1
|
Sanchez C, Berthier C, Allard B, Perrot J, Bouvard C, Tsutsui H, Okamura Y, Jacquemond V. Tracking the sarcoplasmic reticulum membrane voltage in muscle with a FRET biosensor. J Gen Physiol 2018; 150:1163-1177. [PMID: 29899059 PMCID: PMC6080890 DOI: 10.1085/jgp.201812035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/16/2018] [Indexed: 11/20/2022] Open
Abstract
The sarcoplasmic reticulum membrane contains ion channels, but it is unknown whether it experiences voltage changes during cellular activity. By expressing voltage-sensitive fluorescence biosensors in this membrane, Sanchez et al. suggest that it remains electrically silent during muscle activation. Ion channel activity in the plasma membrane of living cells generates voltage changes that are critical for numerous biological functions. The membrane of the endoplasmic/sarcoplasmic reticulum (ER/SR) is also endowed with ion channels, but whether changes in its voltage occur during cellular activity has remained ambiguous. This issue is critical for cell functions that depend on a Ca2+ flux across the reticulum membrane. This is the case for contraction of striated muscle, which is triggered by opening of ryanodine receptor Ca2+ release channels in the SR membrane in response to depolarization of the transverse invaginations of the plasma membrane (the t-tubules). Here, we use targeted expression of voltage-sensitive fluorescence resonance energy transfer (FRET) probes of the Mermaid family in differentiated muscle fibers to determine whether changes in SR membrane voltage occur during depolarization–contraction coupling. In the absence of an SR targeting sequence, FRET signals from probes present in the t-tubule membrane allow calibration of the voltage sensitivity and amplitude of the response to voltage-clamp pulses. Successful SR targeting of the probes was achieved using an N-terminal domain of triadin, which completely eliminates voltage-clamp–activated FRET signals from the t-tubule membrane of transfected fibers. In fibers expressing SR-targeted Mermaid probes, activation of SR Ca2+ release in the presence of intracellular ethyleneglycol-bis(β-amino-ethyl ether)-N,N,N′,N′-tetra acetic acid (EGTA) results in an accompanying FRET signal. We find that this signal results from pH sensitivity of the probe, which detects cytosolic acidification because of the release of protons upon Ca2+ binding to EGTA. When EGTA is substituted with either 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid or the contraction blocker N-benzyl-p-toluene sulfonamide, we find no indication of a substantial change in the FRET response caused by a voltage change. These results suggest that the ryanodine receptor–mediated SR Ca2+ efflux is well balanced by concomitant counterion currents across the SR membrane.
Collapse
Affiliation(s)
- Colline Sanchez
- Université Claude Bernard Lyon 1, Institut NeuroMyoGène, Villeurbanne, France
| | - Christine Berthier
- Université Claude Bernard Lyon 1, Institut NeuroMyoGène, Villeurbanne, France
| | - Bruno Allard
- Université Claude Bernard Lyon 1, Institut NeuroMyoGène, Villeurbanne, France
| | - Jimmy Perrot
- Université Claude Bernard Lyon 1, Institut NeuroMyoGène, Villeurbanne, France
| | - Clément Bouvard
- Université Claude Bernard Lyon 1, Institut NeuroMyoGène, Villeurbanne, France
| | - Hidekazu Tsutsui
- Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Bioscience and Bioengineering, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
| | - Yasushi Okamura
- Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Vincent Jacquemond
- Université Claude Bernard Lyon 1, Institut NeuroMyoGène, Villeurbanne, France
| |
Collapse
|
2
|
Vierra NC, Dadi PK, Milian SC, Dickerson MT, Jordan KL, Gilon P, Jacobson DA. TALK-1 channels control β cell endoplasmic reticulum Ca 2+ homeostasis. Sci Signal 2017; 10:eaan2883. [PMID: 28928238 PMCID: PMC5672804 DOI: 10.1126/scisignal.aan2883] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ca2+ handling by the endoplasmic reticulum (ER) serves critical roles in controlling pancreatic β cell function and becomes perturbed during the pathogenesis of diabetes. ER Ca2+ homeostasis is determined by ion movements across the ER membrane, including K+ flux through K+ channels. We demonstrated that K+ flux through ER-localized TALK-1 channels facilitated Ca2+ release from the ER in mouse and human β cells. We found that β cells from mice lacking TALK-1 exhibited reduced basal cytosolic Ca2+ and increased ER Ca2+ concentrations, suggesting reduced ER Ca2+ leak. These changes in Ca2+ homeostasis were presumably due to TALK-1-mediated ER K+ flux, because we recorded K+ currents mediated by functional TALK-1 channels on the nuclear membrane, which is continuous with the ER. Moreover, overexpression of K+-impermeable TALK-1 channels in HEK293 cells did not reduce ER Ca2+ stores. Reduced ER Ca2+ content in β cells is associated with ER stress and islet dysfunction in diabetes, and islets from TALK-1-deficient mice fed a high-fat diet showed reduced signs of ER stress, suggesting that TALK-1 activity exacerbated ER stress. Our data establish TALK-1 channels as key regulators of β cell ER Ca2+ and suggest that TALK-1 may be a therapeutic target to reduce ER Ca2+ handling defects in β cells during the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Nicholas C Vierra
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Sarah C Milian
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew T Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Kelli L Jordan
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Patrick Gilon
- Pôle d'endocrinologie, diabète et nutrition, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Brussels 1200, Belgium
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
3
|
Guo T, Nani A, Shonts S, Perryman M, Chen H, Shannon T, Gillespie D, Fill M. Sarcoplasmic reticulum K(+) (TRIC) channel does not carry essential countercurrent during Ca(2+) release. Biophys J 2014; 105:1151-60. [PMID: 24010658 DOI: 10.1016/j.bpj.2013.07.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/17/2013] [Accepted: 07/15/2013] [Indexed: 01/30/2023] Open
Abstract
The charge translocation associated with sarcoplasmic reticulum (SR) Ca(2+) efflux is compensated for by a simultaneous SR K(+) influx. This influx is essential because, with no countercurrent, the SR membrane potential (Vm) would quickly (<1 ms) reach the Ca(2+) equilibrium potential and SR Ca(2+) release would cease. The SR K(+) trimeric intracellular cation (TRIC) channel has been proposed to carry the essential countercurrent. However, the ryanodine receptor (RyR) itself also carries a substantial K(+) countercurrent during release. To better define the physiological role of the SR K(+) channel, we compared SR Ca(2+) transport in saponin-permeabilized cardiomyocytes before and after limiting SR K(+) channel function. Specifically, we reduced SR K(+) channel conduction 35 and 88% by replacing cytosolic K(+) for Na(+) or Cs(+) (respectively), changes that have little effect on RyR function. Calcium sparks, SR Ca(2+) reloading, and caffeine-evoked Ca(2+) release amplitude (and rate) were unaffected by these ionic changes. Our results show that countercurrent carried by SR K(+) (TRIC) channels is not required to support SR Ca(2+) release (or uptake). Because K(+) enters the SR through RyRs during release, the SR K(+) (TRIC) channel most likely is needed to restore trans-SR K(+) balance after RyRs close, assuring SR Vm stays near 0 mV.
Collapse
Affiliation(s)
- Tao Guo
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Lam AK, Galione A. The endoplasmic reticulum and junctional membrane communication during calcium signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2542-59. [DOI: 10.1016/j.bbamcr.2013.06.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 12/13/2022]
|
5
|
Beca S, Aschar-Sobbi R, Ponjevic D, Winkfein RJ, Kargacin ME, Kargacin GJ. Effects of monovalent cations on Ca2+ uptake by skeletal and cardiac muscle sarcoplasmic reticulum. Arch Biochem Biophys 2009; 490:110-7. [PMID: 19706285 DOI: 10.1016/j.abb.2009.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/20/2009] [Accepted: 08/20/2009] [Indexed: 11/30/2022]
Abstract
Ca(2+) transport by the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase (SERCA) is sensitive to monovalent cations. Possible K(+) binding sites have been identified in both the cytoplasmic P-domain and the transmembrane transport-domain of the protein. We measured Ca(2+) transport into SR vesicles and SERCA ATPase activity in the presence of different monovalent cations. We found that the effects of monovalent cations on Ca(2+) transport correlated in most cases with their direct effects on SERCA. Choline(+), however, inhibited uptake to a greater extent than could be accounted for by its direct effect on SERCA suggesting a possible effect of choline on compensatory charge movement during Ca(2+) transport. Of the monovalent cations tested, only Cs(+) significantly affected the Hill coefficient of Ca(2+) transport (n(H)). An increase in n(H) from approximately 2 in K(+) to approximately 3 in Cs(+) was seen in all of the forms of SERCA examined. The effects of Cs(+) on the maximum velocity of Ca(2+) uptake were also different for different forms of SERCA but these differences could not be attributed to differences in the putative K(+) binding sites of the different forms of the protein.
Collapse
Affiliation(s)
- Sanja Beca
- Department of Physiology and Biophysics, University of Calgary, Alta., Canada
| | | | | | | | | | | |
Collapse
|
6
|
Gillespie D, Fill M. Intracellular calcium release channels mediate their own countercurrent: the ryanodine receptor case study. Biophys J 2008; 95:3706-14. [PMID: 18621826 PMCID: PMC2553138 DOI: 10.1529/biophysj.108.131987] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 07/01/2008] [Indexed: 01/09/2023] Open
Abstract
Intracellular calcium release channels like ryanodine receptors (RyRs) and inositol trisphosphate receptors (IP(3)Rs) mediate large Ca(2+) release events from Ca(2+) storage organelles lasting >5 ms. To have such long-lasting Ca(2+) efflux, a countercurrent of other ions is necessary to prevent the membrane potential from becoming the Ca(2+) Nernst potential in <1 ms. A recent model of ion permeation through a single, open RyR channel is used here to show that the vast majority of this countercurrent is conducted by the RyR itself. Consequently, changes in membrane potential are minimized locally and instantly, assuring maintenance of a Ca(2+)-driving force. This RyR autocountercurrent is possible because of the poor Ca(2+) selectivity and high conductance for both monovalent and divalent cations of these channels. The model shows that, under physiological conditions, the autocountercurrent clamps the membrane potential near 0 mV within approximately 150 mus. Consistent with experiments, the model shows how RyR unit Ca(2+) current is defined by luminal [Ca(2+)], permeable ion composition and concentration, and pore selectivity and conductance. This very likely is true of the highly homologous pore of the IP(3)R channel.
Collapse
Affiliation(s)
- Dirk Gillespie
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, USA.
| | | |
Collapse
|
7
|
Abstract
Triggered activity in cardiac muscle and intracellular Ca2+ have been linked in the past. However, today not only are there a number of cellular proteins that show clear Ca2+ dependence but also there are a number of arrhythmias whose mechanism appears to be linked to Ca2+-dependent processes. Thus we present a systematic review of the mechanisms of Ca2+ transport (forward excitation-contraction coupling) in the ventricular cell as well as what is known for other cardiac cell types. Second, we review the molecular nature of the proteins that are involved in this process as well as the functional consequences of both normal and abnormal Ca2+ cycling (e.g., Ca2+ waves). Finally, we review what we understand to be the role of Ca2+ cycling in various forms of arrhythmias, that is, those associated with inherited mutations and those that are acquired and resulting from reentrant excitation and/or abnormal impulse generation (e.g., triggered activity). Further solving the nature of these intricate and dynamic interactions promises to be an important area of research for a better recognition and understanding of the nature of Ca2+ and arrhythmias. Our solutions will provide a more complete understanding of the molecular basis for the targeted control of cellular calcium in the treatment and prevention of such.
Collapse
Affiliation(s)
- Henk E D J Ter Keurs
- Department of Medicine, Physiology and Biophysics, University of Calgary, Alberta, Canada
| | | |
Collapse
|
8
|
Neye Y, Düfer M, Drews G, Krippeit-Drews P. HIV protease inhibitors: suppression of insulin secretion by inhibition of voltage-dependent K+ currents and anion currents. J Pharmacol Exp Ther 2006; 316:106-12. [PMID: 16162820 DOI: 10.1124/jpet.105.090589] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have shown before that the human immunodeficiency virus (HIV) protease inhibitors ritonavir and nelfinavir, but not indinavir, suppress insulin secretion from mouse pancreatic B-cells via reduction of the cytosolic free calcium concentration ([Ca(2+)](c)). This was not because of an effect on ATP-dependent K(+) channels (K(ATP) channels) or L-type Ca(2+) channels. The study was intended to elucidate the mechanisms by which distinct HIV protease inhibitors decrease [Ca(2+)](c) and thus evoke their adverse side effect on insulin release. Membrane potential and whole-cell currents were measured with the patch-clamp technique, and [Ca(2+)](c) was determined with a fluorescence dye. Ritonavir and nelfinavir both inhibited the same component(s) of voltage-dependent K(+) currents with a concomitant change in action potential wave form, whereas indinavir was ineffective. Comparison with other blockers of voltage-dependent K(+) currents revealed that suppression of distinct noninactivating current component(s) altered action potential wave form and decreased [Ca(2+)](c) similar to ritonavir and nelfinavir, whereas blockage of inactivating component(s) was without effect. Complete inhibition of voltage-dependent K(+) currents by 80 mM TEA(+) drastically increased [Ca(2+)](c), demonstrating that voltage-dependent K(+) channels are not the sole target of ritonavir and nelfinavir. Accordingly, the Ca(2+)-lowering effect of ritonavir was preserved in the presence of 80 mM TEA(+). This effect was mimicked by the anion channel blocker 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS). Consequentially, ritonavir and nelfinavir inhibited a DIDS-sensitive anion current in B-cells. We suggest that ritonavir and nelfinavir decrease insulin secretion by inhibition of voltage-dependent K(+) channels and anion channels, which are essential to provide counterion currents for Ca(2+) influx across the plasma membrane.
Collapse
Affiliation(s)
- Yvonne Neye
- Pharmazeutisches Institut, Auf der Morgenstelle 8, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
9
|
Kondo RP, Dederko DA, Teutsch C, Chrast J, Catalucci D, Chien KR, Giles WR. Comparison of contraction and calcium handling between right and left ventricular myocytes from adult mouse heart: a role for repolarization waveform. J Physiol 2005; 571:131-46. [PMID: 16357014 PMCID: PMC1805641 DOI: 10.1113/jphysiol.2005.101428] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In the mammalian heart, the right ventricle (RV) has a distinct structural and electrophysiological profile compared to the left ventricle (LV). However, the possibility that myocytes from the RV and LV have different contractile properties has not been established. In this study, sarcomere shortening, [Ca2+]i transients and Ca2+ and K+ currents in unloaded myocytes isolated from the RV, LV epicardium (LVepi) and LV endocardium (LVendo) of adult mice were evaluated. Maximum sarcomere shortening elicited by field stimulation was graded in the order: LVendo > LVepi > RV. Systolic [Ca2+]i was higher in LVendo myocytes than in RV myocytes. Voltage-clamp experiments in which action potential (AP) waveforms from RV and LVendo were used as the command signal, demonstrated that total Ca2+ influx and myocyte shortening were larger in response to the LVendo AP, independent of myocyte subtypes. Evaluation of possible regional differences in myocyte Ca2+ handling was based on: (i) the current-voltage relation of the Ca2+ current; (ii) sarcoplasmic reticulum Ca2+ uptake; and (iii) mRNA expression of important components of the Ca2+ handling system. None of these were significantly different between RV and LVendo. In contrast, the Ca2+-independent K+ current, which modulates AP repolarization, was significantly different between RV, LVepi and LVendo. These results suggest that these differences in K+ currents can alter AP duration and modulate the [Ca2+]i transient and corresponding contraction. In summary, these findings provide an initial description of regional differences in excitation-contraction coupling in the adult mouse heart [corrected]
Collapse
Affiliation(s)
- Richard P Kondo
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The aim of this review is to provide basic information on the electrophysiological changes during acute ischemia and reperfusion from the level of ion channels up to the level of multicellular preparations. After an introduction, section II provides a general description of the ion channels and electrogenic transporters present in the heart, more specifically in the plasma membrane, in intracellular organelles of the sarcoplasmic reticulum and mitochondria, and in the gap junctions. The description is restricted to activation and permeation characterisitics, while modulation is incorporated in section III. This section (ischemic syndromes) describes the biochemical (lipids, radicals, hormones, neurotransmitters, metabolites) and ion concentration changes, the mechanisms involved, and the effect on channels and cells. Section IV (electrical changes and arrhythmias) is subdivided in two parts, with first a description of the electrical changes at the cellular and multicellular level, followed by an analysis of arrhythmias during ischemia and reperfusion. The last short section suggests possible developments in the study of ischemia-related phenomena.
Collapse
Affiliation(s)
- E Carmeliet
- Centre for Experimental Surgery and Anesthesiology, University of Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Kawai M, Hussain M, Orchard CH. Cs+ inhibits spontaneous Ca2+ release from sarcoplasmic reticulum of skinned cardiac myocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:H422-30. [PMID: 9683429 DOI: 10.1152/ajpheart.1998.275.2.h422] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effect of Cs+ on the function of the cardiac sarcoplasmic reticulum (SR) has been investigated in skinned cardiac myocytes. Isolated rat ventricular myocytes were permeabilized using saponin and then perfused with a solution containing 150 nmol/l Ca2+ and 10 micromol/l fura 2. Fura 2 fluorescence from the skinned cell was monitored to assess SR Ca2+ release. The frequency of spontaneous Ca2+ release from the SR decreased when K+ in the bathing solution was completely replaced with Cs+. Cs+ had little effect on the amplitude of spontaneous release but prolonged both the rise time and decay time. The SR Ca2+ content, assessed by application of caffeine, was reduced in the Cs+ solution. Cyclopiazonic acid produced effects similar to those of Cs+. Extracellular Cs+ (20 mmol/l) increased the amplitude of the Ca2+ transient and the SR Ca2+ content in intact field-stimulated cells but had little effect on the Ca2+ transient when the amplitude and duration of depolarization were kept constant using voltage clamp. These data suggest that Cs+ slows Ca2+ movement across the SR membrane, possibly by blocking the SR K+ channel, but has additional effects in intact cells that overcome its inhibitory effects on the SR.
Collapse
Affiliation(s)
- M Kawai
- Department of Physiology, University of Leeds, Leeds LS2 9NQ, United Kingdom
| | | | | |
Collapse
|
12
|
Szewczyk A. The intracellular potassium and chloride channels: properties, pharmacology and function (review). Mol Membr Biol 1998; 15:49-58. [PMID: 9724922 DOI: 10.3109/09687689809027518] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Channels selective for potassium or chloride ions are present in membranes of intracellular organelles such as sarcoplasmic (endoplasmic) reticulum, mitochondria, nucleus, synaptic vesicles, and chromaffin, and zymogen granules. They probably play an important role in cellular events such as compensation of electrical charges during transport of Ca2+, delta pH formation in mitochondria or V-ATPase containing membrane granules, and regulation of volume changes, due to potassium and chloride transport into intracellular organelles. Intracellular potassium and chloride channels could also be the target for pharmacologically active compounds. This mini-review describes the basic properties, pharmacology, and current hypotheses concerning the functional role of intracellular potassium and chloride channels.
Collapse
Affiliation(s)
- A Szewczyk
- Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
13
|
Percival AL, Williams AJ, Kenyon JL, Grinsell MM, Airey JA, Sutko JL. Chicken skeletal muscle ryanodine receptor isoforms: ion channel properties. Biophys J 1994; 67:1834-50. [PMID: 7532019 PMCID: PMC1225557 DOI: 10.1016/s0006-3495(94)80665-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To define the roles of the alpha- and beta-ryanodine receptor (RyR) (sarcoplasmic reticulum Ca2+ release channel) isoforms expressed in chicken skeletal muscles, we investigated the ion channel properties of these proteins in lipid bilayers. alpha- and beta RyRs embody Ca2+ channels with similar conductances (792, 453, and 118 pS for K+, Cs+ and Ca2+) and selectivities (PCa2+/PK+ = 7.4), but the two channels have different gating properties. alpha RyR channels switch between two gating modes, which differ in the extent they are activated by Ca2+ and ATP, and inactivated by Ca2+. Either mode can be assumed in a spontaneous and stable manner. In a low activity mode, alpha RyR channels exhibit brief openings (tau o = 0.14 ms) and are minimally activated by Ca2+ in the absence of ATP. In a high activity mode, openings are longer (tau o1-3 = 0.17, 0.51, and 1.27 ms), and the channels are activated by Ca2+ in the absence of ATP and are in general less sensitive to the inactivating effects of Ca2+. beta RyR channel openings are longer (tau 01-3 = 0.34, 1.56, and 3.31 ms) than those of alpha RyR channels in either mode. beta RyR channels are activated to a greater relative extent by Ca2+ than ATP and are inactivated by millimolar Ca2+ in the absence, but not the presence, of ATP. Both alpha- and beta RyR channels are activated by caffeine, inhibited by Mg2+ and ruthenium red, inactivated by voltage (cytoplasmic side positive), and modified to a long-lived substate by ryanodine, but only alpha RyR channels are activated by perchlorate anions. The differences in gating and responses to channel modifiers may give the alpha- and beta RyRs distinct roles in muscle activation.
Collapse
Affiliation(s)
- A L Percival
- Department of Pharmacology, University of Nevada School of Medicine, Reno 89557
| | | | | | | | | | | |
Collapse
|
14
|
Allard B, Rougier O. The effects of chloride ions in excitation-contraction coupling and sarcoplasmic reticulum calcium release in twitch muscle fibre. J Muscle Res Cell Motil 1994; 15:563-71. [PMID: 7860704 DOI: 10.1007/bf00121162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Using the sucrose vaseline gap technique, experiments were carried out on isolated frog twitch muscle fibre to investigate the role of chloride ions in excitation-contraction coupling. In current clamp conditions, replacement of chloride ions by impermeant anions led to an increase of the amplitude of the early after potential and of the amplitude of the twitch. Addition of a chloride channel blocker, anthracene-9-carboxylic acid gave similar results. In voltage clamp conditions, replacement of chloride ions by impermeant anions induced a decrease of the outward current and an increase of both the amplitude of the contraction and of the resting tension. Addition of anthracene-9-carboxylic acid gave similar results except that resting tension was not modified. Replacement of chloride ions by impermeant anions resulted in a shift of the tension-voltage relationship toward negative potentials and in an increase of the amplitude of the contraction at all potentials. Outward currents were also reduced at all potentials but no shift of the current-voltage relationship was observed. Similar results were obtained upon addition of anthracene-9-carboxylic acid. Rapid filtration experiments were performed on isolated sarcoplasmic reticulum vesicles to study the role of chloride ions in Ca2+ release. Under conditions where KCl was present in the intra- and extravesicular media, removal of chloride ions from the release solution produced a 2-fold increase in the rate of Ca(2+)-induced Ca2+ release. Together, these results suggest that, besides their involvement in the action potential time course, chloride ions could exert a negative control on the sarcoplasmic reticulum Ca2+ release.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B Allard
- Laboratoire de Physiologie des Eléments Excitables (CNRS URA 180), Université Claude Bernard Lyon I, Villeurbanne, France
| | | |
Collapse
|
15
|
Abstract
An initial model has been proposed to describe a mechanism for cytosolic calcium oscillations [Jafri MS. Vajda S. Pasik P. Gillo B. (1992) A membrane model for cytosolic calcium oscillations: a study using Xenopus oocytes. Biophys. J., 63, 235-246]. In this paper we extend our original model to include the effects of counterion movement into the ER in response to calcium release. This produces smoother oscillations over a wider parameter range. We have lowered the endoplasmic reticulum (ER) intraluminal free calcium concentration and shown that the oscillations can occur at lower ER membrane potentials, consistent with physiological values. The improved model is then tested with two representative paradigms that are currently under investigation by many researchers. The model predicts that the reduction of the ER calcium pump (Ca-ATPase) rate can cause the termination of cytosolic calcium oscillations in an active cell, and induce oscillations in a resting cell. This result is consistent with experiments with thapsigargin, a Ca-ATPase activity inhibitor. In addition, we simulate the latency period for the response to the application of agonist and offer a plausible explanation for it. Our mathematical model is currently the only model that formulates the contributions of calcium binding proteins, ER membrane potential, ER counterion movements, and distinct calcium pump populations, and describes their effects on cytosolic calcium oscillations.
Collapse
Affiliation(s)
- M S Jafri
- Institute of Theoretical Dynamics, University of California, Davis
| | | |
Collapse
|
16
|
O'Rourke F, Soons K, Flaumenhauft R, Watras J, Baio-Larue C, Matthews E, Feinstein MB. Ca2+ release by inositol 1,4,5-trisphosphate is blocked by the K(+)-channel blockers apamin and tetrapentylammonium ion, and a monoclonal antibody to a 63 kDa membrane protein: reversal of blockade by K+ ionophores nigericin and valinomycin and purification of the 63 kDa antibody-binding protein. Biochem J 1994; 300 ( Pt 3):673-83. [PMID: 8010949 PMCID: PMC1138220 DOI: 10.1042/bj3000673] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ins(1,4,5)P3-induced Ca2+ release from platelet membrane vesicles was blocked by apamin, a selective inhibitor of low-conductance Ca(2+)-activated K+ channels, and by tetrapentylammonium ion, and was weakly inhibited by tetraethylammonium ion. Other K(+)-channel blockers, i.e. charybdotoxin, 4-aminopyridine and glybenclamide were ineffective. A monoclonal antibody (mAb 213-21) obtained by immunizing mice with the InsP3-sensitive membrane fraction from platelets also blocked Ca2+ release by InsP3 from membrane vesicles obtained from platelets, cerebellum, aortic smooth muscle, HEL cells and sea-urchin eggs. ATP-dependent Ca2+ uptake and binding of [3H]InsP3 to platelet membranes was unaffected by either K(+)-channel blockers or mAb 213-21. Blockade of Ca2+ release by apamin, tetrapentylammonium and mAb 213-21 was not affected by the Na+/H+ carrier monensin or the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), but could be completely reversed by the K+/H+ ionophore nigericin and partially reversed by the K+ carrier valinomycin. The antibody-binding protein (ABP) solubilized from platelets, cerebellum, and smooth muscle chromatographed identically on gel filtration, anion-exchange and heparin-TSK h.p.l.c. ABP was purified to apparent homogeneity from platelets and aortic smooth muscle as a 63 kDa protein by immunoaffinity chromatography on mAb 213-21-agarose. These results suggest that optimal Ca2+ release by InsP3 from platelet membrane vesicles may require the tandem function of a K+ channel. A counterflow of K+ ions could prevent the build-up of a membrane potential (inside negative) that would tend to oppose Ca2+ release. The 63 kDa protein may function to regulate K+ permeability that is coupled to the Ca2+ efflux via the InsP3 receptor.
Collapse
Affiliation(s)
- F O'Rourke
- Department of Pharmacology, University of Connecticut Health Center, Farmington 06032
| | | | | | | | | | | | | |
Collapse
|
17
|
Wang J, Best PM. Characterization of the potassium channel from frog skeletal muscle sarcoplasmic reticulum membrane. J Physiol 1994; 477:279-90. [PMID: 7932219 PMCID: PMC1155628 DOI: 10.1113/jphysiol.1994.sp020190] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. The sarcoplasmic reticulum (SR) membrane of skeletal muscle contains potassium channels which are thought to support charge neutralization during calcium release by providing a permeability pathway for counter-ion movement. To describe the behaviour of the SR K+ channel under physiological conditions, single channel activity was recorded from excised patches of SR membrane. Patches were made from membrane blebs extruded from contracted muscle fibres whose surface membranes had been removed previously by mechanical dissection. 2. The channel was active over a large voltage range from -80 to +100 mV. The current-voltage relationship of the channel was linear over most of this voltage range (slope conductance equal to 60 pS in 130 mM potassium), but showed rectification at voltages below -50 mV. 3. The activity of the channel (number of state transitions per unit time) was greater at positive voltages than at negative voltages. Analysis of dwell-time distributions showed that the time spent in the open state is best fitted by a double Gaussian, suggesting that the channel possesses both a long (l)- and a short (s)-lived open state with identical conductances. The dwell times for the two states were Ts = 0.3 ms and Tl = 2.6 ms at +90 mV and Ts = 0.1 ms and Tl = 15.1 ms at -40 mV. Thus, positive voltage decreased the long open time significantly which was consistent with the observed increase in channel activity at positive potentials. 4. The permeability sequence of the channel to various monovalent cations was deduced from the channel reversal potential under bi-ionic conditions and was found to be: K+ > Rb+ > Na+ > Cs+ > Li+. 5. Channel activity was reduced when the patch was perfused with 1,10-bis-guanidino-n-decane (BisG10), a drug reported to block the SR K+ channel with high affinity. The drug concentration necessary to reduce the open probability (P(o)) by 50% was 19.8 microM at -40 mV and 338.2 microM at +50 mV. The zero voltage dissociation constant (Kd) was calculated to be 48 microM. 6. Pharmacological agents known to affect surface membrane K+ channels, such as 0.5 mM Ba2+ or 3.0 mM 4-aminopyridine, were much less effective in blocking the channel than BisG10. Physiological calcium concentrations (pCa = 8.0 and 3.0) did not affect channel behaviour.4
Collapse
Affiliation(s)
- J Wang
- University of Illinois, Department of Physiology and Biophysics, Urbana 61801
| | | |
Collapse
|
18
|
Blaineau S, Jacquemond V, Allard B, Amsellem J, Moutin MJ, Rougier O. Inward barium current and excitation-contraction coupling in frog twitch muscle fibres. J Muscle Res Cell Motil 1993; 14:158-66. [PMID: 8315019 DOI: 10.1007/bf00115450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The role of barium ions in excitation-contraction coupling was studied in single isolated frog semitendinosus fibres. Simultaneous recordings of membrane currents and contraction under voltage-clamp conditions in a sucrose-vaseline gap device show that barium ions have a reversible inhibiting effect on contraction. This inhibiting action was correlated to the entry of barium ions via the DHP-sensitive tubular calcium channel. Cytological observations and X-ray microanalysis performed on the fibres used in the electrophysiological experiments indicate that barium ions do not accumulate in the junctional sarcoplasmic reticulum; they can freely diffuse in the intermyofibrillar space and they accumulate in mitochondria. Calcium release experiments performed on isolated sarcoplasmic reticulum vesicles show that barium ions are not able to induce calcium release from calcium-loaded vesicles, they behave as calcium release inhibitors. These results are discussed in relation with the possible role of the slow Ca current in excitation-contraction coupling.
Collapse
Affiliation(s)
- S Blaineau
- Laboratoire de Physiologie des Eléments Excitables, UA CNRS 180, Université Claude Bernard, Villeurbanne, France
| | | | | | | | | | | |
Collapse
|
19
|
Gallant EM, Taus NS, Fletcher TF, Lentz LR, Louis CF, Mickelson JR. Perchlorate potentiation of excitation-contraction coupling in mammalian skeletal muscles. THE AMERICAN JOURNAL OF PHYSIOLOGY 1993; 264:C559-67. [PMID: 8384784 DOI: 10.1152/ajpcell.1993.264.3.c559] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The action of perchlorate (ClO4-), an agonist of the voltage sensor in excitation-contraction (EC) coupling, has been examined using bundles of intact muscle cells, isolated membrane vesicles [sarcoplasmic reticulum (SR) and transverse tubule (TT)], and cultured myotubes. The effect of ClO4- on mechanical parameters was investigated in isolated murine limb muscles. The presence of ClO4- (5 or 10 mM) greatly increased twitch tension ( > 250%), slightly enhanced tetanic tension, and increased K contracture tension. K contracture thresholds of extensor digitorum longus (EDL, 40 mM K+) and soleus (30 mM K+) muscles were not altered by ClO4-. However, in whole cell patch clamp studies of mouse myotubes, contractile activation was shifted by approximately -10 mV by 10 mM ClO4-. To further define the site of alteration of EC coupling by ClO4-, studies were conducted with isolated porcine SR and TT vesicles and with cultured mouse myotubes. The rate constant of Ca-induced 45Ca release from SR vesicles was significantly increased by ClO4-. However, neither the affinity nor level of [3H]PN200-110 binding to TT vesicles was significantly affected by ClO4- concentrations that increased twitch tension. Furthermore, slow plasmalemmal Ca currents of myotubes recorded in the whole cell patch-clamp mode were enhanced by 10 mM ClO4-, and the current-voltage relationship was shifted approximately -7mV. Thus, in enhancing EC coupling in mammalian muscle, ClO4- may act at multiple sites including the SR Ca release channel and the TT Ca channel-voltage sensor.
Collapse
Affiliation(s)
- E M Gallant
- Graduate Program in Veterinary Biology, University of Minnesota, St. Paul 55108
| | | | | | | | | | | |
Collapse
|
20
|
Allard B, Moutin MJ, Ronjat M. BisG10, a K+ channel blocker, affects the calcium release channel from skeletal muscle sarcoplasmic reticulum. FEBS Lett 1992; 314:81-4. [PMID: 1333418 DOI: 10.1016/0014-5793(92)81466-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The action of bisG10, a potent K+ channel inhibitor, was tested on the Ca2+ release from isolated sarcoplasmic reticulum vesicles of rabbit skeletal muscle. Using a rapid filtration technique, we found that the drug inhibited Ca(2+)-induced Ca2+ release elicited in the presence of extravesicular K+ as counter-ion. This inhibition was not reversed by the addition of valinomycin and still occurred when Cl- was used as co-ion, indicating that not only K+ channels are involved in the inhibiting effect. We found that bisG10 decreased the binding of ryanodine to sarcoplasmic reticulum vesicles, showing that bisG10 is able to block the sarcoplasmic reticulum Ca2+ release channel.
Collapse
Affiliation(s)
- B Allard
- Laboratoire de Physiologie des Eléments Excitables, URA 180 CNRS, Villeurbanne, France
| | | | | |
Collapse
|
21
|
Chinet A, Decrouy A, Even PC. Ca(2+)-dependent heat production under basal and near-basal conditions in the mouse soleus muscle. J Physiol 1992; 455:663-78. [PMID: 1484367 PMCID: PMC1175664 DOI: 10.1113/jphysiol.1992.sp019321] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
1. The rate of energy expended for the clearance of sarcoplasmic Ca2+ by sarcoreticular Ca2+ uptake process(es), plus the concomitant metabolic reactions, was evaluated from measurements of resting heat production by mouse soleus muscle before and after indirect inhibition of Ca2+ uptake by sarcoplasmic reticulum (SR). 2. Direct inhibition of the Ca2+, Mg(2+)-ATPase of SR membrane in intact muscle preparations exposed to the specific inhibitor 2,5-di(tert-butyl-1,4-benzohydroquinone (tBuBHQ) slowly increased the rate of heat production (E). Indirect inhibition of SR Ca2+ uptake was obtained by reducing sarcoplasmic Ca2+ concentration (Ca2+i) as a consequence of reducing Ca2+ release from the SR using dantrolene sodium. This promptly decreased E by 12%. Exposure of the preparations to an Mg(2+)-enriched environment (high Mg2+) or to the chemical phosphatase 2,3-butanedione monoxime (BDM), two other procedures aimed at decreasing SR Ca2+ release, also acutely decreased E, by 20 and 24%, respectively. 3. Subthreshold-for-contracture depolarization of the sarcolemma achieved by increasing extracellular K+ concentration to 11.8 mM induced a biphasic increase of E: an initial peak to 290% of basal E, followed by a plateau phase at 140% of basal E during which resting muscle tension was increased by less than 3%. Most, if not all, of the plateau-phase metabolic response was quickly suppressed by dantrolene or high Mg2+ or BDM. Another means of increasing SR Ca2+ cycling was to partially remove the calmodulin-dependent control of SR Ca2+ release using the calmodulin inhibitor W-7. The progressive increase in E with 30 microM-W-7 was largely reduced by dantrolene or high Mg2+ or BDM. 4. In the presence of either dantrolene or BDM to prevent the effect of W-7 on SR Ca2+ release, exposure of the muscle to W-7 acutely suppressed about 3% of E. This and the above results confirm that the plasmalemmal, calmodulin-dependent Ca(2+)-ATPase, although a qualitatively essential part of the Ca2+i homeostatic system of the cell, can only be responsible for a very minor part of the energy expenditure devoted to the homeostasis of Ca2+i. Active Ca2+ uptake by SR which, at least in the submicromolar range of Ca2+i, is expected to be responsible for most of this Ca(2+)-dependent energy expenditure, might dissipate up to 25-40% of total metabolic energy in the intact mouse soleus under basal and near-basal conditions.
Collapse
Affiliation(s)
- A Chinet
- Department of Physiology, University of Geneva, Switzerland
| | | | | |
Collapse
|
22
|
Allard B, Rougier O. Reappraisal of the role of sodium ions in excitation-contraction coupling in frog twitch muscle. J Muscle Res Cell Motil 1992; 13:117-25. [PMID: 1556167 DOI: 10.1007/bf01738435] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tetanic and twitch tension were recorded on isolated frog twitch fibres under experimental conditions modifying the influx of sodium ions. In current clamp conditions replacing Li+ for Na+ did not modify the electrical activity but drastically decreased the plateau of tetanic tension. In voltage clamp conditions replacing Li+ for Na+ did not modify the inward currents but induced a marked decrease of the plateau of the tetanic tension for depolarizations between the activation threshold and the reversal potential of sodium current. Under veratridine treatment, during tetanic depolarization, a slow inward sodium (or lithium) current developed. This induced a parallel increase of the tetanic tension which was much more pronounced in sodium than in lithium containing solution. The twitch tension obtained during short depolarization was increased by greater than 100% during veratridine treatment with a sizeable decrease (40%) of the delay between the end of depolarization and the beginning of tension. All these results could be reproduced in calcium-free solution. Our data confirm that the entry of sodium ions (and to a lesser extent of lithium ions) is able to modulate the release of calcium from the sarcoplasmic reticulum (SR). We discuss these results in terms of a model where sodium ions entering the compartment between the tubular membrane and the SR junctional membrane carry counter charges through the SR K+ channels and help to maintain the SR Ca2+ release. This could occur in particular during a physiological tetanic contraction where the junctional compartment is probably filled with Na+ ions and depleted of K+ ions.
Collapse
Affiliation(s)
- B Allard
- Laboratoire de Physiologie des Eléments Excitables (CNRS UA 180), Université Claude Bernard Lyon I, Villeurbanne, France
| | | |
Collapse
|
23
|
Liu QY, Lai FA, Shen WK, Meissner G, Strauss HC. Reconstitution of the solubilized cardiac sarcoplasmic reticulum potassium channel. Identification of a putative Mr approximately 80 kDa polypeptide constituent. FEBS Lett 1991; 291:13-6. [PMID: 1936241 DOI: 10.1016/0014-5793(91)81092-m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent evidence has indicated that potassium ion movement through sarcoplasmic reticulum (SR) K+ channels is an important countercurrent for Ca2+ release from SR. We used Chaps-solubilized SR vesicles and sucrose density gradient centrifugation to identify components of the canine cardiac SR K+ channel. To overcome the difficulty of the absence of a high-affinity specific ligand, we have successfully applied the planar lipid bilayer reconstitution technique to identify and functionally assay for the solubilized SR K+ channel. We found that Chaps solubilization of the channel did not change the protein's functional properties. The cardiac SR K+ channel sediments as a 15-20S protein complex. A polypeptide of Mr approximately 80 kDa was found to specifically comigrate with the 15-20S gradient fractions and might be a major constituent of the cardiac SR K+ channel.
Collapse
Affiliation(s)
- Q Y Liu
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | | | | | | | | |
Collapse
|
24
|
Kwok WM, Best PM. Calcium-induced inactivation of calcium release from the sarcoplasmic reticulum of skeletal muscle. Pflugers Arch 1991; 419:166-76. [PMID: 1961687 DOI: 10.1007/bf00373003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ability of myofilament space Ca2+ to modulate Ca2+ release from the sarcoplasmic reticulum (SR) of skeletal muscle was investigated. Single fibers of the frog Rana pipiens belindieri were manually skinned (sarcolemma removed). Following a standard load and pre-incubation in varying myoplasmic Ca2+ concentrations, SR Ca2+ release was initiated by caffeine. Ca2+ release rates were calculated from the changes in absorbance of a Ca2+ sensitive dye, antipyrylazo III. An apparent dissociation constant (Kd) for dye-Ca2+ binding of 8000 microM 2 was determined by comparing the buffering action of the dye with that of ethylenebis(oxonitrilo)tetraacetate (EGTA) using the contractile proteins of the skinned fiber as a measure of free Ca2+. This value for Kd was used in the calculation of Ca2+ release rates. As the myoplasmic space Ca2+ was increased from pCa 7.4, Ca2+ release rates declined sharply such that at pCa 6.9 the calculated release rate was 72 +/- 3% (mean +/- SEM) of control (pCa 8.4). Further increases in myoplasmic Ca2+ from pCa 6.9 to pCa 6.1 did not result in a further decline in release rate. The effect of a decreased driving force on Ca2+ ions was investigated to determine whether it could account for the change in release rates observed. At pCa 6.9, where the greatest degree of inactivation occurred, the measured effects of a change in driving force could account for at most 40% of the observed inactivation. Varying concentrations of Ba2+ and Sr2+ in the myofilament space had no inactivating effect on the SR Ca2+ release rates. The ability of myofilament Ca2+ to inhibit SR Ca2+ release at concentrations normally encountered during muscle activation suggests a role for released Ca2+ as a modulator of the SR Ca2+ channel.
Collapse
Affiliation(s)
- W M Kwok
- Department of Physiology and Biophysics, University of Illinois, Urbana 61801
| | | |
Collapse
|
25
|
Liu QY, Strauss HC. Blockade of cardiac sarcoplasmic reticulum K+ channel by Ca2+: two-binding-site model of blockade. Biophys J 1991; 60:198-203. [PMID: 1883938 PMCID: PMC1260051 DOI: 10.1016/s0006-3495(91)82043-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Potassium countercurrent through the SR K+ channel plays an important role in Ca2+ release from the SR. To see if Ca2+ regulates the channel, we incorporated canine cardiac SR K+ channel into lipid bilayers. Calcium ions present in either the SR lumenal (trans) or cytoplasmic (cis) side blocked the cardiac SR K+ channel in a voltage-dependent manner. When Ca2+ was present on both sides, however, the block appeared to be voltage independent. A two-binding site model of blockade by an impermeant divalent cation (Ca2+) can explain this apparent contradiction. Estimates of SR Ca2+ concentration suggest that under physiological conditions the cardiac SR K+ channel is partially blocked by Ca2+ ions present in the lumen of the SR. The reduction in lumenal [Ca2+] during Ca2+ release could increase K+ conductance.
Collapse
Affiliation(s)
- Q Y Liu
- Department of Pharmacology, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
26
|
Juel C, Bangsbo J, Graham T, Saltin B. Lactate and potassium fluxes from human skeletal muscle during and after intense, dynamic, knee extensor exercise. ACTA PHYSIOLOGICA SCANDINAVICA 1990; 140:147-59. [PMID: 2125176 DOI: 10.1111/j.1748-1716.1990.tb08986.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study examines lactate and K+ fluxes from muscle to blood during and after intense exercise. Ten men performed exhaustive dynamic exercise (mean load 65 W, mean duration 3.18 min) with the knee extensors of one leg. The mean lactate efflux was 15.5 (range 8.9-24.0) mmol min-1 at exhaustion, and it was linearly related to the lactate gradient. A linear relationship was also obtained if the H+ gradient was taken into account. Muscle pH decreased from 7.14 at rest to 6.71 (range 6.50-6.87) at exhaustion. At rest and during late recovery blood lactate was distributed across the erythrocyte membrane according to the membrane potential (intra-/extracellular ratio of 0.5), but during rapid lactate release this ratio decreased to 0.2. In-vitro experiments demonstrated a time constant of 1.2 min for lactate efflux from the erythrocytes. Approximately 70% of the K+ ions released from the muscle to the blood accumulated in the plasma; the rest were taken up by other tissues. However, erythrocytes were not involved as a dilution space. The small change in erythrocyte K+ concentration was due to cellular volume changes. During recovery the kinetics of K+ reuptake by the muscle were described by a very fast (less than 1 min) and a slow component (greater than 1 min): the magnitude of the former was equivalent to what had accumulated in the plasma. Individuals displayed a wide range of intramuscular lactate concentrations and pH values at exhaustion. Further, the pH changes were not as extreme as previously reported, suggesting that pH may not be the only factor involved in the fatigue process. A possible role for the potassium shifts as a limiting factor for muscle function is discussed.
Collapse
Affiliation(s)
- C Juel
- August Krogh Institute, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
27
|
Gilchrist JS, Katz S, Belcastro AN. Improved resolution of the initial fast phase of heavy sarcoplasmic reticulum Ca2+ uptake by Ca2+:antipyrylazo III dual-wavelength spectroscopy. Biochem Biophys Res Commun 1990; 168:364-71. [PMID: 2109610 DOI: 10.1016/0006-291x(90)91717-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effect of ATP upon difference absorbance due to Ca2+ and Mg2+ complexation with the metallochromic dye, Antipyrylazo III (AP III), was investigated. At divalent cation concentrations appropriate for Sarcoplasmic Reticulum Ca2+ transport, wavelengths (greater than 670 nm) were found whereupon the addition of up to 1mM nucleotide did not alter divalent cation:AP III difference absorbance. At these sample wavelengths an initial rapid uptake of Ca2+ by Heavy SR (HSR) was clearly resolved by dual wavelength spectroscopy of Ca2+:dye difference absorbance. Elimination of ATP interference of Ca2+:AP III absorbance by Mg2+ elevation (3-10mM) was shown to be an inappropriate general strategy for AP III spectroscopic studies of HSR Ca2+ transport due to Mg2+ inhibition of ryanodine receptor mediated Ca2+ release.
Collapse
Affiliation(s)
- J S Gilchrist
- Faculty of Graduate Studies, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
28
|
Tester M. Tansley Review No. 21 Plant ion channels: whole-cell and single channel studies. THE NEW PHYTOLOGIST 1990; 114:305-340. [PMID: 33873975 DOI: 10.1111/j.1469-8137.1990.tb00403.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ion channels are proteins which catalyse rapid, passive, electrogenic uniport of ions through pores spanning an otherwise poorly permeable lipid bilayer. Among other processes, fluxes through ion channels are responsible for action potentials - large, transient changes in membrane potential which have been known of in plants for over 100 years. Much disparate information on ion channels in plant cells has accumulated over the past few years. In an attempt to synthesize these data, the properties of at least 18 different ion channels are collated in this review. Channels are initially classified according to ion selectivity (Ca2+ , Cl- , K+ and H+ ); then gating characteristics (i.e. control of opening and closing), unitary conductance and pharmacology are used to distinguish further different sub-types of channels. To provide a background for this overview, the fundamental properties which define ion channels in animal cells, namely conduction, selectivity and gating, are described. Appropriate techniques for the study of ion channels are also assessed. The review concludes with a discussion on the role of ion channels in plant cells, although any comment on functions beyond turgor regulation and general statements about signalling remains largely speculative. The study of ion channels in plant cells is still at an early stage and it is hoped that this review will provide a framework upon which further work in both algae and vascular plants can be based. CONTENTS Summary 305 I. Introduction: plant electrophysiology 306 II. A general description of ion channels 306 III. Ion channels in plants 310 IV. Ca2+ channels 313 V. Cl- channels 315 VI. K+ channels in the plasma membrane 318 VII. K+ channels in the tonoplast 322 VIII. Channels in thylakoids 324 IX. H+ channels 324 X. Functions of channels 325 XI. Conclusions 328 Acknowledgements 328 References 329.
Collapse
Affiliation(s)
- Mark Tester
- Botany School, Downing St, Cambridge, CB2 3EA, UK
| |
Collapse
|
29
|
Raymond G. [Mechanisms of excitation-contraction coupling and calcium liberation in striated muscles of vertebrates]. ARCHIVES INTERNATIONALES DE PHYSIOLOGIE ET DE BIOCHIMIE 1989; 97:A79-95. [PMID: 2479354 DOI: 10.3109/13813458909105537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In vertebrate skeletal muscle, the main part of excitation-contraction coupling occurs at the level of the triad, where membranes of T-system and of junctional SR are facing each other. From place to place, the junctional gap is bridged by "feet" structures which include the SR Ca2+ channel. Half of them are closely apposed to tubular intramembranous structures assumed to be DHP-sensitive voltage-sensors which are similar to tubular Ca2+ channels and act by controlling Ca2+ release from SR. During a twitch, the release of Ca2+ activator from SR is controlled both by voltage-sensors via the feet structures and by a tubular Na+ current via a Na+-induced Ca2+ release mechanism. During long-duration mechanical responses, additional mechanisms are involved: a Ca2+-induced Ca2+ release which can be activated by ICa; the release of Ca2+ from membrane, controlled by the operation of a Na+/Ca2+ exchanger and/or new arrangements of surface membrane charges. An IP3-mediated Ca2+ release could be involved too. All these mechanisms can be regulated by intracellular biochemical or ionic processes.
Collapse
Affiliation(s)
- G Raymond
- Laboratoire de Physiologie Générale, U.R.A. CNRS 290, Université de Poitiers
| |
Collapse
|
30
|
Hals GD, Stein PG, Palade PT. Single channel characteristics of a high conductance anion channel in "sarcoballs". J Gen Physiol 1989; 93:385-410. [PMID: 2467963 PMCID: PMC2216217 DOI: 10.1085/jgp.93.3.385] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Previously undescribed high conductance single anion channels from frog skeletal muscle sarcoplasmic reticulum (SR) were studied in native membrane using the "sarcoball" technique (Stein and Palade, 1988). Excised inside-out patches recorded in symmetrical 200 mM TrisCl show the conductance of the channel's predominant state was 505 +/- 25 pS (n = 35). From reversal potentials, the Pcl/PK ratio was 45. The slope conductance vs. Cl- ion concentration curve saturates at 617 pS, with K0.5 estimated at 77 mM. The steady-state open probability (Po) vs. holding potential relationship produces a bell-shaped curve, with Po values reaching a maximum near 1.0 at 0 mV, and falling off to 0.05 at +/- 25 mV. Kinetic analysis of the voltage dependence reveals that while open time constants are decreased somewhat by increases in potential, the largest effect is an increase in long closed times. Despite the channel's high conductance, it maintains a moderate selectivity for smaller anions, but will not pass larger anions such as gluconate, as determined by reversal-potential shifts. At least two substates different from the main open level are distinguishable. These properties are unlike those described for mitochondrial voltage-dependent anion channels or skeletal muscle surface membrane Cl channels and since SR Ca channels are present in equally high density in sarcoball patches, we propose these sarcoball anion channels originate from the SR. Preliminary experiments recording currents from frog SR anion channels fused into liposomes indicate that either biochemical isolation and/or alterations in lipid environment greatly decrease the channel's voltage sensitivity. These results help underline the potential significance of using sarcoballs to study SR channels. The steep voltage sensitivity of the sarcoball anion channel suggests that it could be more actively involved in the regulation of Ca2+ transport by the SR.
Collapse
Affiliation(s)
- G D Hals
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77550
| | | | | |
Collapse
|