1
|
Villalba-Galea CA, Chiem AT. Hysteretic Behavior in Voltage-Gated Channels. Front Pharmacol 2020; 11:579596. [PMID: 33324211 PMCID: PMC7723447 DOI: 10.3389/fphar.2020.579596] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/21/2020] [Indexed: 01/22/2023] Open
Abstract
An ever-growing body of evidence has shown that voltage-gated ion channels are likely molecular systems that display hysteresis in their activity. This phenomenon manifests in the form of dynamic changes in both their voltage dependence of activity and their deactivation kinetics. The goal of this review is to provide a clear definition of hysteresis in terms of the behavior of voltage-gated channels. This review will discuss the basic behavior of voltage-gated channel activity and how they make these proteins into systems displaying hysteresis. It will also provide a perspective on putative mechanisms underlying hysteresis and explain its potential physiological relevance. It is uncertain whether all channels display hysteresis in their behavior. However, the suggested notion that ion channels are hysteretic systems directly collides with the well-accepted notion that ion channel activity is stochastic. This is because hysteretic systems are regarded to have “memory” of previous events while stochastic processes are regarded as “memoryless.” This review will address this apparent contradiction, providing arguments for the existence of processes that can be simultaneously hysteretic and stochastic.
Collapse
Affiliation(s)
- Carlos A Villalba-Galea
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - Alvin T Chiem
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| |
Collapse
|
2
|
He S, Moutaoufik MT, Islam S, Persad A, Wu A, Aly KA, Fonge H, Babu M, Cayabyab FS. HERG channel and cancer: A mechanistic review of carcinogenic processes and therapeutic potential. Biochim Biophys Acta Rev Cancer 2020; 1873:188355. [PMID: 32135169 DOI: 10.1016/j.bbcan.2020.188355] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/21/2022]
Abstract
The human ether-à-go-go related gene (HERG) encodes the alpha subunit of Kv11.1, which is a voltage-gated K+ channel protein mainly expressed in heart and brain tissue. HERG plays critical role in cardiac repolarization, and mutations in HERG can cause long QT syndrome. More recently, evidence has emerged that HERG channels are aberrantly expressed in many kinds of cancer cells and play important roles in cancer progression. HERG could therefore be a potential biomarker for cancer and a possible molecular target for anticancer drug design. HERG affects a number of cellular processes, including cell proliferation, apoptosis, angiogenesis and migration, any of which could be affected by dysregulation of HERG. This review provides an overview of available information on HERG channel as it relates to cancer, with focus on the mechanism by which HERG influences cancer progression. Molecular docking attempts suggest two possible protein-protein interactions of HERG with the ß1-integrin receptor and the transcription factor STAT-1 as novel HERG-directed therapeutic targeting which avoids possible cardiotoxicity. The role of epigenetics in regulating HERG channel expression and activity in cancer will also be discussed. Finally, given its inherent extracellular accessibility as an ion channel, we discuss regulatory roles of this molecule in cancer physiology and therapeutic potential. Future research should be directed to explore the possibilities of therapeutic interventions targeting HERG channels while minding possible complications.
Collapse
Affiliation(s)
- Siyi He
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | - Saadul Islam
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Amit Persad
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Adam Wu
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Khaled A Aly
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Humphrey Fonge
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Saskatchewan S7N 0W8, Canada; Department of Medical Imaging, Royal University Hospital, Saskatoon, Saskatchewan S7N 0W8, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Francisco S Cayabyab
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
3
|
Alí A, Boutjdir M, Aromolaran AS. Cardiolipotoxicity, Inflammation, and Arrhythmias: Role for Interleukin-6 Molecular Mechanisms. Front Physiol 2019; 9:1866. [PMID: 30666212 PMCID: PMC6330352 DOI: 10.3389/fphys.2018.01866] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Fatty acid infiltration of the myocardium, acquired in metabolic disorders (obesity, type-2 diabetes, insulin resistance, and hyperglycemia) is critically associated with the development of lipotoxic cardiomyopathy. According to a recent Presidential Advisory from the American Heart Association published in 2017, the current average dietary intake of saturated free-fatty acid (SFFA) in the US is 11–12%, which is significantly above the recommended <10%. Increased levels of circulating SFFAs (or lipotoxicity) may represent an unappreciated link that underlies increased vulnerability to cardiac dysfunction. Thus, an important objective is to identify novel targets that will inform pharmacological and genetic interventions for cardiomyopathies acquired through excessive consumption of diets rich in SFFAs. However, the molecular mechanisms involved are poorly understood. The increasing epidemic of metabolic disorders strongly implies an undeniable and critical need to further investigate SFFA mechanisms. A rapidly emerging and promising target for modulation by lipotoxicity is cytokine secretion and activation of pro-inflammatory signaling pathways. This objective can be advanced through fundamental mechanisms of cardiac electrical remodeling. In this review, we discuss cardiac ion channel modulation by SFFAs. We further highlight the contribution of downstream signaling pathways involving toll-like receptors and pathological increases in pro-inflammatory cytokines. Our expectation is that if we understand pathological remodeling of major cardiac ion channels from a perspective of lipotoxicity and inflammation, we may be able to develop safer and more effective therapies that will be beneficial to patients.
Collapse
Affiliation(s)
- Alessandra Alí
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Ademuyiwa S Aromolaran
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| |
Collapse
|
4
|
Abstract
Ion channels constitute a superfamily of membrane proteins found in all living creatures. Their activity allows fast translocation of ions across the plasma membrane down the ion's transmembrane electrochemical gradient, resulting in a difference in electrical potential across the plasma membrane, known as the membrane potential. A group within this superfamily, namely voltage-gated channels, displays activity that is sensitive to the membrane potential. The activity of voltage-gated channels is controlled by the membrane potential, while the membrane potential is changed by these channels' activity. This interplay produces variations in the membrane potential that have evolved into electrical signals in many organisms. These signals are essential for numerous biological processes, including neuronal activity, insulin release, muscle contraction, fertilization and many others. In recent years, the activity of the voltage-gated channels has been observed not to follow a simple relationship with the membrane potential. Instead, it has been shown that the activity of voltage-gated channel displays hysteresis. In fact, a growing number of evidence have demonstrated that the voltage dependence of channel activity is dynamically modulated by activity itself. In spite of the great impact that this property can have on electrical signaling, hysteresis in voltage-gated channels is often overlooked. Addressing this issue, this review provides examples of voltage-gated ion channels displaying hysteretic behavior. Further, this review will discuss how Dynamic Voltage Dependence in voltage-gated channels can have a physiological role in electrical signaling. Furthermore, this review will elaborate on the current thoughts on the mechanism underlying hysteresis in voltage-gated channels.
Collapse
Affiliation(s)
- Carlos A Villalba-Galea
- a Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences , University of the Pacific , Stockton , CA , USA
| |
Collapse
|
5
|
Corbin-Leftwich A, Mossadeq SM, Ha J, Ruchala I, Le AHN, Villalba-Galea CA. Retigabine holds KV7 channels open and stabilizes the resting potential. ACTA ACUST UNITED AC 2016; 147:229-41. [PMID: 26880756 PMCID: PMC4772374 DOI: 10.1085/jgp.201511517] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/05/2016] [Indexed: 02/04/2023]
Abstract
The anticonvulsant Retigabine is a KV7 channel agonist used to treat hyperexcitability disorders in humans. Retigabine shifts the voltage dependence for activation of the heteromeric KV7.2/KV7.3 channel to more negative potentials, thus facilitating activation. Although the molecular mechanism underlying Retigabine's action remains unknown, previous studies have identified the pore region of KV7 channels as the drug's target. This suggested that the Retigabine-induced shift in voltage dependence likely derives from the stabilization of the pore domain in an open (conducting) conformation. Testing this idea, we show that the heteromeric KV7.2/KV7.3 channel has at least two open states, which we named O1 and O2, with O2 being more stable. The O1 state was reached after short membrane depolarizations, whereas O2 was reached after prolonged depolarization or during steady state at the typical neuronal resting potentials. We also found that activation and deactivation seem to follow distinct pathways, suggesting that the KV7.2/KV7.3 channel activity displays hysteresis. As for the action of Retigabine, we discovered that this agonist discriminates between open states, preferentially acting on the O2 state and further stabilizing it. Based on these findings, we proposed a novel mechanism for the therapeutic effect of Retigabine whereby this drug reduces excitability by enhancing the resting potential open state stability of KV7.2/KV7.3 channels. To address this hypothesis, we used a model for action potential (AP) in Xenopus laevis oocytes and found that the resting membrane potential became more negative as a function of Retigabine concentration, whereas the threshold potential for AP firing remained unaltered.
Collapse
Affiliation(s)
- Aaron Corbin-Leftwich
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| | - Sayeed M Mossadeq
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| | - Junghoon Ha
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| | - Iwona Ruchala
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| | - Audrey Han Ngoc Le
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| | - Carlos A Villalba-Galea
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| |
Collapse
|
6
|
Nache V, Eick T, Schulz E, Schmauder R, Benndorf K. Hysteresis of ligand binding in CNGA2 ion channels. Nat Commun 2014; 4:2866. [PMID: 24287615 PMCID: PMC3868267 DOI: 10.1038/ncomms3866] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 11/04/2013] [Indexed: 01/19/2023] Open
Abstract
Tetrameric cyclic nucleotide-gated (CNG) channels mediate receptor potentials in olfaction and vision. The channels are activated by the binding of cyclic nucleotides to a binding domain embedded in the C terminus of each subunit. Here using a fluorescent cGMP derivative (fcGMP), we show for homotetrameric CNGA2 channels that ligand unbinding is ~50 times faster at saturating than at subsaturating fcGMP. Analysis with complex Markovian models reveals two pathways for ligand unbinding; the partially liganded open channel unbinds its ligands from closed states only, whereas the fully liganded channel reaches a different open state from which it unbinds all four ligands rapidly. Consequently, the transition pathways for ligand binding and activation of a fully liganded CNGA2 channel differ from that of ligand unbinding and deactivation, resulting in pronounced hysteresis of the gating mechanism. This concentration-dependent gating mechanism allows the channels to respond to changes in the cyclic nucleotide concentration with different kinetics. Cyclic nucleotide-gated channels mediate olfactory and visual responses. Using a fluorescent cGMP derivative, Nache et al. show that the rate of cyclic nucleotide release from CNGA2 depends on the extent to which this tetrameric receptor is liganded, revealing hysteresis in the gating mechanism.
Collapse
Affiliation(s)
- Vasilica Nache
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | | | | | | | | |
Collapse
|
7
|
Krueger E, Al Faouri R, Fologea D, Henry R, Straub D, Salamo G. A model for the hysteresis observed in gating of lysenin channels. Biophys Chem 2013; 184:126-30. [PMID: 24075493 DOI: 10.1016/j.bpc.2013.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 11/19/2022]
Abstract
The pore-forming toxin lysenin self-inserts to form conductance channels in natural and artificial lipid membranes containing sphingomyelin. The inserted channels exhibit voltage regulation and hysteresis of the macroscopic current during the application of positive periodic voltage stimuli. We explored the bi-stable behavior of lysenin channels and present a theoretical approach for the mechanism of the hysteresis to explain its static and dynamic components. This investigation develops a model to incorporate the role of charge accumulation on the bilayer lipid membrane in influencing the channel conduction state. Our model is supported by experimental results and also provides insight into the temperature dependence of lysenin channel hysteresis. Through this work we gain perspective into the mechanism of how the response of a channel protein is determined by previous stimuli.
Collapse
Affiliation(s)
- Eric Krueger
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Liu B, Yao J, Zhu MX, Qin F. Hysteresis of gating underlines sensitization of TRPV3 channels. ACTA ACUST UNITED AC 2011; 138:509-20. [PMID: 22006988 PMCID: PMC3206302 DOI: 10.1085/jgp.201110689] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Vanilloid receptors of the transient receptor potential family have functions in thermal sensation and nociception. Among them, transient receptor potential vanilloid (TRPV)3 displays a unique property by which the repeated stimulation causes successive increases in its activity. The property has been known as sensitization and is observed in both native cells and cells heterologously expressing TRPV3. Transient increases in intracellular calcium levels have been implicated to play a key role in this process by mediating interaction of calmodulin with the channel. In support of the mechanism, BAPTA, a fast calcium chelator, accelerates the sensitization, whereas the slow chelator EGTA is ineffectual. Here, we show that the sensitization of TRPV3 also occurred independently of Ca2+. It was observed in both inside-out and outside-out membrane patches. BAPTA, but not EGTA, has a direct potentiation effect on channel activation. Analogues of BAPTA lacking Ca2+-buffering capability were similarly effective. The stimulation-induced sensitization and the potentiation by BAPTA are distinguishable in reversibility. We conclude that the sensitization of TRPV3 is intrinsic to the channel itself and occurs as a result of hysteresis of channel gating. BAPTA accelerates the sensitization process by potentiating the gating of the channel.
Collapse
Affiliation(s)
- Beiying Liu
- Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
9
|
Fologea D, Krueger E, Mazur YI, Stith C, Okuyama Y, Henry R, Salamo GJ. Bi-stability, hysteresis, and memory of voltage-gated lysenin channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2933-9. [PMID: 21945404 DOI: 10.1016/j.bbamem.2011.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/28/2011] [Accepted: 09/06/2011] [Indexed: 10/17/2022]
Abstract
Lysenin, a 297 amino acid pore-forming protein extracted from the coelomic fluid of the earthworm E. foetida, inserts constitutively open large conductance channels in natural and artificial lipid membranes containing sphingomyelin. The inserted channels show voltage regulation and slowly close at positive applied voltages. We report on the consequences of slow voltage-induced gating of lysenin channels inserted into a planar Bilayer Lipid Membrane (BLM), and demonstrate that these pore-forming proteins constitute memory elements that manifest gating bi-stability in response to variable external voltages. The hysteresis in macroscopic currents dynamically changes when the time scale of the voltage variation is smaller or comparable to the characteristic conformational equilibration time, and unexpectedly persists for extremely slow-changing external voltage stimuli. The assay performed on a single lysenin channel reveals that hysteresis is a fundamental feature of the individual channel unit and an intrinsic component of the gating mechanism. The investigation conducted at different temperatures reveals a thermally stable reopening process, suggesting that major changes in the energy landscape and kinetics diagram accompany the conformational transitions of the channels. Our work offers new insights on the dynamics of pore-forming proteins and provides an understanding of how channel proteins may form an immediate record of the molecular history which then determines their future response to various stimuli. Such new functionalities may uncover a link between molecular events and macroscopic processing and transmission of information in cells, and may lead to applications such as high density biologically-compatible memories and learning networks.
Collapse
Affiliation(s)
- Daniel Fologea
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
McKay CM, Ye J, Huizinga JD. Characterization of depolarization-evoked ERG K currents in interstitial cells of Cajal. Neurogastroenterol Motil 2006; 18:324-33. [PMID: 16553588 DOI: 10.1111/j.1365-2982.2006.00764.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Interstitial cells of Cajal (ICC) harbour the ether-a-go-go related gene (ERG) channel as shown by its characteristic rapidly deactivating current upon hyperpolarization. This property, however, does not explain the marked increase in cell excitability by ERG channel blockers, namely an increase in slow wave plateau duration and action potential generation. The objective of the present study was to characterize the depolarization-activated, E4031-sensitive ERG currents in murine ICC within a range of physiologically relevant membrane potentials. Whole cell currents were recorded from ICC isolated from murine neonatal jejunum, superfused with a physiological salt solution and with high intracellular Cs(+) to block most other K(+) currents. Upon depolarizing the cell from the resting membrane potential (approximately -60 mV) towards the region of the slow wave plateau (approximately -30 mV), significant sustained (window) current was generated between the potentials of -40 to 0 mV (maximal at -30 mV) and inhibited by the ERG specific blocker E4031. Channel activation followed by rapid inactivation produced a steady state conductance at -30 mV which was 51.6 +/- 11% of the hyperpolarization-evoked peak conductance value at -100 mV. When the cell repolarized from -30 mV, again, significant currents were generated, indicating recovery from inactivation, a typical characteristic of ERG channels. These data provide evidence that the ERG channel is of significance in the regulation of ICC excitability and provide the mechanism by which ERG channel blockade increases the slow wave duration.
Collapse
Affiliation(s)
- C M McKay
- Intestinal Disease Research Programme, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
11
|
Zhang S, Kehl SJ, Fedida D. Modulation of human ether-à-go-go-related K+ (HERG) channel inactivation by Cs+ and K+. J Physiol 2003; 548:691-702. [PMID: 12626667 PMCID: PMC2342897 DOI: 10.1113/jphysiol.2003.039198] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Unlike many other native and cloned K+ channels, human ether-à-go-go-related K+ (HERG) channels show significant Cs+ permeability with a PCs/PK (the permeability of Cs+ relative to that of K+) of 0.36 +/- 0.03 (n = 10). Here, we find that raising the concentration of external Cs+ (Cs+o) dramatically slows HERG channel inactivation without affecting activation. Replacement of 5 mM K+o by 135 mM Cs+o increased both inactivation and recovery time constants and shifted the mid-point of the steady-state inactivation curve by 25 mV in the depolarized direction (n = 6, P < 0.01). Raising [Cs+]o also modulated the voltage sensitivity of inactivation gating. With 130 mM Cs+i and 135 mM NMDG+o, the inactivation time constant decreased e-fold per 47.5 +/- 1.1 mV (n = 5), and when 20 mM Cs+ was added to the bath solution, the inactivation time constant decreased e-fold per 20.6 +/- 1.3 mV (n = 5, P < 0.01). A quantitative analysis suggests that Cs+o binds to a site in the pore that is influenced by the transmembrane electrical field, so that Cs+o-induced slowing of HERG inactivation is less prominent at strong depolarizations. K+o has effects that are similar to Cs+o and their effects were additive, suggesting Cs+o and K+o may share a common mechanism of action. The strong effects of Cs+ on inactivation but not on activation highlight the importance of ion and channel interactions during the onset of inactivation in the HERG channel.
Collapse
Affiliation(s)
- Shetuan Zhang
- Department of Physiology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|
12
|
Wang J, Della Penna K, Wang H, Karczewski J, Connolly TM, Koblan KS, Bennett PB, Salata JJ. Functional and pharmacological properties of canine ERG potassium channels. Am J Physiol Heart Circ Physiol 2003; 284:H256-67. [PMID: 12388285 DOI: 10.1152/ajpheart.00220.2002] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We established HEK-293 cell lines that stably express functional canine ether-à-go-go-related gene (cERG) K(+) channels and examined their biophysical and pharmacological properties with whole cell patch clamp and (35)S-labeled MK-499 ([(35)S]MK-499) binding displacement. Functionally, cERG current had the hallmarks of cardiac delayed rectifier K(+) current (I(Kr)). Channel opening was time- and voltage dependent with threshold near -40 mV. The half-maximum activation voltage was -7.8 +/- 2.4 mV at 23 degrees C, shifting to -31.9 +/- 1.2 mV at 36 degrees C. Channels activated with a time constant of 13 +/- 1 ms at +20 mV, showed prominent inward rectification at depolarized potentials, were highly K(+) selective (Na(+)-to-K(+) permeability ratio = 0.007), and were potently inhibited by I(Kr) blockers. Astemizole, terfenadine, cisapride, and MK-499 inhibited cERG and human ERG (hERG) currents with IC(50) values of 1.3, 13, 19, and 15 nM and 1.2, 9, 14, and 21 nM, respectively, and competitively displaced [(35)S]MK-499 binding from cERG and hERG with IC(50) values of 0.4, 12, 35, and 0.6 nM and 0.8, 5, 47, and 0.7 nM, respectively. cERG channels had biophysical properties appropriate for canine action potential repolarization and were pharmacologically sensitive to agents known to prolong QT. A novel MK-499 binding assay provides a new tool to detect agents affecting ERG channels.
Collapse
Affiliation(s)
- Jixin Wang
- Department of Molecular Pharmacology, Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Cayabyab FS, Tsui FWL, Schlichter LC. Modulation of the ERG K+ current by the tyrosine phosphatase, SHP-1. J Biol Chem 2002; 277:48130-8. [PMID: 12361947 DOI: 10.1074/jbc.m208448200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We reported previously (Cayabyab, F. S., and Schlichter, L. C. (2002) J. Biol. Chem. 277, 13673-13681) a functional interaction between the ERG-1 K(+) channel and Src tyrosine kinase, which increased the current. We now show that the tyrosine phosphatase, SHP-1, which is present in microglia, is increased after brain damage, and is activated by colony-stimulating factor-1, associates with ERG-1 and regulates the current. Patch clamp recordings from the MLS-9 microglia cells were made with pipette solutions containing a recombinant SHP-1 protein: wild type (SHP-1 wild type (wt)), catalytically active (SHP-1 S6), or the substrate-trapping mutant (SHP-1 Cys --> Ser). SHP-1 wt and SHP-1 S6 proteins decreased the current, an effect that was reversed by the phosphatase inhibitor, pervanadate, whereas SHP-1 Cys --> Ser increased the current. Moreover, transient transfection with cDNA for SHP-1 wt or SHP-1 S6 decreased the ERG current without decreasing the protein level. Tyrosine phosphorylation of ERG-1 was decreased by transfection with SHP-1 wt and increased by SHP-1 Cys --> Ser. The decrease in current by active SHP-1 was partly attributed to changes in the voltage dependence of activation and steady-state conductance, whereas inactivation kinetics and voltage dependence were not affected. Our results show that ERG-1 is a SHP-1 substrate constituting the first report that an ion current is regulated by SHP-1.
Collapse
Affiliation(s)
- Francisco S Cayabyab
- Cellular and Molecular Biology Division, Toronto Western Research Institute, Ontario M5T 2S8, Canada
| | | | | |
Collapse
|
14
|
Abstract
The human "ether-a-go-go"-related gene (HERG) K(+) channel, and its homologues are present in heart, neuronal tissue, some cancer cells, and the MLS-9 rat microglia cell line (Zhou, W., Cayabyab, F. S., Pennefather, P. S., Schlichter, L. C., and DeCoursey, T. E. (1998) J. Gen. Physiol. 111, 781-794). Despite its importance, there are few studies of ERG modulation. In this first report of regulation by tyrosine phosphorylation we show that MLS-9 cells express transcripts for r-erg1 (rat homologue of HERG) and r-erg2, and an immunoreactive doublet was identified using an anti-HERG antibody. The constitutive tyrosine phosphorylation of the ERG1 protein, detected by co-immunoprecipitation, was reduced by the protein-tyrosine kinase inhibitors, lavendustin A, herbimycin A, or genistein (but not daidzein). The whole cell ERG current was reduced by protein-tyrosine kinase inhibitors or the Src-selective inhibitory peptide, src40-58, but not by a scrambled peptide. Conversely, the current was increased by the Src-activating peptide, srcpY, but not by an inactive analogue. Activating endogenous Src or transfecting constitutively active v-Src altered the voltage dependence and deactivation kinetics to produce more current at negative potentials. Co-immunoprecipitation identified an association between the channel protein and Src. Thus, r-ERG1 and Src tyrosine kinase appear to exist in a signaling complex that is well positioned to modulate this K(+) channel and affect its contribution to cellular functions.
Collapse
Affiliation(s)
- Francisco S Cayabyab
- Division of Cellular and Molecular Biology, Toronto Western Research Institute, University Health Network and Department of Physiology, University of Toronto, Toronto, Ontario M5T 2S8, Canada
| | | |
Collapse
|
15
|
Abstract
In this review, the up-to-date understanding of the molecular basis of disorders causing sudden death will be described. Two arrhythmic disorders causing sudden death have recently been well described at the molecular level, the long QT syndromes (LQTS) and Brugada syndrome, and in this article we will review the current scientific knowledge of each disease. A third disorder, hypertrophic cardiomyopathy (HCM), a myocardial disorder causing sudden death, has also been well studied. Finally, a disorder in which both myocardial abnormalities and rhythm abnormalities coexist, arrhythmogenic right ventricular dysplasia (ARVD) will also be described. The role of the pathologist in these studies will be highlighted.
Collapse
MESH Headings
- Animals
- Arrhythmogenic Right Ventricular Dysplasia/genetics
- Arrhythmogenic Right Ventricular Dysplasia/pathology
- Arrhythmogenic Right Ventricular Dysplasia/physiopathology
- Cardiomyopathy, Hypertrophic, Familial/genetics
- Cardiomyopathy, Hypertrophic, Familial/pathology
- Cardiomyopathy, Hypertrophic, Familial/physiopathology
- Death, Sudden, Cardiac/etiology
- Death, Sudden, Cardiac/pathology
- Dogs
- Genetic Predisposition to Disease
- Humans
- Ion Channels
- Long QT Syndrome/genetics
- Long QT Syndrome/pathology
- Long QT Syndrome/physiopathology
- Molecular Biology
- Ventricular Fibrillation/genetics
- Ventricular Fibrillation/pathology
- Ventricular Fibrillation/physiopathology
Collapse
Affiliation(s)
- J A Towbin
- Department of Pediatrics (Cardiology), Texas Children's Hospital and Baylor College of Medicine, One Baylor Plaza, Room 333E, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Abstract
Inward and, depending on activation state, outward potassium currents are the dominant ion channels in microglial cells in culture. During transition between resting and activated phases, there is also an upregulated expression of stretch/swelling-activated chloride currents. Pharmacological blockade of the specific potassium channels does not prevent the transition, whereas blockade of chloride channels does, suggesting that this current may be involved in phase changes. Interestingly, this chloride current is far less studied than the potassium currents with regard to the different microglial phases. One puzzling finding when studying microglial state is that despite changes in current densities and membrane oscillations during transition, there is no evidence of an accompanying change in membrane potential. In other cells of the immune system, membrane oscillations and alterations in membrane potential are correlated with transitions in cellular phases. This discrepancy in microglia may be a result of the fact that almost all ion channel and membrane potential studies in culture are undertaken with concomitant dialysis of cytoplasm with pipette solution. Further complicating matters is that the few studies that use microglia in situ, find fundamental differences in ion channel current patterns of "resting" microglia as well as different temporal changes to pathological events or stimuli.
Collapse
Affiliation(s)
- W Walz
- Department of Physiology, University of Saskatchewan, Saskatoon, Canada.
| | | |
Collapse
|
17
|
Towbin JA, Vatta M, Li H. Genetics of brugada, long QT, and arrhythmogenic right ventricular dysplasia syndromes. J Electrocardiol 2001; 33 Suppl:11-22. [PMID: 11265709 DOI: 10.1054/jelc.2000.20361] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This article outlines the up-to-date understanding of the molecular basis of primary ventricular arrhythmias. Two disorders have recently been well described at the molecular level, the long QT syndromes and Brugada syndrome, and this article reviews the current scientific knowledge of each disease. A third disorder, arrhythmogenic right ventricular dysplasia, which is on the cusp of understanding, will also be described.
Collapse
Affiliation(s)
- J A Towbin
- Department of Pediatrics (Cardiology), Texas Children's Hospital and Baylor College of Medicine, Houston 77030, USA.
| | | | | |
Collapse
|
18
|
Abstract
OBJECTIVES To describe the state of the art of our understanding of the long QT syndromes and to provide the genetic correlation of clinical severity of patients with this disorder. DATE SOURCES In this review, we outline data that were obtained from work in our laboratory, as well as information reported in the literature. STUDY SELECTION The information in this review spans the last decade; data were obtained from the studies that had the most impact, as well as from recent work at our laboratory. DATA EXTRACTION The data reported herein were extracted from the world literature on sudden death and the clinical aspects of long QT syndrome. The genes identified to date, mutations in these genes, and the biophysical perturbations in the mutated ion channels, as well as the severity of disease, are detailed. DATA SYNTHESIS The extracted data are described as a state-of-the-art review. CONCLUSIONS The long QT syndromes, genetically heterogeneous disorders due to mutations in genes encoding ion channels, are relatively common causes of syncope and sudden death. The affected genes, along with the genetic background of individuals, determine the clinical severity of disease. An understanding of the mechanisms responsible for long QT syndrome is expected to enable development of specific therapies.
Collapse
Affiliation(s)
- J A Towbin
- Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston 77030, USA
| | | | | |
Collapse
|
19
|
Abstract
In this review, the up-to-date understanding of the molecular basis of primary ventricular arrhythmias will be outlined. Two disorders have recently been well described at the molecular level, the long QT syndromes and Brugada syndrome, and in this paper we review the current scientific knowledge of each disease.
Collapse
Affiliation(s)
- M Vatta
- Department of Pediatrics (Cardiology), Texas Children's Hospital, Houston, USA
| | | | | |
Collapse
|
20
|
Schäfer R, Wulfsen I, Behrens S, Weinsberg F, Bauer CK, Schwarz JR. The erg-like potassium current in rat lactotrophs. J Physiol 1999; 518 ( Pt 2):401-16. [PMID: 10381588 PMCID: PMC2269429 DOI: 10.1111/j.1469-7793.1999.0401p.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. The ether-à-go-go-related gene (erg)-like K+ current in rat lactotrophs from primary culture was characterized and compared with that in clonal rat pituitary cells (GH3/B6). The class III antiarrhythmic E-4031 known to block specifically erg K+ channels was used to isolate the erg-like current as the E-4031-sensitive current. The experiments were performed in 150 mM K+ external solution using the patch-clamp technique. 2. The erg-like K+ current elicited with hyperpolarizing pulses negative to -100 mV consisted of a fast and a pronounced slowly deactivating current component. The contribution of the slow component to the total current amplitude was potential dependent and varied from cell to cell. At -100 mV it ranged from 50 to 85% and at -140 mV from 21 to 45%. 3. The potential-dependent channel availability curves determined with 2 s prepulses were fitted with the sum of two Boltzmann functions. The function related to the slowly deactivating component of the erg-like current was shifted by more than 40 mV to more negative membrane potentials compared with that of the fast component. 4. In contrast to that of native lactotrophs studied under identical conditions, the erg-like K+ current of GH3/B6 cells was characterized by a predominant fast deactivating current component, with similar kinetic and steady-state properties to the fast deactivating current component of native lactotrophs. 5. Thyrotrophin-releasing hormone reduced the erg-like current in native lactotrophs via an intracellular signal cascade which seemed to involve a pathway independent from protein kinase A and protein kinase C. 6. RT-PCR studies on cytoplasm from single lactotrophs revealed the presence of mRNA of the rat homologue of the human ether-à-go-go-related gene HERG (r-erg1) as well as mRNA of the two other cloned r-erg cDNAs (r-erg2 and r-erg3) in different combinations. In GH3/B6 cells, only the transcripts of r-erg1 and r-erg2 were found.
Collapse
Affiliation(s)
- R Schäfer
- Abteilung fur angewandte Physiologie, Physiologisches Institut, Universitats-Krankenhaus Eppendorf, Universitat Hamburg, D-20246 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Johnson JP, Mullins FM, Bennett PB. Human ether-à-go-go-related gene K+ channel gating probed with extracellular ca2+. Evidence for two distinct voltage sensors. J Gen Physiol 1999; 113:565-80. [PMID: 10102937 PMCID: PMC2217168 DOI: 10.1085/jgp.113.4.565] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Human ether-à-go-go-related gene (HERG) encoded K+ channels were expressed in Chinese hamster ovary (CHO-K1) cells and studied by whole-cell voltage clamp in the presence of varied extracellular Ca2+ concentrations and physiological external K+. Elevation of external Ca2+ from 1.8 to 10 mM resulted in a reduction of whole-cell K+ current amplitude, slowed activation kinetics, and an increased rate of deactivation. The midpoint of the voltage dependence of activation was also shifted +22.3 +/- 2.5 mV to more depolarized potentials. In contrast, the kinetics and voltage dependence of channel inactivation were hardly affected by increased extracellular Ca2+. Neither Ca2+ screening of diffuse membrane surface charges nor open channel block could explain these changes. However, selective changes in the voltage-dependent activation, but not inactivation gating, account for the effects of Ca2+ on Human ether-à-go-go-related gene current amplitude and kinetics. The differential effects of extracellular Ca2+ on the activation and inactivation gating indicate that these processes have distinct voltage-sensing mechanisms. Thus, Ca2+ appears to directly interact with externally accessible channel residues to alter the membrane potential detected by the activation voltage sensor, yet Ca2+ binding to this site is ineffective in modifying the inactivation gating machinery.
Collapse
Affiliation(s)
- J P Johnson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6602, USA
| | | | | |
Collapse
|
22
|
Zhou W, Cayabyab FS, Pennefather PS, Schlichter LC, DeCoursey TE. HERG-like K+ channels in microglia. J Gen Physiol 1998; 111:781-94. [PMID: 9607936 PMCID: PMC2217149 DOI: 10.1085/jgp.111.6.781] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/1997] [Accepted: 03/18/1998] [Indexed: 11/21/2022] Open
Abstract
A voltage-gated K+ conductance resembling that of the human ether-à-go-go-related gene product (HERG) was studied using whole-cell voltage-clamp recording, and found to be the predominant conductance at hyperpolarized potentials in a cell line (MLS-9) derived from primary cultures of rat microglia. Its behavior differed markedly from the classical inward rectifier K+ currents described previously in microglia, but closely resembled HERG currents in cardiac muscle and neuronal tissue. The HERG-like channels opened rapidly on hyperpolarization from 0 mV, and then decayed slowly into an absorbing closed state. The peak K+ conductance-voltage relation was half maximal at -59 mV with a slope factor of 18.6 mV. Availability, assessed by a hyperpolarizing test pulse from different holding potentials, was more steeply voltage dependent, and the midpoint was more positive (-14 vs. -39 mV) when determined by making the holding potential progressively more positive than more negative. The origin of this hysteresis is explored in a companion paper (Pennefather, P.S., W. Zhou, and T.E. DeCoursey. 1998. J. Gen. Physiol. 111:795-805). The pharmacological profile of the current differed from classical inward rectifier but closely resembled HERG. Block by Cs+ or Ba2+ occurred only at millimolar concentrations, La3+ blocked with Ki = approximately 40 microM, and the HERG-selective blocker, E-4031, blocked with Ki = 37 nM. Implications of the presence of HERG-like K+ channels for the ontogeny of microglia are discussed.
Collapse
Affiliation(s)
- W Zhou
- Department of Molecular Biophysics and Physiology, Rush Presbyterian St. Luke's Medical Center, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|