1
|
Sullivan LE, Li R, Tong VS, Jagasia P, Bonfield CM, Golinko MS, Pontell ME. Craniosynostosis: Current Evaluation and Management. Ann Plast Surg 2024; 93:S144-S149. [PMID: 39527402 DOI: 10.1097/sap.0000000000004131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
ABSTRACT Craniosynostosis is characterized by the premature fusion of one or more cranial sutures, which can lead to abnormal skull shape and restricted skull growth. Although most cases are present in isolation, some are associated with genetic syndromes, such as Pfeiffer, Muenke, Couzon, Apert, and others, which increases the complexity of care. Today, a spectrum of surgical options to treat craniosynostosis are available and range from traditional open cranial vault remodeling to newer and less invasive suturectomy-based techniques. Which procedure is offered to a patient depends on not only the specific synostosis pattern but also factors such as patient age, the need for additional procedures or interventions, and evidence of elevated intracranial pressure. Thorough consultations with families to discuss achievable goals for cosmesis and function are essential in providing optimal care to each impacted child.
Collapse
Affiliation(s)
| | - Ruoying Li
- From the Vanderbilt University School of Medicine
| | | | - Puja Jagasia
- From the Vanderbilt University School of Medicine
| | | | | | | |
Collapse
|
2
|
Duan J, Pan S, Ye Y, Hu Z, Chen L, Liang D, Fu T, Zhan L, Li Z, Liao J, Zhao X. Uncovering hidden genetic variations: long-read sequencing reveals new insights into tuberous sclerosis complex. Front Cell Dev Biol 2024; 12:1415258. [PMID: 39144255 PMCID: PMC11321964 DOI: 10.3389/fcell.2024.1415258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/10/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Tuberous sclerosis is a multi-system disorder caused by mutations in either TSC1 or TSC2. The majority of affected patients (85%-90%) have heterozygous variants, and a smaller number (around 5%) have mosaic variants. Despite using various techniques, some patients still have "no mutation identified" (NMI). METHODS We hypothesized that the causal variants of patients with NMI may be structural variants or deep intronic variants. To investigate this, we sequenced the DNA of 26 tuberous sclerosis patients with NMI using targeted long-read sequencing. RESULTS We identified likely pathogenic/pathogenic variants in 13 of the cases, of which 6 were large deletions, four were InDels, two were deep intronic variants, one had retrotransposon insertion in either TSC1 or TSC2, and one was complex rearrangement. Furthermore, there was a de novo Alu element insertion with a high suspicion of pathogenicity that was classified as a variant of unknown significance. CONCLUSION Our findings expand the current knowledge of known pathogenic variants related to tuberous sclerosis, particularly uncovering mosaic complex structural variations and retrotransposon insertions that have not been previously reported in tuberous sclerosis. Our findings suggest a higher prevalence of mosaicism among tuberous sclerosis patients than previously recognized. Our results indicate that long-read sequencing is a valuable approach for tuberous sclerosis cases with no mutation identified (NMI).
Collapse
Affiliation(s)
- Jing Duan
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | | | - Yuanzhen Ye
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Zhanqi Hu
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Li Chen
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Dachao Liang
- Shenzhen A-Smart Medical Research Center, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Tao Fu
- Shenzhen A-Smart Medical Research Center, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | | | - Zhuo Li
- Shenzhen A-Smart Medical Research Center, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Xia Zhao
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Topa A, Rohlin A, Fehr A, Lovmar L, Stenman G, Tarnow P, Maltese G, Bhatti-Søfteland M, Kölby L. The value of genome-wide analysis in craniosynostosis. Front Genet 2024; 14:1322462. [PMID: 38318288 PMCID: PMC10839781 DOI: 10.3389/fgene.2023.1322462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024] Open
Abstract
Background: This study assessed the diagnostic yield of high-throughput sequencing methods in a cohort of craniosynostosis (CS) patients not presenting causal variants identified through previous targeted analysis. Methods: Whole-genome or whole-exome sequencing (WGS/WES) was performed in a cohort of 59 patients (from 57 families) assessed by retrospective phenotyping as having syndromic or nonsyndromic CS. Results: A syndromic form was identified in 51% of the unrelated cases. A genetic cause was identified in 38% of syndromic cases, with novel variants detected in FGFR2 (a rare Alu insertion), TWIST1, TCF12, KIAA0586, HDAC9, FOXP1, and NSD2. Additionally, we report two patients with rare recurrent variants in KAT6A and YY1 as well as two patients with structural genomic aberrations: one with a 22q13 duplication and one with a complex rearrangement involving chromosome 2 (2p25 duplication including SOX11 and deletion of 2q22). Moreover, we identified potentially relevant variants in 87% of the remaining families with no previously detected causal variants, including novel variants in ADAMTSL4, ASH1L, ATRX, C2CD3, CHD5, ERF, H4C5, IFT122, IFT140, KDM6B, KMT2D, LTBP1, MAP3K7, NOTCH2, NSD1, SOS1, SPRY1, POLR2A, PRRX1, RECQL4, TAB2, TAOK1, TET3, TGFBR1, TCF20, and ZBTB20. Conclusion: These results confirm WGS/WES as a powerful diagnostic tool capable of either targeted in silico or broad genomic analysis depending on phenotypic presentation (e.g., classical or unusual forms of syndromic CS).
Collapse
Affiliation(s)
- Alexandra Topa
- Department of Laboratory Medicine, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna Rohlin
- Department of Laboratory Medicine, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - André Fehr
- Department of Laboratory Medicine, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
- Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lovisa Lovmar
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Göran Stenman
- Department of Laboratory Medicine, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
- Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Peter Tarnow
- Department of Plastic Surgery, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Giovanni Maltese
- Department of Plastic Surgery, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Madiha Bhatti-Søfteland
- Department of Plastic Surgery, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Lars Kölby
- Department of Plastic Surgery, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| |
Collapse
|
4
|
He Z, Chen O, Phillips N, Pasquesi GIM, Sabunciyan S, Florea L. Predicting Alu exonization in the human genome with a deep learning model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574099. [PMID: 38260329 PMCID: PMC10802380 DOI: 10.1101/2024.01.03.574099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Alu exonization, or the recruitment of intronic Alu elements into gene sequences, has contributed to functional diversification; however, its extent and the ways in which it influences gene regulation are not fully understood. We developed an unbiased approach to predict Alu exonization events from genomic sequences implemented in a deep learning model, eXAlu, that overcomes the limitations of tissue or condition specificity and the computational burden of RNA-seq analysis. The model captures previously reported characteristics of exonized Alu sequences and can predict sequence elements important for Alu exonization. Using eXAlu, we estimate the number of Alu elements in the human genome undergoing exonization to be between 55-110K, 11-21 fold more than represented in the GENCODE gene database. Using RT-PCR we were able to validate selected predicted Alu exonization events, supporting the accuracy of our method. Lastly, we highlight a potential application of our method to identify polymorphic Alu insertion exonizations in individuals and in the population from whole genome sequencing data.
Collapse
Affiliation(s)
- Zitong He
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21205
| | - Ou Chen
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Noelani Phillips
- School of Kinesiology, University of Michigan, Ann Arbor, MI 48109
| | - Giulia Irene Maria Pasquesi
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309 and Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
| | - Sarven Sabunciyan
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Liliana Florea
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21205
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205
| |
Collapse
|
5
|
Smith C, Kitzman JO. Benchmarking splice variant prediction algorithms using massively parallel splicing assays. Genome Biol 2023; 24:294. [PMID: 38129864 PMCID: PMC10734170 DOI: 10.1186/s13059-023-03144-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Variants that disrupt mRNA splicing account for a sizable fraction of the pathogenic burden in many genetic disorders, but identifying splice-disruptive variants (SDVs) beyond the essential splice site dinucleotides remains difficult. Computational predictors are often discordant, compounding the challenge of variant interpretation. Because they are primarily validated using clinical variant sets heavily biased to known canonical splice site mutations, it remains unclear how well their performance generalizes. RESULTS We benchmark eight widely used splicing effect prediction algorithms, leveraging massively parallel splicing assays (MPSAs) as a source of experimentally determined ground-truth. MPSAs simultaneously assay many variants to nominate candidate SDVs. We compare experimentally measured splicing outcomes with bioinformatic predictions for 3,616 variants in five genes. Algorithms' concordance with MPSA measurements, and with each other, is lower for exonic than intronic variants, underscoring the difficulty of identifying missense or synonymous SDVs. Deep learning-based predictors trained on gene model annotations achieve the best overall performance at distinguishing disruptive and neutral variants, and controlling for overall call rate genome-wide, SpliceAI and Pangolin have superior sensitivity. Finally, our results highlight two practical considerations when scoring variants genome-wide: finding an optimal score cutoff, and the substantial variability introduced by differences in gene model annotation, and we suggest strategies for optimal splice effect prediction in the face of these issues. CONCLUSION SpliceAI and Pangolin show the best overall performance among predictors tested, however, improvements in splice effect prediction are still needed especially within exons.
Collapse
Affiliation(s)
- Cathy Smith
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jacob O Kitzman
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
6
|
Smith C, Kitzman JO. Benchmarking splice variant prediction algorithms using massively parallel splicing assays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539398. [PMID: 37205456 PMCID: PMC10187268 DOI: 10.1101/2023.05.04.539398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Background Variants that disrupt mRNA splicing account for a sizable fraction of the pathogenic burden in many genetic disorders, but identifying splice-disruptive variants (SDVs) beyond the essential splice site dinucleotides remains difficult. Computational predictors are often discordant, compounding the challenge of variant interpretation. Because they are primarily validated using clinical variant sets heavily biased to known canonical splice site mutations, it remains unclear how well their performance generalizes. Results We benchmarked eight widely used splicing effect prediction algorithms, leveraging massively parallel splicing assays (MPSAs) as a source of experimentally determined ground-truth. MPSAs simultaneously assay many variants to nominate candidate SDVs. We compared experimentally measured splicing outcomes with bioinformatic predictions for 3,616 variants in five genes. Algorithms' concordance with MPSA measurements, and with each other, was lower for exonic than intronic variants, underscoring the difficulty of identifying missense or synonymous SDVs. Deep learning-based predictors trained on gene model annotations achieved the best overall performance at distinguishing disruptive and neutral variants. Controlling for overall call rate genome-wide, SpliceAI and Pangolin also showed superior overall sensitivity for identifying SDVs. Finally, our results highlight two practical considerations when scoring variants genome-wide: finding an optimal score cutoff, and the substantial variability introduced by differences in gene model annotation, and we suggest strategies for optimal splice effect prediction in the face of these issues. Conclusion SpliceAI and Pangolin showed the best overall performance among predictors tested, however, improvements in splice effect prediction are still needed especially within exons.
Collapse
Affiliation(s)
- Cathy Smith
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jacob O. Kitzman
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Klein J, Allister AB, Schmidt G, Otto A, Heinecke K, Bax-Knoche J, Beger C, Becker S, Bartels S, Ripperger T, Bohne J, Dörk T, Schlegelberger B, Hofmann W, Steinemann D. A Novel Alu Element Insertion in ATM Induces Exon Skipping in Suspected HBOC Patients. Hum Mutat 2023; 2023:6623515. [PMID: 40225144 PMCID: PMC11919196 DOI: 10.1155/2023/6623515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 04/15/2025]
Abstract
The vast majority of patients at risk of hereditary breast and/or ovarian cancer (HBOC) syndrome remain without a molecular diagnosis after routine genetic testing. One type of genomic alteration that is commonly missed by diagnostic pipelines is mobile element insertions (MEIs). Here, we reanalyzed multigene panel data from suspected HBOC patients using the MEI detection tool Mobster. A novel Alu element insertion in ATM intron 54 (ATM:c.8010+30_8010+31insAluYa5) was identified as a potential contributing factor in seven patients. Transcript analysis of patient-derived RNA from three heterozygous carriers revealed exon 54 skipping in 38% of total ATM transcripts. To manifest the direct association between the Alu element insertion and the aberrant splice pattern, HEK293T and MCF7 cells were transfected with wild-type or Alu element-carrying minigene constructs. On average, 77% of plasmid-derived transcripts lacked exon 54 in the presence of the Alu element insertion compared to only 4.7% of transcripts expressed by the wild-type minigene. These results strongly suggest ATM:c.8010+30_8010+31insAluYa5 as the main driver of ATM exon 54 skipping. Since this exon loss is predicted to cause a frameshift and a premature stop codon, mutant transcripts are unlikely to translate into functional proteins. Based on its estimated frequency of up to 0.05% in control populations, we propose to consider ATM:c.8010+30_8010+31insAluYa5 in suspected HBOC patients and to clarify its role in carcinogenesis through future epidemiological and functional analyses. Generally, the implementation of MEI detection tools in diagnostic sequencing pipelines could increase the diagnostic yield, as MEIs are likely underestimated contributors to genetic diseases.
Collapse
Affiliation(s)
- Janin Klein
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Gunnar Schmidt
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Annette Otto
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Kai Heinecke
- MVZ Labor Krone GbR, Bad Salzuflen, Bielefeld, Germany
| | | | - Carmela Beger
- MVZ Labor Krone GbR, Bad Salzuflen, Bielefeld, Germany
| | - Sarah Becker
- MVZ Labor Krone GbR, Bad Salzuflen, Bielefeld, Germany
| | - Stephan Bartels
- Department of Pathology, Hannover Medical School, Hannover, Germany
| | - Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Jens Bohne
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Thilo Dörk
- Department of Gynaecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | | | - Winfried Hofmann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
8
|
Mendelian inheritance revisited: dominance and recessiveness in medical genetics. Nat Rev Genet 2023:10.1038/s41576-023-00574-0. [PMID: 36806206 DOI: 10.1038/s41576-023-00574-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 02/22/2023]
Abstract
Understanding the consequences of genotype for phenotype (which ranges from molecule-level effects to whole-organism traits) is at the core of genetic diagnostics in medicine. Many measures of the deleteriousness of individual alleles exist, but these have limitations for predicting the clinical consequences. Various mechanisms can protect the organism from the adverse effects of functional variants, especially when the variant is paired with a wild type allele. Understanding why some alleles are harmful in the heterozygous state - representing dominant inheritance - but others only with the biallelic presence of pathogenic variants - representing recessive inheritance - is particularly important when faced with the deluge of rare genetic alterations identified by high throughput DNA sequencing. Both awareness of the specific quantitative and/or qualitative effects of individual variants and the elucidation of allelic and non-allelic interactions are essential to optimize genetic diagnosis and counselling.
Collapse
|
9
|
Clinical and Genetic Studies of the First Monozygotic Twins with Pfeiffer Syndrome. Genes (Basel) 2022; 13:genes13101850. [PMID: 36292735 PMCID: PMC9601734 DOI: 10.3390/genes13101850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Objective: To report the clinical and radiographic findings and molecular etiology of the first monozygotic twins affected with Pfeiffer syndrome. Methods: Clinical and radiographic examination and whole exome sequencing were performed on two monozygotic twins with Pfeiffer syndrome. Results: An acceptor splice site mutation in FGFR2 (c.940-2A>G) was detected in both twins. The father and both twins shared the same haplotype, indicating that the mutant allele was from their father’s chromosome who suffered severe upper airway obstruction and subsequent obstructive sleep apnea. Hypertrophy of nasal turbinates appears to be a newly recognized finding of Pfeiffer syndrome. Increased intracranial pressure in both twins were corrected early by fronto-orbital advancement with skull expansion and open osteotomy, in order to prevent the more severe consequences of increased intracranial pressure, including hydrocephalus, the bulging of the anterior fontanelle, and the diastasis of suture. Conclusions: Both twins carried a FGFR2 mutation and were discordant for lambdoid synostosis. Midface hypoplasia, narrow nasal cavities, and hypertrophic nasal turbinates resulted in severe upper airway obstruction and subsequent obstructive sleep apnea in both twins. Hypertrophy of the nasal turbinates appears to be a newly recognized finding of Pfeiffer syndrome. Fronto-orbital advancement with skull expansion and open osteotomy was performed to treat increased intracranial pressure in both twins. This is the first report of monozygotic twins with Pfeiffer syndrome.
Collapse
|
10
|
Kosushkin SA, Ustyantsev IG, Borodulina OR, Vassetzky NS, Kramerov DA. Tail Wags Dog’s SINE: Retropositional Mechanisms of Can SINE Depend on Its A-Tail Structure. BIOLOGY 2022; 11:biology11101403. [PMID: 36290307 PMCID: PMC9599045 DOI: 10.3390/biology11101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary The genomes of higher organisms including humans are invaded by millions of repetitive elements (transposons), which can sometimes be deleterious or beneficial for hosts. Many aspects of the mechanisms underlying the expansion of transposons in the genomes remain unclear. Short retrotransposons (SINEs) are one of the most abundant classes of genomic repeats. Their amplification relies on two major processes: transcription and reverse transcription. Here, short retrotransposons of dogs and other canids called Can SINE were analyzed. Their amplification was extraordinarily active in the wolf and, particularly, dog breeds relative to other canids. We also studied a variation of their transcription mechanism involving the polyadenylation of transcripts. An analysis of specific signals involved in this process allowed us to conclude that Can SINEs could alternate amplification with and without polyadenylation in their evolution. Understanding the mechanisms of transposon replication can shed light on the mechanisms of genome function. Abstract SINEs, non-autonomous short retrotransposons, are widespread in mammalian genomes. Their transcripts are generated by RNA polymerase III (pol III). Transcripts of certain SINEs can be polyadenylated, which requires polyadenylation and pol III termination signals in their sequences. Our sequence analysis divided Can SINEs in canids into four subfamilies, older a1 and a2 and younger b1 and b2. Can_b2 and to a lesser extent Can_b1 remained retrotranspositionally active, while the amplification of Can_a1 and Can_a2 ceased long ago. An extraordinarily high Can amplification was revealed in different dog breeds. Functional polyadenylation signals were analyzed in Can subfamilies, particularly in fractions of recently amplified, i.e., active copies. The transcription of various Can constructs transfected into HeLa cells proposed AATAAA and (TC)n as functional polyadenylation signals. Our analysis indicates that older Can subfamilies (a1, a2, and b1) with an active transcription terminator were amplified by the T+ mechanism (with polyadenylation of pol III transcripts). In the currently active Can_b2 subfamily, the amplification mechanisms with (T+) and without the polyadenylation of pol III transcripts (T−) irregularly alternate. The active transcription terminator tends to shorten, which renders it nonfunctional and favors a switch to the T− retrotransposition. The activity of a truncated terminator is occasionally restored by its elongation, which rehabilitates the T+ retrotransposition for a particular SINE copy.
Collapse
|
11
|
Willie D, Holmes G, Jabs EW, Wu M. Cleft Palate in Apert Syndrome. J Dev Biol 2022; 10:jdb10030033. [PMID: 35997397 PMCID: PMC9397066 DOI: 10.3390/jdb10030033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022] Open
Abstract
Apert syndrome is a rare genetic disorder characterized by craniosynostosis, midface retrusion, and limb anomalies. Cleft palate occurs in a subset of Apert syndrome patients. Although the genetic causes underlying Apert syndrome have been identified, the downstream signaling pathways and cellular mechanisms responsible for cleft palate are still elusive. To find clues for the pathogenic mechanisms of palatal defects in Apert syndrome, we review the clinical characteristics of the palate in cases of Apert syndrome, the palatal phenotypes in mouse models, and the potential signaling mechanisms involved in palatal defects. In Apert syndrome patients, cleft of the soft palate is more frequent than of the hard palate. The length of the hard palate is decreased. Cleft palate is associated most commonly with the S252W variant of FGFR2. In addition to cleft palate, high-arched palate, lateral palatal swelling, or bifid uvula are common in Apert syndrome patients. Mouse models of Apert syndrome display palatal defects, providing valuable tools to understand the underlying mechanisms. The mutations in FGFR2 causing Apert syndrome may change a signaling network in epithelial–mesenchymal interactions during palatogenesis. Understanding the pathogenic mechanisms of palatal defects in Apert syndrome may shed light on potential novel therapeutic solutions.
Collapse
|
12
|
Transposable Elements and Human Diseases: Mechanisms and Implication in the Response to Environmental Pollutants. Int J Mol Sci 2022; 23:ijms23052551. [PMID: 35269693 PMCID: PMC8910135 DOI: 10.3390/ijms23052551] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Transposable elements (TEs) are recognized as major players in genome plasticity and evolution. The high abundance of TEs in the human genome, especially the Alu and Long Interspersed Nuclear Element-1 (LINE-1) repeats, makes them responsible for the molecular origin of several diseases. This involves several molecular mechanisms that are presented in this review: insertional mutation, DNA recombination and chromosomal rearrangements, modification of gene expression, as well as alteration of epigenetic regulations. This literature review also presents some of the more recent and/or more classical examples of human diseases in which TEs are involved. Whether through insertion of LINE-1 or Alu elements that cause chromosomal rearrangements, or through epigenetic modifications, TEs are widely implicated in the origin of human cancers. Many other human diseases can have a molecular origin in TE-mediated chromosomal recombination or alteration of gene structure and/or expression. These diseases are very diverse and include hemoglobinopathies, metabolic and neurological diseases, and common diseases. Moreover, TEs can also have an impact on aging. Finally, the exposure of individuals to stresses and environmental contaminants seems to have a non-negligible impact on the epigenetic derepression and mobility of TEs, which can lead to the development of diseases. Thus, improving our knowledge of TEs may lead to new potential diagnostic markers of diseases.
Collapse
|
13
|
Baroud S, Wu J, Zouboulis CC. Acne Syndromes and Mosaicism. Biomedicines 2021; 9:biomedicines9111735. [PMID: 34829964 PMCID: PMC8615598 DOI: 10.3390/biomedicines9111735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/14/2021] [Accepted: 11/19/2021] [Indexed: 01/14/2023] Open
Abstract
Abnormal mosaicism is the coexistence of cells with at least two genotypes, by the time of birth, in an individual derived from a single zygote, which leads to a disease phenotype. Somatic mosaicism can be further categorized into segmental mosaicism and nonsegmental somatic mosaicism. Acne is a chronic illness characterized by inflammatory changes around and in the pilosebaceous units, commonly due to hormone- and inflammatory signaling-mediated factors. Several systemic disorders, such as congenital adrenal hyperplasia, polycystic ovarian syndrome, and seborrhoea-acne-hirsutism-androgenetic alopecia syndrome have classically been associated with acne. Autoinflammatory syndromes, including PAPA, PASH, PAPASH, PsAPASH, PsaPSASH, PASS, and SAPHO syndromes include acneiform lesions as a key manifestation. Mosaic germline mutations in the FGFR2 gene have been associated with Apert syndrome and nevus comedonicus, two illnesses that are accompanied by acneiform lesions. In this review, we summarize the concept of cutaneous mosaicism and elaborate on acne syndromes, as well as acneiform mosaicism.
Collapse
Affiliation(s)
- Sumer Baroud
- Departments of Dermatology, Venereology, Allergology, and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, 06847 Dessau, Germany; (S.B.); (J.W.)
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Jim Wu
- Departments of Dermatology, Venereology, Allergology, and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, 06847 Dessau, Germany; (S.B.); (J.W.)
| | - Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergology, and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, 06847 Dessau, Germany; (S.B.); (J.W.)
- Correspondence: ; Tel.: +49-340-501-4000
| |
Collapse
|
14
|
Singh CB, Mishra B, Patel R, Kumar A, Ali A. Tripod-shaped Syndactyly in Apert Syndrome with FGFR2 p.P253R Mutation. Indian J Plast Surg 2021; 54:370-372. [PMID: 34667527 PMCID: PMC8515315 DOI: 10.1055/s-0041-1733808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Apert syndrome is a rare acrocephalosyndactyly (craniosynostosis) syndrome characterized by craniofacial dysmorphism and syndactyly of the hands and feet. It is caused by FGFR2 mutations and inherited in an autosomal dominant manner. This article describes a novel clinical variant of Apert syndrome having bilateral symmetrical tripod-shaped syndactyly in hands with milder craniofacial features in a sporadic case, along with a mutation in the fibroblast growth factor receptor 2 ( FGFR2 ) gene. The patient had shown craniosynostosis, dysmorphic face, ocular hypertelorism, marked depression of the nasal bridge, long philtrum, and low set ears. Direct resequencing of the FGFR2 gene through Sanger's method identified a heterozygous missense mutation; FGFR2c.758C>G (FGFR2p.P253R) in the exon-7 of the gene.
Collapse
Affiliation(s)
- Chandra Bhan Singh
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Biswajit Mishra
- Department of Plastic Surgery, MKCG. Medical College and Hospital, Berhampur, Odisha, India
| | - Rashmi Patel
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Pediatrics, SS Hospital, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Akhtar Ali
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
15
|
Florea L, Payer L, Antonescu C, Yang G, Burns K. Detection of Alu Exonization Events in Human Frontal Cortex From RNA-Seq Data. Front Mol Biosci 2021; 8:727537. [PMID: 34568430 PMCID: PMC8460874 DOI: 10.3389/fmolb.2021.727537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/30/2021] [Indexed: 11/15/2022] Open
Abstract
Alu exonization events functionally diversify the transcriptome, creating alternative mRNA isoforms and accounting for an estimated 5% of the alternatively spliced (skipped) exons in the human genome. We developed computational methods, implemented into a software called Alubaster, for detecting incorporation of Alu sequences in mRNA transcripts from large scale RNA-seq data sets. The approach detects Alu sequences derived from both fixed and polymorphic Alu elements, including Alu insertions missing from the reference genome. We applied our methods to 117 GTEx human frontal cortex samples to build and characterize a collection of Alu-containing mRNAs. In particular, we detected and characterized Alu exonizations occurring at 870 fixed Alu loci, of which 237 were novel, as well as hundreds of putative events involving Alu elements that are polymorphic variants or rare alleles not present in the reference genome. These methods and annotations represent a unique and valuable resource that can be used to understand the characteristics of Alu-containing mRNAs and their tissue-specific expression patterns.
Collapse
Affiliation(s)
- Liliana Florea
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Department of Computer Science, Johns Hopkins University, Baltimore, MD, United States
| | - Lindsay Payer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Corina Antonescu
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Guangyu Yang
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Department of Computer Science, Johns Hopkins University, Baltimore, MD, United States
| | - Kathleen Burns
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Hearing, Speech, Language, and Communicative Participation in Patients With Apert Syndrome: Analysis of Correlation With Fibroblast Growth Factor Receptor 2 Mutation. J Craniofac Surg 2021; 33:243-250. [PMID: 34310431 DOI: 10.1097/scs.0000000000008019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Apert syndrome (AS) is caused by the heterozygous presence of 1 of 2 specific missense mutations of the fibroblast growth factor receptor 2 (FGFR2) gene. The 2 adjacent substitutions, designated p.Ser252Trp (S252W) and p.Pro253Arg (P253R), account for more than 98% of cases. Previous research has identified elevated hearing difficulties and incidence of cleft palate in this population. However, the influence of FGFR2 genotype on the speech, language, and communicative participation of children with AS has yet to be examined. METHODS A retrospective case note analysis was completed for all patients with a genetically-confirmed Apert mutation who attended the Oxford Craniofacial Unit over a 43-year period (1978-2020). Medical records were analyzed for speech, language, hearing, and communication data in detail. The therapy outcome measures, based on the World Health Organization International Classification of Functioning, Disability, and Health was used to classify patient's communicative participation. RESULTS The authors identified 55 AS patients with genetically-confirmed mutation of the FGFR2 gene. One patient with a S252F mutation was excluded. There were 31 patients with the S252W mutation (male = 14; female = 17), age range of last hearing assessment (1-18 years), 64% (18/28) of patients had a cleft palate (including bifid uvula), 15 patients had conductive hearing loss, 1 patient had mixed hearing loss, 18 had otitis media with effusion (4 of whom had a cleft palate); 88% (21/24) of patients had receptive language difficulties, 88% (22/25) of patients had expressive language difficulties, 96% (27/28) of patients had a speech sound disorder. There were 23 patients with the P253R mutation (male = 13; female = 10); age range of last hearing assessment (1-13 years), 35% (8/23) patients had a cleft palate (including bifid uvula), 14 patients had a conductive hearing loss, 17 had otitis media with effusion (2 of whom had a cleft palate). Results indicated that 85% (17/20) of patients had receptive language difficulties, 80% (16/20) had expressive language difficulties, 100% (21/21) had a speech sound disorder. The S252W mutation was significantly-associated with the presence of cleft palate (including bifid uvula) (P = 0.05).Data about the cumulative impact of all of these factors for communicative participation using the therapy outcome measures were available for 47 patients: (30 S252W; 17 P253R). Patients with a S252W mutation had significantly more severe difficulties with communicative participation when compared to individuals with a P253R mutation (P = 0.0005) Cochran-Armitage trend test. CONCLUSIONS Speech, language, communicative participation, and hearing difficulties are pervasive in patients with AS. The severity and functional impact of these difficulties are magnified in patients with the S252W mutation. Results reinforce the importance of considering patients with AS according to genotype.
Collapse
|
17
|
Fonteles CSR, Finnell RH, George TM, Harshbarger RJ. Craniosynostosis: current conceptions and misconceptions. AIMS GENETICS 2021. [DOI: 10.3934/genet.2016.1.99] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractCranial bones articulate in areas called sutures that must remain patent until skull growth is complete. Craniosynostosis is the condition that results from premature closure of one or more of the cranial vault sutures, generating facial deformities and more importantly, skull growth restrictions with the ability to severely affect brain growth. Typically, craniosynostosis can be expressed as an isolated event, or as part of syndromic phenotypes. Multiple signaling mechanisms interact during developmental stages to ensure proper and timely suture fusion. Clinical outcome is often a product of craniosynostosis subtypes, number of affected sutures and timing of premature suture fusion. The present work aimed to review the different aspects involved in the establishment of craniosynostosis, providing a close view of the cellular, molecular and genetic background of these malformations.
Collapse
Affiliation(s)
- Cristiane Sá Roriz Fonteles
- Finnell Birth Defects Research Laboratory, Dell Pediatric Research Institute, The University of Texas at Austin, USA
| | - Richard H. Finnell
- Finnell Birth Defects Research Laboratory, Dell Pediatric Research Institute, The University of Texas at Austin, USA
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, USA
| | - Timothy M. George
- Pediatric Neurosurgery, Dell Children's Medical Center, Professor, Department of Surgery, Dell Medical School, Austin, TX, USA
| | - Raymond J. Harshbarger
- Plastic Surgery, Craniofacial Team at the Dell Children's Medical Center of Central Texas, Austin, USA
| |
Collapse
|
18
|
Hasan MR, Takatalo M, Ma H, Rice R, Mustonen T, Rice DP. RAB23 coordinates early osteogenesis by repressing FGF10-pERK1/2 and GLI1. eLife 2020; 9:55829. [PMID: 32662771 PMCID: PMC7423339 DOI: 10.7554/elife.55829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Mutations in the gene encoding Ras-associated binding protein 23 (RAB23) cause Carpenter Syndrome, which is characterized by multiple developmental abnormalities including polysyndactyly and defects in skull morphogenesis. To understand how RAB23 regulates skull development, we generated Rab23-deficient mice that survive to an age where skeletal development can be studied. Along with polysyndactyly, these mice exhibit premature fusion of multiple sutures resultant from aberrant osteoprogenitor proliferation and elevated osteogenesis in the suture. FGF10-driven FGFR1 signaling is elevated in Rab23-/-sutures with a consequent imbalance in MAPK, Hedgehog signaling and RUNX2 expression. Inhibition of elevated pERK1/2 signaling results in the normalization of osteoprogenitor proliferation with a concomitant reduction of osteogenic gene expression, and prevention of craniosynostosis. Our results suggest a novel role for RAB23 as an upstream negative regulator of both FGFR and canonical Hh-GLI1 signaling, and additionally in the non-canonical regulation of GLI1 through pERK1/2.
Collapse
Affiliation(s)
- Md Rakibul Hasan
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Maarit Takatalo
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Hongqiang Ma
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Ritva Rice
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Tuija Mustonen
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - David Pc Rice
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
19
|
Brajadenta GS, Sari AIP, Nauphar D, Pratamawati TM, Thoreau V. Molecular analysis of exon 7 of the fibroblast growth factor receptor 2 (FGFR2) gene in an Indonesian patient with Apert syndrome: a case report. J Med Case Rep 2019; 13:244. [PMID: 31387623 PMCID: PMC6685243 DOI: 10.1186/s13256-019-2173-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/24/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Apert syndrome, Online Mendelian Inheritance in Man number 101200, is a rare genetic condition, with autosomal dominant inheritance, characterized by craniosynostosis, midfacial malformation, and severe symmetrical syndactyly. Apert syndrome is associated with other systemic malformations, including intellectual disability. At least seven mutations in fibroblast growth factor receptor 2 (FGFR2) gene have been found to cause Apert syndrome. Most cases of Apert syndrome are caused by one of the two most frequent mutations located in exon 7 (Ser252Trp or Pro253Arg). CASE PRESENTATION A 27-year-old Javanese man presented borderline intellectual functioning and striking dysmorphisms. A clinical diagnosis of Apert syndrome was previously made based on these clinical features. Furthermore, POSSUM software was used before molecular analysis and the result showed suspected Apert syndrome with a cut-off point of 14. Molecular genetic analysis of FGFR2, targeting exon 7, was performed by direct sequencing. In this patient, a missense mutation c.755C>G was detected, changing a serine into a tryptophan (p.Ser252Trp). CONCLUSION We report the case of an Indonesian man with Apert syndrome with a c.755C>G (p.Ser252Trp) mutation in the FGFR2 gene. Our patient showed similar dysmorphism to previously reported cases, although cleft palate as a typical feature for p.Ser252Trp mutation was not present. In spite of the accessibility of molecular genetic testing in a few parts of the world, the acknowledgement of clinically well-defined syndromes will remain exceptionally imperative in developing countries with a lack of diagnostic facilities.
Collapse
Affiliation(s)
- Gara Samara Brajadenta
- Department of Medical Biology, Division of Human Genetics, Faculty of Medicine, Swadaya Gunung Jati University, Jalan Terusan Pemuda No.1A, Cirebon, West Java 45132 Indonesia
- EA3808 Neurovascular Unit and Cognitive Impairments, University of Poitiers Pole Biologie - Sante (B.36), 1, rue Georges Bonnet, 86073 Poitiers Cedex, France
| | - Ariestya Indah Permata Sari
- Department of Medical Biology, Division of Human Genetics, Faculty of Medicine, Swadaya Gunung Jati University, Jalan Terusan Pemuda No.1A, Cirebon, West Java 45132 Indonesia
| | - Donny Nauphar
- Department of Medical Biology, Division of Human Genetics, Faculty of Medicine, Swadaya Gunung Jati University, Jalan Terusan Pemuda No.1A, Cirebon, West Java 45132 Indonesia
| | - Tiar Masykuroh Pratamawati
- Department of Medical Biology, Division of Human Genetics, Faculty of Medicine, Swadaya Gunung Jati University, Jalan Terusan Pemuda No.1A, Cirebon, West Java 45132 Indonesia
| | - Vincent Thoreau
- EA3808 Neurovascular Unit and Cognitive Impairments, University of Poitiers Pole Biologie - Sante (B.36), 1, rue Georges Bonnet, 86073 Poitiers Cedex, France
| |
Collapse
|
20
|
Clayton R, Göbel K, Niessen C, Paus R, Steensel M, Lim X. Homeostasis of the sebaceous gland and mechanisms of acne pathogenesis. Br J Dermatol 2019; 181:677-690. [DOI: 10.1111/bjd.17981] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2019] [Indexed: 12/13/2022]
Affiliation(s)
- R.W. Clayton
- Skin Research Institute of Singapore Agency for Science, Technology and Research (A*STAR) Singapore
- Centre for Dermatology Research University of Manchester, and NIHR Manchester Biomedical Research Centre Manchester U.K
| | - K. Göbel
- Skin Research Institute of Singapore Agency for Science, Technology and Research (A*STAR) Singapore
- Department of Dermatology Cologne Excellence Cluster on Stress Responses in Aging Associated Diseases (CECAD), and Centre for Molecular Medicine Cologne The University of Cologne Germany
| | - C.M. Niessen
- Department of Dermatology Cologne Excellence Cluster on Stress Responses in Aging Associated Diseases (CECAD), and Centre for Molecular Medicine Cologne The University of Cologne Germany
| | - R. Paus
- Centre for Dermatology Research University of Manchester, and NIHR Manchester Biomedical Research Centre Manchester U.K
- Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL U.S.A
| | - M.A.M. Steensel
- Skin Research Institute of Singapore Agency for Science, Technology and Research (A*STAR) Singapore
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore
| | - X. Lim
- Skin Research Institute of Singapore Agency for Science, Technology and Research (A*STAR) Singapore
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore
| |
Collapse
|
21
|
Common J, Barker J, Steensel M. What does acne genetics teach us about disease pathogenesis? Br J Dermatol 2019; 181:665-676. [DOI: 10.1111/bjd.17721] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2019] [Indexed: 12/18/2022]
Affiliation(s)
- J.E.A. Common
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR) Singapore
| | - J.N. Barker
- St John's Institute of Dermatology Faculty of Life Sciences and Medicine King's College London London U.K
| | - M.A.M. Steensel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR) Singapore
- Lee Kong Chian School of Medicine Nanyang Technological University Clinical Sciences Building Novena Singapore
| |
Collapse
|
22
|
Watson J, Francavilla C. Regulation of FGF10 Signaling in Development and Disease. Front Genet 2018; 9:500. [PMID: 30405705 PMCID: PMC6205963 DOI: 10.3389/fgene.2018.00500] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022] Open
Abstract
Fibroblast Growth Factor 10 (FGF10) is a multifunctional mesenchymal-epithelial signaling growth factor, which is essential for multi-organ development and tissue homeostasis in adults. Furthermore, FGF10 deregulation has been associated with human genetic disorders and certain forms of cancer. Upon binding to FGF receptors with heparan sulfate as co-factor, FGF10 activates several intracellular signaling cascades, resulting in cell proliferation, differentiation, and invasion. FGF10 activity is modulated not only by heparan sulfate proteoglycans in the extracellular matrix, but also by hormones and other soluble factors. Despite more than 20 years of research on FGF10 functions, context-dependent regulation of FGF10 signaling specificity remains poorly understood. Emerging modes of FGF10 signaling regulation will be described, focusing on the role of FGF10 trafficking and sub-cellular localization, heparan sulfate proteoglycans, and miRNAs. Systems biology approaches based on quantitative proteomics will be considered for globally investigating FGF10 signaling specificity. Finally, current gaps in our understanding of FGF10 functions, such as the relative contribution of receptor isoforms to signaling activation, will be discussed in the context of genetic disorders and tumorigenesis.
Collapse
Affiliation(s)
- Joanne Watson
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
23
|
Yuan T, Volckaert T, Chanda D, Thannickal VJ, De Langhe SP. Fgf10 Signaling in Lung Development, Homeostasis, Disease, and Repair After Injury. Front Genet 2018; 9:418. [PMID: 30319693 PMCID: PMC6167454 DOI: 10.3389/fgene.2018.00418] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022] Open
Abstract
The lung is morphologically structured into a complex tree-like network with branched airways ending distally in a large number of alveoli for efficient oxygen exchange. At the cellular level, the adult lung consists of at least 40–60 different cell types which can be broadly classified into epithelial, endothelial, mesenchymal, and immune cells. Fibroblast growth factor 10 (Fgf10) located in the lung mesenchyme is essential to regulate epithelial proliferation and lineage commitment during embryonic development and post-natal life, and to drive epithelial regeneration after injury. The cells that express Fgf10 in the mesenchyme are progenitors for mesenchymal cell lineages during embryonic development. During adult lung homeostasis, Fgf10 is expressed in mesenchymal stromal niches, between cartilage rings in the upper conducting airways where basal cells normally reside, and in the lipofibroblasts adjacent to alveolar type 2 cells. Fgf10 protects and promotes lung epithelial regeneration after different types of lung injuries. An Fgf10-Hippo epithelial-mesenchymal crosstalk ensures maintenance of stemness and quiescence during homeostasis and basal stem cell (BSC) recruitment to further promote regeneration in response to injury. Fgf10 signaling is dysregulated in different human lung diseases including bronchopulmonary dysplasia (BPD), idiopathic pulmonary fibrosis (IPF), and chronic obstructive pulmonary disease (COPD), suggesting that dysregulation of the FGF10 pathway is critical to the pathogenesis of several human lung diseases.
Collapse
Affiliation(s)
- Tingting Yuan
- Division of Pulmonary, Department of Medicine, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham AL, United States
| | - Thomas Volckaert
- Division of Pulmonary, Department of Medicine, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham AL, United States
| | - Diptiman Chanda
- Division of Pulmonary, Department of Medicine, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham AL, United States
| | - Victor J Thannickal
- Division of Pulmonary, Department of Medicine, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham AL, United States
| | - Stijn P De Langhe
- Division of Pulmonary, Department of Medicine, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham AL, United States
| |
Collapse
|
24
|
Abstract
In 1993, Jabs et al. were the first to describe a genetic origin of craniosynostosis. Since this discovery, the genetic causes of the most common syndromes have been described. In 2015, a total of 57 human genes were reported for which there had been evidence that mutations were causally related to craniosynostosis. Facilitated by rapid technological developments, many others have been identified since then. Reviewing the literature, we characterize the most common craniosynostosis syndromes followed by a description of the novel causes that were identified between January 2015 and December 2017.
Collapse
Affiliation(s)
- Jacqueline A C Goos
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Irene M J Mathijssen
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
25
|
Abstract
A number of textbooks, review articles, and case reports highlight the potential comorbidity of choanal atresia in craniosynostosis patients. However, the lack of a precise definition of choanal atresia within the current craniosynostosis literature and widely varying methods of detection and diagnosis have produced uncertainty regarding the true coincidence of these conditions. The authors review the anatomy and embryologic basis of the human choanae, provide an overview of choanal atresia, and analyze the available literature that links choanal atresia and craniosynostosis. Review of over 50 case reports that describe patients diagnosed with both conditions reveals inconsistent descriptions of choanal atresia and limited use of definitive diagnostic methodologies. The authors further present preliminary analysis of three-dimensional medical head computed tomographic scans of children diagnosed with craniosynostosis syndromes (e.g., Apert, Pfeiffer, Muenke, and Crouzon) and typically developing children and, although finding no evidence of choanal atresia, report the potentially reduced nasal airway volumes in children diagnosed with Apert and Pfeiffer syndromes. A recent study of the Fgfr2c Crouzon/Pfeiffer syndrome mouse model similarly found a significant reduction in nasal airway volumes in littermates carrying this FGFR2 mutation relative to unaffected littermates, without detection of choanal atresia. The significant correlation between specific craniosynostosis syndromes and reduced nasal airway volume in mouse models for craniosynostosis and human pediatric patients indicates comorbidity of choanal and nasopharyngeal dysmorphologies and craniosynostosis conditions. Genetic, developmental, and epidemiologic sources of these interactions are areas particularly worthy of further research.
Collapse
|
26
|
Abstract
Craniosynostosis is the premature fusion of the calvarial sutures that is associated with a number of physical and intellectual disabilities spanning from pediatric to adult years. Over the past two decades, techniques in molecular genetics and more recently, advances in high-throughput DNA sequencing have been used to examine the underlying pathogenesis of this disease. To date, mutations in 57 genes have been identified as causing craniosynostosis and the number of newly discovered genes is growing rapidly as a result of the advances in genomic technologies. While contributions from both genetic and environmental factors in this disease are increasingly apparent, there remains a gap in knowledge that bridges the clinical characteristics and genetic markers of craniosynostosis with their signaling pathways and mechanotransduction processes. By linking genotype to phenotype, outlining the role of cell mechanics may further uncover the specific mechanotransduction pathways underlying craniosynostosis. Here, we present a brief overview of the recent findings in craniofacial genetics and cell mechanics, discussing how this information together with animal models is advancing our understanding of craniofacial development.
Collapse
Affiliation(s)
- Zeinab Al-Rekabi
- Department of Mechanical Engineering, University of Washington, 3900 E Stevens Way NE, Seattle, WA, 98195, USA
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, 1900 9 Ave, Seattle, WA, 98101, USA
| | - Michael L. Cunningham
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, 1900 9 Ave, Seattle, WA, 98101, USA
- Department of Pediatrics, Division of Craniofacial Medicine and the, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA
| | - Nathan J. Sniadecki
- Department of Mechanical Engineering, University of Washington, 3900 E Stevens Way NE, Seattle, WA, 98195, USA
- Department of Bioengineering, University of Washington, 3720 15 Ave NE, Seattle WA, 98105, USA
| |
Collapse
|
27
|
Azoury SC, Reddy S, Shukla V, Deng CX. Fibroblast Growth Factor Receptor 2 ( FGFR2) Mutation Related Syndromic Craniosynostosis. Int J Biol Sci 2017; 13:1479-1488. [PMID: 29230096 PMCID: PMC5723914 DOI: 10.7150/ijbs.22373] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/01/2017] [Indexed: 12/30/2022] Open
Abstract
Craniosynostosis results from the premature fusion of cranial sutures, with an incidence of 1 in 2,100-2,500 live births. The majority of cases are non-syndromic and involve single suture fusion, whereas syndromic cases often involve complex multiple suture fusion. The fibroblast growth factor receptor 2 (FGFR2) gene is perhaps the most extensively studied gene that is mutated in various craniosynostotic syndromes including Crouzon, Apert, Pfeiffer, Antley-Bixler, Beare-Stevenson cutis gyrata, Jackson-Weiss, Bent Bone Dysplasia, and Seathre-Chotzen-like syndromes. The majority of these mutations are missense mutations that result in constitutive activation of the receptor and downstream molecular pathways. Treatment involves a multidisciplinary approach with ultimate surgical fixation of the cranial deformity to prevent further sequelae. Understanding the molecular mechanisms has allowed for the investigation of different therapeutic agents that can potentially be used to prevent the disorders. Further research efforts are need to better understand screening and effective methods of early intervention and prevention. Herein, the authors provide a comprehensive update on FGFR2-related syndromic craniosynostosis.
Collapse
Affiliation(s)
- Saïd C. Azoury
- Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Sashank Reddy
- Department of Plastic and Reconstructive Surgery, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Vivek Shukla
- TGIB, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
28
|
Liu Y, Ma J, Beenken A, Srinivasan L, Eliseenkova AV, Mohammadi M. Regulation of Receptor Binding Specificity of FGF9 by an Autoinhibitory Homodimerization. Structure 2017; 25:1325-1336.e3. [PMID: 28757146 PMCID: PMC5587394 DOI: 10.1016/j.str.2017.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 10/27/2016] [Accepted: 06/26/2017] [Indexed: 01/12/2023]
Abstract
The epithelial fibroblast growth factor 9 (FGF9) subfamily specifically binds and activates the mesenchymal "c" splice isoform of FGF receptors 1-3 (FGFR1-3) to regulate organogenesis and tissue homeostasis. The unique N and C termini of FGF9 subfamily ligands mediate a reversible homodimerization that occludes major receptor binding sites within the ligand core region. Here we provide compelling X-ray crystallographic, biophysical, and biochemical data showing that homodimerization controls receptor binding specificity of the FGF9 subfamily by keeping the concentration of active FGF9 monomers at a level, which is sufficient for a normal FGFR "c" isoform binding/signaling, but is insufficient for an illegitimate FGFR "b" isoform binding/signaling. We show that deletion of the N terminus or alanine substitutions in the C terminus of FGF9 skews the delicate ligand equilibrium toward active FGF9 monomers causing off-target binding and activation of FGFR b isoforms. Our study is the first to implicate ligand homodimerization in the regulation of ligand-receptor specificity.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Jinghong Ma
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Andrew Beenken
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Lakshmi Srinivasan
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Anna V Eliseenkova
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Moosa Mohammadi
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
29
|
Das S, Munshi A. Research advances in Apert syndrome. J Oral Biol Craniofac Res 2017; 8:194-199. [PMID: 30191107 DOI: 10.1016/j.jobcr.2017.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023] Open
Abstract
Apert syndrome is one of the several genetic syndromes associated with craniosynostosis, a condition that includes premature fusion of one or multiple cranial sutures. There has been significant clinical variation among different sutural synostoses and also within particular suture synostosis. Enormous progress has been made in identifying various mutations associated with Apert Syndrome. Although a causal gene has been defined, the precise role of this mutation in producing craniofacial dysmorphology and other related abnormalities is in the process of discovery. Most of the understanding regarding this rare disorder has been possible due to mouse models that have helped in deciphering the elements of this rare human disease. Thus, molecular and cellular understanding of the disease has taken a leap and further with the advent of technology definitive diagnosis of the syndrome is no more of an issue. In this review, we have discussed and consolidated the possible molecular studies that have contributed in understanding of this rare syndrome. This article may help clinicians and researchers to inform about the latest progress in Apert syndrome.
Collapse
Affiliation(s)
- Satrupa Das
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Begumpet, Hyderabad, India.,Dr. NTR University of Health Sciences, Vijayawada, Andhra Pradesh, India
| | - Anjana Munshi
- Centre for Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
30
|
Goldberg L, Abutbul-Amitai M, Paret G, Nevo-Caspi Y. Alternative Splicing of STAT3 Is Affected by RNA Editing. DNA Cell Biol 2017; 36:367-376. [PMID: 28278381 DOI: 10.1089/dna.2016.3575] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A-to-I RNA editing, carried out by adenosine deaminase acting on RNA (ADAR) enzymes, is an epigenetic phenomenon of posttranscriptional modifications on pre-mRNA. RNA editing in intronic sequences may influence alternative splicing of flanking exons. We have previously shown that conditions that induce editing result in elevated expression of signal transducer and activator of transcription 3 (STAT3), preferentially the alternatively-spliced STAT3β isoform. Mechanisms regulating alternative splicing of STAT3 have not been elucidated. STAT3 undergoes A-to-I RNA editing in an intron residing in proximity to the alternatively spliced exon. We hypothesized that RNA editing plays a role in regulating alternative splicing toward STAT3β. In this study we extend our observation connecting RNA editing to the preferential induction of STAT3β expression. We study the involvement of ADAR1 in STAT3 editing and reveal the connection between editing and alternative splicing of STAT3. Deferoaxamine treatment caused the induction in STAT3 RNA editing and STAT3β expression. Silencing ADAR1 caused a decrease in STAT3 editing and expression with a preferential decrease in STAT3β. Cells transfected with a mutated minigene showed preferential splicing toward the STAT3β transcript. Editing in the STAT3 intron is performed by ADAR1 and affects STAT3 alternative splicing. These results suggest that RNA editing is one of the molecular mechanisms regulating the expression of STAT3β.
Collapse
Affiliation(s)
- Lior Goldberg
- 1 Department of Pediatric Critical Care Medicine, Safra Children's Hospital, Sheba Medical Center , Tel Hashomer, Israel .,2 Sackler Medical School, Tel-Aviv University , Tel-Aviv, Israel
| | - Mor Abutbul-Amitai
- 1 Department of Pediatric Critical Care Medicine, Safra Children's Hospital, Sheba Medical Center , Tel Hashomer, Israel .,2 Sackler Medical School, Tel-Aviv University , Tel-Aviv, Israel
| | - Gideon Paret
- 1 Department of Pediatric Critical Care Medicine, Safra Children's Hospital, Sheba Medical Center , Tel Hashomer, Israel .,2 Sackler Medical School, Tel-Aviv University , Tel-Aviv, Israel
| | - Yael Nevo-Caspi
- 1 Department of Pediatric Critical Care Medicine, Safra Children's Hospital, Sheba Medical Center , Tel Hashomer, Israel
| |
Collapse
|
31
|
Rishishwar L, Wang L, Clayton EA, Mariño-Ramírez L, McDonald JF, Jordan IK. Population and clinical genetics of human transposable elements in the (post) genomic era. Mob Genet Elements 2017; 7:1-20. [PMID: 28228978 PMCID: PMC5305044 DOI: 10.1080/2159256x.2017.1280116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 10/26/2022] Open
Abstract
Recent technological developments-in genomics, bioinformatics and high-throughput experimental techniques-are providing opportunities to study ongoing human transposable element (TE) activity at an unprecedented level of detail. It is now possible to characterize genome-wide collections of TE insertion sites for multiple human individuals, within and between populations, and for a variety of tissue types. Comparison of TE insertion site profiles between individuals captures the germline activity of TEs and reveals insertion site variants that segregate as polymorphisms among human populations, whereas comparison among tissue types ascertains somatic TE activity that generates cellular heterogeneity. In this review, we provide an overview of these new technologies and explore their implications for population and clinical genetic studies of human TEs. We cover both recent published results on human TE insertion activity as well as the prospects for future TE studies related to human evolution and health.
Collapse
Affiliation(s)
- Lavanya Rishishwar
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA; PanAmerican Bioinformatics Institute, Cali, Colombia; Applied Bioinformatics Laboratory, Atlanta, GA, USA
| | - Lu Wang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA; PanAmerican Bioinformatics Institute, Cali, Colombia
| | - Evan A Clayton
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA; Ovarian Cancer Institute, Atlanta, GA, USA
| | - Leonardo Mariño-Ramírez
- PanAmerican Bioinformatics Institute, Cali, Colombia; National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - John F McDonald
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA; Ovarian Cancer Institute, Atlanta, GA, USA
| | - I King Jordan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA; PanAmerican Bioinformatics Institute, Cali, Colombia; Applied Bioinformatics Laboratory, Atlanta, GA, USA
| |
Collapse
|
32
|
Flaherty K, Singh N, Richtsmeier JT. Understanding craniosynostosis as a growth disorder. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2016; 5:429-59. [PMID: 27002187 PMCID: PMC4911263 DOI: 10.1002/wdev.227] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/06/2015] [Accepted: 12/24/2015] [Indexed: 12/15/2022]
Abstract
Craniosynostosis is a condition of complex etiology that always involves the premature fusion of one or multiple cranial sutures and includes various anomalies of the soft and hard tissues of the head. Steady progress in the field has resulted in identifying gene mutations that recurrently cause craniosynostosis. There are now scores of mutations on many genes causally related to craniosynostosis syndromes, though the genetic basis for the majority of nonsyndromic cases is unknown. Identification of these genetic mutations has allowed significant progress in understanding the intrinsic properties of cranial sutures, including mechanisms responsible for normal suture patency and for pathogenesis of premature suture closure. An understanding of morphogenesis of cranial vault sutures is critical to understanding the pathophysiology of craniosynostosis conditions, but the field is now poised to recognize the repeated changes in additional skeletal and soft tissues of the head that typically accompany premature suture closure. We review the research that has brought an understanding of premature suture closure within our reach. We then enumerate the less well-studied, but equally challenging, nonsutural phenotypes of craniosynostosis conditions that are well characterized in available mouse models. We consider craniosynostosis as a complex growth disorder of multiple tissues of the developing head, whose growth is also targeted by identified mutations in ways that are poorly understood. Knowledge gained from studies of humans and mouse models for these conditions underscores the diverse, associated developmental anomalies of the head that contribute to the complex phenotypes of craniosynostosis conditions presenting novel challenges for future research. WIREs Dev Biol 2016, 5:429-459. doi: 10.1002/wdev.227 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Kevin Flaherty
- Department of Anthropology, Pennsylvania State University,
University Park, PA 16802
| | - Nandini Singh
- Department of Anthropology, Pennsylvania State University,
University Park, PA 16802
| | - Joan T. Richtsmeier
- Department of Anthropology, Pennsylvania State University,
University Park, PA 16802
| |
Collapse
|
33
|
Hancks DC, Kazazian HH. Roles for retrotransposon insertions in human disease. Mob DNA 2016; 7:9. [PMID: 27158268 PMCID: PMC4859970 DOI: 10.1186/s13100-016-0065-9] [Citation(s) in RCA: 453] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/14/2016] [Indexed: 12/12/2022] Open
Abstract
Over evolutionary time, the dynamic nature of a genome is driven, in part, by the activity of transposable elements (TE) such as retrotransposons. On a shorter time scale it has been established that new TE insertions can result in single-gene disease in an individual. In humans, the non-LTR retrotransposon Long INterspersed Element-1 (LINE-1 or L1) is the only active autonomous TE. In addition to mobilizing its own RNA to new genomic locations via a "copy-and-paste" mechanism, LINE-1 is able to retrotranspose other RNAs including Alu, SVA, and occasionally cellular RNAs. To date in humans, 124 LINE-1-mediated insertions which result in genetic diseases have been reported. Disease causing LINE-1 insertions have provided a wealth of insight and the foundation for valuable tools to study these genomic parasites. In this review, we provide an overview of LINE-1 biology followed by highlights from new reports of LINE-1-mediated genetic disease in humans.
Collapse
Affiliation(s)
- Dustin C. Hancks
- />Eccles Institute of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Haig H. Kazazian
- />McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins School of Medicine, Baltimore, MD USA
| |
Collapse
|
34
|
Central nervous system and cervical spine abnormalities in Apert syndrome. Childs Nerv Syst 2016; 32:833-8. [PMID: 26861132 DOI: 10.1007/s00381-016-3036-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
Abstract
PURPOSE Apert syndrome characterized by acrocephalosyndactyly is a rare autosomal dominant congenital malformation with a prevalence of 1/65,000 births. With an extensive range of phenotypic and developmental manifestations, its management requires a multidisciplinary approach. A variety of craniofacial, central nervous system (CNS), and cervical spine abnormalities have been reported in these patients. This study aimed to determine the incidence of these CNS abnormalities in our case series. METHODS Retrospective review of Australian Craniofacial Unit (ACFU) database for Apert patients was performed. Data collected that included demographics, place of origin, age at presentation, imaging performed, and images were reviewed and recorded. Where available, developmental data was also recorded. RESULTS Ninety-four patients seen and managed at the ACFU had their CNS and cervical spine abnormalities documented. The main CNS abnormalities were prominent convolutional markings (67 %), ventriculomegaly (48 %), crowded foramen magnum (36 %), deficient septum pellucidum (13 %), and corpus callosum agenesis in 11 %. Major C-spine findings were present in 50.8 % of patients and included fusion of posterior elements of C5/C6 (50 %) and C3/4 (27 %). Multilevel fusion was seen in 20 %. Other abnormalities were C1 spina bifida occulta (7 %) and atlanto-axial subluxation (7 %). CONCLUSION Multiple CNS and cervical spine (c-spine) abnormalities are common in Apert syndrome. The significance of these abnormalities remains largely unknown. Further research is needed to better understand the impact of these findings on growth, development, and treatment outcomes.
Collapse
|
35
|
Fernandes MBL, Maximino LP, Perosa GB, Abramides DVM, Passos-Bueno MR, Yacubian-Fernandes A. Apert and Crouzon syndromes-Cognitive development, brain abnormalities, and molecular aspects. Am J Med Genet A 2016; 170:1532-7. [PMID: 27028366 DOI: 10.1002/ajmg.a.37640] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 03/13/2016] [Indexed: 12/27/2022]
Abstract
Apert and Crouzon are the most common craniosynostosis syndromes associated with mutations in the fibroblast growth factor receptor 2 (FGFR2) gene. We conducted a study to examine the molecular biology, brain abnormalities, and cognitive development of individuals with these syndromes. A retrospective longitudinal review of 14 patients with Apert and Crouzon syndromes seen at the outpatient Craniofacial Surgery Hospital for Rehabilitation of Craniofacial Anomalies in Brazil from January 1999 through August 2010 was performed. Patients between 11 and 36 years of age (mean 18.29 ± 5.80), received cognitive evaluations, cerebral magnetic resonance imaging, and molecular DNA analyses. Eight patients with Apert syndrome (AS) had full scale intelligence quotients (FSIQs) that ranged from 47 to 108 (mean 76.9 ± 20.2), and structural brain abnormalities were identified in five of eight patients. Six patients presented with a gain-of-function mutation (p.Ser252Trp) in FGFR2 and FSIQs in those patients ranged from 47 to78 (mean 67.2 ± 10.7). One patient with a gain-of-function mutation (p.Pro253Arg) had a FSIQ of 108 and another patient with an atypical splice mutation (940-2A →G) had a FSIQ of 104. Six patients with Crouzon syndrome had with mutations in exons IIIa and IIIc of FGFR2 and their FSIQs ranged from 82 to 102 (mean 93.5 ± 6.7). These reveal that molecular aspects are another factor that can be considered in studies of global and cognitive development of patients with Apert and Crouzon syndrome (CS). © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | - Gimol B Perosa
- Departamento de Neurologia, Psicologia e Psiquiatria, UNESP, Botucatu, SP, Brazil
| | | | | | - Adriano Yacubian-Fernandes
- Departamento de Fonoaudiologia, FOB-USP, Bauru, SP, Brazil.,Departamento de Neurologia, Psicologia e Psiquiatria, UNESP, Botucatu, SP, Brazil
| |
Collapse
|
36
|
Apra C, Collet C, Arnaud E, Di Rocco F. FGFR2 splice site mutations in Crouzon and Pfeiffer syndromes: two novel variants. Clin Genet 2016; 89:746-8. [DOI: 10.1111/cge.12705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 11/28/2022]
Affiliation(s)
- C. Apra
- Department of Neurosurgery; Necker-Enfants Malades Hospital - Centre de référence des dysostoses craniofaciales; Paris France
| | - C. Collet
- Department of Biochemistry and Molecular Biology; Inserm 1132, Lariboisière Hospital; Paris France
| | - E. Arnaud
- Department of Neurosurgery; Necker-Enfants Malades Hospital - Centre de référence des dysostoses craniofaciales; Paris France
| | - F. Di Rocco
- Department of Neurosurgery; Necker-Enfants Malades Hospital - Centre de référence des dysostoses craniofaciales; Paris France
| |
Collapse
|
37
|
Abstract
Fibroblast growth factors (FGFs) have been shown to alter growth and differentiation of reproductive tissues in a variety of species. Within the female reproductive tract, the effects of FGFs have been focused on the ovary, and the most studied one is FGF2, which stimulates granulosa cell proliferation and decreases differentiation (decreased steroidogenesis). Other FGFs have also been implicated in ovarian function, and this review summarizes the effects of members of two subfamilies on ovarian function; the FGF7 subfamily that also contains FGF10, and the FGF8 subfamily that also contains FGF18. There are data to suggest that FGF8 and FGF18 have distinct actions on granulosa cells, despite their apparent similar receptor binding properties. Studies of non-reproductive developmental biology also indicate that FGF8 is distinct from FGF18, and that FGF7 is also distinct from FGF10 despite similar receptor binding properties. In this review, the potential mechanisms of differential action of FGF7/FGF10 and FGF8/FGF18 during organogenesis will be reviewed and placed in the context of follicle development. A model is proposed in which FGF8 and FGF18 differentially activate receptors depending on the properties of the extracellular matrix in the follicle.
Collapse
Affiliation(s)
- Christopher A Price
- Faculty of Veterinary MedicineCentre de recherche en reproduction animale, University of Montreal, 3200 rue Sicotte, St-Hyacinthe, Quebec, Canada J2S 7C6
| |
Collapse
|
38
|
Lu C, Huguley S, Cui C, Cabaniss LB, Waite PD, Sarver DM, Mamaeva OA, MacDougall M. Effects of FGFR Signaling on Cell Proliferation and Differentiation of Apert Dental Cells. Cells Tissues Organs 2015; 201:26-37. [DOI: 10.1159/000441349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2015] [Indexed: 11/19/2022] Open
Abstract
The Apert syndrome is a rare congenital disorder most often arising from S252W or P253R mutations in fibroblast growth factor receptor (FGFR2). Numerous studies have focused on the regulatory role of Apert FGFR2 signaling in bone formation, whereas its functional role in tooth development is largely unknown. To investigate the role of FGFR signaling in cell proliferation and odontogenic differentiation of human dental cells in vitro, we isolated dental pulp and enamel organ epithelia (EOE) tissues from an Apert patient carrying the S252W FGFR2 mutation. Apert primary pulp and EOE cells were established and shown to exhibit normal morphology and express alkaline phosphatase under differentiation conditions. Similar to control cells, Apert dental pulp and EOE cells expressed all FGFRs, with highest levels of FGFR1 followed by FGFR2 and low levels of FGFR3 and FGFR4. However, Apert cells had increased cell growth compared with control cells. Distinct from previous findings in osteoblast cells, gain-of-function S252W FGFR2 mutation did not upregulate the expression of epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor (PDGFRα), but elevated extracellular signal-regulated kinase (ERK) signaling in cells after EGF stimulation. Unexpectedly, there was little effect of the S252W mutation on odontogenic gene expression in dental pulp and EOE cells. However, after inhibition of total FGFR signaling or ERK signaling, the expression of odontogenic genes was upregulated in both dental cell types, indicating the negative effect of whole FGFR signaling on odontogenic differentiation. This study provides novel insights on FGFR signaling and a common Apert FGFR2 mutation in the regulation of odontogenic differentiation of dental mesenchymal and epithelial cells.
Collapse
|
39
|
Goodwin AF, Kim R, Bush JO, Klein OD. From Bench to Bedside and Back: Improving Diagnosis and Treatment of Craniofacial Malformations Utilizing Animal Models. Curr Top Dev Biol 2015; 115:459-92. [PMID: 26589935 DOI: 10.1016/bs.ctdb.2015.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Craniofacial anomalies are among the most common birth defects and are associated with increased mortality and, in many cases, the need for lifelong treatment. Over the past few decades, dramatic advances in the surgical and medical care of these patients have led to marked improvements in patient outcomes. However, none of the treatments currently in clinical use address the underlying molecular causes of these disorders. Fortunately, the field of craniofacial developmental biology provides a strong foundation for improved diagnosis and for therapies that target the genetic causes of birth defects. In this chapter, we discuss recent advances in our understanding of the embryology of craniofacial conditions, and we focus on the use of animal models to guide rational therapies anchored in genetics and biochemistry.
Collapse
Affiliation(s)
- Alice F Goodwin
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, USA; Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA
| | - Rebecca Kim
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, USA; Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey O Bush
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, USA; Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA.
| | - Ophir D Klein
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, USA; Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA; Department of Pediatrics, University of California San Francisco, San Francisco, California, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
40
|
Twigg SRF, Wilkie AOM. A Genetic-Pathophysiological Framework for Craniosynostosis. Am J Hum Genet 2015; 97:359-77. [PMID: 26340332 PMCID: PMC4564941 DOI: 10.1016/j.ajhg.2015.07.006] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/14/2015] [Indexed: 12/24/2022] Open
Abstract
Craniosynostosis, the premature fusion of one or more cranial sutures of the skull, provides a paradigm for investigating the interplay of genetic and environmental factors leading to malformation. Over the past 20 years molecular genetic techniques have provided a new approach to dissect the underlying causes; success has mostly come from investigation of clinical samples, and recent advances in high-throughput DNA sequencing have dramatically enhanced the study of the human as the preferred "model organism." In parallel, however, we need a pathogenetic classification to describe the pathways and processes that lead to cranial suture fusion. Given the prenatal onset of most craniosynostosis, investigation of mechanisms requires more conventional model organisms; principally the mouse, because of similarities in cranial suture development. We present a framework for classifying genetic causes of craniosynostosis based on current understanding of cranial suture biology and molecular and developmental pathogenesis. Of note, few pathologies result from complete loss of gene function. Instead, biochemical mechanisms involving haploinsufficiency, dominant gain-of-function and recessive hypomorphic mutations, and an unusual X-linked cellular interference process have all been implicated. Although few of the genes involved could have been predicted based on expression patterns alone (because the genes play much wider roles in embryonic development or cellular homeostasis), we argue that they fit into a limited number of functional modules active at different stages of cranial suture development. This provides a useful approach both when defining the potential role of new candidate genes in craniosynostosis and, potentially, for devising pharmacological approaches to therapy.
Collapse
Affiliation(s)
- Stephen R F Twigg
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Andrew O M Wilkie
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK; Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK.
| |
Collapse
|
41
|
Bessenyei B, Nagy A, Szakszon K, Mokánszki A, Balogh E, Ujfalusi A, Tihanyi M, Novák L, Bognár L, Oláh É. Clinical and genetic characteristics of craniosynostosis in Hungary. Am J Med Genet A 2015; 167A:2985-91. [PMID: 26289989 DOI: 10.1002/ajmg.a.37298] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 08/06/2015] [Indexed: 11/08/2022]
Abstract
Craniosynostosis, the premature closure of cranial sutures, is a common craniofacial disorder with heterogeneous etiology and appearance. The purpose of this study was to investigate the clinical and molecular characteristics of craniosynostoses in Hungary, including the classification of patients and the genetic analysis of the syndromic forms. Between 2006 and 2012, 200 patients with craniosynostosis were studied. Classification was based on the suture(s) involved and the associated clinical features. In syndromic cases, genetic analyses, including mutational screening of the hotspot regions of the FGFR1, FGFR2, FGFR3, and TWIST1 genes, karyotyping and FISH study of TWIST1, were performed. The majority (88%) of all patients with craniosynostosis were nonsyndromic. The sagittal suture was most commonly involved, followed by the coronal, metopic, and lambdoid sutures. Male, twin gestation, and very low birth weight were risk factors for craniosynostosis. Syndromic craniosynostosis was detected in 24 patients. In 17 of these patients, Apert, Crouzon, Pfeiffer, Muenke, or Saethre-Chotzen syndromes were identified. In one patient, multiple-suture craniosynostosis was associated with achondroplasia. Clinical signs were not typical for any particular syndrome in six patients. Genetic abnormalities were detected in 18 syndromic patients and in 8 relatives. In addition to 10 different, known mutations in FGFR1,FGFR2 or FGFR3, one novel missense mutation, c.528C>G(p.Ser176Arg), was detected in the TWIST1 gene of a patient with Saethre-Chotzen syndrome. Our results indicate that detailed clinical assessment is of paramount importance in the classification of patients and allows indication of targeted molecular testing with the highest possible diagnostic yield.
Collapse
Affiliation(s)
- Beáta Bessenyei
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Nagy
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Szakszon
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Erzsébet Balogh
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anikó Ujfalusi
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mariann Tihanyi
- Genetic Laboratory, Hospital of Zala County, Zalaegerszeg, Hungary
| | - László Novák
- Department of Neurosurgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Bognár
- Department of Neurosurgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Oláh
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
42
|
Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:215-66. [PMID: 25772309 PMCID: PMC4393358 DOI: 10.1002/wdev.176] [Citation(s) in RCA: 1461] [Impact Index Per Article: 146.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/23/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022]
Abstract
The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of MedicineSt. Louis, MO, USA
- *
Correspondence to:
| | - Nobuyuki Itoh
- Graduate School of Pharmaceutical Sciences, Kyoto UniversitySakyo, Kyoto, Japan
| |
Collapse
|
43
|
|
44
|
Ayarpadikannan S, Lee HE, Han K, Kim HS. Transposable element-driven transcript diversification and its relevance to genetic disorders. Gene 2015; 558:187-94. [PMID: 25617522 DOI: 10.1016/j.gene.2015.01.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 01/13/2015] [Accepted: 01/20/2015] [Indexed: 12/14/2022]
Abstract
The human genome project and subsequent gene annotation projects have shown that the human genome contains 22,000-25,000 functional genes. Therefore, it is believed that the diversity of protein repertoire is achieved by the alternative splicing (AS) mechanism. Transposable elements (TEs) are mobile in nature and can therefore alter their position in the genome. The insertion of TEs into a new gene region can result in AS of a particular transcript through various mechanisms, including intron retention, and alternative donor or acceptor splice sites. TE-derived AS is thought to have played a part in primate evolution and in hominid radiation. However, TE-derived AS or genetic instability may sometimes result in genetic disorders. For the past two decades, numerous studies have been performed on TEs and their role in genomes. Accumulating evidence shows that the term 'junk DNA', previously used for TEs is a misnomer. Recent research has indicated that TEs may have clinical potential. However, to explore the feasibility of using TEs in clinical practice, additional studies are required. This review summarizes the available literature on TE-derived AS, alternative promoter, and alternative polyadenylation. The review covers the effects of TEs on coding genes and their clinical implications, and provides our perspectives and directions for future research.
Collapse
Affiliation(s)
- Selvam Ayarpadikannan
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Hee-Eun Lee
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Kyudong Han
- Department of Nanobiomedical Science, WCU Research Center, Dankook University, Cheonan 330-714, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea.
| |
Collapse
|
45
|
Expanding the mutation spectrum in 182 Spanish probands with craniosynostosis: identification and characterization of novel TCF12 variants. Eur J Hum Genet 2014; 23:907-14. [PMID: 25271085 DOI: 10.1038/ejhg.2014.205] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/26/2014] [Accepted: 08/29/2014] [Indexed: 11/08/2022] Open
Abstract
Craniosynostosis, caused by the premature fusion of one or more of the cranial sutures, can be classified into non-syndromic or syndromic and by which sutures are affected. Clinical assignment is a difficult challenge due to the high phenotypic variability observed between syndromes. During routine diagnostics, we screened 182 Spanish craniosynostosis probands, implementing a four-tiered cascade screening of FGFR2, FGFR3, FGFR1, TWIST1 and EFNB1. A total of 43 variants, eight novel, were identified in 113 (62%) patients: 104 (92%) detected in level 1; eight (7%) in level 2 and one (1%) in level 3. We subsequently screened additional genes in the probands with no detected mutation: one duplication of the IHH regulatory region was identified in a patient with craniosynostosis Philadelphia type and five variants, four novel, were identified in the recently described TCF12, in probands with coronal or multisuture affectation. In the 19 Saethre-Chotzen syndrome (SCS) individuals in whom a variant was detected, 15 (79%) carried a TWIST1 variant, whereas four (21%) had a TCF12 variant. Thus, we propose that TCF12 screening should be included for TWIST1 negative SCS patients and in patients where the coronal suture is affected. In summary, a molecular diagnosis was obtained in a total of 119/182 patients (65%), allowing the correct craniosynostosis syndrome classification, aiding genetic counselling and in some cases provided a better planning on how and when surgical intervention should take place and, subsequently the appropriate clinical follow up.
Collapse
|
46
|
Yokota M, Kobayashi Y, Morita J, Suzuki H, Hashimoto Y, Sasaki Y, Akiyoshi K, Moriyama K. Therapeutic effect of nanogel-based delivery of soluble FGFR2 with S252W mutation on craniosynostosis. PLoS One 2014; 9:e101693. [PMID: 25003957 PMCID: PMC4086955 DOI: 10.1371/journal.pone.0101693] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 06/11/2014] [Indexed: 11/30/2022] Open
Abstract
Apert syndrome is an autosomal dominantly inherited disorder caused by missense mutations in fibroblast growth factor receptor 2 (FGFR2). Surgical procedures are frequently required to reduce morphological and functional defects in patients with Apert syndrome; therefore, the development of noninvasive procedures to treat Apert syndrome is critical. Here we aimed to clarify the etiological mechanisms of craniosynostosis in mouse models of Apert syndrome and verify the effects of purified soluble FGFR2 harboring the S252W mutation (sFGFR2IIIcS252W) on calvarial sutures in Apert syndrome mice in vitro. We observed increased expression of Fgf10, Esrp1, and Fgfr2IIIb, which are indispensable for epidermal development, in coronal sutures in Apert syndrome mice. Purified sFGFR2IIIcS252W exhibited binding affinity for fibroblast growth factor (Fgf) 2 but also formed heterodimers with FGFR2IIIc, FGFR2IIIcS252W, and FGFR2IIIbS252W. Administration of sFGFR2IIIcS252W also inhibited Fgf2-dependent proliferation, phosphorylation of intracellular signaling molecules, and mineralization of FGFR2S252W-overexpressing MC3T3-E1 osteoblasts. sFGFR2IIIcS252W complexed with nanogels maintained the patency of coronal sutures, whereas synostosis was observed where the nanogel without sFGFR2S252W was applied. Thus, based on our current data, we suggest that increased Fgf10 and Fgfr2IIIb expression may induce the onset of craniosynostosis in patients with Apert syndrome and that the appropriate delivery of purified sFGFR2IIIcS252W could be effective for treating this disorder.
Collapse
Affiliation(s)
- Masako Yokota
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yukiho Kobayashi
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| | - Jumpei Morita
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Suzuki
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Yoshihiro Sasaki
- Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kazunari Akiyoshi
- Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- ERATO, Japan Science and Technology Agency, Tokyo, Japan
| | - Keiji Moriyama
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
47
|
Robinson KM, Dunning Hotopp JC. Mobile elements and viral integrations prompt considerations for bacterial DNA integration as a novel carcinogen. Cancer Lett 2014; 352:137-44. [PMID: 24956175 DOI: 10.1016/j.canlet.2014.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 12/11/2022]
Abstract
Insertional mutagenesis has been repeatedly demonstrated in cancer genomes and has a role in oncogenesis. Mobile genetic elements can induce cancer development by random insertion into cancer related genes or by inducing translocations. L1s are typically implicated in cancers of an epithelial cell origin, while Alu elements have been implicated in leukemia as well as epithelial cell cancers. Likewise, viral infections have a significant role in cancer development predominantly through integration into the human genome and mutating or deregulating cancer related genes. Human papilloma virus is the best-known example of viral integrations contributing to carcinogenesis. However, hepatitis B virus, Epstein-Barr virus, and Merkel cell polyomavirus also integrate into the human genome and disrupt cancer related genes. Thus far, the role of microbes in cancer has primarily been attributed to mutations induced through chronic inflammation or toxins, as is the case with Helicobacter pylori and enterotoxigenic Bacteroides fragilis. We hypothesize that like mobile elements and viral DNA, bacterial and parasitic DNA may also integrate into the human somatic genome and be oncogenic. Until recently it was believed that bacterial DNA could not integrate into the human genome, but new evidence demonstrates that bacterial insertional mutagenesis may occur in cancer cells. Although this work does not show causation between bacterial insertions and cancer, it prompts more research in this area. Promising new sequencing technologies may reduce the risk of artifactual chimeric sequences, thus diminishing some of the challenges of identifying novel insertions in the somatic human genome.
Collapse
Affiliation(s)
- Kelly M Robinson
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Julie C Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
48
|
Chitty LS. Cell-free DNA testing: An aid to prenatal sonographic diagnosis. Best Pract Res Clin Obstet Gynaecol 2014; 28:453-66. [DOI: 10.1016/j.bpobgyn.2014.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/08/2014] [Indexed: 11/29/2022]
|
49
|
Heuzé Y, Martínez-Abadías N, Stella JM, Arnaud E, Collet C, García Fructuoso G, Alamar M, Lo LJ, Boyadjiev SA, Di Rocco F, Richtsmeier JT. Quantification of facial skeletal shape variation in fibroblast growth factor receptor-related craniosynostosis syndromes. ACTA ACUST UNITED AC 2014; 100:250-9. [PMID: 24578066 DOI: 10.1002/bdra.23228] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/06/2014] [Accepted: 01/18/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND fibroblast growth factor receptor (FGFR) -related craniosynostosis syndromes are caused by many different mutations within FGFR-1, 2, 3, and certain FGFR mutations are associated with more than one clinical syndrome. These syndromes share coronal craniosynostosis and characteristic facial skeletal features, although Apert syndrome (AS) is characterized by a more dysmorphic facial skeleton relative to Crouzon (CS), Muenke (MS), or Pfeiffer syndromes. METHODS Here we perform a detailed three-dimensional evaluation of facial skeletal shape in a retrospective sample of cases clinically and/or genetically diagnosed as AS, CS, MS, and Pfeiffer syndrome to quantify variation in facial dysmorphology, precisely identify specific facial features pertaining to these four syndromes, and further elucidate what knowledge of the causative FGFR mutation brings to our understanding of these syndromes. RESULTS Our results confirm a strong correspondence between genotype and facial phenotype for AS and MS with severity of facial dysmorphology diminishing from Apert FGFR2(S252W) to Apert FGFR2(P253R) to MS. We show that AS facial shape variation is increased relative to CS, although CS has been shown to be caused by numerous distinct mutations within FGFRs and reduced dosage in ERF. CONCLUSION Our quantitative analysis of facial phenotypes demonstrate subtle variation within and among craniosynostosis syndromes that might, with further research, provide information about the impact of the mutation on facial skeletal and nonskeletal development. We suggest that precise studies of the phenotypic consequences of genetic mutations at many levels of analysis should accompany next-generation genetic research and that these approaches should proceed cooperatively.
Collapse
Affiliation(s)
- Yann Heuzé
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mundhofir FEP, Sistermans EA, Faradz SMH, Hamel BCJ. p.Ser252Trp and p.Pro253Arg mutations in FGFR2 gene causing Apert syndrome: the first clinical and molecular report of Indonesian patients. Singapore Med J 2013; 54:e72-5. [PMID: 23546041 DOI: 10.11622/smedj.2013055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Apert syndrome (AS) is a rare autosomal dominant disorder characterised by craniosynostosis and limb malformations, and is associated with congenital heart disease and other systemic malformations, including intellectual disability. We report two Indonesian patients with AS, in whom molecular analysis detected p.Ser252Trp (c.755C>G) and p.Pro253Arg (c.758C>G) mutations in the fibroblast growth factor receptor 2 (FGFR2) gene, respectively. Although the syndrome has been frequently described, this is the first clinical report of AS confirmed by molecular analysis in Indonesia. The difference in severity of clinical features in the two patients may be consistent with a genotype-phenotype correlation of the FGFR2mutation. The management of individuals with AS is best achieved within a multidisciplinary setting. However, in most developing countries, early intervention may be delayed due to late diagnosis, a lack of facilities and financial constraints. This report underpins the benefits of early diagnosis for AS management.
Collapse
Affiliation(s)
- Farmaditya E P Mundhofir
- Centre for Biomedical Research (CEBIOR), Faculty of Medicine, Diponegoro University, Dr Sutomo 14, Semarang, Indonesia
| | | | | | | |
Collapse
|