1
|
Nguyen GH, Garren M, Wu Y, Mondal A, Handa H, Brisbois EJ. Multifunctional slippery nanoemulsion-infused porous nitric oxide-releasing surfaces. J Colloid Interface Sci 2025; 689:137199. [PMID: 40056687 PMCID: PMC11932779 DOI: 10.1016/j.jcis.2025.02.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/09/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025]
Abstract
The need for biocompatible materials for medical devices remains critical, as complications such as infection, thrombosis, and biofouling significantly contribute to medical device failure and patient morbidity and mortality. In recent years, nitric oxide (NO)-releasing technologies have been explored to mitigate bacterial infections, particularly those stemming from common gram-positive and gram-negative bacterial pathogens. However, NO-releasing materials do not inherently possess anti-fouling capabilities. Combination strategies that use NO and anti-fouling surfaces (e.g., slippery lubricant-infused porous surfaces) have been explored to compensate for the deficit. In this work, a novel material was developed and assessed that combines the antibacterial capabilities of a NO-releasing substrate with the anti-fouling effects of a nanoemulsion (NE)-infused slippery surface. Using a covalently bound NO donor (S-nitroso-N-acetylpenicillamine, SNAP) to poly(dimethylsiloxane) (PDMS) and infused with a NE, denoted as SNAP-PDMS-NE, the NO release was sustained for 7 days. In addition to the prolonged NO release, the infused NE layer maintained a slippery nature and sliding angle below 20° for 7 days. The reported NO-releasing NE-swelled surface efficiently reduced Staphylococcus aureus adhesion by 3.5 log and Escherichia coli adhesion by 1.5 log after 24 h, reduced platelet adhesion by 89.92 %, and remained cytocompatible with relative cell viability greater than 70 %.
Collapse
Affiliation(s)
- Grace H Nguyen
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States
| | - Mark Garren
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States
| | - Yi Wu
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States
| | - Arnab Mondal
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States; Pharmaceutical and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, GA 30602, United States
| | - Elizabeth J Brisbois
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
2
|
Li Y, Yang F, Mu B, Ma Y, Wang A, Liu X. Attapulgite-Assisted In Situ Anchoring of Ultrasmall Ag Nanoparticles for Enhanced Eradication of Multidrug-Resistant Bacterial Biofilms and Accelerated Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26310-26322. [PMID: 40261827 DOI: 10.1021/acsami.5c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Silver nanoparticles (Ag NPs) have emerged as a promising solution to combat biofilm-related infections caused by multidrug-resistant bacteria. However, their practical application remains limited due to their tendency to aggregate and exhibit high toxicity at elevated concentrations. Here, we developed a Citrus limon peel water extract-mediated hydrothermal process to facilitate the heterogeneous nucleation of Ag NPs on attapulgite (APT) nanorods and prepared Ag/APT nanocomposites with ultrasmall Ag NPs (<2 nm) uniformly anchored on APT nanorods. Ascorbic acid and polyphenols in Citrus limon peel extract acted as electron donors to reduce Ag+ to Ag0, while the interfacial interaction of APT nanorods induced heterogeneous nucleation and confined the growth of Ag nanocrystals, resulting in ultrasmall Ag NPs. As a result, due to the synergistic effect of the targeted biofilm-binding affinity of APT nanorods and the siginificantly increased specific surface area of Ag NPs conducive to the release of Ag+ ions, the obtained Ag/APT nanocomposites exhibited enhanced eradication activities on antimicrobial-resistant bacterial biofilms and accelerated wound healing in MRSA-infected wound models. Additionally, attributing to the low dosage of Ag, Ag/APT exhibited exceptional biocompatibility both in vitro and in vivo. This work provides a simple and green strategy for the preparation of highly active Ag-based antibacterial nanomaterials and sheds new light on the development of advanced antimicrobial agents for wound healing.
Collapse
Affiliation(s)
- Yalong Li
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, P. R. China
- Key Laboratory of Clay Minerals of Gansu Province, Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Fangfang Yang
- Key Laboratory of Clay Minerals of Gansu Province, Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Bin Mu
- Key Laboratory of Clay Minerals of Gansu Province, Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Yulong Ma
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, P. R. China
| | - Aiqin Wang
- Key Laboratory of Clay Minerals of Gansu Province, Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Xinyue Liu
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, P. R. China
| |
Collapse
|
3
|
Roujansky A, Diop S, Pasqueron J, Aparicio M, Cook F, Kallel H, Mounier R. Pathophysiology and Prevention of Ventriculostomy-Related Infections: A Review. Neurosurgery 2025; 96:744-750. [PMID: 39264162 DOI: 10.1227/neu.0000000000003181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024] Open
Abstract
This qualitative review aims to summarize current knowledge on ventriculostomy-related infection (VRI) pathophysiology and its prevention. VRI generally occurs at day 10, mainly because of Gram-positive cocci , after a cerebrospinal fluid leak. Skin microbiota and biofilm seem to play a major role in VRI pathogenesis. Colonization of external ventricular drain by biofilm is universal and occurs quickly after catheter insertion. However, pathogens from the skin are more often associated with VRI than commensal bacteria. A review of proposed preventive measures shows that none has proven to be fully efficient. Periprocedural and prolonged systemic prophylactic antimicrobials have not shown to prevent VRIs and may promote the emergence of more resistant or pathogenic strains. Antimicrobial and silver-impregnated external ventricular drains, although promising, have not demonstrated preventive effects and may modify bacterial ecology. These results are consistent with the proposed pathophysiology. Finally, we will present a few propositions for future research that may help in improving our knowledge and thus better prevent VRIs. Until then, given the available data, limiting the duration of ventricular drainage may be the most attainable option to prevent VRIs.
Collapse
Affiliation(s)
- Ariane Roujansky
- Réanimation polyvalente, Centre Hospitalier de Cayenne, Cayenne , French Guiana
- Tropical Biome et immunopathologie CNRS UMR-9017, Inserm U 1019, Université de Guyane, Cayenne , French Guiana
| | - Sylvain Diop
- Département d'Anesthésie et réanimation, Hôpital Marie Lannelongue, Le Plessis-Robinson , France
| | - Jean Pasqueron
- Service d'anesthésie-réanimation chirurgicale, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Henri Mondor, Créteil , France
| | - Maxime Aparicio
- Department of Anaesthesiology and Critical Care, Georges Pompidou European Hospital, Paris , France
| | - Fabrice Cook
- Service d'anesthésie-réanimation, Centre Hospitalier du Sud Francilien, Corbeil-Essonnes , France
| | - Hatem Kallel
- Réanimation polyvalente, Centre Hospitalier de Cayenne, Cayenne , French Guiana
- Tropical Biome et immunopathologie CNRS UMR-9017, Inserm U 1019, Université de Guyane, Cayenne , French Guiana
| | - Roman Mounier
- Department of Anaesthesiology and Critical Care, Georges Pompidou European Hospital, Paris , France
- Université Paris Cité, Paris , France
- INSERM U955, équipe 15, institut Mondor de la recherche biomédicale, Université Paris-Est-Créteil, Créteil , France
| |
Collapse
|
4
|
Vesel A, Motaln H, Mozetič M, Lojen D, Recek N. Improved Adhesion and Biocompatibility of Chitosan-Coated Super-Hydrophilic PVC Polymer Substrates for Urothelial Catheters. Int J Mol Sci 2025; 26:2128. [PMID: 40076751 PMCID: PMC11900446 DOI: 10.3390/ijms26052128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Chitosan is a water-soluble polysaccharide with good adherence to negatively charged surfaces and reported antimicrobial and anti-inflammatory properties. Coating the surfaces of medical devices with chitosan is a promising strategy for harnessing these benefits. However, the surface properties of commercial polymers need to be altered to enable the bonding of thin chitosan films. In this study, the adhesion of chitosan onto plasma-treated polyvinyl chloride (PVC) and the metabolic activity of urothelial cells on chitosan-coated medical-grade PVC used for the synthesis of urinary catheters were evaluated. To improve the adhesion of chitosan onto the PVC catheters, PVC samples were made "super-hydrophilic". PVC substrates were briefly treated with a powerful hydrogen plasma and weakly ionised oxygen plasma afterglow to obtain a chlorine-free surface film, which was rich in oxygen functional groups, followed by incubation of the plasma-treated substrates in an aqueous solution of chitosan. Then, urothelial RT4 cells were seeded on the treated and untreated PVC substrates, and their metabolic activity, confluency, and cell morphology were examined. X-ray photoelectron spectroscopy was used to measure the nitrogen concentration, which corresponded to the chitosan concentration on the substrate. The results showed that the substrates were uniformly covered by a thin layer of chitosan only on plasma-treated surfaces and not on untreated surfaces. Moreover, the chitosan coating provided a stimulated environment for cell adhesion and growth. In conclusion, the chitosan-coated super-hydrophilic PVC substrate shows potential to improve the overall performance and safety of medical devices such as urinary catheters.
Collapse
Affiliation(s)
- Alenka Vesel
- Jozef Stefan Institute, Department of Surface Engineering, Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.M.); (D.L.); (N.R.)
| | - Helena Motaln
- Jozef Stefan Institute, Department of Biotechnology, Jamova cesta 39, 1000 Ljubljana, Slovenia;
| | - Miran Mozetič
- Jozef Stefan Institute, Department of Surface Engineering, Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.M.); (D.L.); (N.R.)
| | - Dane Lojen
- Jozef Stefan Institute, Department of Surface Engineering, Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.M.); (D.L.); (N.R.)
| | - Nina Recek
- Jozef Stefan Institute, Department of Surface Engineering, Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.M.); (D.L.); (N.R.)
| |
Collapse
|
5
|
Gondil V, Ashcraft M, Ghalei S, Kumar A, Wilson SN, Devine R, Handa H, Brisbois EJ. Anti-Infective Bacteriophage Immobilized Nitric Oxide-Releasing Surface for Prevention of Thrombosis and Device-Associated Infections. ACS APPLIED BIO MATERIALS 2025; 8:1362-1376. [PMID: 39895136 PMCID: PMC11836933 DOI: 10.1021/acsabm.4c01638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/31/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
The treatment of critically ill patients has made great strides in the past few decades due to the rapid development of indwelling medical devices. Despite immense advancements in the design of these devices, indwelling medical device-associated infections and thrombosis are two major clinical problems that may lead to device failure and compromise clinical outcomes. Antibiotics are the current treatment choice for these infections; however, the global emergence of antibiotic-resistance and their biofilm formation abilities complicate the management of such infections. Moreover, systemic administration of anticoagulants has been used to counter medical device-induced thrombosis, but a range of serious adverse effects associated with all types of available anticoagulants entails exploring alternative options to counter device-associated thrombosis. In this study, bacteriophages (phages) were covalently immobilized on polydimethylsiloxane (PDMS) surface containing the nitric oxide (NO) donor S-nitroso-N-acetylpenicillamine (SNAP) via SNAP impregnation method. This dual strategy combines the targeted antibacterial activity of phages against bacterial pathogens with the antibacterial-antithrombotic activity of NO released from the polymeric surface. The PDMS, SNAP-PDMS, phage-immobilized PDMS (PDMS-Phage), and phage-immobilized SNAP-PDMS (SNAP-PDMS-Phage) surfaces were characterized for their surface topology, elemental composition, contact angle, SNAP loading, NO release and phage distribution. SNAP-PDMS and SNAP-PDMS-Phage surfaces showed similar and consistent NO release profiles over 24 h of incubation. Immobilization of whole phages on PDMS and SNAP-PDMS was achieved with densities of 2.4 ± 0.54 and 2.1 ± 0.33 phages μm-2, respectively. Immobilized phages were found to retain their activity, and SNAP-PDMS-Phage surfaces showed a significant reduction in planktonic (99.99 ± 0.08%) as well as adhered (99.80 ± 0.05%) Escherichia coli as compared to controls in log killing assays. The SNAP-PDMS-Phage surfaces also exhibited significantly reduced platelet adhesion by 64.65 ± 2.95% as compared to control PDMS surfaces. All fabricated surfaces were found to be nonhemolytic and do not exhibit any significant cytotoxic effects toward mammalian fibroblast cells. This study is the first of its kind to demonstrate the combinatorial pertinence of phages and NO to prevent antibiotic-resistant/sensitive bacterial infections and thrombosis associated with indwelling medical devices.
Collapse
Affiliation(s)
- Vijay
Singh Gondil
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Morgan Ashcraft
- Pharmaceutical
and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Sama Ghalei
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Anil Kumar
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Sarah N. Wilson
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Ryan Devine
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
- Pharmaceutical
and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Elizabeth J. Brisbois
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
6
|
Puttawong J, Yingkajorn M, Khongkow P, Thamphiwatana SD, Phairatana T. Anti-Methicillin-Resistant Staphylococcus aureus Efficacy of Layer-by-Layer Silver Nanoparticle/Polyacrylic Acid-Coated Titanium Using an In-House Dip Coater. Polymers (Basel) 2025; 17:333. [PMID: 39940535 PMCID: PMC11820344 DOI: 10.3390/polym17030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
The emergence of methicillin-resistant Staphylococcus aureus (MRSA) is still posing a global challenge in healthcare settings. This bacterial strain is a cause of severe periprosthetic infection, thereby impairing the success of implant insertion. To address this issue, implant surface modification is required. Herein, we developed a novel multilayered silver nanoparticle/polyacrylic acid-coated Ti plate (AgNPs/PAA/Ti) using an in-house dip coater. AgNPs were synthesized and characterized. The dip-coating process was optimized based on the dipping rate, evaporation time, and coating cycle number. Uniform and reproducible coatings were achieved on Ti surfaces, with consistency verified through SEM analysis. The average size of the AgNPs was approximately 36.50 ± 0.80 nm with a PDI of 0.443 ± 0.025, and the zeta potential was measured at around -23.3 ± 2.0 mV. The maximum coating thickness of 83.5 ± 1.3 µm was observed at 15 cycles of dip coating. Moreover, our developed AgNPs/PAA/Ti plate showed both antimicrobial and biofilm-resistant performance, while also exhibiting enhanced biocompatibility with cultured MG63 osteosarcoma cells, maintaining cell viability greater than 70%. We envisage that this material holds significant promise as a candidate for medical implant devices, offering protection against MRSA-associated infection at insertion sites with low vascularity in the future.
Collapse
Affiliation(s)
- Julinthip Puttawong
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (J.P.); (P.K.)
| | - Mingkwan Yingkajorn
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| | - Pasarat Khongkow
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (J.P.); (P.K.)
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Soracha D. Thamphiwatana
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakornpathom 73170, Thailand
- International School of Engineering (ISE), Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tonghathai Phairatana
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (J.P.); (P.K.)
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
7
|
Robinson KJ, Voelcker NH, Thissen H. Clinical challenges and opportunities related to the biological responses experienced by indwelling and implantable bioelectronic medical devices. Acta Biomater 2025; 193:49-64. [PMID: 39675496 DOI: 10.1016/j.actbio.2024.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Implantable electrodes have been utilized for decades to stimulate, sense, or monitor a broad range of biological processes, with examples ranging from glucose monitoring devices to cochlear implants. While the underlying science related to the application of electrodes is a mature field, preclinical and clinical studies have demonstrated that there are still significant challenges in vivo associated with a lack of control over tissue-material interfacial interactions, especially over longer time frames. Herein we discuss the current challenges and opportunities for implantable electrodes and the associated bioelectronic interfaces across the clinical landscape with a focus on emerging technologies and the obstacles of biofouling, microbial colonization, and the foreign body response. Overcoming these challenges is predicted to open the door for a new generation of implantable medical devices and significant associated clinical impact. STATEMENT OF SIGNIFICANCE: Implantable electrodes have been utilised for decades to stimulate, sense, or monitor a broad range of biological processes, with examples ranging from glucose monitoring devices to cochlear implants. Next-generation bioelectronic implantable medical devices promise an explosion of new applications that have until this point in time been impossible to achieve. However, there are several persistent biological challenges hindering the realisation of these new applications. We present a clinical perspective on how these biological challenges have shaped the device market and clinical trial landscape. Specifically, we present statistical breakdowns of current device applications and discuss biofouling, the foreign body response, and microbial colonisation as the main factors that need to be addressed before a new generation of devices can be explored.
Collapse
Affiliation(s)
- Kye J Robinson
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia.
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Helmut Thissen
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| |
Collapse
|
8
|
Dini C, Borges MHR, Malheiros SS, Piazza RD, van den Beucken JJJP, de Avila ED, Souza JGS, Barão VAR. Progress in Designing Therapeutic Antimicrobial Hydrogels Targeting Implant-associated Infections: Paving the Way for a Sustainable Platform Applied to Biomedical Devices. Adv Healthc Mater 2025; 14:e2402926. [PMID: 39440583 DOI: 10.1002/adhm.202402926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Implantable biomedical devices have found widespread use in restoring lost functions or structures within the human body, but they face a significant challenge from microbial-related infections, which often lead to implant failure. In this context, antimicrobial hydrogels emerge as a promising strategy for treating implant-associated infections owing to their tunable physicochemical properties. However, the literature lacks a comprehensive analysis of antimicrobial hydrogels, encompassing their development, mechanisms, and effect on implant-associated infections, mainly in light of existing in vitro, in vivo, and clinical evidence. Thus, this review addresses the strategies employed by existing studies to tailor hydrogel properties to meet the specific needs of each application. Furthermore, this comprehensive review critically appraises the development of antimicrobial hydrogels, with a particular focus on solving infections related to metallic orthopedic or dental implants. Then, preclinical and clinical studies centering on providing quantitative microbiological results associated with the application of antimicrobial hydrogels are systematically summarized. Overall, antimicrobial hydrogels benefit from the tunable properties of polymers and hold promise as an effective strategy for the local treatment of implant-associated infections. However, future clinical investigations, grounded on robust evidence from in vitro and preclinical studies, are required to explore and validate new antimicrobial hydrogels for clinical use.
Collapse
Affiliation(s)
- Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Maria Helena Rossy Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Samuel Santana Malheiros
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Rodolfo Debone Piazza
- Physical Chemistry Department, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, 14800-900, Brazil
| | | | - Erica Dorigatti de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Araçatuba, São Paulo, 16015-050, Brazil
| | - João Gabriel S Souza
- Dental Research Division, Guarulhos University (UNG), Guarulhos, São Paulo, 07023-070, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| |
Collapse
|
9
|
Yang Z, Khan SA, Walsh LJ, Ziora ZM, Seneviratne CJ. Classical and Modern Models for Biofilm Studies: A Comprehensive Review. Antibiotics (Basel) 2024; 13:1228. [PMID: 39766618 PMCID: PMC11726878 DOI: 10.3390/antibiotics13121228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/30/2024] [Accepted: 12/13/2024] [Indexed: 01/15/2025] Open
Abstract
Biofilms are structured microbial communities that adhere to various abiotic and biotic surfaces, where organisms are encased in an exo-polysaccharide matrix. Organisms within biofilms use various mechanisms that help them resist external challenges, such as antibiotics, rendering them more resistant to drugs. Therefore, researchers have attempted to develop suitable laboratory models to study the physical features of biofilms, their resistance mechanisms against antimicrobial agents, and their gene and protein expression profiles. However, current laboratory models suffer from various limitations. In this comprehensive review, we have summarized the various designs that have been used for laboratory biofilm models, presenting their strengths and limitations. Additionally, we have provided insight into improving these models to more closely simulate real-life scenarios, using newly developed techniques in additive manufacturing, synthetic biology, and bioengineering.
Collapse
Affiliation(s)
- Zhihe Yang
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia;
- Oral Health Centre, School of Dentistry, University of Queensland, Herston, QLD 4006, Australia; (S.A.K.); (L.J.W.)
| | - Sadaf Aiman Khan
- Oral Health Centre, School of Dentistry, University of Queensland, Herston, QLD 4006, Australia; (S.A.K.); (L.J.W.)
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD 4072, Australia;
- Indian Institute of Technology (IITD) Delhi, University of Queensland, New Delhi 110016, India
| | - Laurence J. Walsh
- Oral Health Centre, School of Dentistry, University of Queensland, Herston, QLD 4006, Australia; (S.A.K.); (L.J.W.)
| | - Zyta M. Ziora
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD 4072, Australia;
- Indian Institute of Technology (IITD) Delhi, University of Queensland, New Delhi 110016, India
| | | |
Collapse
|
10
|
Omwenga EO, Awuor SO. The Bacterial Biofilms: Formation, Impacts, and Possible Management Targets in the Healthcare System. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:1542576. [PMID: 39717533 PMCID: PMC11666319 DOI: 10.1155/cjid/1542576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024]
Abstract
Introduction: The persistent increase in multidrug-resistant pathogens has catalyzed the creation of novel strategies to address antivirulence and anti-infective elements. Such methodologies aim to diminish the selective pressure exerted on bacterial populations, decreasing the likelihood of resistance emergence. This review explores the role of biofilm formation as a significant virulence factor and its impact on the development of antimicrobial resistance (AMR). Case Presentation: The ability of bacteria to form a superstructure-biofilm-has made resistance cases in the microbial world a big concern to public health and other sectors as it is a crucial virulence factor that causes difficulties in the management of infections, hence enhancing chronic infection occurrence. Biofilm formation dates to about 3.4 billion years when prokaryotes were discovered to be forming them and since then due to evolution and growth in science, they are more understood. Management and Outcome: The unique microenvironments within bacterial biofilms diminish antibiotic effectiveness and help bacteria evade the host immune system. Biofilm production is a widespread capability among diverse bacterial species. Biofilm formation is enhanced by quorum sensing (QS), reduction of nutrients, or harsh environments for the bacteria. Conclusion: The rise of severe, treatment-resistant biofilm infections poses major challenges in medicine and agriculture, yet much about how these biofilms form remains unknown.
Collapse
Affiliation(s)
- Eric Omori Omwenga
- Department of Medical Microbiology & Parasitology, School of Health Sciences, Kisii University, Kisii, Kenya
| | - Silas Onyango Awuor
- Department of Applied Health Sciences, School of Health Sciences, Kisii University, Kisii, Kenya
- Department of Medical Microbiology, Jaramogi Oginga Odinga Teaching and Referral Hospital, Kisumu, Kenya
| |
Collapse
|
11
|
Weiss E, Berl A, Shir-az O, Bilal BS, Weiss EI, Paitan Y, Zaltsman N, Golberg A, Shalom A. Quaternary Ammonium Silica Nanoparticles for Antimicrobial Implantable Medical Devices: An In Vitro Study. Life (Basel) 2024; 14:1654. [PMID: 39768361 PMCID: PMC11678768 DOI: 10.3390/life14121654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Biofilm formation on prostheses and implanted devices can lead to serious complications and increased healthcare expenditures. Once formed, biofilm management is difficult and may involve a long course of antibiotics, additional surgery, and, occasionally, implant removal. This study evaluated the antibacterial properties of medical-grade silicone samples integrated with novel, non-leaching, antibacterial, quaternary ammonium silica (QASi) particles. Our collaborators (Nobio, Israel) prepared silicone sheets integrated with antibacterial QASi nanoparticles. Samples containing 0.5%, 0.75%, and 1%, QASi particles were evaluated for antibacterial properties against S. epidermidis, S. aureus, methicillin-resistant S. aureus (MRSA), E. faecalis, and P. aeruginosa using the direct contact test. The tested silicone samples integrated with QASi particles showed no bacterial growth, while growth was observed in control silicone samples without QASi. In addition, the agar diffusion test, used to evaluate the leaching of antibacterial components, exhibited no inhibition zone around the samples indicating that the QASi particles do not leach into surrounding milieu. The QASi nanoparticles exhibited very potent antibacterial surface properties, killing all viable bacteria placed on their surface. Incorporating QASi nanoparticle technology into medical products during production has the potential to create an antimicrobial surface that prevents microbial colonization and biofilm formation.
Collapse
Affiliation(s)
- Eitam Weiss
- Department of Plastic Surgery, Meir Medical Center, Kfar Saba 4428164, Israel; (E.W.); (A.B.); (O.S.-a.); (B.S.B.)
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ariel Berl
- Department of Plastic Surgery, Meir Medical Center, Kfar Saba 4428164, Israel; (E.W.); (A.B.); (O.S.-a.); (B.S.B.)
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ofir Shir-az
- Department of Plastic Surgery, Meir Medical Center, Kfar Saba 4428164, Israel; (E.W.); (A.B.); (O.S.-a.); (B.S.B.)
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Biader Samih Bilal
- Department of Plastic Surgery, Meir Medical Center, Kfar Saba 4428164, Israel; (E.W.); (A.B.); (O.S.-a.); (B.S.B.)
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ervin I. Weiss
- School of Dental Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Yossi Paitan
- Clinical Microbiology Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel;
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Natan Zaltsman
- Department of Research and Development, Nobio, Ltd., Kadima 6092000, Israel
| | - Alexander Golberg
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Avshalom Shalom
- Department of Plastic Surgery, Meir Medical Center, Kfar Saba 4428164, Israel; (E.W.); (A.B.); (O.S.-a.); (B.S.B.)
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
12
|
Lucia U, Grisolia G, Ponzetto A, Deisboeck TS. Thermophysical Insights into the Anti-Inflammatory Potential of Magnetic Fields. Biomedicines 2024; 12:2534. [PMID: 39595100 PMCID: PMC11592124 DOI: 10.3390/biomedicines12112534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Inflammation is caused by an excess of Sodium ions inside the cell. This generates a variation in the cell's membrane electric potential, becoming a steady state from a thermodynamic viewpoint. Methods: This paper introduces a thermodynamic approach to inflammation based on the fundamental role of the electric potential of the cell membrane, introducing an analysis of the effect of heat transfer related to the inflammation condition. Results: The direct proportionality between the reduction in temperature and the increase of Na+ outflow may ameliorate the inflammation cascade. Conclusions: Based on these ion fluxes, we suggest the consideration of a 'companion' electromagnetic therapeutic wave concept in support of the present anti-inflammatory treatment.
Collapse
Affiliation(s)
- Umberto Lucia
- Dipartimento Energia “Galileo Ferraris”, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Giulia Grisolia
- Dipartimento di Ingegneria dell’Ambiente, del Territorio e delle Infrastrutture, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Antonio Ponzetto
- Dipartimento di Scienze Mediche, Università di Torino, Corso Dogliotti 14, 10126 Torino, Italy
| | - Thomas S. Deisboeck
- Department of Radiology, Harvard-MIT Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Charlestown, MA 02129, USA
| |
Collapse
|
13
|
Pérez-Köhler B, Benito-Martínez S, Rivas-Santos C, Gómez-Gil V, García-Moreno F, Pascual G. Potentiality of Antibacterial Gels for the Prophylactic Coating of Hernia Repair Prosthetic Materials. Gels 2024; 10:687. [PMID: 39590043 PMCID: PMC11593720 DOI: 10.3390/gels10110687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Prosthetic mesh infection constitutes one of the major postsurgical complications following abdominal hernia repair. Antibacterial coatings represent a prophylactic strategy to reduce the risk of infection. This study assessed the in vitro response of two antibacterial gels made of 1% carboxymethylcellulose (CMC) functionalized with an antiseptic (chlorhexidine, CHX) or an antibiotic (rifampicin, RIF), developed for the coating of polypropylene (PP) meshes for hernia repair. Fragments of a lightweight PP mesh (1 cm2) presoaked in the unloaded or drug-loaded CMC (0.05% CHX; 0.13 mg/mL RIF) were challenged with 106 CFU/mL Staphylococcus aureus (Sa) and methicillin-resistant S. aureus (MRSA). Agar diffusion tests, sonication, turbidimetry, crystal violet staining, scanning electron microscopy and cell viability assays (fibroblasts, mesothelial cells) were performed to evaluate the response of the gels. Both compounds-especially the RIF-loaded gel-exerted a biocidal effect against gram-positive bacteria, developing wide inhibition halos, precluding adhesion to the mesh surface, and hampering bacterial survival in culture. The antibiotic gel proved innocuous, while lower viability was found in cells exposed to the antiseptic (p < 0.05). Together with their fast, affordable, convenient processing and easy application, the results suggest the potential effectiveness of these drug-loaded CMC gels in providing meshes with an antibacterial coating exhibiting great biocide performance.
Collapse
Affiliation(s)
- Bárbara Pérez-Köhler
- Departamento de Medicina y Especialidades Médicas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28805 Alcalá de Henares, Spain; (B.P.-K.); (S.B.-M.); (C.R.-S.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (V.G.-G.); (F.G.-M.)
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - Selma Benito-Martínez
- Departamento de Medicina y Especialidades Médicas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28805 Alcalá de Henares, Spain; (B.P.-K.); (S.B.-M.); (C.R.-S.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (V.G.-G.); (F.G.-M.)
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - Celia Rivas-Santos
- Departamento de Medicina y Especialidades Médicas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28805 Alcalá de Henares, Spain; (B.P.-K.); (S.B.-M.); (C.R.-S.)
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - Verónica Gómez-Gil
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (V.G.-G.); (F.G.-M.)
- Departamento de Ciencias Biomédicas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - Francisca García-Moreno
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (V.G.-G.); (F.G.-M.)
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - Gemma Pascual
- Departamento de Medicina y Especialidades Médicas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28805 Alcalá de Henares, Spain; (B.P.-K.); (S.B.-M.); (C.R.-S.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (V.G.-G.); (F.G.-M.)
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
14
|
Konwar B, De S, Das G, Ramesh A. Napthalimide-based nuclease inhibitor: A multifunctional therapeutic material to bolster MRSA uptake by macrophage-like cells and mitigate pathogen adhesion on orthopaedic implant. Int J Biol Macromol 2024; 277:134023. [PMID: 39032881 DOI: 10.1016/j.ijbiomac.2024.134023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The healthcare burden rendered by methicillin-resistant Staphylococcus aureus (MRSA) warrants the development of therapeutics that offer a distinct benefit in the clinics as compared to conventional antibiotics. The present study describes the potential of napthalimide-based synthetic ligands (C1-C3) as inhibitors of the staphylococcal nuclease known as micrococcal nuclease (MNase), a key virulence factor of the pathogen. Amongst the ligands, the most potent MNase inhibitor C1 rendered non-competitive inhibition, reduced MNase turnover number (Kcat) and catalytic efficiency (Kcat/Km) with an IC50 value of ~950 nM. CD spectroscopy suggested distortion of MNase conformation in presence of C1. Flow cytometry and confocal microscopy indicated that C1 restored the ability of activated THP-1 cells to engulf DNA-entrapped MRSA cells. Interestingly, C1 could inhibit MRSA adhesion onto collagen. For potential application, C1-loaded pluronic F-127 micellar nanocarrier (C1-PMC) was generated, wherein the anti-adhesion activity of the pluronic carrier (PMC) and C1 was harnessed in tandem to deter MRSA cell adhesion onto collagen. MRSA biofilm formation was hindered on C1-PMC-coated titanium (Ti) wire, while eluates from C1-PMC-coated Ti wires were non-toxic to HEK 293, MG-63 and THP-1 cells. The multifunctional C1 provides a blueprint for designing therapeutic materials that hold translational potential for mitigation of MRSA infections.
Collapse
Affiliation(s)
- Barlina Konwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sagnik De
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Aiyagari Ramesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
15
|
Mondal A, Paul S, De P. Recent Advancements in Polymeric N-Nitrosamine-Based Nitric Oxide (NO) Donors and their Therapeutic Applications. Biomacromolecules 2024; 25:5592-5608. [PMID: 39116284 DOI: 10.1021/acs.biomac.4c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Nitric oxide (NO), a gasotransmitter, is known for its wide range of effects in vasodilation, cardiac relaxation, and angiogenesis. This diatomic free radical also plays a pivotal role in reducing the risk of platelet aggregation and thrombosis. Furthermore, NO demonstrates promising potential in cancer therapy as well as in antibacterial and antibiofilm activities at higher concentrations. To leverage their biomedical activities, numerous NO donors have been developed. Among these, N-nitrosamines are emerging as a notable class, capable of releasing NO under suitable photoirradiation and finding a broad range of therapeutic applications. This review discusses the design, synthesis, and biological applications of polymeric N-nitrosamines, highlighting their advantages over small molecular NO donors in terms of stability, NO payload, and target-specific delivery. Additionally, various small-molecule N-nitrosamines are explored to provide a comprehensive overview of this burgeoning field. We anticipate that this review will aid in developing next-generation polymeric N-nitrosamines with improved physicochemical properties.
Collapse
Affiliation(s)
- Anushree Mondal
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Soumya Paul
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
16
|
Garcia-Perez VI, Hotchkiss KM, Silva-Bermudez P, Hernández MM, Prado-Prone G, Olivares-Navarrete R, Rodil SE, Almaguer-Flores A. Amorphous TiO 2nano-coating on stainless steel to improve its biological response. Biomed Mater 2024; 19:055037. [PMID: 39121890 PMCID: PMC11337115 DOI: 10.1088/1748-605x/ad6dc4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/23/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
This study delves into the potential of amorphous titanium oxide (aTiO2) nano-coating to enhance various critical aspects of non-Ti-based metallic orthopedic implants. These implants, such as medical-grade stainless steel (SS), are widely used for orthopedic devices that demand high strength and durability. The aTiO2nano-coating, deposited via magnetron sputtering, is a unique attempt to improve the osteogenesis, the inflammatory response, and to reduce bacterial colonization on SS substrates. The study characterized the nanocoated surfaces (SS-a TiO2) in topography, roughness, wettability, and chemical composition. Comparative samples included uncoated SS and sandblasted/acid-etched Ti substrates (Ti). The biological effects were assessed using human mesenchymal stem cells (MSCs) and primary murine macrophages. Bacterial tests were carried out with two aerobic pathogens (S. aureusandS. epidermidis) and an anaerobic bacterial consortium representing an oral dental biofilm. Results from this study provide strong evidence of the positive effects of the aTiO2nano-coating on SS surfaces. The coating enhanced MSC osteoblastic differentiation and exhibited a response similar to that observed on Ti surfaces. Macrophages cultured on aTiO2nano-coating and Ti surfaces showed comparable anti-inflammatory phenotypes. Most significantly, a reduction in bacterial colonization across tested species was observed compared to uncoated SS substrates, further supporting the potential of aTiO2nano-coating in biomedical applications. The findings underscore the potential of magnetron-sputtering deposition of aTiO2nano-coating on non-Ti metallic surfaces such as medical-grade SS as a viable strategy to enhance osteoinductive factors and decrease pathogenic bacterial adhesion. This could significantly improve the performance of metallic-based biomedical devices beyond titanium.
Collapse
Affiliation(s)
- Victor I Garcia-Perez
- Laboratorio de Biointerfases, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México. Circuito exterior s/n, Ciudad Universitaria, Ciudad de México, CDMX 04510, Mexico
| | - Kelly M Hotchkiss
- Department of Biomedical Engineering Commonwealth, College of Engineering, Virginia University, Richmond, VA 23284, United States of America
| | - Phaedra Silva-Bermudez
- Unidad de Ingeniería de Tejidos,Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra. Calzada México-Xochimilco, Ciudad de México 14389, Mexico
| | - Miryam Martínez Hernández
- Laboratorio de Biointerfases, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México. Circuito exterior s/n, Ciudad Universitaria, Ciudad de México, CDMX 04510, Mexico
| | - Gina Prado-Prone
- Laboratorio de Biointerfases, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México. Circuito exterior s/n, Ciudad Universitaria, Ciudad de México, CDMX 04510, Mexico
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering Commonwealth, College of Engineering, Virginia University, Richmond, VA 23284, United States of America
| | - Sandra E Rodil
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. Circuito exterior s/n, Ciudad Universitaria, Ciudad de México, CDMX 04510, Mexico
| | - Argelia Almaguer-Flores
- Laboratorio de Biointerfases, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México. Circuito exterior s/n, Ciudad Universitaria, Ciudad de México, CDMX 04510, Mexico
| |
Collapse
|
17
|
Li B, Pang C, Chen S, Hong L. Long-Lasting Antibacterial PDMS Surfaces Constructed from Photocuring of End-Functionalized Polymers. Macromol Rapid Commun 2024; 45:e2400170. [PMID: 38936823 DOI: 10.1002/marc.202400170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/22/2024] [Indexed: 06/29/2024]
Abstract
A challenge remains in the development of anti-infectious coatings for the inert surfaces of biomedical devices that are prone to bacterial colonization and biofilm formation. Here, a facile photocuring method to construct functionalized polymeric coatings on inert polydimethylsiloxane (PDMS) surfaces, is developed. Using atom transfer radical polymerization (ATRP) initiator bearing thymol group, hydrophilic DMAEMA and benzophenone (BP)-containing monomers are copolymerized to form polymers with end functional groups. An end-functionalized biocidal coating is then constructed on the inert PDMS surface in one step using a photocuring reaction. The functionalized PDMS surfaces show excellent antibacterial and antifouling properties, are capable of completely eradiating MRSA within ≈6 h, and effectively inhibit the growth of biofilms. In addition, they have good stability and long-lasting antibacterial activity in body fluid environments such as 0.9% saline and urine. According to bladder model experiments, the catheter's lifespan can be extended from ≈7 to 35 days by inhibiting the growth and migration of bacteria along its inner surface. The photocuring technique is therefore very promising in terms of surface functionalization of inert biomedical devices in order to minimize the spread of infection.
Collapse
Affiliation(s)
- Biao Li
- Faculty of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Chuming Pang
- Faculty of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Shiguo Chen
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Liangzhi Hong
- Faculty of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
18
|
Mishra A, Aggarwal A, Khan F. Medical Device-Associated Infections Caused by Biofilm-Forming Microbial Pathogens and Controlling Strategies. Antibiotics (Basel) 2024; 13:623. [PMID: 39061305 PMCID: PMC11274200 DOI: 10.3390/antibiotics13070623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Hospital-acquired infections, also known as nosocomial infections, include bloodstream infections, surgical site infections, skin and soft tissue infections, respiratory tract infections, and urinary tract infections. According to reports, Gram-positive and Gram-negative pathogenic bacteria account for up to 70% of nosocomial infections in intensive care unit (ICU) patients. Biofilm production is a main virulence mechanism and a distinguishing feature of bacterial pathogens. Most bacterial pathogens develop biofilms at the solid-liquid and air-liquid interfaces. An essential requirement for biofilm production is the presence of a conditioning film. A conditioning film provides the first surface on which bacteria can adhere and fosters the growth of biofilms by creating a favorable environment. The conditioning film improves microbial adherence by delivering chemical signals or generating microenvironments. Microorganisms use this coating as a nutrient source. The film gathers both inorganic and organic substances from its surroundings, or these substances are generated by microbes in the film. These nutrients boost the initial growth of the adhering bacteria and facilitate biofilm formation by acting as a food source. Coatings with combined antibacterial efficacy and antifouling properties provide further benefits by preventing dead cells and debris from adhering to the surfaces. In the present review, we address numerous pathogenic microbes that form biofilms on the surfaces of biomedical devices. In addition, we explore several efficient smart antiadhesive coatings on the surfaces of biomedical device-relevant materials that manage nosocomial infections caused by biofilm-forming microbial pathogens.
Collapse
Affiliation(s)
- Akanksha Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, Punjab, India;
| | - Ashish Aggarwal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, Punjab, India;
| | - Fazlurrahman Khan
- Institute of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
19
|
Li C, Gao D, Li C, Cheng G, Zhang L. Fighting against biofilm: The antifouling and antimicrobial material. Biointerphases 2024; 19:040802. [PMID: 39023091 DOI: 10.1116/6.0003695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Biofilms are groups of microorganisms protected by self-secreted extracellular substances. Biofilm formation on the surface of biomaterial or engineering materials becomes a severe challenge. It has caused significant health, environmental, and societal concerns. It is believed that biofilms lead to life-threatening infection, medical implant failure, foodborne disease, and marine biofouling. To address these issues, tremendous effort has been made to inhibit biofilm formation on materials. Biofilms are extremely difficult to treat once formed, so designing material and coating bearing functional groups that are capable of resisting biofilm formation has attracted increasing attention for the last two decades. Many types of antibiofilm strategies have been designed to target different stages of biofilm formation. Development of the antibiofilm material can be classified into antifouling material, antimicrobial material, fouling release material, and integrated antifouling/antimicrobial material. This review summarizes relevant research utilizing these four approaches and comments on their antibiofilm properties. The feature of each method was compared to reveal the research trend. Antibiofilm strategies in fundamental research and industrial applications were summarized.
Collapse
Affiliation(s)
- Chao Li
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Dongdong Gao
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Chunmei Li
- Tsinglan School, Songshan Lake, Dongguan 523000, China
| | - Gang Cheng
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Lijun Zhang
- Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, The Third People's Hospital of Dalian, Dalian, Liaoning 116033, China
| |
Collapse
|
20
|
Ozkan E, Estes Bright LM, Kumar A, Pandey R, Devine R, Francis D, Ghalei S, Ashcraft M, Maffe P, Brooks M, Shome A, Garren M, Handa H. Bioinspired superhydrophobic surfaces with silver and nitric oxide-releasing capabilities to prevent device-associated infections and thrombosis. J Colloid Interface Sci 2024; 664:928-937. [PMID: 38503078 PMCID: PMC11025530 DOI: 10.1016/j.jcis.2024.03.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
Bacteria-associated infections and thrombus formation are the two major complications plaguing the application of blood-contacting medical devices. Therefore, functionalized surfaces and drug delivery for passive and active antifouling strategies have been employed. Herein, we report the novel integration of bio-inspired superhydrophobicity with nitric oxide release to obtain a functional polymeric material with anti-thrombogenic and antimicrobial characteristics. The nitric oxide release acts as an antimicrobial agent and platelet inhibitor, while the superhydrophobic components prevent non-specific biofouling. Widely used medical-grade silicone rubber (SR) substrates that are known to be susceptible to biofilm and thrombus formation were dip-coated with fluorinated silicon dioxide (SiO2) and silver (Ag) nanoparticles (NPs) using an adhesive polymer as a binder. Thereafter, the resulting superhydrophobic (SH) SR substrates were impregnated with S-nitroso-N-acetylpenicillamine (SNAP, an NO donor) to obtain a superhydrophobic, Ag-bound, NO-releasing (SH-SiAgNO) surface. The SH-SiAgNO surfaces had the lowest amount of viable adhered E. coli (> 99.9 % reduction), S. aureus (> 99.8 % reduction), and platelets (> 96.1 % reduction) as compared to controls while demonstrating no cytotoxic effects on fibroblast cells. Thus, this innovative approach is the first to combine SNAP with an antifouling SH polymer surface that possesses the immense potential to minimize medical device-associated complications without using conventional systemic anticoagulation and antibiotic treatments.
Collapse
Affiliation(s)
- Ekrem Ozkan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Lori M Estes Bright
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Anil Kumar
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Rashmi Pandey
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Ryan Devine
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Divine Francis
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Sama Ghalei
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Morgan Ashcraft
- Pharmaceutical and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Patrick Maffe
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Megan Brooks
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Arpita Shome
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Mark Garren
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Hitesh Handa
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA; Pharmaceutical and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
21
|
Rima M, Villeneuve-Faure C, Soumbo M, El Garah F, Pilloux L, Roques C, Makasheva K. Towards a better understanding of the effect of protein conditioning layers on microbial adhesion: a focused investigation of fibronectin and bovine serum albumin layers on SiO 2 surfaces. Biomater Sci 2024; 12:3086-3099. [PMID: 38716803 DOI: 10.1039/d4bm00099d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The interaction of foreign implants with their surrounding environment is significantly influenced by the adsorption of proteins on the biomaterial surfaces, playing a role in microbial adhesion. Therefore, understanding protein adsorption on solid surfaces and its effect on microbial adhesion is essential to assess the associated risk of infection. The aim of this study is to evaluate the effect of conditioning by fibronectin (Fn) or bovine serum albumin (BSA) protein layers of silica (SiO2) surfaces on the adhesion and detachment of two pathogenic microorganisms: Pseudomonas aeruginosa PAO1-Tn7-gfp and Candida albicans CIP 48.72. Experiments are conducted under both static and hydrodynamic conditions using a shear stress flow chamber. Through the use of very low wall shear stresses, the study brings the link between the static and dynamic conditions of microbial adhesion. The results reveal that the microbial adhesion critically depends on: (i) the presence of a protein layer conditioning the SiO2 surface, (ii) the type of protein and (iii) the protein conformation and organization in the conditioning layer. In addition, a very distinct adhesion behaviour of P. aeruginosa is observed towards the two tested proteins, Fn and BSA. This effect is reinforced by the amount of proteins adsorbed on the surface and their organization in the layer. The results are discussed in the light of atomic force microscopy analysis of the organization and conformation of proteins in the layers after adsorption on the SiO2 surface, as well as the specificity in bacterial behaviour when interacting with these protein layers. The study also demonstrates the very distinctive behaviours of the prokaryote P. aeruginosa PAO1-Tn7-gfp compared to the eukaryote C. albicans CIP 48.72. This underscores the importance of considering species-specific interactions between the protein conditioning layer and different pathogenic microorganisms, which appear crucial in designing tailored anti-adhesive surfaces.
Collapse
Affiliation(s)
- Maya Rima
- LGC, University of Toulouse, CNRS, UTIII, INPT, Toulouse, France.
| | | | - Marvine Soumbo
- LGC, University of Toulouse, CNRS, UTIII, INPT, Toulouse, France.
- LAPLACE, University of Toulouse, CNRS, UTIII, INPT, Toulouse, France.
| | - Fatima El Garah
- LGC, University of Toulouse, CNRS, UTIII, INPT, Toulouse, France.
| | - Ludovic Pilloux
- LGC, University of Toulouse, CNRS, UTIII, INPT, Toulouse, France.
| | - Christine Roques
- LGC, University of Toulouse, CNRS, UTIII, INPT, Toulouse, France.
| | - Kremena Makasheva
- LAPLACE, University of Toulouse, CNRS, UTIII, INPT, Toulouse, France.
| |
Collapse
|
22
|
Butler J, Morgan S, Jones L, Upton M, Besinis A. Evaluating the antibacterial efficacy of a silver nanocomposite surface coating against nosocomial pathogens as an antibiofilm strategy to prevent hospital infections. Nanotoxicology 2024; 18:410-436. [PMID: 39051684 DOI: 10.1080/17435390.2024.2379809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Antimicrobial nanocoatings may be a means of preventing nosocomial infections, which account for significant morbidity and mortality. The role of hospital sink traps in these infections is also increasingly appreciated. We describe the preparation, material characterization and antibacterial activity of a pipe cement-based silver nanocoating applied to unplasticized polyvinyl chloride, a material widely used in wastewater plumbing. Three-dimensional surface topography imaging and scanning electron microscopy showed increased roughness in all surface finishes versus control, with grinding producing the roughest surfaces. Silver stability within nanocoatings was >99.89% in deionized water and bacteriological media seeded with bacteria. The nanocoating exhibited potent antibiofilm (99.82-100% inhibition) and antiplanktonic (99.59-99.99% killing) activity against three representative bacterial species and a microbial community recovered from hospital sink traps. Hospital sink trap microbiota were characterized by sequencing the 16S rRNA gene, revealing the presence of opportunistic pathogens from genera including Pseudomonas, Enterobacter and Clostridioides. In a benchtop model sink trap system, nanocoating antibiofilm activity against this community remained significant after 11 days but waned following 25 days. Silver nanocoated disks in real-world sink traps in two university buildings had a limited antibiofilm effect, even though in vitro experiments using microbial communities recovered from the same traps demonstrated that the nanocoating was effective, reducing biofilm formation by >99.6% and killing >98% of planktonic bacteria. We propose that conditioning films forming in the complex conditions of real-world sink traps negatively impact nanocoating performance, which may have wider relevance to development of antimicrobial nanocoatings that are not tested in the real-world.
Collapse
Affiliation(s)
- James Butler
- School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth, United Kingdom
| | - Sian Morgan
- School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth, United Kingdom
| | - Lewis Jones
- Clinical Microbiology, University Hospitals Plymouth NHS Trust, Plymouth, United Kingdom
| | - Mathew Upton
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| | - Alexandros Besinis
- School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth, United Kingdom
- Peninsula Dental School, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
23
|
Sekar H, Tirumkudulu M, Gundabala V. Film Formation of Iodinated Latex Dispersions and Its Role in Their Antimicrobial Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9197-9204. [PMID: 38639710 DOI: 10.1021/acs.langmuir.4c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Waterborne coatings with intrinsic antibacterial attributes have attracted significant attention due to their potential in mitigating microbial contamination while simultaneously addressing the environmental drawbacks of their solvent-based counterparts. Typically, antimicrobial coatings are designed to resist and eliminate microbial threats, encompassing challenges such as biofilm formation, fungal contamination, and proliferation of black mold. Iodine, when solubilized using ethylene glycol and incorporated as a complex into waterborne latex dispersions, has shown remarkable antimicrobial activity. Here, we demonstrate the effect of the film formation process of these iodinated latex dispersions on their antimicrobial properties. The effect of iodine on the surface morphology and mechanical, adhesion, and antimicrobial properties of the generated films was investigated. Complete integration and uniform distribution of iodine in the films were confirmed through UV-vis spectrophotometry and a laser Raman imaging system (LRIS). In terms of properties, iodinated films showed improved mechanical strength and adhesion compared with blank films. Further, the presence of iodine rendered the films rougher, making them susceptible to bacterial adhesion, but interestingly provided enhanced antibiofilm activity. Moreover, thicker films had a lower surface roughness and reduced biofilm growth. These observations are elucidated through the complex interplay among film thickness, surface morphology, and iodine properties. The insights into the interlink between the film formation process and antimicrobial properties of iodinated latex dispersions will facilitate their enhanced application as sustainable alternatives to solvent-based coatings.
Collapse
Affiliation(s)
- Hariharan Sekar
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| | - Mahesh Tirumkudulu
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| | - Venkat Gundabala
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
24
|
Pecha S, Reuter L, Ohdah S, Petersen J, Pahrmann C, Aytar Çelik P, Çabuk A, Reichenspurner H, Yildirim Y. Bionic Nanocoating of Prosthetic Grafts Significantly Reduces Bacterial Growth. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13534-13542. [PMID: 38447594 PMCID: PMC10958452 DOI: 10.1021/acsami.3c18634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/08/2024]
Abstract
Prosthetic materials are a source of bacterial infections, with significant morbidity and mortality. Utilizing the bionic "Lotus effect," we generated superhydrophobic vascular prostheses by nanocoating and investigated their resistance to bacterial colonization. Nanoparticles were generated from silicon dioxide (SiO2), and coated vascular prostheses developed a nanoscale roughness with superhydrophobic characteristics. Coated grafts and untreated controls were incubated with different bacterial solutions including heparinized blood under mechanical stress and during artificial perfusion and were analyzed. Bioviability- and toxicity analyses of SiO2 nanoparticles were performed. Diameters of SiO2 nanoparticles ranged between 20 and 180 nm. Coated prostheses showed a water contact angle of > 150° (mean 154 ± 3°) and a mean water roll-off angle of 9° ± 2°. Toxicity and viability experiments demonstrated no toxic effects of SiO2 nanoparticles on human induced pluripotent stem cell-derived cardiomyocytes endothelial cells, fibroblasts, and HEK239T cells. After artificial perfusion with a bacterial solution (Luciferase+ Escherichia coli), bioluminescence imaging measurements showed a significant reduction of bacterial colonization of superhydrophobic material-coated prostheses compared to that of untreated controls. At the final measurement (t = 60 min), a 97% reduction of bacterial colonization was observed with superhydrophobic material-coated prostheses. Superhydrophobic vascular prostheses tremendously reduced bacterial growth. During artificial perfusion, the protective superhydrophobic effects of the vascular grafts could be confirmed using bioluminescence imaging.
Collapse
Affiliation(s)
- Simon Pecha
- Department
of Cardiovascular Surgery, University Heart
and Vascular Center, 20246 Hamburg, Germany
- DZHK
(German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Lukas Reuter
- Department
of Cardiovascular Surgery, University Heart
and Vascular Center, 20246 Hamburg, Germany
- DZHK
(German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Shahabuddin Ohdah
- Department
of Radiology, University Medical Center
Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Johannes Petersen
- Department
of Cardiovascular Surgery, University Heart
and Vascular Center, 20246 Hamburg, Germany
- DZHK
(German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Christiane Pahrmann
- Department
of Cardiovascular Surgery, University Heart
and Vascular Center, 20246 Hamburg, Germany
| | - Pinar Aytar Çelik
- Department
of Biotechnology and Biosafety, Graduate School of Natural and Applied
Science, Eskisehir Osmangazi University, 26480 Eskisehir, Turkey
| | - Ahmet Çabuk
- Department
of Biology, Faculty of Science and Letter, Eskişehir Osmangazi University, 26040 Eskişehir, Turkey
| | - Hermann Reichenspurner
- Department
of Cardiovascular Surgery, University Heart
and Vascular Center, 20246 Hamburg, Germany
- DZHK
(German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Yalin Yildirim
- Department
of Cardiovascular Surgery, University Heart
and Vascular Center, 20246 Hamburg, Germany
| |
Collapse
|
25
|
Araújo D, Martins JP, Ferreira SL, Mota S, Ferreira PL, Pimenta R. A meta-analysis on the role of sonication in the diagnosis of cardiac implantable electronic device-related infections. Front Microbiol 2024; 15:1361626. [PMID: 38559357 PMCID: PMC10978762 DOI: 10.3389/fmicb.2024.1361626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/16/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction One of the biggest obstacles in diagnosing Implant-Associated Infections is the lack of infection criteria and standardized diagnostic methods. These infections present a wide range of symptoms, and their diagnosis can be hampered by the formation of microbial biofilms on the surface of implants. This study aimed to provide insight into the performance of sonication in the diagnosis of infections associated with Cardiac Implantable Electronic Devices, to help define a consensus on the algorithm for the microbial diagnosis of these infections. Methods We carried out a systematic review with meta-analysis. The PRISMA methodology guidelines were followed, and an advanced search was carried out in PubMed and Web of Science, which enabled 8 articles to be included in the review, in which a meta-analysis was also carried out. QUADAS-2 was used to assess the risk of bias and effect measures were calculated to assess publication bias. Results The overall sensitivity of the method was 0.823 (95% CI: 0.682-0.910) and the specificity was 0.632 (95% CI: 0.506-0.743). Discussion These results suggest that sonication may offer advantages in diagnosing these infections. However, it is essential to approach these findings carefully and take into account the recommendations provided in the EHRA 2019 guidelines. This study highlights the importance of more effective diagnostic approaches for implantable medical device-associated infections to improve the quality of treatment and minimize the risks associated with these challenging medical conditions.
Collapse
Affiliation(s)
- Daniela Araújo
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, Porto, Portugal
| | - João P. Martins
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, Porto, Portugal
- CEAUL– Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisbon, Portugal
| | - Stephanie Lopes Ferreira
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, Porto, Portugal
- CHUdSA – Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Sandra Mota
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, Porto, Portugal
- REQUIMTE/LAQV, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, Porto, Portugal
| | - Pedro L. Ferreira
- Faculty of Economics, University of Coimbra, Coimbra, Portugal
- Centre for Health Studies and Research of University of Coimbra, Centre for Innovative Biomedicine and Biotechnology, Avenida Dias da Silva, Coimbra, Portugal
| | - Rui Pimenta
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, Porto, Portugal
- Centre for Health Studies and Research of University of Coimbra, Centre for Innovative Biomedicine and Biotechnology, Avenida Dias da Silva, Coimbra, Portugal
| |
Collapse
|
26
|
Pesset CM, Fonseca COD, Antunes M, Santos ALLD, Teixeira IM, Ferreira EDO, Penna B. Biofilm formation by Staphylococcus pseudintermedius on titanium implants. BIOFOULING 2024; 40:88-97. [PMID: 38407199 DOI: 10.1080/08927014.2024.2320721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
Osteomyelitis often involves Staphylococcus spp. as the isolated genus in domestic animal cases. Implant-related infections, frequently associated with biofilm-forming microorganisms like staphylococci species, necessitate careful material selection. This study assessed biofilm formation by Staphylococcus pseudintermedius on titanium nuts used in veterinary orthopaedic surgery. Biofilm quantification employed safranin staining and spectrophotometric measurement, while bacterial counts were determined in colony-forming units (CFU). Scanning Electron Microscopy (SEM) evaluated the biofilm morphology on the surface of titanium nuts. All samples had CFU counts. Absorbance values that evidence biofilm formation were observed in seven of the eight samples tested. SEM images revealed robust bacterial colonization, and significant extracellular polymeric substance production, and the negative control displayed surface irregularities on the nut. Whole genome sequencing revealed accessory Gene Regulator (agr) type III in six samples, agr IV and agr II in two each. Genes encoding hlb, luk-S, luk-F, siet, se_int, and the icaADCB operon were identified in all sequenced samples. Other exfoliative toxins were absent. Biofilm formation by S. pseudintermedius was detected in all samples, indicating the susceptibility of orthopaedic titanium alloys to adhesion and biofilm formation by veterinary species. The biofilm formation capacity raises concerns about potential post-surgical complications and associated costs.
Collapse
Affiliation(s)
- Camilla Malcher Pesset
- Laboratory of Gram-Positive Cocci, Biomedical Institute, Federal Fluminense University, Niterói, Brazil
| | - Carolina O da Fonseca
- Laboratory of Gram-Positive Cocci, Biomedical Institute, Federal Fluminense University, Niterói, Brazil
| | - Milena Antunes
- Laboratory of Gram-Positive Cocci, Biomedical Institute, Federal Fluminense University, Niterói, Brazil
| | - Ana Luiza L Dos Santos
- Laboratory of Gram-Positive Cocci, Biomedical Institute, Federal Fluminense University, Niterói, Brazil
| | - Izabel Melo Teixeira
- Laboratory of Gram-Positive Cocci, Biomedical Institute, Federal Fluminense University, Niterói, Brazil
| | | | - Bruno Penna
- Laboratory of Gram-Positive Cocci, Biomedical Institute, Federal Fluminense University, Niterói, Brazil
| |
Collapse
|
27
|
Denis H, Werth R, Greuling A, Schwestka-Polly R, Stiesch M, Meyer-Kobbe V, Doll K. Antibacterial properties and abrasion-stability: Development of a novel silver-compound material for orthodontic bracket application. J Orofac Orthop 2024; 85:30-42. [PMID: 35849137 DOI: 10.1007/s00056-022-00405-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/24/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Bacteria-induced white spot lesions are a common side effect of modern orthodontic treatment. Therefore, there is a need for novel orthodontic bracket materials with antibacterial properties that also resist long-term abrasion. The aim of this study was to investigate the abrasion-stable antibacterial properties of a newly developed, thoroughly silver-infiltrated material for orthodontic bracket application in an in situ experiment. METHODS To generate the novel material, silver was vacuum-infiltrated into a sintered porous tungsten matrix. A tooth brushing simulation machine was used to perform abrasion equal to 2 years of tooth brushing. The material was characterized by energy dispersive X‑ray (EDX) analysis and roughness measurement. To test for antibacterial properties in situ, individual occlusal splints equipped with specimens were worn intraorally by 12 periodontal healthy patients for 48 h. After fluorescence staining, the quantitative biofilm volume and live/dead distribution of the initial biofilm formation were analyzed by confocal laser scanning microscopy (CLSM). RESULTS Silver was infiltrated homogeneously throughout the tungsten matrix. Toothbrush abrasion only slightly reduced the material's thickness similar to conventional stainless steel bracket material and did not alter surface roughness. The new silver-modified material showed significantly reduced biofilm accumulation in situ. The effect was maintained even after abrasion. CONCLUSION A promising, novel silver-infiltrated abrasion-stable material for use as orthodontic brackets, which also exhibit strong antibacterial properties on in situ grown oral biofilms, was developed. The strong antibacterial properties were maintained even after surface abrasion simulated with long-term toothbrushing.
Collapse
Affiliation(s)
- Hannah Denis
- Department of Dental Prosthetics and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625, Hannover, Germany
| | - Richard Werth
- Department of Dental Prosthetics and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Andreas Greuling
- Department of Dental Prosthetics and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Rainer Schwestka-Polly
- Department of Orthodontics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Meike Stiesch
- Department of Dental Prosthetics and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625, Hannover, Germany
| | - Viktoria Meyer-Kobbe
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625, Hannover, Germany.
- Department of Orthodontics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Katharina Doll
- Department of Dental Prosthetics and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625, Hannover, Germany.
| |
Collapse
|
28
|
Gomes M, Teixeira-Santos R, Gomes LC, Sousa-Cardoso F, Carvalho FM, Tomé AR, Soares OSGP, Whitehead KA, Mergulhão FJ. Antibiofilm Effect of Nitric Acid-Functionalized Carbon Nanotube-Based Surfaces against E. coli and S. aureus. Antibiotics (Basel) 2023; 12:1620. [PMID: 37998822 PMCID: PMC10668832 DOI: 10.3390/antibiotics12111620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Chemically modified carbon nanotubes are recognized as effective materials for tackling bacterial infections. In this study, pristine multi-walled carbon nanotubes (p-MWCNTs) were functionalized with nitric acid (f-MWCNTs), followed by thermal treatment at 600 °C, and incorporated into a poly(dimethylsiloxane) (PDMS) matrix. The materials' textural properties were evaluated, and the roughness and morphology of MWCNT/PDMS composites were assessed using optical profilometry and scanning electron microscopy, respectively. The antibiofilm activity of MWCNT/PDMS surfaces was determined by quantifying culturable Escherichia coli and Staphylococcus aureus after 24 h of biofilm formation. Additionally, the antibacterial mechanisms of MWCNT materials were identified by flow cytometry, and the cytotoxicity of MWCNT/PDMS composites was tested against human kidney (HK-2) cells. The results revealed that the antimicrobial activity of MWCNTs incorporated into a PDMS matrix can be efficiently tailored through nitric acid functionalization, and it can be increased by up to 49% in the absence of surface carboxylic groups in f-MWCNT samples heated at 600 °C and the presence of redox activity of carbonyl groups. MWCNT materials changed the membrane permeability of both Gram-negative and Gram-positive bacteria, while they only induced the production of ROS in Gram-positive bacteria. Furthermore, the synthesized composites did not impact HK-2 cell viability, confirming the biocompatibility of MWCNT composites.
Collapse
Affiliation(s)
- Marisa Gomes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (M.G.); (R.T.-S.); (L.C.G.); (F.S.-C.); (F.M.C.); (A.R.T.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Rita Teixeira-Santos
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (M.G.); (R.T.-S.); (L.C.G.); (F.S.-C.); (F.M.C.); (A.R.T.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Luciana C. Gomes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (M.G.); (R.T.-S.); (L.C.G.); (F.S.-C.); (F.M.C.); (A.R.T.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Francisca Sousa-Cardoso
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (M.G.); (R.T.-S.); (L.C.G.); (F.S.-C.); (F.M.C.); (A.R.T.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Fábio M. Carvalho
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (M.G.); (R.T.-S.); (L.C.G.); (F.S.-C.); (F.M.C.); (A.R.T.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Andreia R. Tomé
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (M.G.); (R.T.-S.); (L.C.G.); (F.S.-C.); (F.M.C.); (A.R.T.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Olívia S. G. P. Soares
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- LSRE-LCM—Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Kathryn A. Whitehead
- Microbiology at Interfaces Group, Manchester Metropolitan University, Manchester M1 5GD, UK;
| | - Filipe J. Mergulhão
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (M.G.); (R.T.-S.); (L.C.G.); (F.S.-C.); (F.M.C.); (A.R.T.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| |
Collapse
|
29
|
Sabzehmeidani MM, Kazemzad M. Recent advances in surface-mounted metal-organic framework thin film coatings for biomaterials and medical applications: a review. Biomater Res 2023; 27:115. [PMID: 37950330 PMCID: PMC10638836 DOI: 10.1186/s40824-023-00454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/22/2023] [Indexed: 11/12/2023] Open
Abstract
Coatings of metal-organic frameworks (MOFs) have potential applications in surface modification for medical implants, tissue engineering, and drug delivery systems. Therefore, developing an applicable method for surface-mounted MOF engineering to fabricate protective coating for implant tissue engineering is a crucial issue. Besides, the coating process was desgined for drug infusion and effect opposing chemical and mechanical resistance. In the present review, we discuss the techniques of MOF coatings for medical application in both in vitro and in vivo in various systems such as in situ growth of MOFs, dip coating of MOFs, spin coating of MOFs, Layer-by-layer methods, spray coating of MOFs, gas phase deposition of MOFs, electrochemical deposition of MOFs. The current study investigates the modification in the implant surface to change the properties of the alloy surface by MOF to improve properties such as reduction of the biofilm adhesion, prevention of infection, improvement of drugs and ions rate release, and corrosion resistance. MOF coatings on the surface of alloys can be considered as an opportunity or a restriction. The presence of MOF coatings in the outer layer of alloys would significantly demonstrate the biological, chemical and mechanical effects. Additionally, the impact of MOF properties and specific interactions with the surface of alloys on the anti-microbial resistance, anti-corrosion, and self-healing of MOF coatings are reported. Thus, the importance of multifunctional methods to improve the adhesion of alloy surfaces, microbial and corrosion resistance and prospects are summarized.
Collapse
Affiliation(s)
- Mohammad Mehdi Sabzehmeidani
- Department of Energy, Materials and Energy Research Center, Karaj, Iran.
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran.
| | - Mahmood Kazemzad
- Department of Energy, Materials and Energy Research Center, Karaj, Iran.
| |
Collapse
|
30
|
Roy S, Haloi P, B SL, Chawla S, Badireenath Konkimalla V, Jaiswal A. Biocompatible quaternary pullulan functionalized 2D MoS 2 glycosheet-based non-leaching and infection-resistant coatings for indwelling medical implants. J Mater Chem B 2023; 11:10418-10432. [PMID: 37877327 DOI: 10.1039/d3tb01816d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Medical implants are frequently used in medicine and reconstructive surgery to treat various pathological and anatomical conditions. However, over time, biofilm formation on the surface of these implants can cause recurrent infections and subsequent inflammatory responses in the host, resulting in tissue damage, necrosis, and re-hospitalization. To address these implant-associated infections, the best approach is to create antimicrobial coatings. Here, we report the fabrication of a biocompatible, non-leaching, and contact-based antibacterial coating for implants using quaternary pullulan functionalized MoS2 (MCP) glycosheets. The cationic MCP glycosheets were coated on the surfaces of polydopamine-modified stainless steel and polyvinyl fluoride substrates through a simple process of electrostatic interaction. The developed coating showed excellent antibacterial activity (>99.5%) against E. coli and S. aureus that remained stable over 30 days without leaching out of the substrates and retained its antibacterial activity. MCP-coated implants did not induce any acute or sub-chronic toxicity to mammalian cells, both in vitro and in vivo. Furthermore, MCP coating prevented S. aureus colonization on stainless steel implants in a mouse model of implant-associated infection. The MCP coating developed in this study represents a simple, safe, and effective antibacterial coating for preventing implant-associated infections.
Collapse
Affiliation(s)
- Shounak Roy
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005, India.
| | - Prakash Haloi
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Siva Lokesh B
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Saurabh Chawla
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - V Badireenath Konkimalla
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Amit Jaiswal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005, India.
| |
Collapse
|
31
|
Aiesh BM, Qashou R, Shemmessian G, Swaileh MW, Abutaha SA, Sabateen A, Barqawi AK, AbuTaha A, Zyoud SH. Nosocomial infections in the surgical intensive care unit: an observational retrospective study from a large tertiary hospital in Palestine. BMC Infect Dis 2023; 23:686. [PMID: 37833675 PMCID: PMC10576355 DOI: 10.1186/s12879-023-08677-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Nosocomial infections or hospital-acquired infections are a growing public health threat that increases patient morbidity and mortality. Patients at the highest risk are those in intensive care units. Therefore, our objective was to provide a pattern analysis of nosocomial infections that occurred in an adult surgical intensive care unit (ICU). METHODS This study was a retrospective observational study conducted in a 6-bed surgical intensive care unit (SICU) at An-Najah National University Hospital (NNUH) to detect the incidence of nosocomial infections from January 2020 until December 2021. The study group included 157 patients who received antibiotics during their stay in the SICU. RESULTS The incidence of nosocomial infections, either suspected or confirmed, in the SICU was 26.9% (95 out of 352 admitted patients). Pneumonia (36.8%) followed by skin and soft tissue infections (35.8%) were the most common causes. The most common causative microorganisms were in the following order: Pseudomonas aeruginosa (26.3%), Acinetobacter baumannii (25.3%), extended-spectrum beta lactamase (ESBL)-Escherichia coli (23.2%) and Klebsiella pneumonia (15.8%). The average hospital stay of patients with nosocomial infections in the SICU was 18.5 days. CONCLUSIONS The incidence of nosocomial infections is progressively increasing despite the current infection control measures, which accounts for an increased mortality rate among critically ill patients. The findings of this study may be beneficial in raising awareness to implement new strategies for the surveillance and prevention of hospital-acquired infections in Palestinian hospitals and health care centers.
Collapse
Affiliation(s)
- Banan M Aiesh
- Infection Control Department, An-Najah National University Hospital, Nablus, 44839, Palestine.
| | - Raghad Qashou
- Department of Medicine, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
| | - Genevieve Shemmessian
- Department of Medicine, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
| | - Mamoun W Swaileh
- Department of Internal Medicine, An-Najah National University Hospital, Nablus, 44839, Palestine
| | - Shatha A Abutaha
- Department of Internal Medicine, An-Najah National University Hospital, Nablus, 44839, Palestine
| | - Ali Sabateen
- Infection Control Department, An-Najah National University Hospital, Nablus, 44839, Palestine
| | - Abdel-Karim Barqawi
- Department of Medicine, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine.
- Department of General Surgery, An-Najah National University Hospital, Nablus, 44839, Palestine.
| | - Adham AbuTaha
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
- Department of Pathology, An-Najah National University Hospital, Nablus, 44839, Palestine
| | - Sa'ed H Zyoud
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
- Poison Control and Drug Information Center (PCDIC), College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
- Clinical Research Center, An-Najah National University Hospital, Nablus, 44839, Palestine
| |
Collapse
|
32
|
Kourouklis AP, Kaemmel J, Wu X, Baños M, Chanfon A, de Brot S, Ferrari A, Cesarovic N, Falk V, Mazza E. Transdermal wires for improved integration in vivo. BIOMATERIALS ADVANCES 2023; 153:213568. [PMID: 37591177 DOI: 10.1016/j.bioadv.2023.213568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/19/2023]
Abstract
Alternative engineering approaches have led the design of implants with controlled physical features to minimize adverse effects in biological tissues. Similar efforts have focused on optimizing the design features of percutaneous VAD drivelines with the aim to prevent infection, omitting however a thorough look on the implant-skin interactions that govern local tissue reactions. Here, we utilized an integrated approach for the biophysical modification of transdermal implants and their evaluation by chronic sheep implantation in comparison to the standard of care VAD drivelines. We developed a novel method for the transfer of breath topographical features on thin wires with modular size. We examined the impact of implant's diameter, surface topography, and chemistry on macroscopic, histological, and physical markers of inflammation, fibrosis, and mechanical adhesion. All implants demonstrated infection-free performance. The fibrotic response was enhanced by the increasing diameter of implants but not influenced by their surface properties. The implants of small diameter promoted mild inflammatory responses with improved mechanical adhesion and restricted epidermal downgrowth, in both silicone and polyurethane coated transdermal wires. On the contrary, the VAD drivelines with larger diameter triggered severe inflammatory reactions with frequent epidermal downgrowth. We validated these effects by quantifying the infiltration of macrophages and the level of vascularization in the fibrotic zone, highlighting the critical role of size reduction for the benign integration of transdermal implants with skin. This insight on how the biophysical properties of implants impact local tissue reactions could enable new solutions on the transdermal transmission of power, signal, and mass in a broad range of medical devices.
Collapse
Affiliation(s)
- Andreas P Kourouklis
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, 8092 Zurich, Switzerland
| | - Julius Kaemmel
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353 Berlin, Germany
| | - Xi Wu
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, 8092 Zurich, Switzerland
| | - Miguel Baños
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, 8092 Zurich, Switzerland
| | - Astrid Chanfon
- COMPATH, Institute of Animal Pathology, University of Bern, 3012 Bern, Switzerland
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, 3012 Bern, Switzerland
| | - Aldo Ferrari
- EMPA, Swiss Federal Laboratories for Material Science and Technology, 8600 Dübendorf, Switzerland
| | - Nikola Cesarovic
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353 Berlin, Germany; Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353 Berlin, Germany; Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Edoardo Mazza
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, 8092 Zurich, Switzerland; EMPA, Swiss Federal Laboratories for Material Science and Technology, 8600 Dübendorf, Switzerland.
| |
Collapse
|
33
|
Walker JN, Hanson BM, Hunter T, Simar SR, Duran Ramirez JM, Obernuefemann CLP, Parikh RP, Tenenbaum MM, Margenthaler JA, Hultgren SJ, Myckatyn TM. A prospective randomized clinical trial to assess antibiotic pocket irrigation on tissue expander breast reconstruction. Microbiol Spectr 2023; 11:e0143023. [PMID: 37754546 PMCID: PMC10581127 DOI: 10.1128/spectrum.01430-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/31/2023] [Indexed: 09/28/2023] Open
Abstract
Bacterial infection is the most common complication following staged post-mastectomy breast reconstruction initiated with a tissue expander (TE). To limit bacterial infection, antibiotic irrigation of the surgical site is commonly performed despite little high-quality data to support this practice. We performed a prospective randomized control trial to compare the impact of saline irrigation alone to a triple antibiotic irrigation regimen (1 g cefazolin, 80 mg gentamicin, and 50,000 units of bacitracin in 500 mL of saline) for breast implant surgery. The microbiome in breasts with cancer (n = 16) was compared to those without (n = 16), as all patients (n = 16) had unilateral cancers but bilateral mastectomies (n = 32). Biologic and prosthetic specimens procured both at the time of mastectomy and during TE removal months later were analyzed for longitudinal comparison. Outcomes included clinical infection, bacterial abundance, and relative microbiome composition. No patient in either group suffered a reconstructive failure or developed an infection. Triple antibiotic irrigation administered at the time of immediate TE reconstruction did not reduce bacterial abundance or impact microbial diversity relative to saline irrigation at the time of planned exchange. Implanted prosthetic material adopted the microbial composition of the surrounding host tissue. In cancer-naïve breasts, relative to saline, antibiotic irrigation increased bacterial abundance on periprosthetic capsules (P = 0.03) and acellular dermal matrices (P = 0.04) and altered the microbiota on both. These data show that, relative to saline only, the use of triple antibiotic irrigation in TE breast reconstruction does impact the bacterial abundance and diversity of certain biomaterials from cancer-naïve breasts. IMPORTANCE The lifetime risk of breast cancer is ~13% in women and is treated with a mastectomy in ~50% of cases. The majority are reconstructed, usually starting with a tissue expander to help restore the volume for a subsequent permanent breast implant or the women's own tissues. The biopsychosocial benefits of breast reconstruction, though, can be tempered by a high complication rate of at least 7% but over 30% in some women. Bacterial infection is the most common complication, and can lead to treatment delays, patient physical and emotional distress and escalating health care cost. To limit this risk, plastic surgeons have tried a variety of strategies to limit bacterial infection including irrigating the pocket created after removing the breast implant with antibiotic solutions, but good-quality data are scarce. Herein, we study the value of antibiotics in pocket irrigation using a robust randomized clinical trial design and molecular microbiology approaches.
Collapse
Affiliation(s)
- Jennifer N. Walker
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
- Department of Epidemiology, Human Genetics & Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Blake M. Hanson
- Department of Epidemiology, Human Genetics & Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Sciences Center, Houston, Texas, USA
- Division of Infectious Disease, Department of Pediatrics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Tayler Hunter
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Shelby R. Simar
- Department of Epidemiology, Human Genetics & Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Sciences Center, Houston, Texas, USA
- Division of Infectious Disease, Department of Pediatrics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Jesus M. Duran Ramirez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Chloe L. P. Obernuefemann
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Rajiv P. Parikh
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Marissa M. Tenenbaum
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Julie A. Margenthaler
- Division of Surgical Oncology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Terence M. Myckatyn
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
34
|
Tran NN, Morrisette T, Jorgensen SCJ, Orench-Benvenutti JM, Kebriaei R. Current therapies and challenges for the treatment of Staphylococcus aureus biofilm-related infections. Pharmacotherapy 2023; 43:816-832. [PMID: 37133439 DOI: 10.1002/phar.2806] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 05/04/2023]
Abstract
Staphylococcus aureus is a major cause of nosocomial and community-acquired infections and contributes to significant increase in morbidity and mortality especially when associated with medical devices and in biofilm form. Biofilm structure provides a pathway for the enrichment of resistant and persistent phenotypes of S. aureus leading to relapse and recurrence of infection. Minimal diffusion of antibiotics inside biofilm structure leads to heterogeneity and distinct physiological activity. Additionally, horizontal gene transfer between cells in proximity adds to the challenges associated with eradication of biofilms. This narrative review focuses on biofilm-associated infections caused by S. aureus, the impact of environmental conditions on biofilm formation, interactions inside biofilm communities, and the clinical challenges that they present. Conclusively, potential solutions, novel treatment strategies, combination therapies, and reported alternatives are discussed.
Collapse
Affiliation(s)
- Nikki N Tran
- Department of Pharmacy, The Ohio State University Wexner Medical Center - The James Cancer Hospital and Solove Research Institute, Columbus, Ohio, USA
| | - Taylor Morrisette
- Department of Clinical Pharmacy and Outcomes Sciences, Medical University of South Carolina College of Pharmacy, Charleston, South Carolina, USA
- Department of Pharmacy Services, Medical University of South Carolina Shawn Jenkins Children's Hospital, Charleston, South Carolina, USA
| | - Sarah C J Jorgensen
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - José M Orench-Benvenutti
- P3 Research Laboratory, Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Razieh Kebriaei
- P3 Research Laboratory, Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
35
|
Frisch E, Clavier L, Belhamdi A, Vrana NE, Lavalle P, Frisch B, Heurtault B, Gribova V. Preclinical in vitro evaluation of implantable materials: conventional approaches, new models and future directions. Front Bioeng Biotechnol 2023; 11:1193204. [PMID: 37576997 PMCID: PMC10416115 DOI: 10.3389/fbioe.2023.1193204] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Nowadays, implants and prostheses are widely used to repair damaged tissues or to treat different diseases, but their use is associated with the risk of infection, inflammation and finally rejection. To address these issues, new antimicrobial and anti-inflammatory materials are being developed. Aforementioned materials require their thorough preclinical testing before clinical applications can be envisaged. Although many researchers are currently working on new in vitro tissues for drug screening and tissue replacement, in vitro models for evaluation of new biomaterials are just emerging and are extremely rare. In this context, there is an increased need for advanced in vitro models, which would best recapitulate the in vivo environment, limiting animal experimentation and adapted to the multitude of these materials. Here, we overview currently available preclinical methods and models for biological in vitro evaluation of new biomaterials. We describe several biological tests used in biocompatibility assessment, which is a primordial step in new material's development, and discuss existing challenges in this field. In the second part, the emphasis is made on the development of new 3D models and approaches for preclinical evaluation of biomaterials. The third part focuses on the main parameters to consider to achieve the optimal conditions for evaluating biocompatibility; we also overview differences in regulations across different geographical regions and regulatory systems. Finally, we discuss future directions for the development of innovative biomaterial-related assays: in silico models, dynamic testing models, complex multicellular and multiple organ systems, as well as patient-specific personalized testing approaches.
Collapse
Affiliation(s)
- Emilie Frisch
- Université de Strasbourg, CNRS UMR 7199, 3Bio Team, Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, Strasbourg, France
| | - Lisa Clavier
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR_S 1121 Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | | | | | - Philippe Lavalle
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR_S 1121 Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- SPARTHA Medical, Strasbourg, France
| | - Benoît Frisch
- Université de Strasbourg, CNRS UMR 7199, 3Bio Team, Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, Strasbourg, France
| | - Béatrice Heurtault
- Université de Strasbourg, CNRS UMR 7199, 3Bio Team, Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, Strasbourg, France
| | - Varvara Gribova
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR_S 1121 Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| |
Collapse
|
36
|
Johansen MI, Rahbek SJ, Jensen-Fangel S, Minero GAS, Jensen LK, Larsen OH, Erikstrup LT, Seefeldt AM, Østergaard L, Meyer RL, Jørgensen NP. Fibrinolytic and antibiotic treatment of prosthetic vascular graft infections in a novel rat model. PLoS One 2023; 18:e0287671. [PMID: 37463137 PMCID: PMC10353806 DOI: 10.1371/journal.pone.0287671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVES We developed a rat model of prosthetic vascular graft infection to assess, whether the fibrinolytic tissue plasminogen activator (tPA) could increase the efficacy of antibiotic therapy. MATERIALS AND METHODS Rats were implanted a polyethylene graft in the common carotid artery, pre-inoculated with approx. 6 log10 colony forming units (CFU) of methicillin resistant Staphylococcus aureus. Ten days after surgery, rats were randomized to either: 0.9% NaCl (n = 8), vancomycin (n = 8), vancomycin + tPA (n = 8), vancomycin + rifampicin (n = 18) or vancomycin + rifampicin + tPA (n = 18). Treatment duration was seven days. Approximately 36 hours after the end of treatment, the rats were euthanized, and grafts and organs were harvested for CFU enumeration. RESULTS All animals in the control group had significantly higher CFU at the time of euthanization compared to bacterial load found on the grafts prior to inoculation (6.45 vs. 4.36 mean log10 CFU/mL, p = 0.0011), and both the procedure and infection were well tolerated. Vancomycin and rifampicin treatment were superior to monotherapy with vancomycin, as it lead to a marked decrease in median bacterial load on the grafts (3.50 vs. 6.56 log10 CFU/mL, p = 0.0016). The addition of tPA to vancomycin and rifampicin combination treatment did not show a further decrease in bacterial load (4.078 vs. 3.50 log10 CFU/mL, p = 0.26). The cure rate was 16% in the vancomycin + rifampicin group vs. 37.5% cure rate in the vancomycin + rifampicin + tPA group. Whilst interesting, this trend was not significant at our sample size (p = 0.24). CONCLUSION We developed the first functional model of an arterial prosthetic vascular graft infection in rats. Antibiotic combination therapy with vancomycin and rifampicin was superior to vancomycin monotherapy, and the addition of tPA did not significantly reduce bacterial load, nor significantly increase cure rate.
Collapse
Affiliation(s)
- Mikkel Illemann Johansen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
- Interdiciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Søren Jensen Rahbek
- Research Center for Emergency Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Søren Jensen-Fangel
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
| | | | - Louise Kruse Jensen
- Faculty of Health and Medical Science, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Halfdan Larsen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus N, Denmark
| | | | | | - Lars Østergaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
| | - Rikke Louise Meyer
- Interdiciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- Department of Biology, Aarhus University, Aarhus C, Denmark
| | | |
Collapse
|
37
|
Morse R, Childers C, Nowak E, Rao J, Vlaisavljevich E. Catheter-Based Medical Device Biofilm Ablation Using Histotripsy: A Parameter Study. ULTRASOUND IN MEDICINE & BIOLOGY 2023:S0301-5629(23)00203-X. [PMID: 37394375 DOI: 10.1016/j.ultrasmedbio.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023]
Abstract
OBJECTIVE Biofilm formation in medical catheters is a major source of hospital-acquired infections which can produce increased morbidity and mortality for patients. Histotripsy is a non-invasive, non-thermal focused ultrasound therapy and recently has been found to be effective at removal of biofilm from medical catheters. Previously established histotripsy methods for biofilm removal, however, would require several hours of use to effectively treat a full-length medical catheter. Here, we investigate the potential to increase the speed and efficiency with which biofilms can be ablated from catheters using histotripsy. METHODS Pseudomonas aeruginosa (PA14) biofilms were cultured in in vitro Tygon catheter mimics and treated with histotripsy using a 1 MHz histotripsy transducer and a variety of histotripsy pulsing rates and scanning methods. The improved parameters identified in these studies were then used to explore the bactericidal effect of histotripsy on planktonic PA14 suspended in a catheter mimic. RESULTS Histotripsy can be used to remove biofilm and kill bacteria at substantially increased speeds compared with previously established methods. Near-complete biofilm removal was achieved at treatment speeds up to 1 cm/s, while a 4.241 log reduction in planktonic bacteria was achieved with 2.4 cm/min treatment. CONCLUSION These results represent a 500-fold increase in biofilm removal speeds and a 6.2-fold increase in bacterial killing speeds compared with previously published methods. These findings indicate that histotripsy shows promise for the treatment of catheter-associated biofilms and planktonic bacteria in a clinically relevant time frame.
Collapse
Affiliation(s)
- Ryan Morse
- Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA, USA.
| | | | - Elizabeth Nowak
- Internal Medicine, Division of Infectious Disease, Carilion Medical Center, Roanoke, VA, USA
| | - Jayasimha Rao
- Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA, USA; Internal Medicine, Division of Infectious Disease, Carilion Medical Center, Roanoke, VA, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Roanoke, VA, USA
| |
Collapse
|
38
|
Noach N, Lavy E, Reifen R, Friedman M, Kirmayer D, Zelinger E, Ritter A, Yaniv D, Reifen E. Zinc chloride is effective as an antibiotic in biofilm prevention following septoplasty. Sci Rep 2023; 13:8344. [PMID: 37221180 DOI: 10.1038/s41598-023-35069-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Biofilm-state bacterial infections associated with inserted medical devices constitute a massive health and financial problem worldwide. Although bacteria exhibit significantly lower susceptibility to antibiotics in the biofilm state, the most common treatment approach still relies on antibiotics, exacerbating the phenomenon of antibiotic-resistant bacteria. In this study, we aimed to assess whether ZnCl2 coating of intranasal silicone splints (ISSs) can reduce the biofilm infections associated with the insertion of these devices and prevent the overuse of antibiotics while minimizing waste, pollution and costs. We tested the ability of ZnCl2 to prevent biofilm formation on ISS both in vitro and in vivo by using the microtiter dish biofilm formation assay, crystal violet staining, and electron and confocal microscopy. We found a significant decrease in biofilm formation between the treatment group and the growth control when ZnCl2-coated splints were placed in patients' nasal flora. According to these results, infections associated with ISS insertion may be prevented by using ZnCl2 coating, thereby obviating the overuse and abuse of antibiotics.
Collapse
Affiliation(s)
- Noa Noach
- The Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Eran Lavy
- The Koret School of Veterinary Medicine. The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ram Reifen
- The Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Michael Friedman
- The School of Pharmacy, The Faculty of Medicine, Ein Kerem Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Kirmayer
- The School of Pharmacy, The Faculty of Medicine, Ein Kerem Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Einat Zelinger
- FACSI-Faculty of Agriculture Center for Scientific Imaging. The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Amit Ritter
- Department of Otolaryngology, Head and Neck Surgery, Rabin Medical Center, Petah Tikva, Israel
| | - Dan Yaniv
- Department of Otolaryngology, Head and Neck Surgery, Rabin Medical Center, Petah Tikva, Israel
| | - Ella Reifen
- Department of Otolaryngology, Head and Neck Surgery, Rabin Medical Center, Petah Tikva, Israel
| |
Collapse
|
39
|
Rajaramon S, David H, Sajeevan A, Shanmugam K, Sriramulu H, Dandela R, Solomon AP. Multi-functional approach in the design of smart surfaces to mitigate bacterial infections: a review. Front Cell Infect Microbiol 2023; 13:1139026. [PMID: 37287465 PMCID: PMC10242021 DOI: 10.3389/fcimb.2023.1139026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023] Open
Abstract
Advancements in biomedical devices are ingenious and indispensable in health care to save millions of lives. However, microbial contamination paves the way for biofilm colonisation on medical devices leading to device-associated infections with high morbidity and mortality. The biofilms elude antibiotics facilitating antimicrobial resistance (AMR) and the persistence of infections. This review explores nature-inspired concepts and multi-functional approaches for tuning in next-generation devices with antibacterial surfaces to mitigate resistant bacterial infections. Direct implementation of natural inspirations, like nanostructures on insect wings, shark skin, and lotus leaves, has proved promising in developing antibacterial, antiadhesive, and self-cleaning surfaces, including impressive SLIPS with broad-spectrum antibacterial properties. Effective antimicrobial touch surfaces, photocatalytic coatings on medical devices, and conventional self-polishing coatings are also reviewed to develop multi-functional antibacterial surfaces to mitigate healthcare-associated infections (HAIs).
Collapse
Affiliation(s)
- Shobana Rajaramon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Anusree Sajeevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthi Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Hrithiha Sriramulu
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
40
|
He L, Lv H, Wang Y, Jiang F, Liu Q, Zhang F, Wang H, Shen H, Otto M, Li M. Antibiotic treatment can exacerbate biofilm-associated infection by promoting quorum cheater development. NPJ Biofilms Microbiomes 2023; 9:26. [PMID: 37202425 DOI: 10.1038/s41522-023-00394-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/27/2023] [Indexed: 05/20/2023] Open
Abstract
Quorum cheating, a socio-microbiological process that is based on mutations in cell density-sensing (quorum-sensing) systems, has emerged as an important contributor to biofilm-associated infection in the leading human pathogen Staphylococcus aureus. This is because inactivation of the staphylococcal Agr quorum-sensing system leads to pronounced biofilm formation, increasing resistance to antibiotics and immune defense mechanisms. Since biofilm infections in the clinic usually progress under antibiotic treatment, we here investigated whether such treatment promotes biofilm infection via the promotion of quorum cheating. Quorum cheater development was stimulated by several antibiotics used in the treatment of staphylococcal biofilm infections more strongly in biofilm than in the planktonic mode of growth. Sub-inhibitory concentrations of levofloxacin and vancomycin were investigated for their impact on biofilm-associated (subcutaneous catheter-associated and prosthetic joint-associated infection), where in contrast to a non-biofilm-associated subcutaneous skin infection model, a significant increase of the bacterial load and development of agr mutants was observed. Our results directly demonstrate the development of Agr dysfunctionality in animal biofilm-associated infection models and reveal that inappropriate antibiotic treatment can be counterproductive for such infections as it promotes quorum cheating and the associated development of biofilms.
Collapse
Affiliation(s)
- Lei He
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Huiying Lv
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Yanan Wang
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Feng Jiang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Qian Liu
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Feiyang Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Hua Wang
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Hao Shen
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, MD, 20814, USA.
| | - Min Li
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
- Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
41
|
Copling A, Akantibila M, Kumaresan R, Fleischer G, Cortes D, Tripathi RS, Carabetta VJ, Vega SL. Recent Advances in Antimicrobial Peptide Hydrogels. Int J Mol Sci 2023; 24:7563. [PMID: 37108725 PMCID: PMC10139150 DOI: 10.3390/ijms24087563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Advances in the number and type of available biomaterials have improved medical devices such as catheters, stents, pacemakers, prosthetic joints, and orthopedic devices. The introduction of a foreign material into the body comes with a risk of microbial colonization and subsequent infection. Infections of surgically implanted devices often lead to device failure, which leads to increased patient morbidity and mortality. The overuse and improper use of antimicrobials has led to an alarming rise and spread of drug-resistant infections. To overcome the problem of drug-resistant infections, novel antimicrobial biomaterials are increasingly being researched and developed. Hydrogels are a class of 3D biomaterials consisting of a hydrated polymer network with tunable functionality. As hydrogels are customizable, many different antimicrobial agents, such as inorganic molecules, metals, and antibiotics have been incorporated or tethered to them. Due to the increased prevalence of antibiotic resistance, antimicrobial peptides (AMPs) are being increasingly explored as alternative agents. AMP-tethered hydrogels are being increasingly examined for antimicrobial properties and practical applications, such as wound-healing. Here, we provide a recent update, from the last 5 years of innovations and discoveries made in the development of photopolymerizable, self-assembling, and AMP-releasing hydrogels.
Collapse
Affiliation(s)
- Aryanna Copling
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA;
| | - Maxwell Akantibila
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.A.); (G.F.); (D.C.); (R.S.T.)
| | - Raaha Kumaresan
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA;
| | - Gilbert Fleischer
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.A.); (G.F.); (D.C.); (R.S.T.)
| | - Dennise Cortes
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.A.); (G.F.); (D.C.); (R.S.T.)
| | - Rahul S. Tripathi
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.A.); (G.F.); (D.C.); (R.S.T.)
| | - Valerie J. Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.A.); (G.F.); (D.C.); (R.S.T.)
| | - Sebastián L. Vega
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA;
- Department of Orthopedic Surgery, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| |
Collapse
|
42
|
Zhao A, Sun J, Liu Y. Understanding bacterial biofilms: From definition to treatment strategies. Front Cell Infect Microbiol 2023; 13:1137947. [PMID: 37091673 PMCID: PMC10117668 DOI: 10.3389/fcimb.2023.1137947] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
Bacterial biofilms are complex microbial communities encased in extracellular polymeric substances. Their formation is a multi-step process. Biofilms are a significant problem in treating bacterial infections and are one of the main reasons for the persistence of infections. They can exhibit increased resistance to classical antibiotics and cause disease through device-related and non-device (tissue) -associated infections, posing a severe threat to global health issues. Therefore, early detection and search for new and alternative treatments are essential for treating and suppressing biofilm-associated infections. In this paper, we systematically reviewed the formation of bacterial biofilms, associated infections, detection methods, and potential treatment strategies, aiming to provide researchers with the latest progress in the detection and treatment of bacterial biofilms.
Collapse
Affiliation(s)
- Ailing Zhao
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Jiazheng Sun
- Department of Vasculocardiology, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yipin Liu
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
- *Correspondence: Yipin Liu,
| |
Collapse
|
43
|
Gunn J, Zajac KK, Esser K, Yatsonsky D, Chapman P. A Case of Daptomycin-Induced Rhabdomyolysis: A Life and Limb Threatening Complication. Cureus 2023; 15:e38285. [PMID: 37255884 PMCID: PMC10226280 DOI: 10.7759/cureus.38285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2023] [Indexed: 06/01/2023] Open
Abstract
Surgical site infections (SSIs) contribute to patient morbidity and health expenditure. An increasing elderly population, the expanding use of implants in surgical procedures, drug-resistant microorganisms, and patient-related comorbidities all contribute to SSIs. Daptomycin is an antibiotic known to cause rhabdomyolysis, a life-threatening complication that may lead to acute compartment syndrome (ACS). We present a case of a patient treated with daptomycin for a penile-implant infection complicated by rhabdomyolysis and ACS of his bilateral forearms. He underwent emergent fasciotomies and retained function in his upper extremities long-term. It is vital that physicians closely monitor patients treated with IV-daptomycin therapy and educate patients on alarm symptoms to allow for prompt recognition of life and limb-saving treatments. Orthopedic surgeons should always have a high index of suspicion for ACS and should be aware of the relationship between rhabdomyolysis and ACS.
Collapse
Affiliation(s)
- Jenna Gunn
- Orthopaedic Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, USA
| | - Kelsee K Zajac
- Orthopaedic Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, USA
| | - Katherine Esser
- Orthopaedic Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, USA
| | - David Yatsonsky
- Orthopaedic Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, USA
| | - Paige Chapman
- Orthopaedic Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, USA
| |
Collapse
|
44
|
Arakkal A, Sirajunnisa P, Sailaja GS. Natural rubber latex films with effective growth inhibition against S. aureus via surface conjugated gentamicin. J BIOACT COMPAT POL 2023. [DOI: 10.1177/08839115231153823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Hospital-associated infections and related complications are of extreme concern in the healthcare sector since biofilms generated over material surfaces not only create turbulence in the healthcare practices followed but also ruin the device performance, and increased medication, leading to significant chances of drug resistance. Natural rubber latex (NRL) being the first choice for the manufacture of several conventional biomedical devices, it is essential to ensure the surfaces of the same are inherently inactive against most microorganisms. This study presents NRL film surface conjugated with a well-known antibiotic, gentamicin through an amide linkage to generate antibacterial activity to the surface with a significant growth inhibition rate, especially against Staphylococcus aureus. The NRL films were surface-oxidized under controlled acidic conditions to generate carboxyl groups exploring the unsaturation of the base monomer unit. The carboxyl group reacts with the amine groups of gentamicin facilitating its surface conjugation. The surface anchoring was authenticated by FTIR-ATR complimented further by contact angle measurement as a function of hydrophilicity and elemental analysis by EDX spectroscopy. The antibacterial efficacy of modified NRL films was evaluated using antibacterial drop test and the results indicated a substantial growth inhibition rate (>60%) against Pseudomonas aeruginosa and Staphylococcus aureus. The study could be further optimized and proposed as a viable route for the conjugation of active molecules over inert polymer molecules.
Collapse
Affiliation(s)
- Aswin Arakkal
- Department of Polymer Science & Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Paramban Sirajunnisa
- Department of Polymer Science & Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Gopalakrishnanchettiar Sivakamiammal Sailaja
- Department of Polymer Science & Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala, India
- Inter-University Centre for Nanomaterials and Devices, Cochin University of Science and Technology, Kochi, Kerala, India
| |
Collapse
|
45
|
Prevention of Ventriculostomy Related Infection: Effectiveness of Impregnated Biomaterial. Int J Mol Sci 2023; 24:ijms24054819. [PMID: 36902247 PMCID: PMC10003160 DOI: 10.3390/ijms24054819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
External ventricular drain(EVD) exposes the patient to infectious complications which are associated with significant morbidity and economic burden. Biomaterials impregnated with various antimicrobial agents have been developed to decrease the rate of bacterial colonization and subsequent infection. While promising, antibiotics and silver-impregnated EVD showed conflicting clinical results. The aim of the present review is to discuss the challenges associated with the development of antimicrobial EVD catheters and their effectiveness from the bench to the bedside.
Collapse
|
46
|
Duran Ramirez JM, Gomez J, Hanson BM, Isa T, Myckatyn TM, Walker JN. Staphylococcus aureus Breast Implant Infection Isolates Display Recalcitrance To Antibiotic Pocket Irrigants. Microbiol Spectr 2023; 11:e0288422. [PMID: 36507629 PMCID: PMC9927092 DOI: 10.1128/spectrum.02884-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
Breast implant-associated infections (BIAIs) are the primary complication following placement of breast prostheses in breast cancer reconstruction. Given the prevalence of breast cancer, reconstructive failure due to infection results in significant patient distress and health care expenditures. Thus, effective BIAI prevention strategies are urgently needed. This study tests the efficacy of one infection prevention strategy: the use of a triple antibiotic pocket irrigant (TAPI) against Staphylococcus aureus, the most common cause of BIAIs. TAPI, which consists of 50,000 U bacitracin, 1 g cefazolin, and 80 mg gentamicin diluted in 500 mL of saline, is used to irrigate the breast implant pocket during surgery. We used in vitro and in vivo assays to test the efficacy of each antibiotic in TAPI, as well as TAPI at the concentration used during surgery. We found that planktonically grown S. aureus BIAI isolates displayed susceptibility to gentamicin, cefazolin, and TAPI. However, TAPI treatment enhanced biofilm formation of BIAI strains. Furthermore, we compared TAPI treatment of a S. aureus reference strain (JE2) to a BIAI isolate (117) in a mouse BIAI model. TAPI significantly reduced infection of JE2 at 1 and 7 days postinfection (dpi). In contrast, BIAI strain 117 displayed high bacterial burdens in tissues and implants, which persisted to 14 dpi despite TAPI treatment. Lastly, we demonstrated that TAPI was effective against Pseudomonas aeruginosa reference (PAO1) and BIAI strains in vitro and in vivo. Together, these data suggest that S. aureus BIAI strains employ unique mechanisms to resist antibiotic prophylaxis treatment and promote chronic infection. IMPORTANCE The incidence of breast implant associated infections (BIAIs) following reconstructive surgery postmastectomy remains high, despite the use of prophylactic antibiotic strategies. Thus, surgeons have begun using additional antibiotic-based prevention strategies, including triple antibiotic pocket irrigants (TAPIs). However, these strategies fail to reduce BIAI rates for these patients. To understand why these therapies fail, we assessed the antimicrobial resistance patterns of Staphylococcus aureus strains, the most common cause of BIAI, to the antibiotics in TAPI (bacitracin, cefazolin, and gentamicin). We found that while clinically relevant BIAI isolates were more susceptible to the individual antibiotics compared to a reference strain, TAPI was effective at killing all the strains in vitro. However, in a mouse model, the BIAI isolates displayed recalcitrance to TAPI, which contrasted with the reference strain, which was susceptible. These data suggest that strains causing BIAI may encode specific recalcitrance mechanisms not present within reference strains.
Collapse
Affiliation(s)
- Jesus M. Duran Ramirez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center, Houston, Texas, USA
| | - Jana Gomez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Blake M. Hanson
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center, Houston, Texas, USA
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Taha Isa
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Terence M. Myckatyn
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jennifer N. Walker
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
47
|
Dubern JF, Hook AL, Carabelli AM, Chang CY, Lewis-Lloyd CA, Luckett JC, Burroughs L, Dundas AA, Humes DJ, Irvine DJ, Alexander MR, Williams P. Discovery of a polymer resistant to bacterial biofilm, swarming, and encrustation. SCIENCE ADVANCES 2023; 9:eadd7474. [PMID: 36696507 PMCID: PMC9876547 DOI: 10.1126/sciadv.add7474] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Innovative approaches to prevent catheter-associated urinary tract infections (CAUTIs) are urgently required. Here, we describe the discovery of an acrylate copolymer capable of resisting single- and multispecies bacterial biofilm formation, swarming, encrustation, and host protein deposition, which are major challenges associated with preventing CAUTIs. After screening ~400 acrylate polymers, poly(tert-butyl cyclohexyl acrylate) was selected for its biofilm- and encrustation-resistant properties. When combined with the swarming inhibitory poly(2-hydroxy-3-phenoxypropyl acrylate), the copolymer retained the bioinstructive properties of the respective homopolymers when challenged with Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. Urinary tract catheterization causes the release of host proteins that are exploited by pathogens to colonize catheters. After preconditioning the copolymer with urine collected from patients before and after catheterization, reduced host fibrinogen deposition was observed, and resistance to diverse uropathogens was maintained. These data highlight the potential of the copolymer as a urinary catheter coating for preventing CAUTIs.
Collapse
Affiliation(s)
- Jean-Frédéric Dubern
- National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Andrew L. Hook
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Alessandro M. Carabelli
- National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Chien-Yi Chang
- National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Christopher A. Lewis-Lloyd
- Division of Gastrointestinal Surgery, Nottingham Digestive Diseases Centre NIHR Biomedical Research Unit, University of Nottingham and Nottingham University Hospitals NHS Trust, School of Medicine, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Jeni C. Luckett
- National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Laurence Burroughs
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Adam A. Dundas
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - David J. Humes
- Division of Gastrointestinal Surgery, Nottingham Digestive Diseases Centre NIHR Biomedical Research Unit, University of Nottingham and Nottingham University Hospitals NHS Trust, School of Medicine, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Derek J. Irvine
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Morgan R. Alexander
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Paul Williams
- National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
48
|
Akter A, Lyons O, Mehra V, Isenman H, Abbate V. Radiometal chelators for infection diagnostics. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 2:1058388. [PMID: 37388440 PMCID: PMC7614707 DOI: 10.3389/fnume.2022.1058388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Infection of native tissues or implanted devices is common, but clinical diagnosis is frequently difficult and currently available noninvasive tests perform poorly. Immunocompromised individuals (for example transplant recipients, or those with cancer) are at increased risk. No imaging test in clinical use can specifically identify infection, or accurately differentiate bacterial from fungal infections. Commonly used [18F]fluorodeoxyglucose (18FDG) positron emission computed tomography (PET/CT) is sensitive for infection, but limited by poor specificity because increased glucose uptake may also indicate inflammation or malignancy. Furthermore, this tracer provides no indication of the type of infective agent (bacterial, fungal, or parasitic). Imaging tools that directly and specifically target microbial pathogens are highly desirable to improve noninvasive infection diagnosis and localization. A growing field of research is exploring the utility of radiometals and their chelators (siderophores), which are small molecules that bind radiometals and form a stable complex allowing sequestration by microbes. This radiometal-chelator complex can be directed to a specific microbial target in vivo, facilitating anatomical localization by PET or single photon emission computed tomography. Additionally, bifunctional chelators can further conjugate therapeutic molecules (e.g., peptides, antibiotics, antibodies) while still bound to desired radiometals, combining specific imaging with highly targeted antimicrobial therapy. These novel therapeutics may prove a useful complement to the armamentarium in the global fight against antimicrobial resistance. This review will highlight current state of infection imaging diagnostics and their limitations, strategies to develop infection-specific diagnostics, recent advances in radiometal-based chelators for microbial infection imaging, challenges, and future directions to improve targeted diagnostics and/or therapeutics.
Collapse
Affiliation(s)
- Asma Akter
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, London, United Kingdom
| | - Oliver Lyons
- Vascular Endovascular and Transplant Surgery, Christchurch Public Hospital, Christchurch, New Zealand
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | - Varun Mehra
- Department of Hematology, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Heather Isenman
- Department of Infectious Diseases, General Medicine, Christchurch Hospital, Christchurch, New Zealand
| | - Vincenzo Abbate
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
49
|
Tuon FF, Suss PH, Telles JP, Dantas LR, Borges NH, Ribeiro VST. Antimicrobial Treatment of Staphylococcus aureus Biofilms. Antibiotics (Basel) 2023; 12:87. [PMID: 36671287 PMCID: PMC9854895 DOI: 10.3390/antibiotics12010087] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Staphylococcus aureus is a microorganism frequently associated with implant-related infections, owing to its ability to produce biofilms. These infections are difficult to treat because antimicrobials must cross the biofilm to effectively inhibit bacterial growth. Although some antibiotics can penetrate the biofilm and reduce the bacterial load, it is important to understand that the results of routine sensitivity tests are not always valid for interpreting the activity of different drugs. In this review, a broad discussion on the genes involved in biofilm formation, quorum sensing, and antimicrobial activity in monotherapy and combination therapy is presented that should benefit researchers engaged in optimizing the treatment of infections associated with S. aureus biofilms.
Collapse
Affiliation(s)
- Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Paula Hansen Suss
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Joao Paulo Telles
- AC Camargo Cancer Center, Infectious Diseases Department, São Paulo 01525-001, São Paulo, Brazil
| | - Leticia Ramos Dantas
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Nícolas Henrique Borges
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Victoria Stadler Tasca Ribeiro
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| |
Collapse
|
50
|
Chabib L, Hamzah H, Rahmah W, Sammulia SF, Setyowati E, Nurfitriani A. Tracking of the Antibiofilm Activities of Lakum Leaf Extract ( Causonis trifolia Linn.) Against Staphylococcus aureus. Pak J Biol Sci 2023; 26:91-100. [PMID: 37265040 DOI: 10.3923/pjbs.2023.91.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
<b>Background and Objective:</b> Biofilms as a bacterial defense are relatively more difficult to eradicate with antibiotics, thus pathogenic bacteria in their biofilm form can cause serious problems for human health. Lakum <i>(Causonis trifolia</i> L.) is an herbaceous plant with many biological activities, one of which is an antimicrobial compound containing flavonoids, squalene, nimbidin, saponins, anthocyanins, tannins, myricetin, others. This study aimed to determine the antibiofilm activity of Lakum leaf extract against<i> Staphylococcus aureus </i>bacteria and the active compounds that play a role in inhibiting monomicrobial biofilms. <b>Materials and Methods:</b> This research method was carried out with an <i>in vitro</i> experimental study design using observations of phytochemical screening test results and the effectiveness of Lakum leaf antibiofilm on<i> Staphylococcus aureus</i> through microplate reader readings that measure optical density values. <b>Results:</b> This study showed that Lakum leaves contain alkaloids, flavonoids, phenolics, polyphenols, tannins and saponins. In addition, Lakum leaves gave biofilm inhibitory activity in the middle and maturation phase with the highest concentration in 1% extract of 76.95±0.0007 and 72.85± 0.0003%, respectively. Meanwhile, the lowest concentration was 0.125% extract of 65.65±0.0001% in the middle phase and 59.71±0.0003% in the maturation phase. <b>Conclusion:</b> That Lakum leaves have biofilm inhibitory activity on <i>Staphylococcus aureus</i> with flavonoid compounds, tannins and polyphenols that work as active substances in inhibiting the biofilm formation.
Collapse
|