1
|
Frederiksen R, Bonezzi PJ, Fain GL, Sampath AP. The Role of the Ca 2+-activated Cl - Conductance in the Membrane Potential and Light Response of Mouse Rods. J Neurosci 2025; 45:e1920242025. [PMID: 40280711 PMCID: PMC12121711 DOI: 10.1523/jneurosci.1920-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/06/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025] Open
Abstract
To characterize the function of the Ca2+-activated Cl- current I Cl(Ca) in mammalian rod photoreceptors, we made patch-clamp recordings from retinal slices of mice (Mus musculus) of both sexes that lack Ano2 (TMEM16B). Depolarizing voltage ramps in solutions blocking K+ currents elicited a large outward current inhibited by the Cl- channel blocker niflumic acid; this current was absent in Ano2-/- rods. The membrane potential of Ano2-/- rods was 10-15 mV more depolarized in darkness than WT or Cx36-/- rods, indicating a substantial resting Cl- permeability. Rod outer-segment photocurrents were similar in waveform and amplitude in Ano2-/- and Cx36-/- rods, but photovoltages in Ano2-/- rods were nearly doubled. Measurements of light-response reversal potentials in rods with and without Ano2 suggest that the outer-segment conductance is nearly linear with a reversal potential of -9 mV and that [Formula: see text] increases during the light response. Using these results, we estimated E Cl from permeabilized patch recordings of reversal potentials of Cx36-/- rods to have a mean value of -35 mV near the rod resting potential, but other evidence suggests that E Cl may be more positive by as much as 10-15 mV. Thus activation of I Cl(Ca) during the light response would be depolarizing. At dim intensities, the photocurrents of downstream rod bipolar cells were larger and about twice as sensitive in Ano2-/- retinas with reduced nonlinearity. These experiments show that Ca2+-activated Cl- currents in mammalian rods have more important roles in photoreceptor physiology than previously appreciated.
Collapse
Affiliation(s)
- Rikard Frederiksen
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-7000
| | - Paul J Bonezzi
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-7000
| | - Gordon L Fain
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-7000
| | - Alapakkam P Sampath
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-7000
| |
Collapse
|
2
|
Maddox JW, Ordemann GJ, de la Rosa Vázquez JAM, Huang A, Gault C, Wisner SR, Randall K, Futagi D, Salem NA, Mayfield D, Zemelman BV, DeVries S, Hoon M, Lee A. A non-conducting role of the Ca v1.4 Ca 2+ channel drives homeostatic plasticity at the cone photoreceptor synapse. eLife 2024; 13:RP94908. [PMID: 39531384 PMCID: PMC11556788 DOI: 10.7554/elife.94908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
In congenital stationary night blindness, type 2 (CSNB2)-a disorder involving the Cav1.4 (L-type) Ca2+ channel-visual impairment is mild considering that Cav1.4 mediates synaptic release from rod and cone photoreceptors. Here, we addressed this conundrum using a Cav1.4 knockout (KO) mouse and a knock-in (G369i KI) mouse expressing a non-conducting Cav1.4. Surprisingly, Cav3 (T-type) Ca2+ currents were detected in cones of G369i KI mice and Cav1.4 KO mice but not in cones of wild-type mouse, ground squirrels, and macaque retina. Whereas Cav1.4 KO mice are blind, G369i KI mice exhibit normal photopic (i.e. cone-mediated) visual behavior. Cone synapses, which fail to form in Cav1.4 KO mice, are present, albeit enlarged, and with some errors in postsynaptic wiring in G369i KI mice. While Cav1.4 KO mice lack evidence of cone synaptic responses, electrophysiological recordings in G369i KI mice revealed nominal transmission from cones to horizontal cells and bipolar cells. In CSNB2, we propose that Cav3 channels maintain cone synaptic output provided that the nonconducting role of Cav1.4 in cone synaptogenesis remains intact. Our findings reveal an unexpected form of homeostatic plasticity that relies on a non-canonical role of an ion channel.
Collapse
Affiliation(s)
- J Wesley Maddox
- Department of Neuroscience, University of Texas-AustinAustinUnited States
| | - Gregory J Ordemann
- Department of Neuroscience, University of Texas-AustinAustinUnited States
| | | | - Angie Huang
- Department of Neuroscience, University of Texas-AustinAustinUnited States
| | - Christof Gault
- Department of Neuroscience, University of Texas-AustinAustinUnited States
| | - Serena R Wisner
- Department of Ophthalmology and Visual Sciences, University of Wisconsin- MadisonMadisonUnited States
- Neuroscience Training Program, University of Wisconsin-MadisonMadisonUnited States
| | - Kate Randall
- Department of Neuroscience, University of Texas-AustinAustinUnited States
| | - Daiki Futagi
- Department of Ophthalmology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Nihal A Salem
- Department of Neuroscience, University of Texas-AustinAustinUnited States
| | - Dayne Mayfield
- Department of Neuroscience, University of Texas-AustinAustinUnited States
| | - Boris V Zemelman
- Department of Neuroscience, University of Texas-AustinAustinUnited States
| | - Steven DeVries
- Department of Ophthalmology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Mrinalini Hoon
- Department of Ophthalmology and Visual Sciences, University of Wisconsin- MadisonMadisonUnited States
- McPherson Eye Research InstituteMadisonUnited States
| | - Amy Lee
- Department of Neuroscience, University of Texas-AustinAustinUnited States
| |
Collapse
|
3
|
Chen Q, Ingram NT, Baudin J, Angueyra JM, Sinha R, Rieke F. Predictably manipulating photoreceptor light responses to reveal their role in downstream visual responses. eLife 2024; 13:RP93795. [PMID: 39498955 PMCID: PMC11537484 DOI: 10.7554/elife.93795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
Computation in neural circuits relies on the judicious use of nonlinear circuit components. In many cases, multiple nonlinear components work collectively to control circuit outputs. Separating the contributions of these different components is difficult, and this limits our understanding of the mechanistic basis of many important computations. Here, we introduce a tool that permits the design of light stimuli that predictably alter rod and cone phototransduction currents - including stimuli that compensate for nonlinear properties such as light adaptation. This tool, based on well-established models for the rod and cone phototransduction cascade, permits the separation of nonlinearities in phototransduction from those in downstream circuits. This will allow, for example, direct tests of how adaptation in rod and cone phototransduction affects downstream visual signals and perception.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Norianne T Ingram
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Jacob Baudin
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Juan M Angueyra
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Raunak Sinha
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Fred Rieke
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| |
Collapse
|
4
|
Chen Q, Ingram NT, Baudin J, Angueyra JM, Sinha R, Rieke F. Predictably manipulating photoreceptor light responses to reveal their role in downstream visual responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.20.563304. [PMID: 37961603 PMCID: PMC10634684 DOI: 10.1101/2023.10.20.563304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Computation in neural circuits relies on the judicious use of nonlinear circuit components. In many cases, multiple nonlinear components work collectively to control circuit outputs. Separating the contributions of these different components is difficult, and this limits our understanding of the mechanistic basis of many important computations. Here, we introduce a tool that permits the design of light stimuli that predictably alter rod and cone phototransduction currents - including stimuli that compensate for nonlinear properties such as light adaptation. This tool, based on well-established models for the rod and cone phototransduction cascade, permits the separation of nonlinearities in phototransduction from those in downstream circuits. This will allow, for example, direct tests of how adaptation in rod and cone phototransduction affects downstream visual signals and perception.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Norianne T. Ingram
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Jacob Baudin
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | | | | | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| |
Collapse
|
5
|
Maddox JW, Ordemann GJ, de la Rosa Vázquez J, Huang A, Gault C, Wisner SR, Randall K, Futagi D, Salem NA, Mayfield RD, Zemelman BV, DeVries SH, Hoon M, Lee A. A non-conducting role of the Ca v1.4 Ca 2+ channel drives homeostatic plasticity at the cone photoreceptor synapse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.05.570129. [PMID: 38106079 PMCID: PMC10723350 DOI: 10.1101/2023.12.05.570129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
In congenital stationary night blindness type 2 (CSNB2)-a disorder involving the Cav1.4 (L-type) Ca2+ channel-visual impairment is mild considering that Cav1.4 mediates synaptic release from rod and cone photoreceptors. Here, we addressed this conundrum using a Cav1.4 knockout (KO) mouse and a knock-in (G369i KI) mouse expressing a non-conducting Cav1.4. Surprisingly, Cav3 (T-type) Ca2+ currents were detected in cones of G369i KI mice and Cav1.4 KO mice but not in cones of wild-type mouse, ground squirrel, and macaque retina. Whereas Cav1.4 KO mice are blind, G369i KI mice exhibit normal photopic (i.e., cone-mediated) visual behavior. Cone synapses, which fail to form in Cav1.4 KO mice, are present, albeit enlarged, and with some errors in postsynaptic wiring in G369i KI mice. While Cav1.4 KO mice lack evidence of cone synaptic responses, electrophysiological recordings in G369i KI mice revealed nominal transmission from cones to horizontal cells and bipolar cells. In CSNB2, we propose that Cav3 channels maintain cone synaptic output provided that the nonconducting role of Cav1.4 in cone synaptogenesis remains intact. Our findings reveal an unexpected form of homeostatic plasticity that relies on a non-canonical role of an ion channel.
Collapse
Affiliation(s)
- J. Wesley Maddox
- Dept of Neuroscience, University of Texas-Austin, Austin, TX 78712, USA
- These authors contributed equally
| | - Gregory J. Ordemann
- Dept of Neuroscience, University of Texas-Austin, Austin, TX 78712, USA
- These authors contributed equally
| | | | - Angie Huang
- Dept of Neuroscience, University of Texas-Austin, Austin, TX 78712, USA
| | - Christof Gault
- Dept of Neuroscience, University of Texas-Austin, Austin, TX 78712, USA
| | - Serena R. Wisner
- Dept. of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison WI 53706 USA
| | - Kate Randall
- Dept of Neuroscience, University of Texas-Austin, Austin, TX 78712, USA
| | - Daiki Futagi
- Dept. of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Nihal A. Salem
- Dept of Neuroscience, University of Texas-Austin, Austin, TX 78712, USA
| | - R. Dayne Mayfield
- Dept of Neuroscience, University of Texas-Austin, Austin, TX 78712, USA
| | - Boris V. Zemelman
- Dept of Neuroscience, University of Texas-Austin, Austin, TX 78712, USA
| | - Steven H. DeVries
- Dept. of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Mrinalini Hoon
- Dept. of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
- McPherson Eye Research Institute, Madison WI 53706 USA
| | - Amy Lee
- Dept of Neuroscience, University of Texas-Austin, Austin, TX 78712, USA
| |
Collapse
|
6
|
Sun Y, Hao M, Wu H, Zhang C, Wei D, Li S, Song Z, Tao Y. Unveiling the role of CaMKII in retinal degeneration: from biological mechanism to therapeutic strategies. Cell Biosci 2024; 14:59. [PMID: 38725013 PMCID: PMC11084033 DOI: 10.1186/s13578-024-01236-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a family of broad substrate specificity serine (Ser)/threonine (Thr) protein kinases that play a crucial role in the Ca2+-dependent signaling pathways. Its significance as an intracellular Ca2+ sensor has garnered abundant research interest in the domain of neurodegeneration. Accumulating evidences suggest that CaMKII is implicated in the pathology of degenerative retinopathies such as diabetic retinopathy (DR), age-related macular degeneration (AMD), retinitis pigmentosa (RP) and glaucoma optic neuropathy. CaMKII can induce the aberrant proliferation of retinal blood vessels, influence the synaptic signaling, and exert dual effects on the survival of retinal ganglion cells and pigment epithelial cells. Researchers have put forth multiple therapeutic agents, encompassing small molecules, peptides, and nucleotides that possess the capability to modulate CaMKII activity. Due to its broad range isoforms and splice variants therapeutic strategies seek to inhibit specifically the CaMKII are confronted with considerable challenges. Therefore, it becomes crucial to discern the detrimental and advantageous aspects of CaMKII, thereby facilitating the development of efficacious treatment. In this review, we summarize recent research findings on the cellular and molecular biology of CaMKII, with special emphasis on its metabolic and regulatory mechanisms. We delve into the involvement of CaMKII in the retinal signal transduction pathways and discuss the correlation between CaMKII and calcium overload. Furthermore, we elaborate the therapeutic trials targeting CaMKII, and introduce recent developments in the zone of CaMKII inhibitors. These findings would enrich our knowledge of CaMKII, and shed light on the development of a therapeutic target for degenerative retinopathy.
Collapse
Affiliation(s)
- Yuxin Sun
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Mengyu Hao
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Hao Wu
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Chengzhi Zhang
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Wei
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyu Li
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongming Song
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
7
|
Morshedian A, Jiang Z, Radu RA, Fain GL, Sampath AP. Genetic manipulation of rod-cone differences in mouse retina. PLoS One 2024; 19:e0300584. [PMID: 38709779 PMCID: PMC11073714 DOI: 10.1371/journal.pone.0300584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/01/2024] [Indexed: 05/08/2024] Open
Abstract
Though rod and cone photoreceptors use similar phototransduction mechanisms, previous model calculations have indicated that the most important differences in their light responses are likely to be differences in amplification of the G-protein cascade, different decay rates of phosphodiesterase (PDE) and pigment phosphorylation, and different rates of turnover of cGMP in darkness. To test this hypothesis, we constructed TrUx;GapOx rods by crossing mice with decreased transduction gain from decreased transducin expression, with mice displaying an increased rate of PDE decay from increased expression of GTPase-activating proteins (GAPs). These two manipulations brought the sensitivity of TrUx;GapOx rods to within a factor of 2 of WT cone sensitivity, after correcting for outer-segment dimensions. These alterations did not, however, change photoreceptor adaptation: rods continued to show increment saturation though at a higher background intensity. These experiments confirm model calculations that rod responses can mimic some (though not all) of the features of cone responses after only a few changes in the properties of transduction proteins.
Collapse
Affiliation(s)
- Ala Morshedian
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Zhichun Jiang
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Roxana A. Radu
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Gordon L. Fain
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Alapakkam P. Sampath
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| |
Collapse
|
8
|
Abtout A, Reingruber J. Analysis of dim-light responses in rod and cone photoreceptors with altered calcium kinetics. J Math Biol 2023; 87:69. [PMID: 37823947 PMCID: PMC10570263 DOI: 10.1007/s00285-023-02005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Rod and cone photoreceptors in the retina of vertebrates are the primary sensory neurons underlying vision. They convert light into an electrical current using a signal transduction pathway that depends on Ca[Formula: see text] feedback. It is known that manipulating the Ca[Formula: see text] kinetics affects the response shape and the photoreceptor sensitivity, but a precise quantification of these effects remains unclear. We have approached this task in mouse retina by combining numerical simulations with mathematical analysis. We consider a parsimonious phototransduction model that incorporates negative Ca[Formula: see text] feedback onto the synthesis of cyclic GMP, and fast buffering reactions to alter the Ca[Formula: see text] kinetics. We derive analytic results for the photoreceptor functioning in sufficiently dim light conditions depending on the photoreceptor type. We exploit these results to obtain conceptual and quantitative insight into how response waveform and amplitude depend on the underlying biophysical processes and the Ca[Formula: see text] feedback. With a low amount of buffering, the Ca[Formula: see text] concentration changes in proportion to the current, and responses to flashes of light are monophasic. With more buffering, the change in the Ca[Formula: see text] concentration becomes delayed with respect to the current, which gives rise to a damped oscillation and a biphasic waveform. This shows that biphasic responses are not necessarily a manifestation of slow buffering reactions. We obtain analytic approximations for the peak flash amplitude as a function of the light intensity, which shows how the photoreceptor sensitivity depends on the biophysical parameters. Finally, we study how changing the extracellular Ca[Formula: see text] concentration affects the response.
Collapse
Affiliation(s)
- Annia Abtout
- Institute of Biology, Ecole Normale Supérieure, Paris, France
| | - Jürgen Reingruber
- Institute of Biology, Ecole Normale Supérieure, Paris, France.
- INSERM, U1024, Paris, France.
| |
Collapse
|
9
|
Bonezzi PJ, Tarchick MJ, Moore BD, Renna JM. Light drives the developmental progression of outer retinal function. J Gen Physiol 2023; 155:e202213262. [PMID: 37432412 PMCID: PMC10336150 DOI: 10.1085/jgp.202213262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/24/2023] [Accepted: 06/08/2023] [Indexed: 07/12/2023] Open
Abstract
The complex nature of rod and cone photoreceptors and the light-evoked responsivity of bipolar cells in the mature rodent retina have been well characterized. However, little is known about the emergent light-evoked response properties of the mouse retina and the role light plays in shaping these emergent responses. We have previously demonstrated that the outer retina is responsive to green light as early as postnatal day 8 (P8). Here, we characterize the progression of both photoreceptors (rods and cones) and bipolar cell responses during development and into adulthood using ex vivo electroretinogram recordings. Our data show that the majority of photoreceptor response at P8 originates from cones and that these outputs drive second-order bipolar cell responses as early as P9. We find that the magnitude of the photoresponse increases concurrently with each passing day of postnatal development and that many functional properties of these responses, as well as the relative rod/cone contributions to the total light-evoked response, are age dependent. We compare these responses at eye opening and maturity to age-matched animals raised in darkness and found that the absence of light diminishes emergent and mature cone-to-bipolar cell signaling. Furthermore, we found cone-evoked responses to be significantly slower in dark-reared retinas. Together, this work characterizes the developmental photoresponsivity of the mouse retina while highlighting the importance of properly timed sensory input for the maturation of the first visual system synapse.
Collapse
Affiliation(s)
- Paul J. Bonezzi
- Department of Biology, The University of Akron, Akron, OH, USA
| | | | | | - Jordan M. Renna
- Department of Biology, The University of Akron, Akron, OH, USA
| |
Collapse
|
10
|
Muangkram Y, Himeno Y, Amano A. Clarifying the composition of the ATP consumption factors required for maintaining ion homeostasis in mouse rod photoreceptors. Sci Rep 2023; 13:14161. [PMID: 37644037 PMCID: PMC10465610 DOI: 10.1038/s41598-023-40663-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
To date, no effective treatment has been established for photoreceptor loss due to energy imbalances, but numerous therapeutic approaches have reported some success in slowing photoreceptor degeneration by downregulating energy demand. However, the detailed mechanisms remain unclear. This study aimed to clarify the composition of ATP consumption factors in photoreceptors in darkness and in light. We introduced mathematical formulas for ionic current activities combined with a phototransduction model to form a new mathematical model for estimating the energy expenditure of each ionic current. The proposed model included various ionic currents identified in mouse rods using a gene expression database incorporating an available electrophysiological recording of each specific gene. ATP was mainly consumed by Na+/K+-ATPase and plasma membrane Ca2+-ATPase pumps to remove excess Na+ and Ca2+. The rod consumed 7 [Formula: see text] 107 molecules of ATP s-1, where 65% was used to remove ions from the cyclic nucleotide-gated channel and 20% from the hyperpolarization-activated current in darkness. Increased light intensity raised the energy requirements of the complex phototransduction cascade mechanisms. Nevertheless, the overall energy consumption was less than that in darkness due to the significant reduction in ATPase activities, where the hyperpolarization-activated current proportion increased to 83%. A better understanding of energy demand/supply may provide an effective tool for investigating retinal pathophysiological changes and analyzing novel therapeutic treatments related to the energy consumption of photoreceptors.
Collapse
Affiliation(s)
- Yuttamol Muangkram
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Shiga, Japan.
| | - Yukiko Himeno
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Shiga, Japan
| | - Akira Amano
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Shiga, Japan
| |
Collapse
|
11
|
Griffis KG, Fehlhaber KE, Rieke F, Sampath AP. Light Adaptation of Retinal Rod Bipolar Cells. J Neurosci 2023; 43:4379-4389. [PMID: 37208176 PMCID: PMC10278674 DOI: 10.1523/jneurosci.0444-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/07/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023] Open
Abstract
The sensitivity of retinal cells is altered in background light to optimize the detection of contrast. For scotopic (rod) vision, substantial adaptation occurs in the first two cells, the rods and rod bipolar cells (RBCs), through sensitivity adjustments in rods and postsynaptic modulation of the transduction cascade in RBCs. To study the mechanisms mediating these components of adaptation, we made whole-cell, voltage-clamp recordings from retinal slices of mice from both sexes. Adaptation was assessed by fitting the Hill equation to response-intensity relationships with the parameters of half-maximal response (I1/2 ), Hill coefficient (n), and maximum response amplitude (Rmax ). We show that rod sensitivity decreases in backgrounds according to the Weber-Fechner relation with an I1/2 of ∼50 R* s-1 The sensitivity of RBCs follows a near-identical function, indicating that changes in RBC sensitivity in backgrounds bright enough to adapt the rods are mostly derived from the rods themselves. Backgrounds too dim to adapt the rods can however alter n, relieving a synaptic nonlinearity likely through entry of Ca2+ into the RBCs. There is also a surprising decrease of Rmax , indicating that a step in RBC synaptic transduction is desensitized or that the transduction channels became reluctant to open. This effect is greatly reduced after dialysis of BAPTA at a membrane potential of +50 mV to impede Ca2+ entry. Thus the effects of background illumination in RBCs are in part the result of processes intrinsic to the photoreceptors and in part derive from additional Ca2+-dependent processes at the first synapse of vision.SIGNIFICANCE STATEMENT Light adaptation adjusts the sensitivity of vision as ambient illumination changes. Adaptation for scotopic (rod) vision is known to occur partly in the rods and partly in the rest of the retina from presynaptic and postsynaptic mechanisms. We recorded light responses of rods and rod bipolar cells to identify different components of adaptation and study their mechanisms. We show that bipolar-cell sensitivity largely follows adaptation of the rods but that light too dim to adapt the rods produces a linearization of the bipolar-cell response and a surprising decrease in maximum response amplitude, both mediated by a change in intracellular Ca2+ These findings provide a new understanding of how the retina responds to changing illumination.
Collapse
Affiliation(s)
- Khris G Griffis
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095
| | - Katherine E Fehlhaber
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - Alapakkam P Sampath
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
12
|
Ellis EM, Paniagua AE, Scalabrino ML, Thapa M, Rathinavelu J, Jiao Y, Williams DS, Field GD, Fain GL, Sampath AP. Cones and cone pathways remain functional in advanced retinal degeneration. Curr Biol 2023; 33:1513-1522.e4. [PMID: 36977418 PMCID: PMC10133175 DOI: 10.1016/j.cub.2023.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/14/2022] [Accepted: 03/03/2023] [Indexed: 03/29/2023]
Abstract
Most defects causing retinal degeneration in retinitis pigmentosa (RP) are rod-specific mutations, but the subsequent degeneration of cones, which produces loss of daylight vision and high-acuity perception, is the most debilitating feature of the disease. To understand better why cones degenerate and how cone vision might be restored, we have made the first single-cell recordings of light responses from degenerating cones and retinal interneurons after most rods have died and cones have lost their outer-segment disk membranes and synaptic pedicles. We show that degenerating cones have functional cyclic-nucleotide-gated channels and can continue to give light responses, apparently produced by opsin localized either to small areas of organized membrane near the ciliary axoneme or distributed throughout the inner segment. Light responses of second-order horizontal and bipolar cells are less sensitive but otherwise resemble those of normal retina. Furthermore, retinal output as reflected in responses of ganglion cells is less sensitive but maintains spatiotemporal receptive fields at cone-mediated light levels. Together, these findings show that cones and their retinal pathways can remain functional even as degeneration is progressing, an encouraging result for future research aimed at enhancing the light sensitivity of residual cones to restore vision in patients with genetically inherited retinal degeneration.
Collapse
Affiliation(s)
- Erika M Ellis
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095-7000, USA
| | - Antonio E Paniagua
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095-7000, USA
| | - Miranda L Scalabrino
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095-7000, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mishek Thapa
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095-7000, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jay Rathinavelu
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yuekan Jiao
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095-7000, USA
| | - David S Williams
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095-7000, USA.
| | - Greg D Field
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095-7000, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Gordon L Fain
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095-7000, USA.
| | - Alapakkam P Sampath
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095-7000, USA.
| |
Collapse
|
13
|
Samimi K, Pattnaik BR, Capowski EE, Saha K, Gamm DM, Skala MC. In situ autofluorescence lifetime assay of a photoreceptor stimulus response in mouse retina and human retinal organoids. BIOMEDICAL OPTICS EXPRESS 2022; 13:3476-3492. [PMID: 35781966 PMCID: PMC9208582 DOI: 10.1364/boe.455783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/25/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Photoreceptors are the key functional cell types responsible for the initiation of vision in the retina. Phototransduction involves isomerization and conversion of vitamin A compounds, known as retinoids, and their recycling through the visual cycle. We demonstrate a functional readout of the visual cycle in photoreceptors within stem cell-derived retinal organoids and mouse retinal explants based on spectral and lifetime changes in autofluorescence of the visual cycle retinoids after exposure to light or chemical stimuli. We also apply a simultaneous two- and three-photon excitation method that provides specific signals and increases contrast between these retinoids, allowing for reliable detection of their presence and conversion within photoreceptors. This multiphoton imaging technique resolves the slow dynamics of visual cycle reactions and can enable high-throughput functional screening of retinal tissues and organoid cultures with single-cell resolution.
Collapse
Affiliation(s)
- Kayvan Samimi
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Bikash R. Pattnaik
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Krishanu Saha
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David M. Gamm
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, WI 53715, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
14
|
Ishibashi M, Keung J, Morgans CW, Aicher SA, Carroll JR, Singer JH, Jia L, Li W, Fahrenfort I, Ribelayga CP, Massey SC. Analysis of rod/cone gap junctions from the reconstruction of mouse photoreceptor terminals. eLife 2022; 11:73039. [PMID: 35471186 PMCID: PMC9170248 DOI: 10.7554/elife.73039] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
Electrical coupling, mediated by gap junctions, contributes to signal averaging, synchronization, and noise reduction in neuronal circuits. In addition, gap junctions may also provide alternative neuronal pathways. However, because they are small and especially difficult to image, gap junctions are often ignored in large-scale 3D reconstructions. Here, we reconstruct gap junctions between photoreceptors in the mouse retina using serial blockface-scanning electron microscopy, focused ion beam-scanning electron microscopy, and confocal microscopy for the gap junction protein Cx36. An exuberant spray of fine telodendria extends from each cone pedicle (including blue cones) to contact 40-50 nearby rod spherules at sites of Cx36 labeling, with approximately 50 Cx36 clusters per cone pedicle and 2-3 per rod spherule. We were unable to detect rod/rod or cone/cone coupling. Thus, rod/cone coupling accounts for nearly all gap junctions between photoreceptors. We estimate a mean of 86 Cx36 channels per rod/cone pair, which may provide a maximum conductance of ~1200 pS, if all gap junction channels were open. This is comparable to the maximum conductance previously measured between rod/cone pairs in the presence of a dopamine antagonist to activate Cx36, suggesting that the open probability of gap junction channels can approach 100% under certain conditions.
Collapse
Affiliation(s)
- Munenori Ishibashi
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| | - Joyce Keung
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| | - Catherine W Morgans
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, United States
| | - Sue A Aicher
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, United States
| | - James R Carroll
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, United States
| | - Joshua H Singer
- Department of Biology, University of Maryland, College Park, College Park, United States
| | - Li Jia
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Iris Fahrenfort
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| | - Christophe P Ribelayga
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| | - Stephen C Massey
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| |
Collapse
|
15
|
Frederiksen R, Fain GL, Sampath AP. A hyperpolarizing rod bipolar cell in the sea lamprey, Petromyzon marinus. J Exp Biol 2022; 225:jeb243949. [PMID: 35319772 PMCID: PMC10658897 DOI: 10.1242/jeb.243949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/15/2022] [Indexed: 11/20/2022]
Abstract
Retinal bipolar cells receive direct input from rod and cone photoreceptors and send axons into the inner retina, synapsing onto amacrine and ganglion cells. Bipolar cell responses can be either depolarizing (ON) or hyperpolarizing (OFF); in lower vertebrates, bipolar cells receive mixed rod and cone input, whereas in mammals, input is mostly segregated into 14 classes of cone ON and OFF cells and a single rod ON bipolar cell. We show that lamprey, like mammals, have rod bipolar cells with little or no cone input, but these cells are OFF rather than ON. They have a characteristic morphology and a spectral sensitivity nearly indistinguishable from that of rod photoreceptors. In background light known to saturate rods, rod bipolar cells are also saturated and cannot respond to increment flashes. Our results suggest that early vertebrate progenitors of both agnathans and gnathostomes may have had a more fluid retinal organization than previously thought.
Collapse
Affiliation(s)
- Rikard Frederiksen
- Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-7000, USA
| | - Gordon L. Fain
- Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-7000, USA
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095-7239, USA
| | - Alapakkam P. Sampath
- Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-7000, USA
| |
Collapse
|
16
|
Saha A, Capowski E, Fernandez Zepeda MA, Nelson EC, Gamm DM, Sinha R. Cone photoreceptors in human stem cell-derived retinal organoids demonstrate intrinsic light responses that mimic those of primate fovea. Cell Stem Cell 2022; 29:460-471.e3. [PMID: 35104442 PMCID: PMC9093561 DOI: 10.1016/j.stem.2022.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/11/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023]
Abstract
High-definition vision in humans and nonhuman primates is initiated by cone photoreceptors located within a specialized region of the retina called the fovea. Foveal cone death is the ultimate cause of central blindness in numerous retinal dystrophies, including macular degenerative diseases. 3D retinal organoids (ROs) derived from human pluripotent stem cells (hPSCs) hold tremendous promise to model and treat such diseases. To achieve this goal, RO cones should elicit robust and intrinsic light-evoked electrical responses (i.e., phototransduction) akin to adult foveal cones, which has not yet been demonstrated. Here, we show strong, graded, repetitive, and wavelength-specific light-evoked responses from RO cones. The photoresponses and membrane physiology of a significant fraction of these lab-generated cones are comparable with those of intact ex vivo primate fovea. These results greatly increase confidence in ROs as potential sources of functional human cones for cell replacement therapies, drug testing, and in vitro models of retinal dystrophies.
Collapse
Affiliation(s)
- Aindrila Saha
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Biology Training Program, University of Wisconsin, Madison, WI, USA
| | | | | | - Emma C Nelson
- Waisman Center, University of Wisconsin, Madison, WI, USA
| | - David M Gamm
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Biology Training Program, University of Wisconsin, Madison, WI, USA; Waisman Center, University of Wisconsin, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA
| | - Raunak Sinha
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Biology Training Program, University of Wisconsin, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
17
|
Iseri E, Kosta P, Paknahad J, Bouteiller JMC, Lazzi G. A Computational Model Simulates Light-Evoked Responses in the Retinal Cone Pathway. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4482-4486. [PMID: 34892214 PMCID: PMC10578446 DOI: 10.1109/embc46164.2021.9630642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Partial vision restoration on degenerated retina can be achieved by electrically stimulating the surviving retinal ganglion cells via implanted electrodes to elicit a signal corresponding to the natural response of the cells. Realistic computational models of electrical stimulation of the retina can prove useful to test different stimulation strategies and improve the performance of retinal implants. Simulation of healthy retinal networks and their dynamical response to natural light stimulation may also help us understand how retinal processing takes place via a series of electrical signals flowing through different stages of retinal processing, ultimately giving rise to visual percepts. Such models may provide further insights on retinal network processing and thus guide the design of retinal prostheses and their stimulation protocols to generate more natural percepts. This work aims to characterize the photocurrent generated by healthy cone photoreceptors in response to a light flash stimulation and the resulting membrane potential for the photoreceptors and its postsynaptic cone bipolar cells. A simple network of ten cone photoreceptors synapsing with a cone bipolar cell is simulated using the NEURON environment and validated against patch-clamp recordings of cone photoreceptors and ON-type bipolar cells (ON-BC). The results presented will be valuable in modeling light-evoked or electrically stimulated retinal networks that comprise cone pathways. The computational models and methods developed in this work will serve as an integral building block in the development of large and realistic retinal networks.Clinical Relevance- Accurate computational model of a retinal neural network can help in predicting cell responses to electrical stimulation in vision restoration therapies using prostheses. It can be leveraged to optimize the stimulation parameters to match the natural light response of the network as closely as possible.
Collapse
|
18
|
Klaus C, Caruso G, Gurevich VV, Hamm HE, Makino CL, DiBenedetto E. Phototransduction in retinal cones: Analysis of parameter importance. PLoS One 2021; 16:e0258721. [PMID: 34710119 PMCID: PMC8553137 DOI: 10.1371/journal.pone.0258721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/05/2021] [Indexed: 12/26/2022] Open
Abstract
In daylight, cone photoreceptors in the retina are responsible for the bulk of visual perception, yet compared to rods, far less is known quantitatively about their biochemistry. This is partly because it is hard to isolate and purify cone proteins. The issue is also complicated by the synergistic interaction of these parameters in producing systems biology outputs, such as photoresponse. Using a 3-D resolved, finite element model of cone outer segments, here we conducted a study of parameter significance using global sensitivity analysis, by Sobol indices, which was contextualized within the uncertainty surrounding these parameters in the available literature. The analysis showed that a subset of the parameters influencing the circulating dark current, such as the turnover rate of cGMP in the dark, may be most influential for variance with experimental flash response, while the shut-off rates of photoexcited rhodopsin and phosphodiesterase also exerted sizable effect. The activation rate of transducin by rhodopsin and the light-induced hydrolysis rate of cGMP exerted measurable effects as well but were estimated as relatively less significant. The results of this study depend on experimental ranges currently described in the literature and should be revised as these become better established. To that end, these findings may be used to prioritize parameters for measurement in future investigations.
Collapse
Affiliation(s)
- Colin Klaus
- The Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Giovanni Caruso
- CNR, Ist. Tecnologie Applicate ai Beni Culturali, Rome, Italy
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Clint L. Makino
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, United States of America
| | - Emmanuele DiBenedetto
- Department of Mathematics, Vanderbilt University, Nashville, TN, United States of America
| |
Collapse
|
19
|
Ellis EM, Frederiksen R, Morshedian A, Fain GL, Sampath AP. Separate ON and OFF pathways in vertebrate vision first arose during the Cambrian. Curr Biol 2021; 30:R633-R634. [PMID: 32516608 DOI: 10.1016/j.cub.2020.04.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Ellis et al. show that retinal ON and OFF bipolar cells, and the novel metabotropic glutamate receptors of ON bipolar-cell dendrites, are both present in lamprey. They conclude that the fundamental organizing principle of separate ON and OFF pathways first appeared in the vertebrate visual system over 500 million years ago in the late Cambrian.
Collapse
Affiliation(s)
- Erika M Ellis
- Department of Ophthalmology and Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rikard Frederiksen
- Department of Ophthalmology and Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ala Morshedian
- Department of Ophthalmology and Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Gordon L Fain
- Department of Ophthalmology and Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Alapakkam P Sampath
- Department of Ophthalmology and Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
20
|
Abtout A, Fain G, Reingruber J. Analysis of waveform and amplitude of mouse rod and cone flash responses. J Physiol 2021; 599:3295-3312. [PMID: 33977528 DOI: 10.1113/jp281225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Most vertebrate eyes have rod and cone photoreceptors, which use a signal transduction pathway consisting of many biological processes to transform light into an electrical response. We dissect and quantify the contribution of each of these processes to the photoreceptor light response by using a novel method of analysis that provides an analytical solution for the entire time course of the dim-flash light response. We find that the shape of the light response is exclusively controlled by deactivation parameters. Activation parameters scale this shape and alter the response amplitude. We show that the rising phase of the response depends on Ca2+ feedback, and we identify the deactivation parameters that control the recovery phase of the response. We devise new methods to extract values for deactivation and activation parameters from a separate analysis of response shape and response amplitude. ABSTRACT Vertebrate eyes have rod and cone photoreceptors, which use a complex transduction pathway comprising many biological processes to transform the absorption of light into an electrical response. A fundamental question in sensory transduction is how these processes contribute to the response. To study this question, we use a well-accepted phototransduction model, which we analyse with a novel method based on the log transform of the current. We derive an analytical solution that describes the entire time course of the photoreceptor response to dim flashes of light. We use this solution to dissect and quantify the contribution of each process to the response. We find that the entire dim-flash response is proportional to the flash intensity. By normalizing responses to unit amplitude, we define a waveform that is independent of the light intensity and characterizes the invariant shape of dim-flash responses. We show that this waveform is exclusively determined by deactivation rates; activation rates only scale the waveform and affect the amplitude. This analysis corrects a previous assumption that the rising phase is determined entirely by activation rates. We further show that the rising phase depends on Ca2+ feedback to the cyclase, contrary to current belief. We identify the deactivation rates that control the recovery phase of the response, and we devise new methods to extract activation and deactivation rates from an analysis of response shape and response amplitude. In summary, we provide a comprehensive understanding of how the various transduction processes produce the cellular response.
Collapse
Affiliation(s)
- Annia Abtout
- Institut de Biologie de l'École Normale Supérieure, Paris, France
| | - Gordon Fain
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA.,Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, California, USA
| | | |
Collapse
|
21
|
Cangiano L, Asteriti S. Interphotoreceptor coupling: an evolutionary perspective. Pflugers Arch 2021; 473:1539-1554. [PMID: 33988778 PMCID: PMC8370920 DOI: 10.1007/s00424-021-02572-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/13/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022]
Abstract
In the vertebrate retina, signals generated by cones of different spectral preference and by highly sensitive rod photoreceptors interact at various levels to extract salient visual information. The first opportunity for such interaction is offered by electrical coupling of the photoreceptors themselves, which is mediated by gap junctions located at the contact points of specialised cellular processes: synaptic terminals, telodendria and radial fins. Here, we examine the evolutionary pressures for and against interphotoreceptor coupling, which are likely to have shaped how coupling is deployed in different species. The impact of coupling on signal to noise ratio, spatial acuity, contrast sensitivity, absolute and increment threshold, retinal signal flow and colour discrimination is discussed while emphasising available data from a variety of vertebrate models spanning from lampreys to primates. We highlight the many gaps in our knowledge, persisting discrepancies in the literature, as well as some major unanswered questions on the actual extent and physiological role of cone-cone, rod-cone and rod-rod communication. Lastly, we point toward limited but intriguing evidence suggestive of the ancestral form of coupling among ciliary photoreceptors.
Collapse
Affiliation(s)
- Lorenzo Cangiano
- Dept. of Translational Research, University of Pisa, Via San Zeno 31, 56123, Pisa, Italy.
| | - Sabrina Asteriti
- Dept. of Translational Research, University of Pisa, Via San Zeno 31, 56123, Pisa, Italy
| |
Collapse
|
22
|
Rod Photoreceptors Avoid Saturation in Bright Light by the Movement of the G Protein Transducin. J Neurosci 2021; 41:3320-3330. [PMID: 33593858 DOI: 10.1523/jneurosci.2817-20.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 11/21/2022] Open
Abstract
Rod photoreceptors can be saturated by exposure to bright background light, so that no flash superimposed on the background can elicit a detectable response. This phenomenon, called increment saturation, was first demonstrated psychophysically by Aguilar and Stiles and has since been shown in many studies to occur in single rods. Recent experiments indicate, however, that rods may be able to avoid saturation under some conditions of illumination. We now show in ex vivo electroretinogram and single-cell recordings that in continuous and prolonged exposure even to very bright light, the rods of mice from both sexes recover as much as 15% of their dark current and that responses can persist for hours. In parallel to recovery of outer segment current is an ∼10-fold increase in the sensitivity of rod photoresponses. This recovery is decreased in transgenic mice with reduced light-dependent translocation of the G protein transducin. The reduction in outer-segment transducin together with a novel mechanism of visual-pigment regeneration within the rod itself enable rods to remain responsive over the whole of the physiological range of vision. In this way, rods are able to avoid an extended period of transduction channel closure, which is known to cause photoreceptor degeneration.SIGNIFICANCE STATEMENT Rods are initially saturated in bright light so that no flash superimposed on the background can elicit a detectable response. Frederiksen and colleagues show in whole retina and single-cell recordings that, if the background light is prolonged, rods slowly recover and can continue to produce significant responses over the entire physiological range of vision. Response recovery occurs by translocation of the G protein transducin from the rod outer to the inner segment, together with a novel mechanism of visual-pigment regeneration within the rod itself. Avoidance of saturation in bright light may be one of the principal mechanisms the retina uses to keep rod outer-segment channels from ever closing for too long a time, which is known to produce photoreceptor degeneration.
Collapse
|
23
|
Light responses of mammalian cones. Pflugers Arch 2021; 473:1555-1568. [PMID: 33742309 DOI: 10.1007/s00424-021-02551-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/24/2022]
Abstract
Cone photoreceptors provide the foundation of most of human visual experience, but because they are smaller and less numerous than rods in most mammalian retinas, much less is known about their physiology. We describe new techniques and approaches which are helping to provide a better understanding of cone function. We focus on several outstanding issues, including the identification of the features of the phototransduction cascade that are responsible for the more rapid kinetics and decreased sensitivity of the cone response, the roles of inner-segment voltage-gated and Ca2+-activated channels, the means by which cones remain responsive even in the brightest illumination, mechanisms of cone visual pigment regeneration in constant light, and energy consumption of cones in comparison to that of rods.
Collapse
|
24
|
Campbell JR, Li H, Wang Y, Kozhemyakin M, Hunt AJ, Liu X, Janz R, Heidelberger R. Phosphorylation of the Retinal Ribbon Synapse Specific t-SNARE Protein Syntaxin3B Is Regulated by Light via a Ca 2 +-Dependent Pathway. Front Cell Neurosci 2020; 14:587072. [PMID: 33192329 PMCID: PMC7606922 DOI: 10.3389/fncel.2020.587072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/11/2020] [Indexed: 12/27/2022] Open
Abstract
Neurotransmitter release at retinal ribbon-style synapses utilizes a specialized t-SNARE protein called syntaxin3B (STX3B). In contrast to other syntaxins, STX3 proteins can be phosphorylated in vitro at T14 by Ca2+/calmodulin-dependent protein kinase II (CaMKII). This modification has the potential to modulate SNARE complex formation required for neurotransmitter release in an activity-dependent manner. To determine the extent to which T14 phosphorylation occurs in vivo in the mammalian retina and characterize the pathway responsible for the in vivo phosphorylation of T14, we utilized quantitative immunofluorescence to measure the levels of STX3 and STX3 phosphorylated at T14 (pSTX3) in the synaptic terminals of mouse retinal photoreceptors and rod bipolar cells (RBCs). Results demonstrate that STX3B phosphorylation at T14 is light-regulated and dependent upon the elevation of intraterminal Ca2+. In rod photoreceptor terminals, the ratio of pSTX3 to STX3 was significantly higher in dark-adapted mice, when rods are active, than in light-exposed mice. By contrast, in RBC terminals, the ratio of pSTX3 to STX3 was higher in light-exposed mice, when these terminals are active, than in dark-adapted mice. These results were recapitulated in the isolated eyecup preparation, but only when Ca2+ was included in the external medium. In the absence of external Ca2+, pSTX3 levels remained low regardless of light/dark exposure. Using the isolated RBC preparation, we next showed that elevation of intraterminal Ca2+ alone was sufficient to increase STX3 phosphorylation at T14. Furthermore, both the non-specific kinase inhibitor staurosporine and the selective CaMKII inhibitor AIP inhibited the Ca2+-dependent increase in the pSTX3/STX3 ratio in isolated RBC terminals, while in parallel experiments, AIP suppressed RBC depolarization-evoked exocytosis, measured using membrane capacitance measurements. Our data support a novel, illumination-regulated modulation of retinal ribbon-style synapse function in which activity-dependent Ca2+ entry drives the phosphorylation of STX3B at T14 by CaMKII, which in turn, modulates the ability to form SNARE complexes required for exocytosis.
Collapse
Affiliation(s)
- Joseph R Campbell
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Hongyan Li
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yanzhao Wang
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Maxim Kozhemyakin
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Albert J Hunt
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoqin Liu
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Roger Janz
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Ruth Heidelberger
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
25
|
Bonezzi PJ, Tarchick MJ, Renna JM. Ex vivo electroretinograms made easy: performing ERGs using 3D printed components. J Physiol 2020; 598:4821-4842. [PMID: 32886799 DOI: 10.1113/jp280014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/02/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Rod and cone photoreceptors convert light into electrochemical signals that are transferred to second order cells, initiating image-forming visual processing. Electroretinograms (ERGs) can detect the associated light-induced extracellular transretinal events, allowing for physiological assessment of cellular activity from morphologically intact retinas. We outline a method for economically configuring a traditional patch-clamp rig for performing high signal-to-noise ex vivo ERGs. We accomplish this by incorporating various 3D printed components and by modifying existing light pathways in a typical patch-clamp rig. This methodology provides an additional set of tools to labs interested in studying the physiological function of neuronal populations in isolated retinal tissue. ABSTRACT Rod and cone photoreceptors of the retina are responsible for the initial stages in vision and convey sensory information regarding our visual world across a wide range of lighting conditions. These photoreceptors hyperpolarize in the presence of light and subsequently transmit signals to second-order bipolar and horizontal cells. The electrical components of these events are experimentally detectable, and in conjunction with pharmacological agents, can be further separated into their respective cellular contributions using electroretinograms (ERGs). Extracellular activity from populations of rods and cones generate the negative-going a-wave, while ON-bipolar cells generate positive-going b-waves. ERGs can be performed in vivo or alternatively using an ex vivo configuration, where retinas are isolated and transretinal photovoltages are recorded at high signal-to-noise ratios. However, most ERG set-ups require their own unique set of tools. We demonstrate how, at low cost, to reconfigure a typical patch-clamp rig for ERG recordings. The bulk of these modifications require implementation of various 3D printed components, which can alternatively aid in generating a stand-alone ERG set-up without a patch-rig. Further, we discuss how to configure an ERG system without a patch-clamp rig. Compared to in vivo ERGs, these are superior when measuring small responses, such as those that are cone-evoked or those from immature mouse retinae. This recording configuration provides high signal-to-noise detection of a-waves (300-600 µV) and b-waves (1-3 mV), and is ultimately capable of discerning small (1-2 µV) photovoltages from noise. These quick and economical modifications allow researchers to equip their technical arsenal with an interchangeable patch-clamp/ERG system.
Collapse
|
26
|
Reingruber J, Ingram NT, Griffis KG, Fain GL. A kinetic analysis of mouse rod and cone photoreceptor responses. J Physiol 2020; 598:3747-3763. [PMID: 32557629 PMCID: PMC7484371 DOI: 10.1113/jp279524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Most vertebrate eyes have rods for dim-light vision and cones for brighter light and higher temporal sensitivity. Rods evolved from cone-like precursors through expression of different transduction genes or the same genes at different expression levels, but we do not know which molecular differences were most important. We approached this problem by analysing rod and cone responses with the same model but with different values for model parameters. We showed that, in addition to outer-segment volume, the most important differences between rods and cones are: (1) decreased transduction gain, reflecting smaller amplification in the G-protein cascade; (2) a faster rate of turnover of the second messenger cGMP in darkness; and (3) an accelerated rate of decay of the effector enzyme phosphodiesterase and perhaps also of activated visual pigment. We believe our analysis has identified the principal alterations during evolution responsible for the duplex retina. ABSTRACT Most vertebrates have rod and cone photoreceptors, which differ in their sensitivity and response kinetics. We know that rods evolved from cone-like precursors through the expression of different transduction genes or the same genes at different levels, but we do not know which molecular differences were most important. We have approached this problem in mouse retina by analysing the kinetic differences between rod flash responses and recent voltage-clamp recordings of cone flash responses, using a model incorporating the principal features of photoreceptor transduction. We apply a novel method of analysis using the log-transform of the current, and we ask which of the model's dynamic parameters need be changed to transform the flash response of a rod into that of a cone. The most important changes are a decrease in the gain of the response, reflecting a reduction in amplification of the transduction cascade; an increase in the rate of turnover of cGMP in darkness; and an increase in the rate of decay of activated phosphodiesterase, with perhaps also an increase in the rate of decay of light-activated visual pigment. Although we cannot exclude other differences, and in particular alterations in the Ca2+ economy of the photoreceptors, we believe that we have identified the kinetic parameters principally responsible for the differences in the flash responses of the two kinds of photoreceptors, which were likely during evolution to have resulted in the duplex retina.
Collapse
Affiliation(s)
- Jürgen Reingruber
- Institut de Biologie de l’École Normale Supérieure, 46 rue d’Ulm, 75005 Paris, France
| | - Norianne T. Ingram
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095–7239, USA
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, CA 90095–7000, USA
| | - Khris G. Griffis
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, CA 90095–7000, USA
| | - Gordon L. Fain
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095–7239, USA
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, CA 90095–7000, USA
| |
Collapse
|
27
|
Abstract
We have used recent measurements of mammalian cone light responses and voltage-gated currents to calculate cone ATP utilization and compare it to that of rods. The largest expenditure of ATP results from ion transport, particularly from removal of Na+ entering outer segment light-dependent channels and inner segment hyperpolarization-activated cyclic nucleotide-gated channels, and from ATP-dependent pumping of Ca2+ entering voltage-gated channels at the synaptic terminal. Single cones expend nearly twice as much energy as single rods in darkness, largely because they make more synapses with second-order retinal cells and thus must extrude more Ca2+ In daylight, cone ATP utilization per cell remains high because cones never remain saturated and must continue to export Na+ and synaptic Ca2+ even in bright illumination. In mouse and human retina, rods greatly outnumber cones and consume more energy overall even in background light. In primates, however, the high density of cones in the fovea produces a pronounced peak of ATP utilization, which becomes particularly prominent in daylight and may make this part of the retina especially sensitive to changes in energy availability.
Collapse
|
28
|
Jin N, Zhang Z, Keung J, Youn SB, Ishibashi M, Tian LM, Marshak DW, Solessio E, Umino Y, Fahrenfort I, Kiyama T, Mao CA, You Y, Wei H, Wu J, Postma F, Paul DL, Massey SC, Ribelayga CP. Molecular and functional architecture of the mouse photoreceptor network. SCIENCE ADVANCES 2020; 6:eaba7232. [PMID: 32832605 PMCID: PMC7439306 DOI: 10.1126/sciadv.aba7232] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Mouse photoreceptors are electrically coupled via gap junctions, but the relative importance of rod/rod, cone/cone, or rod/cone coupling is unknown. Furthermore, while connexin36 (Cx36) is expressed by cones, the identity of the rod connexin has been controversial. We report that FACS-sorted rods and cones both express Cx36 but no other connexins. We created rod- and cone-specific Cx36 knockout mice to dissect the photoreceptor network. In the wild type, Cx36 plaques at rod/cone contacts accounted for more than 95% of photoreceptor labeling and paired recordings showed the transjunctional conductance between rods and cones was ~300 pS. When Cx36 was eliminated on one side of the gap junction, in either conditional knockout, Cx36 labeling and rod/cone coupling were almost abolished. We could not detect direct rod/rod coupling, and cone/cone coupling was minor. Rod/cone coupling is so prevalent that indirect rod/cone/rod coupling via the network may account for previous reports of rod coupling.
Collapse
Affiliation(s)
- Nange Jin
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhijing Zhang
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joyce Keung
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sean B. Youn
- Summer Research Program, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Undergraduate Program, William Marsh Rice University, Houston, TX, USA
| | - Munenori Ishibashi
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lian-Ming Tian
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David W. Marshak
- Department of Neurobiology and Anatomy, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Neuroscience Research Center, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eduardo Solessio
- Center for Vision Research and SUNY Eye Institute, Department of Ophthalmology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Yumiko Umino
- Center for Vision Research and SUNY Eye Institute, Department of Ophthalmology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Iris Fahrenfort
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Takae Kiyama
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chai-An Mao
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Neuroscience Research Center, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yanan You
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, The University of Texas Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Haichao Wei
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, The University of Texas Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Jiaqian Wu
- Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, The University of Texas Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Friso Postma
- Department of Neurobiology, Medical School, Harvard University, Boston, MA, USA
| | - David L. Paul
- Department of Neurobiology, Medical School, Harvard University, Boston, MA, USA
| | - Stephen C. Massey
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Summer Research Program, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Neuroscience Research Center, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Elizabeth Morford Distinguished Chair in Ophthalmology and Research Director, Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christophe P. Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Summer Research Program, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Neuroscience Research Center, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Program in Biochemistry and Cellular Biology, Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Bernice Weingarten Chair in Ophthalmology, Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
29
|
Chen NS, Ingram NT, Frederiksen R, Sampath AP, Chen J, Fain GL. Diminished Cone Sensitivity in cpfl3 Mice Is Caused by Defective Transducin Signaling. Invest Ophthalmol Vis Sci 2020; 61:26. [PMID: 32315379 PMCID: PMC7401474 DOI: 10.1167/iovs.61.4.26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Purpose Cone photoreceptor function loss 3 (Gnat2cpfl3/cpfl3 or cpfl3) is a mouse model commonly used as a functional cones null from a naturally occurring mutation in the α-subunit of cone transducin (Gnat2). We nevertheless detected robust cone-mediated light responses from cpfl3 animals, which we now explore. Methods Recordings were made from whole retina and from identified cones with whole-cell patch clamp in retinal slices. Relative levels of GNAT2 protein and numbers of cones in isolated retinas were compared between cpfl3, rod transducin knockout (Gnat1-/-), cpfl3/Gnat1-/- double mutants, and control C57Bl/6J age-matched mice at 4, 9, and 14 weeks of age. Results Cones from cpfl3 and cpfl3/Gnat1-/- mice 2 to 3 months of age displayed normal dark currents but greatly reduced sensitivity and amplification constants. Responses decayed more slowly than in control (C57Bl/6J) mice, indicating an altered mechanism of inactivation. At dim light intensities rod responses could be recorded from cpfl3 cones, indicating intact rod/cone gap junctions. The cpfl3 and cpfl3/Gnat1-/- mice express two-fold less GNAT2 protein compared with C57 at 4 weeks, and a four-fold decrease by 14 weeks. This is accompanied by a small decrease in the number of cones. Conclusions Cplf3 cones can respond to light with currents of normal amplitude and cannot be assumed to be a Gnat2 null. The decreased sensitivity and amplification rate of cones is not explained by a reduction in GNAT2 protein level, but instead by abnormal interactions of the mutant transducin with rhodopsin and the effector molecule, cGMP phosphodiesterase.
Collapse
Affiliation(s)
- Natalie S. Chen
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Norianne T. Ingram
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, Los Angeles, California, United States,Department of Integrative Biology and Physiology, University of California, Los Angeles, California,United States
| | - Rikard Frederiksen
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, Los Angeles, California, United States
| | - Alapakkam P. Sampath
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, Los Angeles, California, United States
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Gordon L. Fain
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, Los Angeles, California, United States,Department of Integrative Biology and Physiology, University of California, Los Angeles, California,United States
| |
Collapse
|
30
|
Ingram NT, Sampath AP, Fain GL. Membrane conductances of mouse cone photoreceptors. J Gen Physiol 2020; 152:e201912520. [PMID: 31986199 PMCID: PMC7054858 DOI: 10.1085/jgp.201912520] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
Vertebrate photoreceptor cells respond to light through a closure of CNG channels located in the outer segment. Multiple voltage-sensitive channels in the photoreceptor inner segment serve to transform and transmit the light-induced outer-segment current response. Despite extensive studies in lower vertebrates, we do not know how these channels produce the photoresponse of mammalian photoreceptors. Here we examined these ionic conductances recorded from single mouse cones in unlabeled, dark-adapted retinal slices. First, we show measurements of the voltage dependence of the light response. After block of voltage-gated Ca2+ channels, the light-dependent current was nearly linear within the physiological range of voltages with constant chord conductance and a reversal potential similar to that previously determined in lower vertebrate photoreceptors. At a dark resting membrane potential of -45 mV, cones maintain a standing Ca2+ current (iCa) between 15 and 20 pA. We characterized the time and voltage dependence of iCa and a calcium-activated anion channel. After constitutive closure of the CNG channels by the nonhydrolysable analogue GTP-γ-S, we observed a light-dependent increase in iCa followed by a Ca2+-activated K+ current, both probably the result of feedback from horizontal cells. We also recorded the hyperpolarization-activated cyclic nucleotide-gated (HCN) conductance (ih) and measured its current-voltage relationship and reversal potential. With small hyperpolarizations, ih activated with a time constant of 25 ms; activation was speeded with larger hyperpolarizations. Finally, we characterized two voltage-gated K+-conductances (iK). Depolarizing steps beginning at -10 mV activated a transient, outwardly rectifying iK blocked by 4-AP and insensitive to TEA. A sustained iK isolated through subtraction was blocked by TEA but was insensitive to 4-AP. The sustained iK had a nearly linear voltage dependence throughout the physiological voltage range of the cone. Together these data constitute the first comprehensive study of the channel conductances of mouse photoreceptors.
Collapse
Affiliation(s)
- Norianne T. Ingram
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, CA
| | - Alapakkam P. Sampath
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, CA
| | - Gordon L. Fain
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, CA
| |
Collapse
|