1
|
Mechanism of neuroprotection by trehalose: controversy surrounding autophagy induction. Cell Death Dis 2018; 9:712. [PMID: 29907758 PMCID: PMC6003909 DOI: 10.1038/s41419-018-0749-9] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 01/13/2023]
Abstract
Trehalose is a non-reducing disaccharide with two glucose molecules linked through an α, α-1,1-glucosidic bond. Trehalose has received attention for the past few decades for its role in neuroprotection especially in animal models of various neurodegenerative diseases, such as Parkinson and Huntington diseases. The mechanism underlying the neuroprotective effects of trehalose remains elusive. The prevailing hypothesis is that trehalose protects neurons by inducing autophagy, thereby clearing protein aggregates. Some of the animal studies showed activation of autophagy and reduced protein aggregates after trehalose administration in neurodegenerative disease models, seemingly supporting the autophagy induction hypothesis. However, results from cell studies have been less certain; although many studies claim that trehalose induces autophagy and reduces protein aggregates, the studies have their weaknesses, failing to provide sufficient evidence for the autophagy induction theory. Furthermore, a recent study with a thorough examination of autophagy flux showed that trehalose interfered with the flux from autophagosome to autolysosome, raising controversy on the direct effects of trehalose on autophagy. This review summarizes the fundamental properties of trehalose and the studies on its effects on neurodegenerative diseases. We also discuss the controversy related to the autophagy induction theory and seek to explain how trehalose works in neuroprotection.
Collapse
|
2
|
Abstract
The advances in subunit vaccines development have intensified the search for potent adjuvants, particularly adjuvants inducing cell-mediated immune responses. Identification of the C-type lectin Mincle as one of the receptors underlying the remarkable immunogenicity of the mycobacterial cell wall, via recognition of trehalose-6,6'-dimycolate (TDM), has opened avenues for the rational design of such molecules. Using a combination of chemical synthesis, biological evaluation, molecular dynamics simulations, and protein mutagenesis, we gained insight into the molecular bases of glycolipid recognition by Mincle. Unexpectedly, the fine structure of the fatty acids was found to play a key role in the binding of a glycolipid to the carbohydrate recognition domain of the lectin. Glucose and mannose esterified at O-6 by a synthetic α-ramified 32-carbon fatty acid showed agonist activity similar to that of TDM, despite their much simpler structure. Moreover, they were seen to stimulate proinflammatory cytokine production in primary human and murine cells in a Mincle-dependent fashion. Finally, they were found to induce strong Th1 and Th17 immune responses in vivo in immunization experiments in mice and conferred protection in a murine model of Mycobacterium tuberculosis infection. Here we describe the rational development of new molecules with powerful adjuvant properties.
Collapse
|
3
|
Ostrop J, Jozefowski K, Zimmermann S, Hofmann K, Strasser E, Lepenies B, Lang R. Contribution of MINCLE-SYK Signaling to Activation of Primary Human APCs by Mycobacterial Cord Factor and the Novel Adjuvant TDB. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26202982 DOI: 10.4049/jimmunol.1500102] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Trehalose-6,6-dimycolate (TDM), the mycobacterial cord factor, is an abundant cell wall glycolipid and major virulence factor of Mycobacterium tuberculosis. Its synthetic analog trehalose-6,6-dibehenate (TDB) is a new adjuvant currently in phase I clinical trials. In rodents, the C-type lectin receptors Mincle and Mcl bind TDB/TDM and activate macrophages and dendritic cells (DC) through the Syk-Card9 pathway. However, it is unknown whether these glycolipids activate human innate immune cells through the same mechanism. We performed in vitro analysis of TDB/TDM-stimulated primary human monocytes, macrophages, and DC; determined C-type lectin receptor expression; and tested the contribution of SYK, MINCLE, and MCL by small interfering RNA knockdown and genetic complementation. We observed a robust chemokine and cytokine release in response to TDB or TDM. MCSF-driven macrophages secreted higher levels of IL-8, IL-6, CCL3, CCL4, and CCL2 after stimulation with TDM, whereas DC responded more strongly to TDB and GM-CSF-driven macrophages were equally responsive to TDB and TDM. SYK kinase and the adaptor protein CARD9 were essential for glycolipid-induced IL-8 production. mRNA expression of MINCLE and MCL was high in monocytes and macrophages, with MINCLE and MCL proteins localized intracellularly under resting conditions. Small interfering RNA-mediated MINCLE or MCL knockdown caused on average reduced TDB- or TDM-induced IL-8 production. Conversely, retroviral expression in murine Mincle-deficient DC revealed that human MINCLE, but not MCL, was sufficient to confer responsiveness to TDB/TDM. Our study demonstrates that SYK-CARD9 signaling plays a key role in TDB/TDM-induced activation of innate immune cells in man as in mouse, likely by engagement of MINCLE.
Collapse
Affiliation(s)
- Jenny Ostrop
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Katrin Jozefowski
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Stephanie Zimmermann
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; Free University of Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany; and
| | - Katharina Hofmann
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Erwin Strasser
- Transfusionsmedizinische und Hämostaseologische Abteilung, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Bernd Lepenies
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; Free University of Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany; and
| | - Roland Lang
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| |
Collapse
|
4
|
Oda M, Yamamoto H, Shibutani M, Nakano M, Yabiku K, Tarui T, Kameyama N, Shirakawa D, Obayashi S, Watanabe N, Nakase H, Suenaga M, Matsunaga Y, Nagahama M, Takahashi H, Imagawa H, Kurosawa M, Terao Y, Nishizawa M, Sakurai J. Vizantin inhibits endotoxin-mediated immune responses via the TLR 4/MD-2 complex. THE JOURNAL OF IMMUNOLOGY 2014; 193:4507-14. [PMID: 25261480 DOI: 10.4049/jimmunol.1401796] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Vizantin has immunostimulating properties and anticancer activity. In this study, we investigated the molecular mechanism of immune activation by vizantin. THP-1 cells treated with small interfering RNA for TLR-4 abolished vizantin-induced macrophage activation processes such as chemokine release. In addition, compared with wild-type mice, the release of MIP-1β induced by vizantin in vivo was significantly decreased in TLR-4 knockout mice, but not in TLR-2 knockout mice. Vizantin induced the release of IL-8 when HEK293T cells were transiently cotransfected with TLR-4 and MD-2, but not when they were transfected with TLR-4 or MD-2 alone or with TLR-2 or TLR-2/MD-2. A dipyrromethene boron difluoride-conjugated vizantin colocalized with TLR-4/MD-2, but not with TLR-4 or MD-2 alone. A pull-down assay with vizantin-coated magnetic beads showed that vizantin bound to TLR-4/MD-2 in extracts from HEK293T cells expressing both TLR-4 and MD-2. Furthermore, vizantin blocked the LPS-induced release of TNF-α and IL-1β and inhibited death in mice. We also performed in silico docking simulation analysis of vizantin and MD-2 based on the structure of MD-2 complexed with the LPS antagonist E5564; the results suggested that vizantin could bind to the active pocket of MD-2. Our observations show that vizantin specifically binds to the TLR-4/MD-2 complex and that the vizantin receptor is identical to the LPS receptor. We conclude that vizantin could be an effective adjuvant and a therapeutic agent in the treatment of infectious diseases and the endotoxin shock caused by LPS.
Collapse
Affiliation(s)
- Masataka Oda
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan; Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Hirofumi Yamamoto
- Department of Chemistry and Functional Molecule, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Masahiro Shibutani
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Mayo Nakano
- Department of Chemistry and Functional Molecule, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Kenta Yabiku
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Takafumi Tarui
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Naoya Kameyama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Daiki Shirakawa
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Sumiyo Obayashi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Naoyuki Watanabe
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Hiroshi Nakase
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Midori Suenaga
- Department of Medical Pharmacology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan; and
| | - Yoichi Matsunaga
- Department of Medical Pharmacology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan; and
| | - Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Hironobu Takahashi
- Institute of Pharmacognosy, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Hiroshi Imagawa
- Department of Chemistry and Functional Molecule, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Mie Kurosawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Mugio Nishizawa
- Department of Chemistry and Functional Molecule, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Jun Sakurai
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan;
| |
Collapse
|
5
|
Evidence for a unique species-specific hypersensitive epitope in Mycobacterium tuberculosis derived cord factor. Tuberculosis (Edinb) 2013; 93 Suppl:S88-93. [DOI: 10.1016/s1472-9792(13)70017-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Yamamoto H, Oda M, Nakano M, Watanabe N, Yabiku K, Shibutani M, Inoue M, Imagawa H, Nagahama M, Himeno S, Setsu K, Sakurai J, Nishizawa M. Development of vizantin, a safe immunostimulant, based on the structure-activity relationship of trehalose-6,6'-dicorynomycolate. J Med Chem 2012; 56:381-5. [PMID: 23210481 DOI: 10.1021/jm3016443] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vizantin, 6,6'-bis-O-(3-nonyldodecanoyl)-α,α'-trehalose, was developed as a safe immunostimulator on the basis of a structure-activity relationship (SAR) study with trehalose 6,6'-dicorynomycolate (TDCM). It was possible to synthesize vizantin on a large scale more easily than in the case of TDCM, and the compound exhibited more potent prophylactic effect on experimental lung metastasis of B16-F0 melanoma cells. Because vizantin stimulated human macrophages, it is a promising candidate for clinical application.
Collapse
Affiliation(s)
- Hirofumi Yamamoto
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Nocardia brasiliensis cell wall lipids modulate macrophage and dendritic responses that favor development of experimental actinomycetoma in BALB/c mice. Infect Immun 2012; 80:3587-601. [PMID: 22851755 DOI: 10.1128/iai.00446-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nocardia brasiliensis is a Gram-positive facultative intracellular bacterium frequently isolated from human actinomycetoma. However, the pathogenesis of this infection remains unknown. Here, we used a model of bacterial delipidation with benzine to investigate the role of N. brasiliensis cell wall-associated lipids in experimental actinomycetoma. Delipidation of N. brasiliensis with benzine resulted in complete abolition of actinomycetoma without affecting bacterial viability. Chemical analyses revealed that trehalose dimycolate and an unidentified hydrophobic compound were the principal compounds extracted from N. brasiliensis with benzine. By electron microscopy, the extracted lipids were found to be located in the outermost membrane layer of the N. brasiliensis cell wall. They also appeared to confer acid-fastness. In vitro, the extractable lipids from the N. brasiliensis cell wall induced the production of the proinflammatory cytokines interleukin-1β (IL-1β), IL-6, and CCL-2 in macrophages. The N. brasiliensis cell wall extractable lipids inhibited important macrophage microbicidal effects, such as tumor necrosis factor alpha (TNF-α) and nitric oxide (NO) production, phagocytosis, bacterial killing, and major histocompatibility complex class II (MHC-II) expression in response to gamma interferon (IFN-γ). In dendritic cells (DCs), N. brasiliensis cell wall-associated extractable lipids suppressed MHC-II, CD80, and CD40 expression while inducing tumor growth factor β (TGF-β) production. Immunization with delipidated N. brasiliensis induced partial protection preventing actinomycetoma. These findings suggest that N. brasiliensis cell wall-associated lipids are important for actinomycetoma development by inducing inflammation and modulating the responses of macrophages and DCs to N. brasiliensis.
Collapse
|
8
|
Franco NH, Correia-Neves M, Olsson IAS. How "humane" is your endpoint? Refining the science-driven approach for termination of animal studies of chronic infection. PLoS Pathog 2012; 8:e1002399. [PMID: 22275862 PMCID: PMC3261900 DOI: 10.1371/journal.ppat.1002399] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Nuno H. Franco
- IBMC - Institute for Molecular and Cell Biology (Laboratory Animal Science Group), University of Porto, Porto, Portugal
- * E-mail:
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - I. Anna S. Olsson
- IBMC - Institute for Molecular and Cell Biology (Laboratory Animal Science Group), University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Marakalala MJ, Graham LM, Brown GD. The role of Syk/CARD9-coupled C-type lectin receptors in immunity to Mycobacterium tuberculosis infections. Clin Dev Immunol 2011; 2010:567571. [PMID: 21274433 PMCID: PMC3025359 DOI: 10.1155/2010/567571] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 12/16/2010] [Indexed: 12/21/2022]
Abstract
There is increasing interest in understanding the mechanisms underlying the interactions that occur between Mycobacterium tuberculosis and host innate immune cells. These cells express pattern recognition receptors (PRRs) which recognise mycobacterial pathogen-associated molecular patterns (PAMPs) and which can influence the host immune response to the infection. Although many of the PRRs appear to be redundant in the control of M. tuberculosis infection in vivo, recent discoveries have revealed a key, nonredundant, role of the Syk/CARD9 signalling pathway in antimycobacterial immunity. Here we review these discoveries, as well as recent data investigating the role of the Syk/CARD9-coupled PRRs that have been implicated in mycobacterial recognition, including Dectin-1 and Mincle.
Collapse
Affiliation(s)
- Mohlopheni Jackson Marakalala
- Institute of Infectious Diseases and Molecular Medicine, Division of Immunology, CLS, University of Cape Town, Cape Town 7925, South Africa
| | - Lisa M. Graham
- Institute of Infectious Diseases and Molecular Medicine, Division of Immunology, CLS, University of Cape Town, Cape Town 7925, South Africa
| | - Gordon D. Brown
- Aberdeen Fungal Group, Section of Immunology and Infection, Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
10
|
Converse PJ, Eisenach KD, Theus SA, Nuermberger EL, Tyagi S, Ly LH, Geiman DE, Guo H, Nolan ST, Akar NC, Klinkenberg LG, Gupta R, Lun S, Karakousis PC, Lamichhane G, McMurray DN, Grosset JH, Bishai WR. The impact of mouse passaging of Mycobacterium tuberculosis strains prior to virulence testing in the mouse and guinea pig aerosol models. PLoS One 2010; 5:e10289. [PMID: 20422019 PMCID: PMC2858211 DOI: 10.1371/journal.pone.0010289] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 03/20/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND It has been hypothesized that the virulence of lab-passaged Mycobacterium tuberculosis and recombinant M. tuberculosis mutants might be reduced due to multiple in vitro passages, and that virulence might be augmented by passage of these strains through mice before quantitative virulence testing in the mouse or guinea pig aerosol models. METHODOLOGY/PRINCIPAL FINDINGS By testing three M. tuberculosis H37Rv samples, one deletion mutant, and one recent clinical isolate for survival by the quantitative organ CFU counting method in mouse or guinea pig aerosol or intravenous infection models, we could discern no increase in bacterial fitness as a result of passaging of M. tuberculosis strains in mice prior to quantitative virulence testing in two animal models. Surface lipid expression as assessed by neutral red staining and thin-layer chromatography for PDIM analysis also failed to identify virulence correlates. CONCLUSIONS/SIGNIFICANCE These results indicate that animal passaging of M. tuberculosis strains prior to quantitative virulence testing in mouse or guinea pig models does not enhance or restore potency to strains that may have lost virulence due to in vitro passaging. It is critical to verify virulence of parental strains before genetic manipulations are undertaken and comparisons are made.
Collapse
Affiliation(s)
- Paul J Converse
- Department of Medicine, Center for Tuberculosis Research, Johns Hopkins University, Baltimore, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
MACKEPRANG B. EFFECT OF ULTRASONICS ON YOUNG AND OLD BCG: CULTURES, EVALUATED BY DEGREE OF DISPERSION, GERMINATING ABILITY AND LAG TIME. ACTA ACUST UNITED AC 2009; 45:371-80. [PMID: 13660836 DOI: 10.1111/j.1699-0463.1959.tb04722.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
|
13
|
Lee JS, Krause R, Schreiber J, Mollenkopf HJ, Kowall J, Stein R, Jeon BY, Kwak JY, Song MK, Patron JP, Jorg S, Roh K, Cho SN, Kaufmann SH. Mutation in the Transcriptional Regulator PhoP Contributes to Avirulence of Mycobacterium tuberculosis H37Ra Strain. Cell Host Microbe 2008; 3:97-103. [DOI: 10.1016/j.chom.2008.01.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 09/26/2007] [Accepted: 01/03/2008] [Indexed: 12/11/2022]
|
14
|
Guidry TV, Hunter RL, Actor JK. Mycobacterial glycolipid trehalose 6,6'-dimycolate-induced hypersensitive granulomas: contribution of CD4+ lymphocytes. MICROBIOLOGY (READING, ENGLAND) 2007; 153:3360-3369. [PMID: 17906135 PMCID: PMC2583334 DOI: 10.1099/mic.0.2007/010850-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The granulomatous response is a characteristic histological feature of Mycobacterium tuberculosis infection responsible for organism containment. The development of cell-mediated immunity is essential for protection against disease, as well as being required for maintenance of the sequestering granulomatous response. Trehalose 6,6'-dimycolate (TDM; cord factor), a glycolipid associated with the cell wall of mycobacteria, is implicated as a key immunogenic component in M. tuberculosis infection. Models of TDM-induced hypersensitive granulomatous response have similar pathologies to that of active tuberculosis infection. Prior immunization (sensitization) of mice with TDM results in exacerbated histological damage, inflammation and lymphocytic infiltration upon subsequent TDM challenge. Adoptive transfer experiments were performed to ascertain the cell phenotype governing this response; CD4(+) cells were identified as critical for development of related pathology. Mice receiving CD4(+) cells from donor TDM-immunized mice demonstrated significantly increased production of Th1-type cytokines IFN-gamma and IL-12 within the lung upon subsequent TDM challenge. Control groups receiving naïve CD4(+) cells, or CD8(+) or CD19(+) cells isolated from TDM-immunized donors, did not exhibit an exacerbated response. The identified CD4(+) cells isolated from TDM-immunized mice produced significant amounts of IFN-gamma and IL-2 when exposed to TDM-pulsed macrophages in vitro. These experiments provide further evidence for involvement of a cell-mediated response in TDM-induced granuloma formation, which mimics pathological damage elicited during M. tuberculosis infection.
Collapse
Affiliation(s)
- Tera V. Guidry
- University of Texas-Houston Health Science Center, Graduate School of Biomedical Sciences, Houston, TX 77030 USA
| | - Robert L. Hunter
- University of Texas-Houston Medical School, Department of Pathology and Laboratory Medicine, Program in Molecular Pathology, 6431 Fannin, Houston, TX 77030, USA
| | - Jeffrey K. Actor
- University of Texas-Houston Medical School, Department of Pathology and Laboratory Medicine, Program in Molecular Pathology, 6431 Fannin, Houston, TX 77030, USA
| |
Collapse
|
15
|
Fujita Y, Okamoto Y, Uenishi Y, Sunagawa M, Uchiyama T, Yano I. Molecular and supra-molecular structure related differences in toxicity and granulomatogenic activity of mycobacterial cord factor in mice. Microb Pathog 2007; 43:10-21. [PMID: 17434713 DOI: 10.1016/j.micpath.2007.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2006] [Revised: 02/19/2007] [Accepted: 02/19/2007] [Indexed: 11/16/2022]
Abstract
To establish the structure biological activity relationship of cord factor (trehalose 6,6'-dimycolate, TDM), we compared the molecular or supra-molecular structure of TDM micelles with toxicity, thymic atrophy and granulomatogenicity in lungs and spleen of BALB/c mice. According to the difference in the mycolyl subclass composition, TDM was divided into two groups, one possessing alpha-, methoxy- and keto-mycolates in M. tuberculosis H37Rv, M. bovis BCG and M. kansasii (group A) and the other having alpha-, keto- and wax ester-mycolates in M. avium serotype 4, M. phlei and M. flavescens (group B), although mycolic acid molecular species composition differed in each group considerably. Supra-molecular structure of TDM micelle differed species to species substantially and the micelle size of TDM from M. bovis BCG Connaught was the largest. The highest toxicity was shown with TDM from M. tuberculosis H37Rv which possessed the highest amount of alpha- (47.3%) and methoxy-mycolates (40.8%), while TDM from M. phlei having the low amount of alpha-mycolate (11.6%) showed almost no toxicity with the given doses. The thymic atrophy was observed with TDM from group A, but not with TDM from group B. On the other hand, TDM from group B showed massive lung granulomatogenic activity based on the histological observations and organ indices. Taken together, group A TDM showed a wide variety of micelle sizes and specific surface areas, high to low toxicity and marked to moderate granulomatogenicity, while group B TDM showed smaller sizes of micelles and larger specific surface areas, lower toxicity but higher granulomatogenicity in lungs. Existence of higher amount of longer chain alpha-mycolates in TDM appeared to be essential for high toxicity and thymic apoptotic activity, whereas TDM possessing wax ester-mycolate with smaller sized micelles seemed to be less toxic, but more granulomatogenic in lungs in mice. Thus, the mycolic acid subclass and molecular species composition of TDM affect critically the micelle forms, toxicity and granulomatogenicity in mice, while the relative abundances and carbon chain length of alpha-mycolate affected the toxicity in mice.
Collapse
Affiliation(s)
- Yukiko Fujita
- Japan BCG Central Laboratory, 3-1-5 Matsuyama, Kiyose-shi, Tokyo 204-0022, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Guidry TV, Hunter RL, Actor JK. CD3+ cells transfer the hypersensitive granulomatous response to mycobacterial glycolipid trehalose 6,6′-dimycolate in mice. Microbiology (Reading) 2006; 152:3765-3775. [PMID: 17159227 DOI: 10.1099/mic.0.29290-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The granulomatous response is the characteristic histological feature ofMycobacterium tuberculosisinfection that is essential for organism containment. Trehalose 6,6-dimycolate (TDM), a cell-wall glycolipid present on most mycobacterial species, has been implicated in the pathogenesis ofM. tuberculosisinfection. TDM has potent immunoregulatory and inflammatory properties, and can be used to model granulomatous reactions that mimic, in part, pathology caused during active infection. This study examined the hypersensitive granulomatous response, focusing on cellular responses specific to TDM. Lungs from mice immunized with TDM emulsion demonstrated exacerbated histological damage, inflammation, and lymphocytic infiltration upon subsequent challenge with TDM. Splenocytes recovered from these mice demonstrated significant interferon (IFN)-γproduction during recall response to TDM, as well as increased production of proinflammatory mediators (tumour necrosis factor-α, interleukin-6 and macrophage inflammatory protein-1α). The exacerbated response could be adoptively transferred to naïve mice. Administration of non-adherent lymphocytes or purified CD3+cells from TDM-immunized mice led to increased inflammation, lymphocytic infiltration, and vascular endothelial cell damage upon challenge with TDM. Recipient mice that received immunized CD3+lymphocytes demonstrated significant increases in Th1-type cytokines and proinflammatory mediators in lung tissue following TDM challenge. When CD1d−/−mice were immunized with TDM, they failed to generate a specific IFN-γresponse, suggesting a role for this molecule in the generation of hypersensitivity. These experiments provide further evidence for the involvement of TDM-specific CD3+T cells in pathological damage elicited duringM. tuberculosisinfection.
Collapse
Affiliation(s)
- Tera V Guidry
- University of Texas-Houston Health Science Center, Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Robert L Hunter
- Department of Pathology, University of Texas-Houston Medical School, Houston, TX 77030, USA
| | - Jeffrey K Actor
- Department of Pathology and Laboratory Medicine, MSB 2.214, University of Texas-Houston Medical School, 6431 Fannin, Houston, TX 77030, USA
- Department of Pathology, University of Texas-Houston Medical School, Houston, TX 77030, USA
| |
Collapse
|
17
|
Fujita Y, Naka T, McNeil MR, Yano I. Intact molecular characterization of cord factor (trehalose 6,6'-dimycolate) from nine species of mycobacteria by MALDI-TOF mass spectrometry. MICROBIOLOGY-SGM 2005; 151:3403-3416. [PMID: 16207922 DOI: 10.1099/mic.0.28158-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cord factor (trehalose 6,6'-dimycolate, TDM) is an unique glycolipid with a trehalose and two molecules of mycolic acids in the mycobacterial cell envelope. Since TDM consists of two molecules of very long branched-chain 3-hydroxy fatty acids, the molecular mass ranges widely and in a complex manner. To characterize the molecular structure of TDM precisely and simply, an attempt was made to determine the mycolic acid subclasses of TDM and the molecular species composition of intact TDM by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry for the first time. The results showed that less than 1 microg mycolic acid methyl ester of TDM from nine representative species of mycobacteria and TDM from the same species was sufficient to obtain well-resolved mass spectra composed of pseudomolecular ions [M+Na]+. Although the mass ion distribution was extremely diverse, the molecular species of each TDM was identified clearly by constructing a molecular ion matrix consisting of the combination of two molecules of mycolic acids. The results showed a marked difference in the molecular structure of TDM among mycobacterial species and subspecies. TDM from Mycobacterium tuberculosis (H37Rv and Aoyama B) showed a distinctive mass pattern and consisted of over 60 molecular ions with alpha-, methoxy- and ketomycolate. TDM from Mycobacterium bovis BCG Tokyo 172 similarly showed over 35 molecular ions, but that from M. bovis BCG Connaught showed simpler molecular ion clusters consisting of less than 35 molecular species due to a complete lack of methoxymycolate. Mass ions due to TDM from M. bovis BCG Connaught and Mycobacterium kansasii showed a biphasic distribution, but the two major peaks of TDM from M. kansasii were shifted up two or three carbon units higher compared with M. bovis BCG Connaught. Within the rapid grower group, in TDM consisting of alpha-, keto- and wax ester mycolate from Mycobacterium phlei and Mycobacterium flavescens, the mass ion distribution due to polar mycolates was shifted lower than that from the Mycobacterium avium-intracellulare group. Since the physico-chemical properties and antigenic structure of mycolic acid of TDM affect the host immune responses profoundly, the molecular characterization of TDM by MALDI-TOF mass analysis may give very useful information on the relationship of glycolipid structure to its biological activity.
Collapse
Affiliation(s)
- Yukiko Fujita
- Japan BCG Central Laboratory, 3-1-5 Matsuyama, Kiyose-shi, Tokyo 204-0022, Japan
| | - Takashi Naka
- Japan BCG Central Laboratory, 3-1-5 Matsuyama, Kiyose-shi, Tokyo 204-0022, Japan
| | - Michael R McNeil
- Department of Microbiology, Colorado State University, Fort Collins, CO 80523, USA
| | - Ikuya Yano
- Japan BCG Central Laboratory, 3-1-5 Matsuyama, Kiyose-shi, Tokyo 204-0022, Japan
| |
Collapse
|
18
|
Fujita Y, Naka T, Doi T, Yano I. Direct molecular mass determination of trehalose monomycolate from 11 species of mycobacteria by MALDI-TOF mass spectrometry. Microbiology (Reading) 2005; 151:1443-1452. [PMID: 15870454 DOI: 10.1099/mic.0.27791-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Direct estimation of the molecular mass of single molecular species of trehalose 6-monomycolate (TMM), a ubiquitous cell-wall component of mycobacteria, was performed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. When less than 1 μg TMM was analysed by MALDI-TOF mass spectrometry, quasimolecular ions [M+Na]+of each molecular species were demonstrated and the numbers of carbons and double bonds (or cyclopropane rings) were determined. Since the introduction of oxygen atoms such as carbonyl, methoxy and ester groups yielded the appropriate shift of mass ions, the major subclasses of mycolic acid (α, methoxy, keto and wax ester) were identified without resorting to hydrolytic procedures. The results showed a marked difference in the molecular species composition of TMM among mycobacterial species. Unexpectedly, differing from other mycoloyl glycolipids, TMM fromMycobacterium tuberculosisshowed a distinctive mass pattern, with abundant odd-carbon-numbered monocyclopropanoic (or monoenoic)α-mycolates besides dicyclopropanoic mycolate, ranging from C75to C85, odd- and even-carbon-numbered methoxymycolates ranging from C83to C94and even- and odd-carbon-numbered ketomycolates ranging from C83to C90. In contrast, TMM fromMycobacterium bovis(wild strain and BCG substrains) possessed even-carbon-numbered dicyclopropanoicα-mycolates. BCG Connaught strain lacked methoxymycolates almost completely. These results were confirmed by MALDI-TOF mass analysis of mycolic acid methyl esters liberated by alkaline hydrolysis and methylation of the original TMM. Wax ester-mycoloyl TMM molecular species were demonstrated for the first time as an intact form in theMycobacterium avium–intracellularegroup,M. phleiandM. flavescens. TheM. avium–intracellularegroup possessed predominantly C85and C87wax ester-mycoloyl TMM, whileM. phleiand the rapid growers tested contained C80, C81, C82and C83wax ester-mycoloyl TMM. This technique has marked advantages in the rapid analysis of not only intact glycolipid TMM, but also the mycolic acid composition of each mycobacterial species, since it does not require any degradation process.
Collapse
Affiliation(s)
- Yukiko Fujita
- Japan BCG Central Laboratory, 3-1-5 Matsuyama, Kiyose-shi, Tokyo 204-0022, Japan
| | - Takashi Naka
- Japan BCG Central Laboratory, 3-1-5 Matsuyama, Kiyose-shi, Tokyo 204-0022, Japan
| | - Takeshi Doi
- Japan BCG Central Laboratory, 3-1-5 Matsuyama, Kiyose-shi, Tokyo 204-0022, Japan
| | - Ikuya Yano
- Japan BCG Central Laboratory, 3-1-5 Matsuyama, Kiyose-shi, Tokyo 204-0022, Japan
| |
Collapse
|
19
|
Abstract
1. Mice infected intracerebrally with M. tuberculosis H 37 Rv in doses of 400,000–1,300,000 bacillary units gave a graduated series of responses whose regression provided an arbitrary 100% standard of mouse virulence for human tubercle bacilli.2. Under certain experimental conditions this standard remained stable and its confidence limits could be defined.3. The relative virulence of other strains of tubercle bacilli could be assessed quantitatively in relation to this standard, and expressed as a (percentage) virulence ratio.4. 100% virulence was defined as that of a strain showing a threshold of response of 600,000–1,300,000 bacillary units, lethal cerebral lesions at 8–20 days or necrotic pulmonary lesions at 20–30 days, and a mean 50% mortality time of less than 36 days.5. Qualitative and quantitative responses characteristic of intermediate and very low virulence were also defined.6. Higher proportions of virulent cells were obtained from 3 to 7 days than from older cultures in Tween-albumin liquid media, but inocula were more suitably standardized by obtaining cells from 11 to 12-day cultures.7. Passage in the mouse and guinea-pig failed to alter the virulence of H 37 Rv. A slight increase was effected by passage in the lung of the rabbit.8. The technique employed was a measure essentially of the ability of the organism to multiply in, and damage, resistant tissues.
Collapse
|
20
|
HANKS JH. The biological significance of the hydrogen transfer capacity of murine leprosy bacilli. J Bacteriol 2004; 62:529-37. [PMID: 14897827 PMCID: PMC386166 DOI: 10.1128/jb.62.5.529-537.1951] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
|
22
|
Ioneda T, Lederer E, Rozanis J. Sur la structure des diesters de tréhalose (“cord factors”) produits par Nocardia asteroides et Nocardia rhodochrous. Chem Phys Lipids 1970. [DOI: 10.1016/0009-3084(70)90037-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
|
24
|
|
25
|
Schwabe HK, Tünnerhoff FK, Hüttl C. Die Corticoide in der Behandlung der Lungentuberkulose Tierexperimentelle Untersuchungen. Lung 1962. [DOI: 10.1007/bf02146526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Schwabe HK, Hüttl C. Die Corticoide in der Behandlung der Lungentuberkulose Tierexperimentelle Untersuchungen. Lung 1962. [DOI: 10.1007/bf02144562] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Lederer E. Lipoide der Mycobakterien. Chemische Struktur und biologische Wirkung. Angew Chem Int Ed Engl 1960. [DOI: 10.1002/ange.19600721103] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
FAVOUR CB. TREATMENT OF LOW-RESISTANCE SYNDROMES††. J Am Geriatr Soc 1959; 7:184-92. [PMID: 13630692 DOI: 10.1111/j.1532-5415.1959.tb01064.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
|
30
|
Lederer E. GDCh-Ortsverband Freiburg/Br. Angew Chem Int Ed Engl 1957. [DOI: 10.1002/ange.19570690122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
BROWNLEE G. Host resistance to infection. J Pharm Pharmacol 1957; 9:1-9. [PMID: 13398901 DOI: 10.1111/j.2042-7158.1957.tb12248.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
ELBERG SS, FONG J, SCHNEIDER P. Studies on tubercle bacillus-monocyte relationship. II. Induction of monocyte degeneration by bacteria and culture filtrate: specificity of serum and monocyte effects on resistance to degeneration. J Exp Med 1957; 105:25-37. [PMID: 13385404 PMCID: PMC2136668 DOI: 10.1084/jem.105.1.25] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies of virulent, attenuated, and avirulent strains of tubercle bacilli have demonstrated the proficiency of virulent strains to effect degeneration of normal monocytes cultivated in the presence of normal serum. Attenuated strains were less active in this respect, and avirulent bacilli failed to induce monocytic degeneration. Comparison of the effects of virulent H37Rv with O.T., P.P.D., and a culture filtrate of H37Rv revealed a similarity in action of H37Rv and its filtrate. The action of O.T. and P.P.D. differed from that of H37Rv in that the greatest effect of H37Rv was upon normal cells as opposed to the effect of O.T. and P.P.D. upon immune cells. Additionally, it was demonstrated that immune serum (anti-BCG) protected immune cells against H37Rv but not against O.T. or P.P.D. The protection of immune cells by heterologous antisera (anti-Salmonella and anti-ovalbumin) as well as by homologous antiserum (anti-BCG) against the degenerative effects of H37Rv indicated a non-specificity in action of serum factors. The ability of the monocytes of animals immunized with BCG and the failure of monocytes of animals immunized with Salmonella rutgers to withstand parasitization with H37Rv, when both types of monocytes were cultivated in immune (anti-BCG) serum, indicated a specificity of cellular resistance.
Collapse
|
33
|
STAHELIN H, KARNOVSKY ML, SUTER E. Studies on the interaction between phagocytes and tubercle bacilli. II. The action of phagocytes upon C14-labelled tubercle bacilli. J Exp Med 1956; 104:137-50. [PMID: 13332185 PMCID: PMC2136642 DOI: 10.1084/jem.104.1.137] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Tubercle bacilli labelled with C(14) were prepared by growth on radioactive substrates such as glycerol, CO(2), and acetate. These organisms were exposed in vitro to leucocytes (mostly polymorphonuclear leucocytes) from peritoneal exudates of guinea pigs. The respiration of the leucocytes and of the bacilli, alone and together, was followed by determining oxygen uptake and C(14)O(2) production. When heat-killed labelled tubercle bacilli were exposed to leucocytes there was little or no degradation of bacillary material to C(14)O(2) by leucocytic enzymes. On the other hand, conversion of components of sonically disrupted bacilli to C(14)O(2) by leucocytes was significant. It was possible to determine the oxygen uptake and C(14)O(2) production of phagocytized living tubercle bacilli, and it was found that after phagocytosis the bacilli maintained their rates of oxygen consumption and C(14)O(2) production. This finding was in contrast to observations made with Mycobacterium phlei, a saprophytic acid-fast organism, and with Bacillus subtilis. In these cases oxygen consumption and C(14)O(2) production declined after phagocytosis, and bacterial components were converted to carbon dioxide to a significant degree by leucocytic enzymes.
Collapse
|
34
|
GOLDMAN EC, GOLDMAN DS. The induction of cording in an avirulent variant of Mycobacterium tuberculosis. J Bacteriol 1955; 70:353-4. [PMID: 13263300 PMCID: PMC357696 DOI: 10.1128/jb.70.3.353-354.1955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
35
|
ASSELINEAU J, LEDERER E. [Constitution of the cord factor isolated from a human strain of Mycobacterium tuberculosis]. BIOCHIMICA ET BIOPHYSICA ACTA 1955; 17:161-8. [PMID: 13239655 DOI: 10.1016/0006-3002(55)90346-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
|
37
|
Kritische Bemerkungen und experimentelle Untersuchungen zur Resistenzbestimmung der Tuberkelbakterien gegen Chemotherapeutica. Lung 1952. [DOI: 10.1007/bf02148543] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
|