycobacterial infection leads to the formation of characteristic immune aggregates called granulomas, a process accompanied by dramatic remodeling of the host vasculature. As granuloma angiogenesis favors the infecting mycobacteria, it may be actively promoted by bacterial determinants during infection. Using Mycobacterium marinum-infected zebrafish as a model, we identify the enzyme proximal cyclopropane synthase of alpha-mycolates (PcaA) as an important bacterial determinant of granuloma-associated angiogenesis. cis-Cyclopropanation of mycobacterial mycolic acids by pcaA drives the activation of host Vegf signaling within granuloma macrophages. Cyclopropanation of the mycobacterial cell wall glycolipid trehalose dimycolate is both required and sufficient to induce robust host angiogenesis. Inducible genetic inhibition of angiogenesis and Vegf signaling during granuloma formation results in bacterial growth deficits. Together, these data reveal a mechanism by which PcaA-mediated cis-cyclopropanation of mycolic acids promotes bacterial growth and dissemination in vivo by eliciting granuloma vascularization and suggest potential approaches for host-directed therapies.
Collapse
Affiliation(s)
- Eric M Walton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mark R Cronan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - C J Cambier
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Andrea Rossi
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Michele Marass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Matthew D Foglia
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA
| | - W Jared Brewer
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kenneth D Poss
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - David M Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
17
|
Ufimtseva EG, Eremeeva NI, Petrunina EM, Umpeleva TV, Bayborodin SI, Vakhrusheva DV, Skornyakov SN. Mycobacterium tuberculosis cording in alveolar macrophages of patients with pulmonary tuberculosis is likely associated with increased mycobacterial virulence. Tuberculosis (Edinb) 2018; 112:1-10. [PMID: 30205961 DOI: 10.1016/j.tube.2018.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/03/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is an infectious agent that causes tuberculosis (TB) in humans. A study of the volume of Mtb population and the detection of Mtb virulence in the lungs of patients with pulmonary TB are of great importance for understanding the infectious process and the outcome of the disease. We analyzed the functional state of Mtb and their number in alveolar macrophages obtained from the resected lungs of patients with TB in ex vivo culture and determined that the number of Mtb, referred mainly to the Beijing genotype family (A0 and B0/W148 clusters), were significantly different in cells between different patients. Only single Mtb were found in alveolar macrophages of some patients, while Mtb were actively replicated in colonies in alveolar macrophages of other patients, including cord morphology of Mtb growth (the indicator of Mtb virulence). Our data demonstrated association between the formation of Mtb cording in alveolar macrophages of patients and increased virulence of Mtb from the lungs of these patients in guinea pig TB model. The find of cording formation by replicating Mtb in human alveolar macrophages may be used for preliminary quick estimation of increased Mtb virulence in individual patients with pulmonary TB.
Collapse
Affiliation(s)
- Elena G Ufimtseva
- The Research Institute of Biochemistry, Federal Research Center of Fundamental and Translation Medicine, 2 Timakova Street, 630117, Novosibirsk, Russia; Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, 50 XXII Partsyezda, 620039, Yekaterinburg, Russia.
| | - Natalya I Eremeeva
- Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, 50 XXII Partsyezda, 620039, Yekaterinburg, Russia.
| | - Ekaterina M Petrunina
- Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, 50 XXII Partsyezda, 620039, Yekaterinburg, Russia.
| | - Tatiana V Umpeleva
- Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, 50 XXII Partsyezda, 620039, Yekaterinburg, Russia.
| | - Sergey I Bayborodin
- The Federal Research Center Institute of Cytology and Genetics, 10 Lavrentyeva Prospect, 630090, Novosibirsk, Russia.
| | - Diana V Vakhrusheva
- Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, 50 XXII Partsyezda, 620039, Yekaterinburg, Russia.
| | - Sergey N Skornyakov
- Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, 50 XXII Partsyezda, 620039, Yekaterinburg, Russia.
| |
Collapse
|
18
|
Danquah CA, Kakagianni E, Khondkar P, Maitra A, Rahman M, Evangelopoulos D, McHugh TD, Stapleton P, Malkinson J, Bhakta S, Gibbons S. Analogues of Disulfides from Allium stipitatum Demonstrate Potent Anti-tubercular Activities through Drug Efflux Pump and Biofilm Inhibition. Sci Rep 2018; 8:1150. [PMID: 29348586 PMCID: PMC5773482 DOI: 10.1038/s41598-017-18948-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/19/2017] [Indexed: 11/24/2022] Open
Abstract
Disulfides from Allium stipitatum, commonly known as Persian shallot, were previously reported to possess antibacterial properties. Analogues of these compounds, produced by S-methylthiolation of appropriate thiols using S-methyl methanethiosulfonate, exhibited antimicrobial activity, with one compound inhibiting the growth of Mycobacterium tuberculosis at 17 µM (4 mg L-1) and other compounds inhibiting Escherichia coli and multi-drug-resistant (MDR) Staphylococcus aureus at concentrations ranging between 32-138 µM (8-32 mg L-1). These compounds also displayed moderate inhibitory effects on Klebsiella and Proteus species. Whole-cell phenotypic bioassays such as the spot-culture growth inhibition assay (SPOTi), drug efflux inhibition, biofilm inhibition and cytotoxicity assays were used to evaluate these compounds. Of particular note was their ability to inhibit mycobacterial drug efflux and biofilm formation, while maintaining a high selectivity towards M. tuberculosis H37Rv. These results suggest that methyl disulfides are novel scaffolds which could lead to the development of new drugs against tuberculosis (TB).
Collapse
Affiliation(s)
- Cynthia A Danquah
- Research Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London, WC1E 7HX, UK
| | - Eleftheria Kakagianni
- Research Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Proma Khondkar
- Research Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
- Department of Pharmaceutical, Chemical and Environmental Sciences, University of Greenwich, Central Avenue, Chatham Maritime, ME4 4TB, UK
| | - Arundhati Maitra
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London, WC1E 7HX, UK
| | - Mukhlesur Rahman
- Medicine Research Group, School of Health, Sport and Bioscience, University of East London, Water Lane, London, E15 4LZ, UK
| | | | - Timothy D McHugh
- Centre for Clinical Microbiology, UCL Royal Free Hospital, Rowland Hill, London, NW3 2PF, UK
| | - Paul Stapleton
- Research Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - John Malkinson
- Research Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Sanjib Bhakta
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London, WC1E 7HX, UK.
| | - Simon Gibbons
- Research Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
19
|
Honigsbaum M. René Dubos, tuberculosis, and the "ecological facets of virulence". HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2017; 39:15. [PMID: 28677044 PMCID: PMC5496974 DOI: 10.1007/s40656-017-0142-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 06/23/2017] [Indexed: 06/02/2023]
Abstract
Reflecting on his scientific career toward the end of his life, the French-educated medical researcher René Dubos presented his flowering as an ecological thinker as a story of linear progression-the inevitable product of the intellectual seeds planted in his youth. But how much store should we set by Dubos's account of his ecological journey? Resisting retrospective biographical readings, this paper seeks to relate the development of Dubos's ecological ideas to his experimental practices and his career as a laboratory researcher. In particular, I focus on Dubos's studies of tuberculosis at the Rockefeller Institute in the period 1944-1956-studies which began with an inquiry into the tubercle bacillus and the physiochemical determinants of virulence, but which soon encompassed a wider investigation of the influence of environmental forces and host-parasite interactions on susceptibility and resistance to infection in animal models. At the same time, through a close reading of Dubos's scientific papers and correspondence, I show how he both drew on and distinguished his ecological ideas from those of other medical researchers such as Theobald Smith, Frank Macfarlane Burnet, and Frank Fenner. However, whereas Burnet and Fenner tended to view ecological interactions at the level of populations, Dubos focused on the interface of hosts and parasites in the physiological environments of individuals. The result was that although Dubos never fully engaged with the science of ecology, he was able to incorporate ecological ideas into his thought and practices, and relate them to his holistic views on health and the natural harmony of man and his environment.
Collapse
Affiliation(s)
- Mark Honigsbaum
- School of History, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
20
|
Llorens-Fons M, Pérez-Trujillo M, Julián E, Brambilla C, Alcaide F, Byrd TF, Luquin M. Trehalose Polyphleates, External Cell Wall Lipids in Mycobacterium abscessus, Are Associated with the Formation of Clumps with Cording Morphology, Which Have Been Associated with Virulence. Front Microbiol 2017; 8:1402. [PMID: 28790995 PMCID: PMC5524727 DOI: 10.3389/fmicb.2017.01402] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/11/2017] [Indexed: 12/28/2022] Open
Abstract
Mycobacterium abscessus is a reemerging pathogen that causes pulmonary diseases similar to tuberculosis, which is caused by Mycobacterium tuberculosis. When grown in agar medium, M. abscessus strains generate rough (R) or smooth colonies (S). R morphotypes are more virulent than S morphotypes. In searching for the virulence factors responsible for this difference, R morphotypes have been found to form large aggregates (clumps) that, after being phagocytozed, result in macrophage death. Furthermore, the aggregates released to the extracellular space by damaged macrophages grow, forming unphagocytosable structures that resemble cords. In contrast, bacilli of the S morphotype, which do not form aggregates, do not damage macrophages after phagocytosis and do not form cords. Cording has also been related to the virulence of M. tuberculosis. In this species, the presence of mycolic acids and surface-exposed cell wall lipids has been correlated with the formation of cords. The objective of this work was to study the roles of the surface-exposed cell wall lipids and mycolic acids in the formation of cords in M. abscessus. A comparative study of the pattern and structure of mycolic acids was performed on R (cording) and S (non-cording) morphotypes derived from the same parent strains, and no differences were observed between morphotypes. Furthermore, cords formed by R morphotypes were disrupted with petroleum ether (PE), and the extracted lipids were analyzed by thin layer chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry. Substantial amounts of trehalose polyphleates (TPP) were recovered as major lipids from PE extracts, and images obtained by transmission electron microscopy suggested that these lipids are localized to the external surfaces of cords and R bacilli. The structure of M. abscessus TPP was revealed to be similar to those previously described in Mycobacterium smegmatis. Although the exact role of TPP is unknown, our results demonstrated that TPP are not toxic by themselves and have a function in the formation of clumps and cords in M. abscessus, thus playing an important role in the pathogenesis of this species.
Collapse
Affiliation(s)
- Marta Llorens-Fons
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Míriam Pérez-Trujillo
- Servei de Ressonància Magnètica Nuclear and Departament de Química, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Cecilia Brambilla
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Fernando Alcaide
- Servei de Microbiologia, Hospital Universitari de Bellvitge-IDIBELL, Universitat de BarcelonaBarcelona, Spain
| | - Thomas F. Byrd
- The University of New Mexico School of Medicine, AlbuquerqueNM, United States
| | - Marina Luquin
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de BarcelonaBarcelona, Spain
| |
Collapse
|
21
|
Kalsum S, Braian C, Koeken VACM, Raffetseder J, Lindroth M, van Crevel R, Lerm M. The Cording Phenotype of Mycobacterium tuberculosis Induces the Formation of Extracellular Traps in Human Macrophages. Front Cell Infect Microbiol 2017; 7:278. [PMID: 28695112 PMCID: PMC5483443 DOI: 10.3389/fcimb.2017.00278] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/06/2017] [Indexed: 12/14/2022] Open
Abstract
The causative agent of tuberculosis, Mycobacterium tuberculosis, shares several characteristics with organisms that produce biofilms during infections. One of these is the ability to form tight bundles also known as cords. However, little is known of the physiological relevance of the cording phenotype. In this study, we investigated whether cord-forming M. tuberculosis induce the formation of macrophage extracellular traps (METs) in human monocyte-derived macrophages. Macrophages have previously been shown to produce extracellular traps in response to various stimuli. We optimized bacterial culturing conditions that favored the formation of the cord-forming phenotype as verified by scanning electron microscopy. Microscopy analysis of METs formation during experimental infection of macrophages with M. tuberculosis revealed that cord-forming M. tuberculosis induced significantly more METs compared to the non-cording phenotype. Deletion of early secreted antigenic target-6 which is an important virulence factor of M. tuberculosis, abrogated the ability of the bacteria to induce METs. The release of extracellular DNA from host cells during infection may represent a defense mechanism against pathogens that are difficult to internalize, including cord-forming M. tuberculosis.
Collapse
Affiliation(s)
- Sadaf Kalsum
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping UniversityLinköping, Sweden
| | - Clara Braian
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping UniversityLinköping, Sweden
| | - Valerie A C M Koeken
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping UniversityLinköping, Sweden.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical CenterNijmegen, Netherlands
| | - Johanna Raffetseder
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping UniversityLinköping, Sweden
| | - Margaretha Lindroth
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping UniversityLinköping, Sweden
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical CenterNijmegen, Netherlands
| | - Maria Lerm
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping UniversityLinköping, Sweden
| |
Collapse
|
22
|
Elghraoui A, Modlin SJ, Valafar F. SMRT genome assembly corrects reference errors, resolving the genetic basis of virulence in Mycobacterium tuberculosis. BMC Genomics 2017; 18:302. [PMID: 28415976 PMCID: PMC5393005 DOI: 10.1186/s12864-017-3687-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 04/06/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The genetic basis of virulence in Mycobacterium tuberculosis has been investigated through genome comparisons of virulent (H37Rv) and attenuated (H37Ra) sister strains. Such analysis, however, relies heavily on the accuracy of the sequences. While the H37Rv reference genome has had several corrections to date, that of H37Ra is unmodified since its original publication. RESULTS Here, we report the assembly and finishing of the H37Ra genome from single-molecule, real-time (SMRT) sequencing. Our assembly reveals that the number of H37Ra-specific variants is less than half of what the Sanger-based H37Ra reference sequence indicates, undermining and, in some cases, invalidating the conclusions of several studies. PE_PPE family genes, which are intractable to commonly-used sequencing platforms because of their repetitive and GC-rich nature, are overrepresented in the set of genes in which all reported H37Ra-specific variants are contradicted. Further, one of the sequencing errors in H37Ra masks a true variant in common with the clinical strain CDC1551 which, when considered in the context of previous work, corresponds to a sequencing error in the H37Rv reference genome. CONCLUSIONS Our results constrain the set of genomic differences possibly affecting virulence by more than half, which focuses laboratory investigation on pertinent targets and demonstrates the power of SMRT sequencing for producing high-quality reference genomes.
Collapse
Affiliation(s)
- Afif Elghraoui
- Biological and Medical Informatics Research Center, San Diego State University, Campanile Drive, San Diego, 92182, USA
| | - Samuel J Modlin
- Biological and Medical Informatics Research Center, San Diego State University, Campanile Drive, San Diego, 92182, USA
| | - Faramarz Valafar
- Biological and Medical Informatics Research Center, San Diego State University, Campanile Drive, San Diego, 92182, USA.
| |
Collapse
|
23
|
Queiroz A, Riley LW. Bacterial immunostat: Mycobacterium tuberculosis lipids and their role in the host immune response. Rev Soc Bras Med Trop 2017; 50:9-18. [DOI: 10.1590/0037-8682-0230-2016] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/22/2016] [Indexed: 11/22/2022] Open
Affiliation(s)
- Adriano Queiroz
- University of California, USA; Fundação Oswaldo Cruz, Brazil
| | | |
Collapse
|
24
|
Genomic diversity in autopsy samples reveals within-host dissemination of HIV-associated Mycobacterium tuberculosis. Nat Med 2016; 22:1470-1474. [PMID: 27798613 DOI: 10.1038/nm.4205] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/14/2016] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis remains a leading cause of death worldwide, especially among individuals infected with HIV. Whereas phylogenetic analysis has revealed M. tuberculosis spread throughout history and in local outbreaks, much less is understood about its dissemination within the body. Here we report genomic analysis of 2,693 samples collected post mortem from lung and extrapulmonary biopsies of 44 subjects in KwaZulu-Natal, South Africa, who received minimal antitubercular treatment and most of whom were HIV seropositive. We found that purifying selection occurred within individual patients, without the need for patient-to-patient transmission. Despite negative selection, mycobacteria diversified within individuals to form sublineages that co-existed for years. These sublineages, as well as distinct strains from mixed infections, were differentially distributed throughout the lung, suggesting temporary barriers to pathogen migration. As a consequence, samples taken from the upper airway often captured only a fraction of the population diversity, challenging current methods of outbreak tracing and resistance diagnostics. Phylogenetic analysis indicated that dissemination from the lungs to extrapulmonary sites was as frequent as between lung sites, supporting the idea of similar migration routes within and between organs, at least in subjects with HIV. Genomic diversity therefore provides a record of pathogen diversification and repeated dissemination across the body.
Collapse
|
25
|
Association of pellicle growth morphological characteristics and clinical presentation of Mycobacterium tuberculosis isolates. Tuberculosis (Edinb) 2016; 101S:S63-S68. [PMID: 27742461 DOI: 10.1016/j.tube.2016.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Trehalose 6,6'dimycolate (TDM) is a glycolipid found in nearly pure form on the surface of virulent Mycobacterium tuberculosis (MTB). This manuscript investigated the production of TDM, growth rate and colony morphology of multiple strains of MTB, each of which had been isolated from both pulmonary (sputum) and extrapulmonary sites of multiple patients. Since sputum contains MTB primarily from cavities and extrapulmonary biopsies are typically granulomas, this provided an opportunity to compare the behavior of single strains of MTB that had been isolated from cavities and granulomas. The results demonstrated that MTB isolated from pulmonary sites produced more TDM (3.23 ± 1.75 μg TDM/mg MTB), grew more rapidly as thin spreading pellicles, demonstrated early cording, and climbed culture well walls. In contrast, extrapulmonary isolates produced less TDM (1.42 ± 0.58 μg TDM/mg MTB) (p < 0.001) and grew as discrete patches with little tendency to spread or climb. Both Beijing pulmonary isolates and the non-Beijing pulmonary isolates produced significantly more TDM (1.64 ± 0.46 μg TDM/mg MTB) and grew faster than the Beijing and non-Beijing extrapulmonary isolates (1.14 ± 0.63 μg TDM/mg MTB) (p < 0.001 and p < 0.005 respectively). These results indicate that MTB from pulmonary sites (cavities) grows faster and produces more TDM than strains isolated from extrapulmonary sites (granulomas). This report suggests a critical role for TDM in cavitary TB.
Collapse
|
26
|
Cord factor as an invisibility cloak? A hypothesis for asymptomatic TB persistence. Tuberculosis (Edinb) 2016; 101S:S2-S8. [PMID: 27743706 DOI: 10.1016/j.tube.2016.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mycobacterium tuberculosis (MTB) has long been known to persist in grossly normal tissues even in people with active lesions and granulomas in other parts of the body. We recently reported that post-primary TB begins as an asymptomatic infection that slowly progresses, accumulating materials for a massive necrotizing reaction that results in cavitation. This paper explores the possible roles of trehalose 6,6' dimycolate (TDM) or cord factor in the ability of MTB to persist in such lesions without producing inflammation. TDM is unique in that it has three distinct sets of biologic activities depending on its physical conformation. As a single molecule, TDM stimulates macrophage C-type lectin receptors including Mincle. TDM can also form three crystal like structures, cylindrical micelles, intercalated bilayer and monolayer, that have distinct non receptor driven activities that depend on modulation of interactions with water. In the monolayer form, TDM is highly toxic and destroys cells in minutes upon contact. The cylindrical micelles and an intercalated bilayer have surfaces composed entirely of trehalose which protect MTB from killing in macrophages. Here we review evidence that these trehalose surfaces bind water. We speculate that this immobilized water constituites of an "invisibility cloak" that facilitates the persistence of MTB in multiple cell types without producing inflammation, even in highly immune individuals.
Collapse
|
27
|
Mann KM, Pride AC, Flentie K, Kimmey JM, Weiss LA, Stallings CL. Analysis of the contribution of MTP and the predicted Flp pilus genes to Mycobacterium tuberculosis pathogenesis. MICROBIOLOGY-SGM 2016; 162:1784-1796. [PMID: 27586540 DOI: 10.1099/mic.0.000368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is one of the world's most successful pathogens. Millions of new cases of tuberculosis occur each year, emphasizing the need for better methods of treatment. The design of novel therapeutics is dependent on our understanding of factors that are essential for pathogenesis. Many bacterial pathogens use pili and other adhesins to mediate pathogenesis. The recently identified Mycobacterium tuberculosis pilus (MTP) and the hypothetical, widely conserved Flp pilus have been speculated to be important for Mtb virulence based on in vitro studies and homology to other pili, respectively. However, the roles for these pili during infection have yet to be tested. We addressed this gap in knowledge and found that neither MTP nor the hypothetical Flp pilus is required for Mtb survival in mouse models of infection, although MTP can contribute to biofilm formation and subsequent isoniazid tolerance. However, differences in mtp expression did affect lesion architecture in infected lungs. Deletion of mtp did not correlate with loss of cell-associated extracellular structures as visualized by transmission electron microscopy in Mtb Erdman and HN878 strains, suggesting that the phenotypes of the mtp mutants were not due to defects in production of extracellular structures. These findings highlight the importance of testing the virulence of adhesion mutants in animal models to assess the contribution of the adhesin to infection. This study also underscores the need for further investigation into additional strategies that Mtb may use to adhere to its host so that we may understand how this pathogen invades, colonizes and disseminates.
Collapse
Affiliation(s)
- Katherine M Mann
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aaron C Pride
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kelly Flentie
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jacqueline M Kimmey
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Leslie A Weiss
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
28
|
Deletion of a dehydratase important for intracellular growth and cording renders rough Mycobacterium abscessus avirulent. Proc Natl Acad Sci U S A 2016; 113:E4228-37. [PMID: 27385830 PMCID: PMC4961194 DOI: 10.1073/pnas.1605477113] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium abscessus (Mabs) is a rapidly growing Mycobacterium and an emerging pathogen in humans. Transitioning from a smooth (S) high-glycopeptidolipid (GPL) producer to a rough (R) low-GPL producer is associated with increased virulence in zebrafish, which involves the formation of massive serpentine cords, abscesses, and rapid larval death. Generating a cord-deficient Mabs mutant would allow us to address the contribution of cording in the physiopathological signs of the R variant. Herein, a deletion mutant of MAB_4780, encoding a dehydratase, distinct from the β-hydroxyacyl-ACP dehydratase HadABC complex, was constructed in the R morphotype. This mutant exhibited an alteration of the mycolic acid composition and a pronounced defect in cording. This correlated with an extremely attenuated phenotype not only in wild-type but also in immunocompromised zebrafish embryos lacking either macrophages or neutrophils. The abolition of granuloma formation in embryos infected with the dehydratase mutant was associated with a failure to replicate in macrophages, presumably due to limited inhibition of the phagolysosomal fusion. Overall, these results indicate that MAB_4780 is required for Mabs to successfully establish acute and lethal infections. Therefore, targeting MAB_4780 may represent an attractive antivirulence strategy to control Mabs infections, refractory to most standard chemotherapeutic interventions. The combination of a dehydratase assay with a high-resolution crystal structure of MAB_4780 opens the way to identify such specific inhibitors.
Collapse
|
29
|
Abstract
Trehalose [alpha-D-glucopyranosyl-(1→1)-alpha-D-glucopyranoside] is a highly abundant disaccharide in mycobacteria that fulfills many biological roles and has a plethora of possible metabolic fates. Trehalose is synthesized in mycobacteria de novo either from glycolytic intermediates or from alpha-glucans via two alternative routes, the OtsA-OtsB and the TreY-TreZ pathways, respectively. Intracellular trehalose can serve as an endogenous remobilizable carbon storage compound and as a biocompatible stress protectant. Furthermore, trehalose functions as the sugar core of many glycolipids with important structural or immunomodulatory functions such as the cord factor trehalose dimycolate, sulfolipids, and polyacyltrehalose. Moreover, trehalose plays a central role in the formation of the mycolic acid cell wall layer because it serves as a carrier molecule that shuttles mycolic acids in the form of the glycolipid trehalose monomycolate between the cytoplasm and the periplasm. In this process, a specific importer recycles the free trehalose that is extracellularly released as a by-product during mycolate processing via the antigen 85 complex, which might represent a specific adaptation to the intracellular lifestyle of Mycobacterium tuberculosis with limited carbohydrate availability. Finally, trehalose is converted to glycogen-like branched alpha-glucans by a four-step metabolic pathway involving the essential maltosyltransferase GlgE, which may be further processed to derivatives with intracellular or extracellular destinations such as polymethylated lipopolysaccharides or capsular alpha-glucans, respectively. In this article we summarize the current knowledge of the genetic basis of trehalose biosynthesis and metabolism in mycobacteria, the biological functions of trehalose-based molecules, and their roles in virulence of the human pathogen M. tuberculosis.
Collapse
|
30
|
Aboubaker Osman D, Bouzid F, Canaan S, Drancourt M. Smooth Tubercle Bacilli: Neglected Opportunistic Tropical Pathogens. Front Public Health 2016; 3:283. [PMID: 26793699 PMCID: PMC4707939 DOI: 10.3389/fpubh.2015.00283] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/18/2015] [Indexed: 11/23/2022] Open
Abstract
Smooth tubercle bacilli (STB) including “Mycobacterium canettii” are members of the Mycobacterium tuberculosis complex (MTBC), which cause non-contagious tuberculosis in human. This group comprises <100 isolates characterized by smooth colonies and cordless organisms. Most STB isolates have been obtained from patients exposed to the Republic of Djibouti but seven isolates, including the three seminal ones obtained by Georges Canetti between 1968 and 1970, were recovered from patients in France, Madagascar, Sub-Sahara East Africa, and French Polynesia. STB form a genetically heterogeneous group of MTBC organisms with large 4.48 ± 0.05 Mb genomes, which may link Mycobacterium kansasii to MTBC organisms. Lack of inter-human transmission suggested a yet unknown environmental reservoir. Clinical data indicate a respiratory tract route of contamination and the digestive tract as an alternative route of contamination. Further epidemiological and clinical studies are warranted to elucidate areas of uncertainty regarding these unusual mycobacteria and the tuberculosis they cause.
Collapse
Affiliation(s)
- Djaltou Aboubaker Osman
- Aix-Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095, Marseille, France; Centre d'Études et de Recherche de Djibouti (CERD), Institut de Recherche Médicinale (IRM), Djibouti, Republic of Djibouti
| | - Feriel Bouzid
- Aix-Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095, Marseille, France; Enzymologie Interfaciale et Physiologie de la Lipolyse UMR7282, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Marseille, France
| | - Stéphane Canaan
- Enzymologie Interfaciale et Physiologie de la Lipolyse UMR7282, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université , Marseille , France
| | - Michel Drancourt
- Aix-Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095 , Marseille , France
| |
Collapse
|
31
|
Slama N, Jamet S, Frigui W, Pawlik A, Bottai D, Laval F, Constant P, Lemassu A, Cam K, Daffé M, Brosch R, Eynard N, Quémard A. The changes in mycolic acid structures caused byhadCmutation have a dramatic effect on the virulence ofMycobacterium tuberculosis. Mol Microbiol 2015; 99:794-807. [DOI: 10.1111/mmi.13266] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2015] [Indexed: 01/13/2023]
Affiliation(s)
- Nawel Slama
- Département Tuberculose & Biologie des Infections; Institut de Pharmacologie et de Biologie Structurale - UMR5089; Centre National de la Recherche Scientifique; Toulouse France
- Institut de Pharmacologie et de Biologie Structurale; Université de Toulouse; Université Paul Sabatier; Toulouse France
| | - Stevie Jamet
- Département Tuberculose & Biologie des Infections; Institut de Pharmacologie et de Biologie Structurale - UMR5089; Centre National de la Recherche Scientifique; Toulouse France
- Institut de Pharmacologie et de Biologie Structurale; Université de Toulouse; Université Paul Sabatier; Toulouse France
| | - Wafa Frigui
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics; Paris France
| | - Alexandre Pawlik
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics; Paris France
| | - Daria Bottai
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics; Paris France
| | - Françoise Laval
- Département Tuberculose & Biologie des Infections; Institut de Pharmacologie et de Biologie Structurale - UMR5089; Centre National de la Recherche Scientifique; Toulouse France
- Institut de Pharmacologie et de Biologie Structurale; Université de Toulouse; Université Paul Sabatier; Toulouse France
| | - Patricia Constant
- Département Tuberculose & Biologie des Infections; Institut de Pharmacologie et de Biologie Structurale - UMR5089; Centre National de la Recherche Scientifique; Toulouse France
- Institut de Pharmacologie et de Biologie Structurale; Université de Toulouse; Université Paul Sabatier; Toulouse France
| | - Anne Lemassu
- Département Tuberculose & Biologie des Infections; Institut de Pharmacologie et de Biologie Structurale - UMR5089; Centre National de la Recherche Scientifique; Toulouse France
- Institut de Pharmacologie et de Biologie Structurale; Université de Toulouse; Université Paul Sabatier; Toulouse France
| | - Kaymeuang Cam
- Département Tuberculose & Biologie des Infections; Institut de Pharmacologie et de Biologie Structurale - UMR5089; Centre National de la Recherche Scientifique; Toulouse France
- Institut de Pharmacologie et de Biologie Structurale; Université de Toulouse; Université Paul Sabatier; Toulouse France
| | - Mamadou Daffé
- Département Tuberculose & Biologie des Infections; Institut de Pharmacologie et de Biologie Structurale - UMR5089; Centre National de la Recherche Scientifique; Toulouse France
- Institut de Pharmacologie et de Biologie Structurale; Université de Toulouse; Université Paul Sabatier; Toulouse France
| | - Roland Brosch
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics; Paris France
| | - Nathalie Eynard
- Département Tuberculose & Biologie des Infections; Institut de Pharmacologie et de Biologie Structurale - UMR5089; Centre National de la Recherche Scientifique; Toulouse France
| | - Annaïk Quémard
- Département Tuberculose & Biologie des Infections; Institut de Pharmacologie et de Biologie Structurale - UMR5089; Centre National de la Recherche Scientifique; Toulouse France
- Institut de Pharmacologie et de Biologie Structurale; Université de Toulouse; Université Paul Sabatier; Toulouse France
| |
Collapse
|
32
|
Jyoti MA, Zerin T, Kim TH, Hwang TS, Jang WS, Nam KW, Song HY. In vitro effect of ursolic acid on the inhibition of Mycobacterium tuberculosis and its cell wall mycolic acid. Pulm Pharmacol Ther 2015; 33:17-24. [PMID: 26021818 DOI: 10.1016/j.pupt.2015.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/15/2015] [Accepted: 05/17/2015] [Indexed: 01/21/2023]
Abstract
Mycobacterium tuberculosis is a dangerous intracellular pathogen. In order to protect against mycobacterium infection, novel agents with anti-mycobacterial activity should be given emergency priority for evaluation. Ursolic acid (UA), a plant triterpenoid, shows promising bioactivities, including anti-mycobacterial potency. In this study, the action of UA against Mycobacterium tuberculosis H37Ra was evaluated, and the inhibitory concentration was found to range between 10 and 20 μg/ml in a resazurin assay and MGIT 960 instrument. The total mycolic acid in UA-treated H37Ra was detected and compared with INH-treated and non-treated bacterium by LC-MS/MS. Quantitative LC-MS/MS data confirmed that both UA and INH decreased mycolic acid biosynthesis in a dose-dependent manner. Thin-layer chromatogram (TLC) analysis showed that all mycolic acid subtypes were affected by UA treatment in the wild type but not in strains resistant to UA. Electron microscopy images also confirmed that UA treatment affected both H37Ra cell and intracellular content of H37Ra. Altogether, these data confirmed the promise of the inhibitory action of UA in mycolic acid, which might further delineate the mechanistic pathway of mycobacterial inhibition by UA.
Collapse
Affiliation(s)
- Md Anirban Jyoti
- Department of Microbiology and Immunology, Soonchunhyang University, 8 Soonchuhyang 2-gil, Cheonan si 330-721, Republic of Korea
| | - Tamanna Zerin
- Department of Microbiology and Immunology, Soonchunhyang University, 8 Soonchuhyang 2-gil, Cheonan si 330-721, Republic of Korea
| | - Tae-Hyun Kim
- Bioresourses Regional Innovation Center, Soonchunhyang University, Asan, Republic of Korea
| | - Tae-Seon Hwang
- Department of Microbiology and Immunology, Soonchunhyang University, 8 Soonchuhyang 2-gil, Cheonan si 330-721, Republic of Korea
| | - Woong Sik Jang
- Department of Microbiology and Immunology, Soonchunhyang University, 8 Soonchuhyang 2-gil, Cheonan si 330-721, Republic of Korea
| | - Kung-Woo Nam
- Department of Chemistry, Soonchunhyang University, 22 Soonchunhyang-ro, Sinchangmyeon, Asan, Chungcheonam 336-745, Republic of Korea
| | - Ho-Yeon Song
- Department of Microbiology and Immunology, Soonchunhyang University, 8 Soonchuhyang 2-gil, Cheonan si 330-721, Republic of Korea.
| |
Collapse
|
33
|
Ostrop J, Jozefowski K, Zimmermann S, Hofmann K, Strasser E, Lepenies B, Lang R. Contribution of MINCLE-SYK Signaling to Activation of Primary Human APCs by Mycobacterial Cord Factor and the Novel Adjuvant TDB. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26202982 DOI: 10.4049/jimmunol.1500102] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Trehalose-6,6-dimycolate (TDM), the mycobacterial cord factor, is an abundant cell wall glycolipid and major virulence factor of Mycobacterium tuberculosis. Its synthetic analog trehalose-6,6-dibehenate (TDB) is a new adjuvant currently in phase I clinical trials. In rodents, the C-type lectin receptors Mincle and Mcl bind TDB/TDM and activate macrophages and dendritic cells (DC) through the Syk-Card9 pathway. However, it is unknown whether these glycolipids activate human innate immune cells through the same mechanism. We performed in vitro analysis of TDB/TDM-stimulated primary human monocytes, macrophages, and DC; determined C-type lectin receptor expression; and tested the contribution of SYK, MINCLE, and MCL by small interfering RNA knockdown and genetic complementation. We observed a robust chemokine and cytokine release in response to TDB or TDM. MCSF-driven macrophages secreted higher levels of IL-8, IL-6, CCL3, CCL4, and CCL2 after stimulation with TDM, whereas DC responded more strongly to TDB and GM-CSF-driven macrophages were equally responsive to TDB and TDM. SYK kinase and the adaptor protein CARD9 were essential for glycolipid-induced IL-8 production. mRNA expression of MINCLE and MCL was high in monocytes and macrophages, with MINCLE and MCL proteins localized intracellularly under resting conditions. Small interfering RNA-mediated MINCLE or MCL knockdown caused on average reduced TDB- or TDM-induced IL-8 production. Conversely, retroviral expression in murine Mincle-deficient DC revealed that human MINCLE, but not MCL, was sufficient to confer responsiveness to TDB/TDM. Our study demonstrates that SYK-CARD9 signaling plays a key role in TDB/TDM-induced activation of innate immune cells in man as in mouse, likely by engagement of MINCLE.
Collapse
Affiliation(s)
- Jenny Ostrop
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Katrin Jozefowski
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Stephanie Zimmermann
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; Free University of Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany; and
| | - Katharina Hofmann
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Erwin Strasser
- Transfusionsmedizinische und Hämostaseologische Abteilung, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Bernd Lepenies
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; Free University of Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany; and
| | - Roland Lang
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| |
Collapse
|
34
|
Mycobacterium-Host Cell Relationships in Granulomatous Lesions in a Mouse Model of Latent Tuberculous Infection. BIOMED RESEARCH INTERNATIONAL 2015; 2015:948131. [PMID: 26064970 PMCID: PMC4433666 DOI: 10.1155/2015/948131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/21/2014] [Indexed: 12/24/2022]
Abstract
Tuberculosis (TB) is a dangerous infectious disease characterized by a tight interplay between mycobacteria and host cells in granulomatous lesions (granulomas) during the latent, asymptomatic stage of infection. Mycobacterium-host cell relationships were analyzed in granulomas obtained from various organs of BALB/c mice with chronic TB infection caused by in vivo exposure to the Bacillus Calmette-Guérin (BCG) vaccine. Acid-fast BCG-mycobacteria were found to be morphologically and functionally heterogeneous (in size, shape, and replication rates in colonies) in granuloma macrophages, dendritic cells, and multinucleate Langhans giant cells. Cord formation by BCG-mycobacteria in granuloma cells has been observed. Granuloma macrophages retained their ability to ingest damaged lymphocytes and thrombocytes in the phagosomes; however, their ability to destroy BCG-mycobacteria contained in these cells was compromised. No colocalization of BCG-mycobacteria and the LysoTracker dye was observed in the mouse cells. Various relationships between granuloma cells and BCG-mycobacteria were observed in different mice belonging to the same line. Several mice totally eliminated mycobacterial infection. Granulomas in the other mice had mycobacteria actively replicating in cells of different types and forming cords, which is an indicator of mycobacterial virulence and, probably, a marker of the activation of tuberculous infection in animals.
Collapse
|
35
|
Pagán AJ, Ramakrishnan L. Immunity and Immunopathology in the Tuberculous Granuloma. Cold Spring Harb Perspect Med 2014; 5:cshperspect.a018499. [PMID: 25377142 DOI: 10.1101/cshperspect.a018499] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Granulomas, organized aggregates of immune cells, are a defining feature of tuberculosis (TB). Granuloma formation is implicated in the pathogenesis of a variety of inflammatory disorders. However, the tuberculous granuloma has been assigned the role of a host protective structure which "walls-off" mycobacteria. Work conducted over the past decade has provided a more nuanced view of its role in pathogenesis. On the one hand, pathogenic mycobacteria accelerate and exploit granuloma formation for their expansion and dissemination by manipulating host immune responses to turn leukocyte recruitment and cell death pathways in their favor. On the other hand, granuloma macrophages can preserve granuloma integrity by exerting a microbicidal immune response, thus preventing an even more rampant expansion of infection in the extracellular milieu. Even this host-beneficial immune response required to maintain the bacteria intracellular must be tempered, as an overly vigorous immune response can also cause granuloma breakdown, thereby directly supporting bacterial growth extracellularly. This review will discuss how mycobacteria manipulate inflammatory responses to drive granuloma formation and will consider the roles of the granuloma in pathogenesis and protective immunity, drawing from clinical studies of TB in humans and from animal models--rodents, zebrafish, and nonhuman primates. A deeper understanding of TB pathogenesis and immunity in the granuloma could suggest therapeutic approaches to abrogate the host-detrimental aspects of granuloma formation to convert it into the host-beneficial structure that it has been thought to be for nearly a century.
Collapse
Affiliation(s)
- Antonio J Pagán
- Department of Microbiology, University of Washington, Seattle, Washington 98195
| | - Lalita Ramakrishnan
- Department of Microbiology, University of Washington, Seattle, Washington 98195 Department of Medicine, University of Washington, Seattle, Washington 98195 Department of Immunology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
36
|
|
37
|
|
38
|
Host-pathogen interactions during Mycobacterium tuberculosis infections. Curr Top Microbiol Immunol 2014; 374:211-41. [PMID: 23881288 DOI: 10.1007/82_2013_332] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The intimate and persistent connection between Mycobacterium tuberculosis and its human host suggests that the pathogen has evolved extensive mechanisms to evade eradication by the immune system. In particular, the organism has adapted to replicate within phagocytic cells, especially macrophages, which are specialized to kill microbes. Over the past decade of M. tuberculosis research, the means to manipulate both the organism and the host has ushered in an exciting time that has uncovered some of the mechanisms of the innate macrophage-pathogen interactions that lie at the heart of M. tuberculosis pathogenesis, though many interactions likely still await discovery. In this chapter, we will delve into some of these advances, with an emphasis on the interactions that occur on the cellular level when M. tuberculosis cells encounter macrophages. In particular, we focus on two major aspects of M. tuberculosis biology regarding the proximal physical interface between the bacterium and host, namely the interactions with the phagosomal membrane as well as the distinctive mycobacterial cell wall. Importantly, some of the emerging paradigms in M. tuberculosis pathogenesis and host response represent common themes in bacterial pathogenesis, such as the role of host cell membrane perforation in intracellular survival and host response. However, the array of unique bacterial lipid mediators and their interaction with host cells highlights the unique biology of this persistent pathogen.
Collapse
|
39
|
Evidence for a unique species-specific hypersensitive epitope in Mycobacterium tuberculosis derived cord factor. Tuberculosis (Edinb) 2013; 93 Suppl:S88-93. [DOI: 10.1016/s1472-9792(13)70017-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Caceres N, Vilaplana C, Prats C, Marzo E, Llopis I, Valls J, Lopez D, Cardona PJ. Evolution and role of corded cell aggregation in Mycobacterium tuberculosis cultures. Tuberculosis (Edinb) 2013; 93:690-8. [PMID: 24011631 DOI: 10.1016/j.tube.2013.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/17/2013] [Accepted: 08/05/2013] [Indexed: 12/01/2022]
Abstract
The aim of this study was to evaluate the evolution and role of corded cell aggregation in Mycobacterium tuberculosis cultures according to growth time and conditions. Thus, in standard culture using aerated 7H9 Middlebrook broth supplemented with 0.05% Tween 80, a dramatic CFU decrease was observed at the end of the exponential phase. This phase was followed by a stable stationary phase that led to dissociation between the optical density (O.D.) and CFU values, together with the formation of opaque colonies in solid culture. Further analysis revealed that this was due to cording. Scanning electron microscopy showed that cording led to the formation of very stable coiled structures and corded cell aggregations which proved impossible to disrupt by any of the physical means tested. Modulation of cording with a high but non-toxic concentration of Tween 80 led to a slower growth rate, avoidance of a sudden drop-off to the stationary phase, the formation of weaker cording structures and the absence of opaque colonies, together with a lower survival at later time-points. An innovative automated image analysis technique has been devised to characterize the cording process. This analysis has led to important practical consequences for the elaboration of M. tuberculosis inocula and suggests the importance of biofilm formation in survival of the bacilli in the extracellular milieu.
Collapse
Affiliation(s)
- Neus Caceres
- Unitat de Tuberculosi Experimental (UTE), Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBERES, Crtra. de Can Ruti, Camí de les Escoles s/n, Edifici Escoles, 08916 Badalona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Ramsugit S, Guma S, Pillay B, Jain P, Larsen MH, Danaviah S, Pillay M. Pili contribute to biofilm formation in vitro in Mycobacterium tuberculosis. Antonie Van Leeuwenhoek 2013; 104:725-35. [DOI: 10.1007/s10482-013-9981-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/20/2013] [Indexed: 11/24/2022]
|
42
|
Keto-mycolic acid-dependent pellicle formation confers tolerance to drug-sensitive Mycobacterium tuberculosis. mBio 2013; 4:e00222-13. [PMID: 23653446 PMCID: PMC3663190 DOI: 10.1128/mbio.00222-13] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chronic nature of tuberculosis (TB), its requirement of long duration of treatment, its ability to evade immune intervention, and its propensity to relapse after drug treatment is discontinued are reminiscent of other chronic, biofilm-associated bacterial diseases. Historically, Mycobacterium tuberculosis was grown as a pellicle, a biofilm-like structure, at the liquid-air interface in a variety of synthetic media. Notably, the most widely administered human vaccine, BCG, is grown as a pellicle for vaccine production. However, the molecular requirements for this growth remain ill defined. Here, we demonstrate that keto-mycolic acids (keto-MA) are essential for pellicle growth, and mutants lacking in or depleted of this MA species are unable to form a pellicle. We investigated the role of the pellicle biofilm in the reduction of antibiotic sensitivity known as drug tolerance using the pellicle-defective ΔmmaA4 mutant strain. We discovered that the ΔmmaA4 mutant, which is both pellicle defective and highly sensitive to rifampicin (RIF) under planktonic growth, when incorporated within the wild-type pellicle biofilm, was protected from the bactericidal activity of RIF. The observation that growth within the M. tuberculosis pellicle biofilm can confer drug tolerance to a drug-hypersensitive strain suggests that identifying molecular requirements for pellicle growth could lead to development of novel interventions against mycobacterial infections. Our findings also suggest that a class of drugs that can disrupt M. tuberculosis biofilm formation, when used in conjunction with conventional antibiotics, has the potential to overcome drug tolerance. Two of the most important questions in tuberculosis (TB) research are (i) how does Mycobacterium tuberculosis persist in the human host for decades in the face of an active immune response and (ii) why does it take six months and four drugs to treat uncomplicated TB. Both these aspects of M. tuberculosis biology are reminiscent of infections caused by organisms capable of forming biofilms. M. tuberculosis is capable of growing as a biofilm-like structure called the pellicle. In this study, we demonstrate that a specific cell wall component, keto-mycolic acid, is essential for pellicle growth. We also demonstrate that a strain of M. tuberculosis that is both drug sensitive and pellicle defective exhibits commensal behavior and becomes drug tolerant by becoming part of a heterogeneous pellicle, a characteristic of multispecies biofilms. These observations could have important implications for identifying novel pathways for M. tuberculosis drug tolerance and the design of new modalities to rapidly treat TB.
Collapse
|
43
|
Yamamoto H, Oda M, Nakano M, Watanabe N, Yabiku K, Shibutani M, Inoue M, Imagawa H, Nagahama M, Himeno S, Setsu K, Sakurai J, Nishizawa M. Development of vizantin, a safe immunostimulant, based on the structure-activity relationship of trehalose-6,6'-dicorynomycolate. J Med Chem 2012; 56:381-5. [PMID: 23210481 DOI: 10.1021/jm3016443] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vizantin, 6,6'-bis-O-(3-nonyldodecanoyl)-α,α'-trehalose, was developed as a safe immunostimulator on the basis of a structure-activity relationship (SAR) study with trehalose 6,6'-dicorynomycolate (TDCM). It was possible to synthesize vizantin on a large scale more easily than in the case of TDCM, and the compound exhibited more potent prophylactic effect on experimental lung metastasis of B16-F0 melanoma cells. Because vizantin stimulated human macrophages, it is a promising candidate for clinical application.
Collapse
Affiliation(s)
- Hirofumi Yamamoto
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Jönsson BE, Bylund J, Johansson BR, Telemo E, Wold AE. Cord-forming mycobacteria induce DNA meshwork formation by human peripheral blood mononuclear cells. Pathog Dis 2012; 67:54-66. [PMID: 23620120 DOI: 10.1111/2049-632x.12007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/30/2012] [Accepted: 09/17/2012] [Indexed: 01/21/2023] Open
Abstract
Mononuclear phagocytes, that is, monocytes and macrophages, are central in the defense against mycobacteria. Mycobacterium abscessus is an opportunistic mycobacterial species able to cause chronic pulmonary infections in patients with cystic fibrosis but also soft tissue infections in immunocompetent individuals. Pathogenic isolates of M. abscessus with rough colony morphology form cord-like aggregates. In this study, we investigated the in vitro response of human peripheral blood mononuclear cells (PBMCs) from healthy blood donors to cord-forming M. abscessus strains from cystic fibrosis patients with clinical lung infection. Microscopic examination revealed that the PBMCs produced a coarse fibrous meshwork containing DNA and histones, which surrounded the mycobacterial cords. Thus, the bacterial cord formations were entrapped by monocytes and lymphocytes aggregated onto the DNA-rich meshwork fibers. Mycobacterium abscessus strains with smooth colony morphology, which do not form cords and are readily phagocytosed, did not induce any meshwork formation in PBMCs. The chromatin meshwork may represent a defense mechanism against nondigestible invaders.
Collapse
Affiliation(s)
- Bodil E Jönsson
- Clinical Bacteriology Section, Department of Infectious Medicine, University of Gothenburg, Göteborg, Sweden
| | | | | | | | | |
Collapse
|
45
|
Jönsson B, Ridell M, Wold AE. Phagocytosis and cytokine response to rough and smooth colony variants of Mycobacterium abscessus by human peripheral blood mononuclear cells. APMIS 2012; 121:45-55. [PMID: 23030647 DOI: 10.1111/j.1600-0463.2012.02932.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/11/2012] [Indexed: 01/19/2023]
Abstract
Mycobacterium abscessus is a non-tuberculous mycobacteria able to cause opportunistic infections in selected patient groups. During the last decades it has emerged as a cause of chronic pulmonary infection in patients with cystic fibrosis (CF). M. abscessus strains exhibit either smooth or rough colony morphology. Strains exhibiting the rough phenotype more often cause pulmonary infections in CF patients than did the smooth ones. Here, we examined phagocytosis and production of cytokines by human peripheral blood mononuclear cells, in response to M. abscessus strains with smooth and rough colony phenotype. The rough isolates all formed multicellular cords, similar to what is observed in Mycobacterium tuberculosis. Monocytes were generally unable to internalize these rough cord isolates, in contrast with the smooth ones. Furthermore, the rough M. abscessus strains induced a distinct cytokine profile differing from that induced by the smooth ones. Rough isolates induced significantly less IL-10 and tumour necrosis factor compared to smooth strains, but more IL-1β. Both varieties induced equal amounts of IFN-γ, IL-17, IL-23, IL-6, IL-8 and equally little IL-12. The ability to withstand phagocytosis might be a virulence factor contributing to the capacity of rough M. abscessus strains to give persistent pulmonary infections.
Collapse
Affiliation(s)
- Bodil Jönsson
- Clinical Bacteriology Section, Department of Infectious Medicine, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden.
| | | | | |
Collapse
|
46
|
Brambilla C, Sánchez-Chardi A, Pérez-Trujillo M, Julián E, Luquin M. Cyclopropanation of α-mycolic acids is not required for cording in Mycobacterium brumae and Mycobacterium fallax. MICROBIOLOGY-SGM 2012; 158:1615-1621. [PMID: 22493302 DOI: 10.1099/mic.0.057919-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The capacity to form microscopic cords (cording) of Mycobacterium species has been related to their virulence. The compounds responsible for cording are unknown, but a recent study has shown that cording could be related to the fine structure of α-mycolic acids. This investigation attributes the need for a proximal cyclopropane in α-mycolic acids for cording in Mycobacterium tuberculosis and Mycobacterium bovis BCG and proposes cyclopropanases as good targets for new chemotherapeutic agents. As other Mycobacterium species in addition to M. tuberculosis and M. bovis form microscopic cords, it would be of major interest to know whether the relationship between proximal cyclopropanation of α-mycolic acids and cording could be extended to non-tuberculous mycobacteria. In this study, we have examined the correlation between the cording and cyclopropanation of α-mycolic acids in two species, Mycobacterium brumae and Mycobacterium fallax. Scanning electron microscopy images showed, for the first time to our knowledge, the fine structure of microscopic cords of M. brumae and M. fallax, confirming that these two species form true cords. Furthermore, NMR analysis performed on the same cording cultures corroborates the absence of cyclopropane rings in their α-mycolic acids. Therefore, we can conclude that the correlation between cording and cyclopropanation of α-mycolic acids cannot be extended to all mycobacteria. As M. brumae and M. fallax grow rapidly and have a simple pattern of mycolic acids (only α-unsaturated mycolic acids), we propose these two species as suitable models for the study of the role of mycolic acids in cording.
Collapse
Affiliation(s)
- Cecilia Brambilla
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | | | - Míriam Pérez-Trujillo
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Marina Luquin
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
47
|
Takekawa Y, Saito M, Wang C, Qin T, Ogawa M, Kanemaru T, Yoshida SI. Characteristic morphology of intracellular microcolonies ofLegionella oakridgensisOR-10. Can J Microbiol 2012; 58:179-83. [DOI: 10.1139/w11-126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuta Takekawa
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812 - 8582, Japan
| | - Mitsumasa Saito
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812 - 8582, Japan
| | - Changle Wang
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812 - 8582, Japan
| | - Tian Qin
- National Institute for Communicable Disease Control and Prevention and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, P.O. Box 5, Changping, Beijing 102206, People’s Republic of China
| | - Midori Ogawa
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, 807 - 8555, Japan
| | - Takaaki Kanemaru
- Department of Morphology Core Unit, Kyushu University Hospital, Fukuoka, 812 - 8582, Japan
| | - Shin-ichi Yoshida
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812 - 8582, Japan
| |
Collapse
|
48
|
Both phthiocerol dimycocerosates and phenolic glycolipids are required for virulence of Mycobacterium marinum. Infect Immun 2012; 80:1381-9. [PMID: 22290144 DOI: 10.1128/iai.06370-11] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Phthiocerol dimycocerosates (PDIMs) and structurally related phenolic glycolipids (PGLs) are complex cell wall lipids unique to pathogenic mycobacteria. While these lipids have been extensively studied in recent years, there are conflicting reports on some aspects of their biosynthesis and on the role of PDIMs and especially PGLs in virulence of Mycobacterium tuberculosis. This has been complicated by the natural deficiency of PGLs in many clinical strains of M. tuberculosis and the frequent loss of PDIMs in laboratory M. tuberculosis strains. In this study, we isolated seven mutants of Mycobacterium marinum deficient in PDIMs and/or PGLs in which multiple genes of the PDIM/PGL biosynthetic locus were disrupted by transposon insertion. Zebrafish infection experiments showed that M. marinum strains lacking one or both of these lipids were avirulent, suggesting that both PDIMs and PGLs are required for virulence. We also found that these strains were hypersensitive to antibiotics and exhibited increased cell wall permeability. Our studies provide new insights into the biosynthesis of PDIMs/PGLs and may help us to understand the role of PDIMs and PGLs in M. tuberculosis virulence.
Collapse
|
49
|
Low dose aerosol fitness at the innate phase of murine infection better predicts virulence amongst clinical strains of Mycobacterium tuberculosis. PLoS One 2012; 7:e29010. [PMID: 22235258 PMCID: PMC3250398 DOI: 10.1371/journal.pone.0029010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 11/18/2011] [Indexed: 01/06/2023] Open
Abstract
Background Evaluation of a quick and easy model to determine the intrinsic ability of clinical strains to generate active TB has been set by assuming that this is linked to the fitness of Mycobacterium tuberculosis strain at the innate phase of the infection. Thus, the higher the bacillary load, the greater the possibility of inducting liquefaction, and thus active TB, once the adaptive response is set. Methodology/Principal Findings The virulence of seven clinical Mycobacterium tuberculosis strains isolated in Spain was tested by determining the bacillary concentration in the spleen and lung of mice at weeks 0, 1 and 2 after intravenous (IV) inoculation of 104 CFU, and by determining the growth in vitro until the stationary phase had been reached. Cord distribution automated analysis showed two clear patterns related to the high and low fitness in the lung after IV infection. This pattern was not seen in the in vitro fitness tests, which clearly favored the reference strain (H37Rv). Subsequent determination using a more physiological low-dose aerosol (AER) inoculation with 102 CFU showed a third pattern in which the three best values coincided with the highest dissemination capacity according to epidemiological data. Conclusions/Significance The fitness obtained after low dose aerosol administration in the presence of the innate immune response is the most predictive factor for determining the virulence of clinical strains. This gives support to a mechanism of the induction of active TB derived from the dynamic hypothesis of latent tuberculosis infection.
Collapse
|
50
|
The polyketide Pks1 contributes to biofilm formation in Mycobacterium tuberculosis. J Bacteriol 2011; 194:715-21. [PMID: 22123254 DOI: 10.1128/jb.06304-11] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infections caused by biofilms are abundant and highly persistent, displaying phenotypic resistance to high concentrations of antimicrobials and modulating host immune systems. Tuberculosis (TB), caused by Mycobacterium tuberculosis, shares these qualities with biofilm infections. To identify genetic determinants of biofilm formation in M. tuberculosis, we performed a small-scale transposon screen using an in vitro pellicle biofilm assay. We identified five M. tuberculosis mutants that were reproducibly attenuated for biofilm production relative to that of the parent strain H37Rv. One of the most attenuated mutants is interrupted in pks1, a polyketide synthase gene. When fused with pks15, as in some M. tuberculosis isolates, pks1 contributes to synthesis of the immunomodulatory phenolic glycolipids (PGLs). However, in strains such as H37Rv with split pks15 and pks1 loci, PGL is not produced and pks1 has no previously defined role. We showed that pks1 complementation restores biofilm production independently of the known role of pks1 in PGL synthesis. We also assessed the relationship among biofilm formation, the pks15/1 genotype, and M. tuberculosis phylogeography. A global survey of M. tuberculosis clinical isolates revealed surprising sequence variability in the pks15/1 locus and substantial variation in biofilm phenotypes. Our studies identify novel M. tuberculosis genes that contribute to biofilm production, including pks1. In addition, we find that the ability to make pellicle biofilms is common among M. tuberculosis isolates from throughout the world, suggesting that this trait is relevant to TB propagation or persistence.
Collapse
|