1
|
Chaudhary R, Rehman M, Agarwal V, Kumar A, Kaushik AS, Srivastava S, Srivastava S, Verma R, Rajinikanth PS, Mishra V. Terra incognita of glial cell dynamics in the etiology of leukodystrophies: Broadening disease and therapeutic perspectives. Life Sci 2024; 354:122953. [PMID: 39122110 DOI: 10.1016/j.lfs.2024.122953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Neuroglial cells, also known as glia, are primarily characterized as auxiliary cells within the central nervous system (CNS). The recent findings have shed light on their significance in numerous physiological processes and their involvement in various neurological disorders. Leukodystrophies encompass an array of rare and hereditary neurodegenerative conditions that were initially characterized by the deficiency, aberration, or degradation of myelin sheath within CNS. The primary cellular populations that experience significant alterations are astrocytes, oligodendrocytes and microglia. These glial cells are either structurally or metabolically impaired due to inherent cellular dysfunction. Alternatively, they may fall victim to the accumulation of harmful by-products resulting from metabolic disturbances. In either situation, the possible replacement of glial cells through the utilization of implanted tissue or stem cell-derived human neural or glial progenitor cells hold great promise as a therapeutic strategy for both the restoration of structural integrity through remyelination and the amelioration of metabolic deficiencies. Various emerging treatment strategies like stem cell therapy, ex-vivo gene therapy, infusion of adeno-associated virus vectors, emerging RNA-based therapies as well as long-term therapies have demonstrated success in pre-clinical studies and show promise for rapid clinical translation. Here, we addressed various leukodystrophies in a comprehensive and detailed manner as well as provide prospective therapeutic interventions that are being considered for clinical trials. Further, we aim to emphasize the crucial role of different glial cells in the pathogenesis of leukodystrophies. By doing so, we hope to advance our understanding of the disease, elucidate underlying mechanisms, and facilitate the development of potential treatment interventions.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Sukriti Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rajkumar Verma
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
2
|
Shimojima Yamamoto K, Itagaki Y, Tanaka K, Okamoto N, Yamamoto T. Xq22 deletion involving TCEAL1 in a female patient with early-onset neurological disease trait. Hum Genome Var 2024; 11:20. [PMID: 38750072 PMCID: PMC11096163 DOI: 10.1038/s41439-024-00278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
A 3.5-Mb microdeletion in Xq22 was identified in a female patient with early-onset neurological disease trait (EONDT). The patient exhibited developmental delay but no hypomyelination despite PLP1 involvement in the deletion. However, the clinical features of the patient were consistent with those of TCEAL1 loss-of-function syndrome. The breakpoint junction was analyzed using long-read sequencing, and blunt-end fusion was confirmed.
Collapse
Affiliation(s)
- Keiko Shimojima Yamamoto
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Yusuke Itagaki
- Department of Pediatrics, Suita Municipal Hospital, Suita, Japan
| | - Kazuki Tanaka
- Department of Pediatrics, Suita Municipal Hospital, Suita, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
3
|
Perrier S, Gauquelin L, Bernard G. Inherited white matter disorders: Hypomyelination (myelin disorders). HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:197-223. [PMID: 39322379 DOI: 10.1016/b978-0-323-99209-1.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Hypomyelinating leukodystrophies are a subset of genetic white matter diseases characterized by insufficient myelin deposition during development. MRI patterns are used to identify hypomyelinating disorders, and genetic testing is used to determine the causal genes implicated in individual disease forms. Clinical course can range from severe, with patients manifesting neurologic symptoms in infancy or early childhood, to mild, with onset in adolescence or adulthood. This chapter discusses the most common hypomyelinating leukodystrophies, including X-linked Pelizaeus-Merzbacher disease and other PLP1-related disorders, autosomal recessive Pelizaeus-Merzbacher-like disease, and POLR3-related leukodystrophy. PLP1-related disorders are caused by hemizygous pathogenic variants in the proteolipid protein 1 (PLP1) gene, and encompass classic Pelizaeus-Merzbacher disease, the severe connatal form, PLP1-null syndrome, spastic paraplegia type 2, and hypomyelination of early myelinating structures. Pelizaeus-Merzbacher-like disease presents a similar clinical picture to Pelizaeus-Merzbacher disease, however, it is caused by biallelic pathogenic variants in the GJC2 gene, which encodes for the gap junction protein Connexin-47. POLR3-related leukodystrophy, or 4H leukodystrophy (hypomyelination, hypodontia, and hypogonadotropic hypogonadism), is caused by biallelic pathogenic variants in genes encoding specific subunits of the transcription enzyme RNA polymerase III. In this chapter, the clinical features, disease pathophysiology and genetics, imaging patterns, as well as supportive and future therapies are discussed for each disorder.
Collapse
Affiliation(s)
- Stefanie Perrier
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Laurence Gauquelin
- Division of Pediatric Neurology, Department of Pediatrics, CHUL et Centre Mère-Enfant Soleil du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Departments of Pediatrics and Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
4
|
Zhang Q, Wang Y, Zhou J, Zhou R, Liu A, Meng L, Ji X, Hu P, Xu Z. 11q13.3q13.4 deletion plus 9q21.13q21.33 duplication in an affected girl arising from a familial four-way balanced chromosomal translocation. Mol Genet Genomic Med 2023; 11:e2248. [PMID: 37475652 PMCID: PMC10568374 DOI: 10.1002/mgg3.2248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND We describe a 13-year-old girl with a 11q13.3q13.4 deletion encompassing the SHANK2 gene and a 9q21.13q21.33 duplication. She presented with pre- and postnatal growth retardation, global developmental delay, severe language delay, cardiac abnormalities, and dysmorphisms. Her maternal family members all had histories of reproductive problems. METHODS Maternal family members with histories of reproductive problems were studied using G-banded karyotyping and optical genome mapping (OGM). Long-range PCR (LR-PCR) and Sanger sequencing were used to confirm the precise break point sequences obtained by OGM. RESULTS G-banded karyotyping characterized the cytogenetic results as 46,XX,der(9)?del(9)(q21q22)t(9;14)(q22;q24),der(11)ins(11;?9)(q13;?q21q22),der(14)t(9;14). Using OGM, we determined that asymptomatic female family members with reproductive problems were carriers of a four-way balanced chromosome translocation. Their karyotype results were further refined as 46,XX,der(9)del(9)(q21.13q21.33)t(9;14)(q21.33;q22.31),der(11)del(11)(q13.3q13.4)ins(11;9)(q13.3;q21.33q21.13),der(14)t(9:14)ins(14;11)(q23.1;q13.4q13.3). Thus, we confirmed that the affected girl inherited the maternally derived chromosome 11. Furthermore, using LR-PCR, we showed that three disease-related genes (TMC1, NTRK2, and KIAA0586) were disrupted by the breakpoints. CONCLUSIONS Our case highlights the importance of timely parental origin testing for patients with rare copy number variations, as well as the accurate characterization of balanced chromosomal rearrangements in families with reproductive problems. In addition, our case demonstrates that OGM is a useful clinical application for analyzing complex structural variations within the human genome.
Collapse
Affiliation(s)
- Qinxin Zhang
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Yan Wang
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Jing Zhou
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Ran Zhou
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - An Liu
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Lulu Meng
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Xiuqing Ji
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Ping Hu
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Zhengfeng Xu
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| |
Collapse
|
5
|
Zhou X, Wang Y, He R, Liu Z, Xu Q, Guo J, Yan X, Li J, Tang B, Zeng S, Sun Q. Microdeletion in distal PLP1 enhancers causes hereditary spastic paraplegia 2. Ann Clin Transl Neurol 2023; 10:1590-1602. [PMID: 37475517 PMCID: PMC10502680 DOI: 10.1002/acn3.51848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023] Open
Abstract
OBJECTIVES Hereditary spastic paraplegia (HSP) is a genetically heterogeneous disease caused by over 70 genes, with a significant number of patients still genetically unsolved. In this study, we recruited a suspected HSP family characterized by spasticity, developmental delay, ataxia and hypomyelination, and intended to reveal its molecular etiology by whole exome sequencing (WES) and long-read sequencing (LRS) analyses. METHODS WES was performed on 13 individuals of the family to identify the causative mutations, including analyses of SNVs (single-nucleotide variants) and CNVs (copy number variants). Accurate circular consensus (CCS) long-read sequencing (LRS) was used to verify the findings of CNV analysis from WES. RESULTS SNVs analysis identified a missense variant c.195G>T (p.E65D) of MORF4L2 at Xq22.2 co-segregating in this family from WES data. Further CNVs analysis revealed a microdeletion, which was adjacent to the MORF4L2 gene, also co-segregating in this family. LRS verified this microdeletion and confirmed the deletion range (chrX: 103,690,507-103,715,018, hg38) with high resolution at nucleotide level accuracy. INTERPRETATIONS In this study, we identified an Xq22.2 microdeletion (about 24.5 kb), which contains distal enhancers of the PLP1 gene, as a likely cause of SPG2 in this family. The lack of distal enhancers may result in transcriptional repression of PLP1 in oligodendrocytes, potentially affecting its role in the maintenance of myelin, and causing SPG2 phenotype. This study has highlighted the importance of noncoding genomic alterations in the genetic etiology of SPG2.
Collapse
Affiliation(s)
- Xun Zhou
- Department of Geriatric Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yige Wang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Runcheng He
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Zhenhua Liu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Qian Xu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Jifeng Guo
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Xinxiang Yan
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jinchen Li
- Department of Geriatric Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
- Center for Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
| | - Beisha Tang
- Department of Geriatric Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Sheng Zeng
- Department of Geriatrics, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Qiying Sun
- Department of Geriatric Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| |
Collapse
|
6
|
Rogac M, Kovanda A, Lovrečić L, Peterlin B. Optical genome mapping in an atypical Pelizaeus-Merzbacher prenatal challenge. Front Genet 2023; 14:1173426. [PMID: 37560384 PMCID: PMC10407396 DOI: 10.3389/fgene.2023.1173426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/14/2023] [Indexed: 08/11/2023] Open
Abstract
Pathogenic genetic variants represent a challenge in prenatal counseling, especially when clinical presentation in familial carriers is atypical. We describe a prenatal case involving a microarray-detected duplication of PLP1 which causes X-linked Pelizaeus-Merzbacher disease, a progressive hypomyelinating leukodystrophy. Because of atypical clinical presentation in an older male child, the duplication was examined using a novel technology, optical genome mapping, and was found to be an inverted duplication, which has not been previously described. Simultaneously, segregation analysis identified another healthy adult male carrier of this unique structural rearrangement. The novel PLP1 structural variant was reclassified, and a healthy boy was delivered. In conclusion, we suggest that examining structural variants with novel methods is warranted especially in cases with atypical clinical presentation and may in these cases lead to improved prenatal and postnatal genetic counseling.
Collapse
Affiliation(s)
- Mihael Rogac
- Clinical Institute of Genomic Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Kovanda
- Clinical Institute of Genomic Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Luca Lovrečić
- Clinical Institute of Genomic Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
7
|
Xu HH, Zhang Y, He ZH, Di XH, Pan FY, Shi WW. Familial 5.29 Mb deletion in chromosome Xq22.1-q22.3 with a normal phenotype: a rare pedigree and literature review. BMC Med Genomics 2023; 16:111. [PMID: 37217926 DOI: 10.1186/s12920-023-01547-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/14/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Xq22.1-q22.3 deletion is a rare chromosome aberration. The purpose of this study was to identify the correlation between the phenotype and genotype of chromosome Xq22.1-q22.3 deletions. METHODS Chromosome aberrations were identified by copy number variation sequencing (CNV-seq) technology and karyotype analysis. Furthermore, we reviewed patients with Xq22.1-q22.3 deletions or a deletion partially overlapping this region to highlight the rare condition and analyse the genotype-phenotype correlations. RESULTS We described a female foetus who is the "proband" of a Chinese pedigree and carries a heterozygous 5.29 Mb deletion (GRCh37: chrX: 100,460,000-105,740,000) in chromosome Xq22.1-q22.3, which may affect 98 genes from DRP2 to NAP1L4P2. This deletion encompasses 7 known morbid genes: TIMM8A, BTK, GLA, HNRNPH2, GPRASP2, PLP1, and SERPINA7. In addition, the parents have a normal phenotype and are of normal intelligence. The paternal genotype is normal. The mother carries the same deletion in the X chromosome. These results indicate that the foetus inherited this CNV from her mother. Moreover, two more healthy female family members were identified to carry the same CNV deletion through pedigree analysis according to the next-generation sequencing (NGS) results. To our knowledge, this family is the first pedigree to have the largest reported deletion of Xq22.1-q22.3 but to have a normal phenotype with normal intelligence. CONCLUSIONS Our findings further improve the understanding of the genotype-phenotype correlations of chromosome Xq22.1-q22.3 deletions.This report may provide novel information for prenatal diagnosis and genetic counselling for patients who carry similar chromosome abnormalities.
Collapse
Affiliation(s)
- Hui-Hui Xu
- Prenatal Diagnosis Center, Taizhou Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Medical Research Center, Taizhou Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Yang Zhang
- Medical Research Center, Taizhou Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhe-Hang He
- Medical Research Center, Taizhou Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xing-Hong Di
- Medical Research Center, Taizhou Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fei-Yan Pan
- Medical Research Center, Taizhou Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei-Wu Shi
- Prenatal Diagnosis Center, Taizhou Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Medical Research Center, Taizhou Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
8
|
Chang KJ, Wu HY, Yarmishyn AA, Li CY, Hsiao YJ, Chi YC, Lo TC, Dai HJ, Yang YC, Liu DH, Hwang DK, Chen SJ, Hsu CC, Kao CL. Genetics behind Cerebral Disease with Ocular Comorbidity: Finding Parallels between the Brain and Eye Molecular Pathology. Int J Mol Sci 2022; 23:9707. [PMID: 36077104 PMCID: PMC9456058 DOI: 10.3390/ijms23179707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cerebral visual impairments (CVIs) is an umbrella term that categorizes miscellaneous visual defects with parallel genetic brain disorders. While the manifestations of CVIs are diverse and ambiguous, molecular diagnostics stand out as a powerful approach for understanding pathomechanisms in CVIs. Nevertheless, the characterization of CVI disease cohorts has been fragmented and lacks integration. By revisiting the genome-wide and phenome-wide association studies (GWAS and PheWAS), we clustered a handful of renowned CVIs into five ontology groups, namely ciliopathies (Joubert syndrome, Bardet-Biedl syndrome, Alstrom syndrome), demyelination diseases (multiple sclerosis, Alexander disease, Pelizaeus-Merzbacher disease), transcriptional deregulation diseases (Mowat-Wilson disease, Pitt-Hopkins disease, Rett syndrome, Cockayne syndrome, X-linked alpha-thalassaemia mental retardation), compromised peroxisome disorders (Zellweger spectrum disorder, Refsum disease), and channelopathies (neuromyelitis optica spectrum disorder), and reviewed several mutation hotspots currently found to be associated with the CVIs. Moreover, we discussed the common manifestations in the brain and the eye, and collated animal study findings to discuss plausible gene editing strategies for future CVI correction.
Collapse
Affiliation(s)
- Kao-Jung Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Yu Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | | | - Cheng-Yi Li
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chun Chi
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzu-Chen Lo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - He-Jhen Dai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chiang Yang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ding-Hao Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - De-Kuang Hwang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chih-Chien Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chung-Lan Kao
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
9
|
Khalaf G, Mattern C, Begou M, Boespflug-Tanguy O, Massaad C, Massaad-Massade L. Mutation of Proteolipid Protein 1 Gene: From Severe Hypomyelinating Leukodystrophy to Inherited Spastic Paraplegia. Biomedicines 2022; 10:1709. [PMID: 35885014 PMCID: PMC9313024 DOI: 10.3390/biomedicines10071709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 01/17/2023] Open
Abstract
Pelizaeus-Merzbacher Disease (PMD) is an inherited leukodystrophy affecting the central nervous system (CNS)-a rare disorder that especially concerns males. Its estimated prevalence is 1.45-1.9 per 100,000 individuals in the general population. Patients affected by PMD exhibit a drastic reduction or absence of myelin sheaths in the white matter areas of the CNS. The Proteolipid Protein 1 (PLP1) gene encodes a transmembrane proteolipid protein. PLP1 is the major protein of myelin, and it plays a key role in the compaction, stabilization, and maintenance of myelin sheaths. Its function is predominant in oligodendrocyte development and axonal survival. Mutations in the PLP1 gene cause the development of a wide continuum spectrum of leukopathies from the most severe form of PMD for whom patients exhibit severe CNS hypomyelination to the relatively mild late-onset type 2 spastic paraplegia, leading to the concept of PLP1-related disorders. The genetic diversity and the biochemical complexity, along with other aspects of PMD, are discussed to reveal the obstacles that hinder the development of treatments. This review aims to provide a clinical and mechanistic overview of this spectrum of rare diseases.
Collapse
Affiliation(s)
- Guy Khalaf
- U1195 Diseases and Hormones of the Nervous System, INSERM and Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France;
| | | | - Mélina Begou
- Neuro-Dol, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France;
| | - Odile Boespflug-Tanguy
- UMR 1141, INSERM, NeuroDiderot Université Paris Cité and APH-P, Neuropédiatrie, French Reference Center for Leukodystrophies, LEUKOFRANCE, Hôpital Robert Debré, 75019 Paris, France;
| | - Charbel Massaad
- UMRS 1124, INSERM, Université Paris Cité, 75006 Paris, France
| | - Liliane Massaad-Massade
- U1195 Diseases and Hormones of the Nervous System, INSERM and Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France;
| |
Collapse
|
10
|
Burssed B, Zamariolli M, Bellucco FT, Melaragno MI. Mechanisms of structural chromosomal rearrangement formation. Mol Cytogenet 2022; 15:23. [PMID: 35701783 PMCID: PMC9199198 DOI: 10.1186/s13039-022-00600-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/31/2022] [Indexed: 12/31/2022] Open
Abstract
Structural chromosomal rearrangements result from different mechanisms of formation, usually related to certain genomic architectural features that may lead to genetic instability. Most of these rearrangements arise from recombination, repair, or replication mechanisms that occur after a double-strand break or the stalling/breakage of a replication fork. Here, we review the mechanisms of formation of structural rearrangements, highlighting their main features and differences. The most important mechanisms of constitutional chromosomal alterations are discussed, including Non-Allelic Homologous Recombination (NAHR), Non-Homologous End-Joining (NHEJ), Fork Stalling and Template Switching (FoSTeS), and Microhomology-Mediated Break-Induced Replication (MMBIR). Their involvement in chromoanagenesis and in the formation of complex chromosomal rearrangements, inverted duplications associated with terminal deletions, and ring chromosomes is also outlined. We reinforce the importance of high-resolution analysis to determine the DNA sequence at, and near, their breakpoints in order to infer the mechanisms of formation of structural rearrangements and to reveal how cells respond to DNA damage and repair broken ends.
Collapse
Affiliation(s)
- Bruna Burssed
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Malú Zamariolli
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Fernanda Teixeira Bellucco
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Maria Isabel Melaragno
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
11
|
Brand BA, Blesson AE, Smith-Hicks CL. The Impact of X-Chromosome Inactivation on Phenotypic Expression of X-Linked Neurodevelopmental Disorders. Brain Sci 2021; 11:brainsci11070904. [PMID: 34356138 PMCID: PMC8305405 DOI: 10.3390/brainsci11070904] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 12/20/2022] Open
Abstract
Nearly 20% of genes located on the X chromosome are associated with neurodevelopmental disorders (NDD) due to their expression and role in brain functioning. Given their location, several of these genes are either subject to or can escape X-chromosome inactivation (XCI). The degree to which genes are subject to XCI can influence the NDD phenotype between males and females. We provide a general review of X-linked NDD genes in the context of XCI and detailed discussion of the sex-based differences related to MECP2 and FMR1, two common X-linked causes of NDD that are subject to XCI. Understanding the effects of XCI on phenotypic expression of NDD genes may guide the development of stratification biomarkers in X-linked disorders.
Collapse
Affiliation(s)
- Boudewien A Brand
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD 21205, USA; (B.A.B.); (A.E.B.)
| | - Alyssa E Blesson
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD 21205, USA; (B.A.B.); (A.E.B.)
| | - Constance L. Smith-Hicks
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Correspondence:
| |
Collapse
|
12
|
Yamamoto-Shimojima K, Osawa M, Saito MK, Yamamoto T. Induced pluripotent stem cells established from a female patient with Xq22 deletion confirm that BEX2 escapes from X-chromosome inactivation. Congenit Anom (Kyoto) 2021; 61:63-67. [PMID: 33244819 DOI: 10.1111/cga.12403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/30/2020] [Accepted: 11/23/2020] [Indexed: 11/27/2022]
Abstract
Large deletions in Xq22 are responsible for neurodevelopmental disorders, including severe intellectual disability and behavioral abnormalities. Although the deletion regions contain PLP1, the gene related to Pelizaeus-Merzbacher disease (PMD), patients with Xq22 deletions show no clinical features of PMD such as paraplegia and white matter abnormalities. This could be due to skewed X-chromosome inactivation (XCI) occurring predominantly in the affected allele. Isogenic pairs of wild type and mutant induced pluripotent stem cells (iPSCs) were established from the patient. In the iPSC line in which the wild type allele was inactivated, PLP1 was not expressed, but biallelic expression of BEX2 was identified. This suggests that BEX2 escaped from XCI and haploinsufficiency of BEX2 may be related to the phenotype of Xq22 deletions.
Collapse
Affiliation(s)
| | - Mitsujiro Osawa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical genetics, Tokyo, Japan
| |
Collapse
|
13
|
Xue H, Yu A, Chen X, Lin N, Lin M, Huang H, Xu L. Prenatal diagnosis of PLP1 duplication by single nucleotide polymorphism array in a family with Pelizaeus-Merzbacher disease. Aging (Albany NY) 2021; 13:1488-1497. [PMID: 33429367 PMCID: PMC7835049 DOI: 10.18632/aging.202477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/10/2020] [Indexed: 11/25/2022]
Abstract
A family with a history of Pelizaeus-Merzbacher disease (PMD) received prenatal diagnosis of PLP1 gene duplication in a fetus using a single nucleotide polymorphism (SNP) array. A 27-year-old pregnant woman was referred for genetic counseling due to her four-year-old son being diagnosed with a suspected classic type of PMD. Amniocentesis was performed at 18 and 3/7 weeks of gestation, and the SNP array was carried out on DNA from the mother, her affected son, and fetus, then further confirmed by multiplex ligation-dependent probe amplification (MLPA). Cytogenetic analysis of the fetus showed 46,XY. SNP array analysis revealed that the male fetus did not carry PLP1 gene duplication but the affected boy did, and the mother was a carrier for the duplication of the PLP1 gene. All SNP array results were further confirmed by MLPA. SNP array and MLPA analyses of peripheral blood verified the nonduplication of the PLP1 gene in the infant after birth. At present, the child (without PLP1 duplication) is developing normally. This study preliminarily suggests that SNP array is a sensitive and accurate technology for identifying PLP1 duplication and is feasible for reliable diagnosis, including for the prenatal diagnosis of PMD resulting from PLP1 duplication.
Collapse
Affiliation(s)
- Huili Xue
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Gulou, Fuzhou 350001, Fujian Province, China
| | - Aili Yu
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Gulou, Fuzhou 350001, Fujian Province, China
| | - Xuemei Chen
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Gulou, Fuzhou 350001, Fujian Province, China
| | - Na Lin
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Gulou, Fuzhou 350001, Fujian Province, China
| | - Min Lin
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Gulou, Fuzhou 350001, Fujian Province, China
| | - Hailong Huang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Gulou, Fuzhou 350001, Fujian Province, China
| | - Liangpu Xu
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Gulou, Fuzhou 350001, Fujian Province, China
| |
Collapse
|
14
|
Hijazi H, Coelho FS, Gonzaga-Jauregui C, Bernardini L, Mar SS, Manning MA, Hanson-Kahn A, Naidu S, Srivastava S, Lee JA, Jones JR, Friez MJ, Alberico T, Torres B, Fang P, Cheung SW, Song X, Davis-Williams A, Jornlin C, Wight PA, Patyal P, Taube J, Poretti A, Inoue K, Zhang F, Pehlivan D, Carvalho CMB, Hobson GM, Lupski JR. Xq22 deletions and correlation with distinct neurological disease traits in females: Further evidence for a contiguous gene syndrome. Hum Mutat 2019; 41:150-168. [PMID: 31448840 DOI: 10.1002/humu.23902] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 01/24/2023]
Abstract
Xq22 deletions that encompass PLP1 (Xq22-PLP1-DEL) are notable for variable expressivity of neurological disease traits in females ranging from a mild late-onset form of spastic paraplegia type 2 (MIM# 312920), sometimes associated with skewed X-inactivation, to an early-onset neurological disease trait (EONDT) of severe developmental delay, intellectual disability, and behavioral abnormalities. Size and gene content of Xq22-PLP1-DEL vary and were proposed as potential molecular etiologies underlying variable expressivity in carrier females where two smallest regions of overlap (SROs) were suggested to influence disease. We ascertained a cohort of eight unrelated patients harboring Xq22-PLP1-DEL and performed high-density array comparative genomic hybridization and breakpoint-junction sequencing. Molecular characterization of Xq22-PLP1-DEL from 17 cases (eight herein and nine published) revealed an overrepresentation of breakpoints that reside within repeats (11/17, ~65%) and the clustering of ~47% of proximal breakpoints in a genomic instability hotspot with characteristic non-B DNA density. These findings implicate a potential role for genomic architecture in stimulating the formation of Xq22-PLP1-DEL. The correlation of Xq22-PLP1-DEL gene content with neurological disease trait in female cases enabled refinement of the associated SROs to a single genomic interval containing six genes. Our data support the hypothesis that genes contiguous to PLP1 contribute to EONDT.
Collapse
Affiliation(s)
- Hadia Hijazi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Fernanda S Coelho
- Programa de Pós-Graduação em Genética Departmento de Biologia Geral, UFMG, Belo Horizonte, Minas Gerais, Brazil.,Instituto René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | | | - Laura Bernardini
- Medical Genetics Division, IRCCS "Casa Sollievo della Sofferenza" Foundation, San Giovanni Rotondo (FG), Italy
| | - Soe S Mar
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Melanie A Manning
- Division of Medical Genetics, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California.,Department of Pathology, Stanford University School of Medicine, Palo Alto, California
| | - Andrea Hanson-Kahn
- Division of Medical Genetics, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California.,Department of Genetics, Stanford University School of Medicine, Palo Alto, California
| | - SakkuBai Naidu
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Maryland
| | | | - Jennifer A Lee
- Molecular Diagnostic Laboratory, Greenwood Genetic Center, Greenwood, South Carolina
| | - Julie R Jones
- Molecular Diagnostic Laboratory, Greenwood Genetic Center, Greenwood, South Carolina
| | - Michael J Friez
- Molecular Diagnostic Laboratory, Greenwood Genetic Center, Greenwood, South Carolina
| | - Thomas Alberico
- Nemours Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Barbara Torres
- Medical Genetics Division, IRCCS "Casa Sollievo della Sofferenza" Foundation, San Giovanni Rotondo (FG), Italy
| | - Ping Fang
- Clinical Genomics, WuXi NextCODE, Cambridge, Massachusetts
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Angelique Davis-Williams
- Nemours Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Carly Jornlin
- Nemours Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Patricia A Wight
- Department of Physiology and Biophysics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Pankaj Patyal
- Department of Physiology and Biophysics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jennifer Taube
- Nemours Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Andrea Poretti
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ken Inoue
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Feng Zhang
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Section of Neurology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Grace M Hobson
- Nemours Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas
| |
Collapse
|
15
|
Li H, Okada H, Suzuki S, Sakai K, Izumi H, Matsushima Y, Ichinohe N, Goto YI, Okada T, Inoue K. Gene suppressing therapy for Pelizaeus-Merzbacher disease using artificial microRNA. JCI Insight 2019; 4:125052. [PMID: 31092737 DOI: 10.1172/jci.insight.125052] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/17/2019] [Indexed: 11/17/2022] Open
Abstract
Copy number increase or decrease of certain dosage-sensitive genes may cause genetic diseases with distinct phenotypes, conceptually termed genomic disorders. The most common cause of Pelizaeus-Merzbacher disease (PMD), an X-linked hypomyelinating leukodystrophy, is genomic duplication encompassing the entire proteolipid protein 1 (PLP1) gene. Although the exact molecular and cellular mechanisms underlying PLP1 duplication, which causes severe hypomyelination in the central nervous system, remain largely elusive, PLP1 overexpression is likely the fundamental cause of this devastating disease. Here, we investigated if adeno-associated virus-mediated (AAV-mediated) gene-specific suppression may serve as a potential cure for PMD by correcting quantitative aberrations in gene products. We developed an oligodendrocyte-specific Plp1 gene suppression therapy using artificial microRNA under the control of human CNP promoter in a self-complementary AAV (scAAV) platform. A single direct brain injection achieved widespread oligodendrocyte-specific Plp1 suppression in the white matter of WT mice. AAV treatment in Plp1-transgenic mice, a PLP1 duplication model, ameliorated cytoplasmic accumulation of Plp1, preserved mature oligodendrocytes from degradation, restored myelin structure and gene expression, and improved survival and neurological phenotypes. Together, our results provide evidence that AAV-mediated gene suppression therapy can serve as a potential cure for PMD resulting from PLP1 duplication and possibly for other genomic disorders.
Collapse
Affiliation(s)
- Heng Li
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hironori Okada
- Department of Molecular and Medical Genetics, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Sadafumi Suzuki
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kazuhisa Sakai
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hitomi Izumi
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yukiko Matsushima
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Noritaka Ichinohe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yu-Ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Okada
- Department of Molecular and Medical Genetics, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Ken Inoue
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
16
|
Inoue K. Pelizaeus-Merzbacher Disease: Molecular and Cellular Pathologies and Associated Phenotypes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:201-216. [PMID: 31760646 DOI: 10.1007/978-981-32-9636-7_13] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pelizaeus-Merzbacher disease (PMD) represents a group of disorders known as hypomyelinating leukodystrophies, which are characterized by abnormal development and maintenance of myelin in the central nervous system. PMD is caused by different types of mutations in the proteolipid protein 1 (PLP1) gene, which encodes a major myelin membrane lipoprotein. These mutations in the PLP1 gene result in distinct cellular and molecular pathologies and a spectrum of clinical phenotypes. In this chapter, I discuss the historical aspects and current understanding of the mechanisms underlying how different PLP1 mutations disrupt the normal process of myelination and result in PMD and other disorders.
Collapse
Affiliation(s)
- Ken Inoue
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
| |
Collapse
|
17
|
Song X, Beck CR, Du R, Campbell IM, Coban-Akdemir Z, Gu S, Breman AM, Stankiewicz P, Ira G, Shaw CA, Lupski JR. Predicting human genes susceptible to genomic instability associated with Alu/ Alu-mediated rearrangements. Genome Res 2018; 28:1228-1242. [PMID: 29907612 PMCID: PMC6071635 DOI: 10.1101/gr.229401.117] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 06/06/2018] [Indexed: 12/14/2022]
Abstract
Alu elements, the short interspersed element numbering more than 1 million copies per human genome, can mediate the formation of copy number variants (CNVs) between substrate pairs. These Alu/Alu-mediated rearrangements (AAMRs) can result in pathogenic variants that cause diseases. To investigate the impact of AAMR on gene variation and human health, we first characterized Alus that are involved in mediating CNVs (CNV-Alus) and observed that these Alus tend to be evolutionarily younger. We then computationally generated, with the assistance of a supercomputer, a test data set consisting of 78 million Alu pairs and predicted ∼18% of them are potentially susceptible to AAMR. We further determined the relative risk of AAMR in 12,074 OMIM genes using the count of predicted CNV-Alu pairs and experimentally validated the predictions with 89 samples selected by correlating predicted hotspots with a database of CNVs identified by clinical chromosomal microarrays (CMAs) on the genomes of approximately 54,000 subjects. We fine-mapped 47 duplications, 40 deletions, and two complex rearrangements and examined a total of 52 breakpoint junctions of simple CNVs. Overall, 94% of the candidate breakpoints were at least partially Alu mediated. We successfully predicted all (100%) of Alu pairs that mediated deletions (n = 21) and achieved an 87% positive predictive value overall when including AAMR-generated deletions and duplications. We provided a tool, AluAluCNVpredictor, for assessing AAMR hotspots and their role in human disease. These results demonstrate the utility of our predictive model and provide insights into the genomic features and molecular mechanisms underlying AAMR.
Collapse
Affiliation(s)
- Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Christine R Beck
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Renqian Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ian M Campbell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shen Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Amy M Breman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics, Houston, Texas 77021, USA
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics, Houston, Texas 77021, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics, Houston, Texas 77021, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Texas Children's Hospital, Houston, Texas 77030, USA
| |
Collapse
|
18
|
Abstract
Pelizaeus-Merzbacher disease (PMD) is an X-linked disorder caused by mutations in the PLP1 gene, which encodes the proteolipid protein of myelinating oligodendroglia. PMD exhibits phenotypic variability that reflects its considerable genotypic heterogeneity, but all forms of the disease result in central hypomyelination associated with early neurologic dysfunction, progressive deterioration, and ultimately death. PMD has been classified into three major subtypes, according to the age of presentation: connatal PMD, classic PMD, and transitional PMD, combining features of both connatal and classic forms. Two other less severe phenotypes were subsequently described, including the spastic paraplegia syndrome and PLP1-null disease. These disorders may be associated with duplications, as well as with point, missense, and null mutations within the PLP1 gene. A number of clinically similar Pelizaeus-Merzbacher-like disorders (PMLD) are considered in the differential diagnosis of PMD, the most prominent of which is PMLD-1, caused by misexpression of the GJC2 gene encoding connexin-47. No effective therapy for PMD exists. Yet, as a relatively pure central nervous system hypomyelinating disorder, with limited involvement of the peripheral nervous system and little attendant neuronal pathology, PMD is an attractive therapeutic target for neural stem cell and glial progenitor cell transplantation, efforts at which are now underway in a number of centers internationally.
Collapse
Affiliation(s)
- M Joana Osório
- Center for Translational Neuromedicine and Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States; Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Steven A Goldman
- Center for Translational Neuromedicine and Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States; Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark.
| |
Collapse
|
19
|
Wight PA. Effects of Intron 1 Sequences on Human PLP1 Expression: Implications for PLP1-Related Disorders. ASN Neuro 2017; 9:1759091417720583. [PMID: 28735559 PMCID: PMC5528184 DOI: 10.1177/1759091417720583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Alterations in the myelin proteolipid protein gene ( PLP1) may result in rare X-linked disorders in humans such as Pelizaeus-Merzbacher disease and spastic paraplegia type 2. PLP1 expression must be tightly regulated since null mutations, as well as elevated PLP1 copy number, both lead to disease. Previous studies with Plp1-lacZ transgenic mice have demonstrated that mouse Plp1 ( mPlp1) intron 1 DNA (which accounts for slightly more than half of the gene) is required for the mPlp1 promoter to drive significant levels of reporter gene expression in brain. However not much is known about the mechanisms that control expression of the human PLP1 gene ( hPLP1). Therefore this review will focus on sequences in hPLP1 intron 1 DNA deemed important for hPLP1 gene activity as well as a couple of "human-specific" supplementary exons within the first intron which are utilized to generate novel splice variants, and the potential role that these sequences may play in PLP1-linked disorders.
Collapse
Affiliation(s)
- Patricia A Wight
- 1 Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
20
|
Shirai K, Higashi Y, Shimojima K, Yamamoto T. An Xq22.1q22.2 nullisomy in a male patient with severe neurological impairment. Am J Med Genet A 2017; 173:1124-1127. [PMID: 28328133 DOI: 10.1002/ajmg.a.38134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/03/2016] [Accepted: 12/24/2016] [Indexed: 12/19/2022]
Abstract
The proteolipid protein 1 gene (PLP1) is located on chromosome Xq22.2 and is related to X-linked recessive leukoencephalopathy (Pelizaeus-Merzbacher disease: PMD). Compared to PLP1 duplications, which are a major contributor to PMD, chromosomal deletions in this region are rare and only a few PMD patients with small deletions have been reported, suggesting that large deletions of this region would cause embryonic lethality. Previously, we have reported female patients, with chromosomal deletions in this region, who showed severe developmental delays and behavioral abnormalities. In this study, we identified the first case of a male patient associated with an Xq22 nullisomy in a region proximal to PLP1. The patient showed severe neurological impairment and was bedridden. Brain magnetic resonance imaging revealed a severely reduced cerebral volume. The chromosomal region proximal to PLP1 was considered to be significantly important for brain development.
Collapse
Affiliation(s)
- Kentaro Shirai
- Department of Pediatrics, Tsuchiura Kyodo Hospital, Tsuchiura, Ibaraki, Japan
| | - Yuya Higashi
- Department of Neonatology, Tsuchiura Kyodo Hospital, Tsuchiura, Ibaraki, Japan
| | - Keiko Shimojima
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan.,Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan.,Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
| |
Collapse
|
21
|
Nevin ZS, Factor DC, Karl RT, Douvaras P, Laukka J, Windrem MS, Goldman SA, Fossati V, Hobson GM, Tesar PJ. Modeling the Mutational and Phenotypic Landscapes of Pelizaeus-Merzbacher Disease with Human iPSC-Derived Oligodendrocytes. Am J Hum Genet 2017; 100:617-634. [PMID: 28366443 DOI: 10.1016/j.ajhg.2017.03.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/09/2017] [Indexed: 02/07/2023] Open
Abstract
Pelizaeus-Merzbacher disease (PMD) is a pediatric disease of myelin in the central nervous system and manifests with a wide spectrum of clinical severities. Although PMD is a rare monogenic disease, hundreds of mutations in the X-linked myelin gene proteolipid protein 1 (PLP1) have been identified in humans. Attempts to identify a common pathogenic process underlying PMD have been complicated by an incomplete understanding of PLP1 dysfunction and limited access to primary human oligodendrocytes. To address this, we generated panels of human induced pluripotent stem cells (hiPSCs) and hiPSC-derived oligodendrocytes from 12 individuals with mutations spanning the genetic and clinical diversity of PMD-including point mutations and duplication, triplication, and deletion of PLP1-and developed an in vitro platform for molecular and cellular characterization of all 12 mutations simultaneously. We identified individual and shared defects in PLP1 mRNA expression and splicing, oligodendrocyte progenitor development, and oligodendrocyte morphology and capacity for myelination. These observations enabled classification of PMD subgroups by cell-intrinsic phenotypes and identified a subset of mutations for targeted testing of small-molecule modulators of the endoplasmic reticulum stress response, which improved both morphologic and myelination defects. Collectively, these data provide insights into the pathogeneses of a variety of PLP1 mutations and suggest that disparate etiologies of PMD could require specific treatment approaches for subsets of individuals. More broadly, this study demonstrates the versatility of a hiPSC-based panel spanning the mutational heterogeneity within a single disease and establishes a widely applicable platform for genotype-phenotype correlation and drug screening in any human myelin disorder.
Collapse
Affiliation(s)
- Zachary S Nevin
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Daniel C Factor
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Robert T Karl
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Jeremy Laukka
- Departments of Neurology and Neuroscience, College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA
| | - Martha S Windrem
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Neuroscience, Faculty of Medicine and Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Valentina Fossati
- New York Stem Cell Foundation Research Institute, New York, NY 10032, USA
| | - Grace M Hobson
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Department of Pediatrics, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
22
|
Alternative outcomes of pathogenic complex somatic structural variations in the genomes of NF1 and NF2 patients. Neurogenetics 2017; 18:169-174. [PMID: 28285357 DOI: 10.1007/s10048-017-0512-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 10/20/2022]
Abstract
Multiplex ligation-dependent probe amplification (MLPA) has been widely used to identify copy-number variations (CNVs), but MLPA's sensitivity and specificity in mosaic CNV detection are largely unknown. Here, we present two mosaic deletions identified by MLPA as NF1 deletion of exons 17-21 and NF2 deletion of exons 9-10. Through cDNA analysis, genomic breakpoint-spanning PCR and Sanger sequencing, we found however both NF1 and NF2 deletions are each composed of two consecutive deletions, which cannot be differentiated by MLPA. Importantly, these consecutive deletions are most likely originating from a single genomic rearrangement and have been preserved independently in different populations of cells.
Collapse
|
23
|
Inoue K. Cellular Pathology of Pelizaeus-Merzbacher Disease Involving Chaperones Associated with Endoplasmic Reticulum Stress. Front Mol Biosci 2017; 4:7. [PMID: 28286750 PMCID: PMC5323380 DOI: 10.3389/fmolb.2017.00007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/09/2017] [Indexed: 11/23/2022] Open
Abstract
Disease-causing mutations in genes encoding membrane proteins may lead to the production of aberrant polypeptides that accumulate in the endoplasmic reticulum (ER). These mutant proteins have detrimental conformational changes or misfolding events, which result in the triggering of the unfolded protein response (UPR). UPR is a cellular pathway that reduces ER stress by generally inhibiting translation, increasing ER chaperones levels, or inducing cell apoptosis in severe ER stress. This process has been implicated in the cellular pathology of many neurological disorders, including Pelizaeus-Merzbacher disease (PMD). PMD is a rare pediatric disorder characterized by the failure in the myelination process of the central nervous system (CNS). PMD is caused by mutations in the PLP1 gene, which encodes a major myelin membrane protein. Severe clinical PMD phenotypes appear to be the result of cell toxicity, due to the accumulation of PLP1 mutant proteins and not due to the lack of functional PLP1. Therefore, it is important to clarify the pathological mechanisms by which the PLP1 mutants negatively impact the myelin-generating cells, called oligodendrocytes, to overcome this devastating disease. This review discusses how PLP1 mutant proteins change protein homeostasis in the ER of oligodendrocytes, especially focusing on the reaction of ER chaperones against the accumulation of PLP1 mutant proteins that cause PMD.
Collapse
Affiliation(s)
- Ken Inoue
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry Kodaira, Japan
| |
Collapse
|
24
|
Familial Case of Pelizaeus-Merzbacher Disorder Detected by Oligoarray Comparative Genomic Hybridization: Genotype-to-Phenotype Diagnosis. Case Rep Genet 2017; 2017:2706098. [PMID: 28133555 PMCID: PMC5241495 DOI: 10.1155/2017/2706098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/13/2016] [Indexed: 11/25/2022] Open
Abstract
Introduction. Pelizaeus-Merzbacher disease (PMD) is an X-linked recessive hypomyelinating leukodystrophy characterized by nystagmus, spastic quadriplegia, ataxia, and developmental delay. It is caused by mutation in the PLP1 gene. Case Description. We report a 9-year-old boy referred for oligoarray comparative genomic hybridization (OA-CGH) because of intellectual delay, seizures, microcephaly, nystagmus, and spastic paraplegia. Similar clinical findings were reported in his older brother and maternal uncle. Both parents had normal phenotypes. OA-CGH was performed and a 436 Kb duplication was detected and the diagnosis of PMD was made. The mother was carrier of this 436 Kb duplication. Conclusion. Clinical presentation has been accepted as being the mainstay of diagnosis for most conditions. However, recent developments in genetic diagnosis have shown that, in many congenital and sporadic disorders lacking specific phenotypic manifestations, a genotype-to-phenotype approach can be conclusive. In this case, a diagnosis was reached by universal genomic testing, namely, whole genomic array.
Collapse
|
25
|
Gu S, Szafranski P, Akdemir ZC, Yuan B, Cooper ML, Magriñá MA, Bacino CA, Lalani SR, Breman AM, Smith JL, Patel A, Song RH, Bi W, Cheung SW, Carvalho CMB, Stankiewicz P, Lupski JR. Mechanisms for Complex Chromosomal Insertions. PLoS Genet 2016; 12:e1006446. [PMID: 27880765 PMCID: PMC5120786 DOI: 10.1371/journal.pgen.1006446] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/24/2016] [Indexed: 12/21/2022] Open
Abstract
Chromosomal insertions are genomic rearrangements with a chromosome segment inserted into a non-homologous chromosome or a non-adjacent locus on the same chromosome or the other homologue, constituting ~2% of nonrecurrent copy-number gains. Little is known about the molecular mechanisms of their formation. We identified 16 individuals with complex insertions among 56,000 individuals tested at Baylor Genetics using clinical array comparative genomic hybridization (aCGH) and fluorescence in situ hybridization (FISH). Custom high-density aCGH was performed on 10 individuals with available DNA, and breakpoint junctions were fine-mapped at nucleotide resolution by long-range PCR and DNA sequencing in 6 individuals to glean insights into potential mechanisms of formation. We observed microhomologies and templated insertions at the breakpoint junctions, resembling the breakpoint junction signatures found in complex genomic rearrangements generated by replication-based mechanism(s) with iterative template switches. In addition, we analyzed 5 families with apparently balanced insertion in one parent detected by FISH analysis and found that 3 parents had additional small copy-number variants (CNVs) at one or both sides of the inserting fragments as well as at the inserted sites. We propose that replicative repair can result in interchromosomal complex insertions generated through chromothripsis-like chromoanasynthesis involving two or three chromosomes, and cause a significant fraction of apparently balanced insertions harboring small flanking CNVs. By traditional cytogenetic techniques, the incidence of microscopically visible chromosomal insertions was estimated to be 1 in 80,000 live births. More recently, by aCGH in conjunction with FISH confirmation of the aCGH findings, insertion events were demonstrated to occur much more frequently (1 in ~500 individuals tested). Although frequently detected, little is known about the molecular mechanisms of their formation. In this study, we identified 16 individuals with complex chromosomal insertions among 56,000 individuals tested at Baylor Genetics using clinical microarray analysis (CMA) and FISH. Custom high-density aCGH was performed on 10 individuals with available DNA, and breakpoint junctions were fine-mapped at nucleotide resolution by long-range PCR and DNA sequencing in 6 individuals to glean insights into potential mechanisms of formation. In addition, we analyzed 5 families with apparently balanced insertion in one parent detected by FISH analysis and found that 3 parents had additional small copy-number variants (CNVs) at one or both sides of the inserting fragments as well as at the inserted sites. We propose that replicative repair can result in interchromosomal complex insertions generated through chromothripsis-like chromoanasynthesis involving two or three chromosomes, and cause a significant fraction of apparently balanced insertions harboring small flanking CNVs.
Collapse
Affiliation(s)
- Shen Gu
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Przemyslaw Szafranski
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Zeynep Coban Akdemir
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Bo Yuan
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mitchell L. Cooper
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria A. Magriñá
- Medical Specialties Unit From City Hall São José dos Campos, São Paulo, Brazil
| | - Carlos A. Bacino
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Seema R. Lalani
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Amy M. Breman
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Janice L. Smith
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ankita Patel
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rodger H. Song
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Weimin Bi
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sau Wai Cheung
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Claudia M. B. Carvalho
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Paweł Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (JRL); (PS)
| | - James R. Lupski
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
- * E-mail: (JRL); (PS)
| |
Collapse
|
26
|
Cardoso AR, Oliveira M, Amorim A, Azevedo L. Major influence of repetitive elements on disease-associated copy number variants (CNVs). Hum Genomics 2016; 10:30. [PMID: 27663310 PMCID: PMC5035501 DOI: 10.1186/s40246-016-0088-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/16/2016] [Indexed: 01/13/2023] Open
Abstract
Copy number variants (CNVs) are important contributors to the human pathogenic genetic diversity as demonstrated by a number of cases reported in the literature. The high homology between repetitive elements may guide genomic stability which will give rise to CNVs either by non-allelic homologous recombination (NAHR) or non-homologous end joining (NHEJ). Here, we present a short guide based on previously documented cases of disease-associated CNVs in order to provide a general view on the impact of repeated elements on the stability of the genomic sequence and consequently in the origin of the human pathogenic variome.
Collapse
Affiliation(s)
- Ana R Cardoso
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Manuela Oliveira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Antonio Amorim
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Luisa Azevedo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal. .,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal. .,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal.
| |
Collapse
|
27
|
Labonne JDJ, Graves TD, Shen Y, Jones JR, Kong IK, Layman LC, Kim HG. A microdeletion at Xq22.2 implicates a glycine receptor GLRA4 involved in intellectual disability, behavioral problems and craniofacial anomalies. BMC Neurol 2016; 16:132. [PMID: 27506666 PMCID: PMC4979147 DOI: 10.1186/s12883-016-0642-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/20/2016] [Indexed: 12/03/2022] Open
Abstract
Background Among the 21 annotated genes at Xq22.2, PLP1 is the only known gene involved in Xq22.2 microdeletion and microduplication syndromes with intellectual disability. Using an atypical microdeletion, which does not encompass PLP1, we implicate a novel gene GLRA4 involved in intellectual disability, behavioral problems and craniofacial anomalies. Case presentation We report a female patient (DGDP084) with a de novo Xq22.2 microdeletion of at least 110 kb presenting with intellectual disability, motor delay, behavioral problems and craniofacial anomalies. While her phenotypic features such as cognitive impairment and motor delay show overlap with Pelizaeus-Merzbacher disease (PMD) caused by PLP1 mutations at Xq22.2, this gene is not included in our patient’s microdeletion and is not dysregulated by a position effect. Because the microdeletion encompasses only three genes, GLRA4, MORF4L2 and TCEAL1, we investigated their expression levels in various tissues by RT-qPCR and found that all three genes were highly expressed in whole human brain, fetal brain, cerebellum and hippocampus. When we examined the transcript levels of GLRA4, MORF4L2 as well as TCEAL1 in DGDP084′s family, however, only GLRA4 transcripts were reduced in the female patient compared to her healthy mother. This suggests that GLRA4 is the plausible candidate gene for cognitive impairment, behavioral problems and craniofacial anomalies observed in DGDP084. Importantly, glycine receptors mediate inhibitory synaptic transmission in the brain stem as well as the spinal cord, and are known to be involved in syndromic intellectual disability. Conclusion We hypothesize that GLRA4 is involved in intellectual disability, behavioral problems and craniofacial anomalies as the second gene identified for X-linked syndromic intellectual disability at Xq22.2. Additional point mutations or intragenic deletions of GLRA4 as well as functional studies are needed to further validate our hypothesis. Electronic supplementary material The online version of this article (doi:10.1186/s12883-016-0642-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonathan D J Labonne
- Department of Obstetrics & Gynecology, Section of Reproductive Endocrinology, Infertility & Genetics, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Tyler D Graves
- Department of Obstetrics & Gynecology, Section of Reproductive Endocrinology, Infertility & Genetics, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yiping Shen
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Gyeongsangnam-do, South Korea
| | - Lawrence C Layman
- Department of Obstetrics & Gynecology, Section of Reproductive Endocrinology, Infertility & Genetics, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.,Neuroscience Program, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Hyung-Goo Kim
- Department of Obstetrics & Gynecology, Section of Reproductive Endocrinology, Infertility & Genetics, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA. .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
28
|
Carvalho CMB, Lupski JR. Mechanisms underlying structural variant formation in genomic disorders. Nat Rev Genet 2016; 17:224-38. [PMID: 26924765 DOI: 10.1038/nrg.2015.25] [Citation(s) in RCA: 486] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the recent burst of technological developments in genomics, and the clinical implementation of genome-wide assays, our understanding of the molecular basis of genomic disorders, specifically the contribution of structural variation to disease burden, is evolving quickly. Ongoing studies have revealed a ubiquitous role for genome architecture in the formation of structural variants at a given locus, both in DNA recombination-based processes and in replication-based processes. These reports showcase the influence of repeat sequences on genomic stability and structural variant complexity and also highlight the tremendous plasticity and dynamic nature of our genome in evolution, health and disease susceptibility.
Collapse
Affiliation(s)
- Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Centro de Pesquisas René Rachou - FIOCRUZ, Belo Horizonte, MG 30190-002, Brazil
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Texas Children's Hospital, Houston, Texas 77030, USA
| |
Collapse
|
29
|
Masliah-Planchon J, Dupont C, Vartzelis G, Trimouille A, Eymard-Pierre E, Gay-Bellile M, Renaldo F, Dorboz I, Pagan C, Quentin S, Elmaleh M, Kotsogianni C, Konstantelou E, Drunat S, Tabet AC, Boespflug-Tanguy O. Insertion of an extra copy of Xq22.2 into 1p36 results in functional duplication of the PLP1 gene in a girl with classical Pelizaeus-Merzbacher disease. BMC MEDICAL GENETICS 2015; 16:77. [PMID: 26329556 PMCID: PMC4557901 DOI: 10.1186/s12881-015-0226-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/25/2015] [Indexed: 08/30/2023]
Abstract
Background Pelizaeus-Merzbacher disease (PMD) is an X-linked dysmyelinating disorder characterized by nystagmus, hypotonia, ataxia, progressive spasticity, and cognitive decline. PMD classically results from a duplication of a genomic segment encompassing the entire PLP1 gene. Since the PLP1 gene is located in Xq22, PMD affects mostly boys. Methods and results Here we report the case of a girl with typical PMD. Copy number analysis of the PLP1 locus revealed a duplication of the entire gene and FISH analysis showed that the extra copy of the PLP1 gene was actually inserted in chromosome 1p36. This insertion of an additional copy of PLP1 in an autosome led to a functional duplication irrespective of the X-inactivation pattern. Subsequent overexpression of PLP1 was the cause of the PMD phenotype observed in this girl. Further sequencing of the breakpoint junction revealed a microhomology and thus suggested a replication based mechanism (such as FoSTeS or MMBIR). Conclusion This case emphasizes the susceptibility of the PLP1 locus to complex rearrangement likely driven by the Xq22 local genomic architecture. In addition, careful consideration should be given to girls with classical PMD clinical features since they usually experience complex PLP1 genomic alteration with a distinct risk of inheritance.
Collapse
Affiliation(s)
- Julien Masliah-Planchon
- UF de Génétique moléculaire, Hôpital Robert Debré, AP-HP, Paris, France. .,Inserm U1141, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France. .,New adresse: Unité de Génétique Somatique, Institut Curie, Paris, France.
| | - Céline Dupont
- UF de Cytogénétique, Hôpital Robert Debré, AP-HP, Paris, France.
| | - George Vartzelis
- Paediatric Neurology, P&A Kyriakou Paed. Hospital, Athens Medical School, Athens, Greece.
| | - Aurélien Trimouille
- UF de Génétique moléculaire, Hôpital Robert Debré, AP-HP, Paris, France. .,Inserm U1141, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France.
| | - Eléonore Eymard-Pierre
- Cytogénétique Médicale, Univ Clermont1, UFR Médecine, CHU Estaing, Clermont-Ferrand, France. .,ERTICa, EA 4677, Univ Clermont1, UFR Médecine, Clermont-Ferrand, France.
| | - Mathilde Gay-Bellile
- Cytogénétique Médicale, Univ Clermont1, UFR Médecine, CHU Estaing, Clermont-Ferrand, France. .,ERTICa, EA 4677, Univ Clermont1, UFR Médecine, Clermont-Ferrand, France.
| | - Florence Renaldo
- Inserm U1141, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France. .,Neurologie et maladie métabolique, Hôpital Robert Debré, AP-HP, Paris, France.
| | - Imen Dorboz
- Inserm U1141, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France.
| | - Cécile Pagan
- UF de Génétique moléculaire, Hôpital Robert Debré, AP-HP, Paris, France.
| | | | - Monique Elmaleh
- Imagerie pédiatrique, Hôpital Robert Debré, AP-HP, Paris, France.
| | - Christina Kotsogianni
- Paediatric Neurology, P&A Kyriakou Paed. Hospital, Athens Medical School, Athens, Greece.
| | - Elissavet Konstantelou
- Paediatric Neurology, P&A Kyriakou Paed. Hospital, Athens Medical School, Athens, Greece.
| | - Séverine Drunat
- UF de Génétique moléculaire, Hôpital Robert Debré, AP-HP, Paris, France. .,Inserm U1141, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France.
| | | | - Odile Boespflug-Tanguy
- Inserm U1141, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France. .,Neurologie et maladie métabolique, Hôpital Robert Debré, AP-HP, Paris, France.
| |
Collapse
|
30
|
Hsiao MC, Piotrowski A, Callens T, Fu C, Wimmer K, Claes KBM, Messiaen L. Decoding NF1 Intragenic Copy-Number Variations. Am J Hum Genet 2015; 97:238-49. [PMID: 26189818 DOI: 10.1016/j.ajhg.2015.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/05/2015] [Indexed: 11/30/2022] Open
Abstract
Genomic rearrangements can cause both Mendelian and complex disorders. Currently, several major mechanisms causing genomic rearrangements, such as non-allelic homologous recombination (NAHR), non-homologous end joining (NHEJ), fork stalling and template switching (FoSTeS), and microhomology-mediated break-induced replication (MMBIR), have been proposed. However, to what extent these mechanisms contribute to gene-specific pathogenic copy-number variations (CNVs) remains understudied. Furthermore, few studies have resolved these pathogenic alterations at the nucleotide-level. Accordingly, our aim was to explore which mechanisms contribute to a large, unique set of locus-specific non-recurrent genomic rearrangements causing the genetic neurocutaneous disorder neurofibromatosis type 1 (NF1). Through breakpoint-spanning PCR as well as array comparative genomic hybridization, we have identified the breakpoints in 85 unrelated individuals carrying an NF1 intragenic CNV. Furthermore, we characterized the likely rearrangement mechanisms of these 85 CNVs, along with those of two additional previously published NF1 intragenic CNVs. Unlike the most typical recurrent rearrangements mediated by flanking low-copy repeats (LCRs), NF1 intragenic rearrangements vary in size, location, and rearrangement mechanisms. We propose the DNA-replication-based mechanisms comprising both FoSTeS and/or MMBIR and serial replication stalling to be the predominant mechanisms leading to NF1 intragenic CNVs. In addition to the loop within a 197-bp palindrome located in intron 40, four Alu elements located in introns 1, 2, 3, and 50 were also identified as intragenic-rearrangement hotspots within NF1.
Collapse
Affiliation(s)
- Meng-Chang Hsiao
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Arkadiusz Piotrowski
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Tom Callens
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chuanhua Fu
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Katharina Wimmer
- Division of Human Genetics, Medical University Innsbruck, Peter-Mayr-Straße 1, 6020 Innsbruck, Austria
| | - Kathleen B M Claes
- Center for Medical Genetics, Ghent University Hospital, De Pintelaan, 185 9000 Gent, Belgium
| | - Ludwine Messiaen
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
31
|
Gu S, Yuan B, Campbell IM, Beck CR, Carvalho CMB, Nagamani SCS, Erez A, Patel A, Bacino CA, Shaw CA, Stankiewicz P, Cheung SW, Bi W, Lupski JR. Alu-mediated diverse and complex pathogenic copy-number variants within human chromosome 17 at p13.3. Hum Mol Genet 2015; 24:4061-77. [PMID: 25908615 DOI: 10.1093/hmg/ddv146] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/20/2015] [Indexed: 01/05/2023] Open
Abstract
Alu repetitive elements are known to be major contributors to genome instability by generating Alu-mediated copy-number variants (CNVs). Most of the reported Alu-mediated CNVs are simple deletions and duplications, and the mechanism underlying Alu-Alu-mediated rearrangement has been attributed to non-allelic homologous recombination (NAHR). Chromosome 17 at the p13.3 genomic region lacks extensive low-copy repeat architecture; however, it is highly enriched for Alu repetitive elements, with a fraction of 30% of total sequence annotated in the human reference genome, compared with the 10% genome-wide and 18% on chromosome 17. We conducted mechanistic studies of the 17p13.3 CNVs by performing high-density oligonucleotide array comparative genomic hybridization, specifically interrogating the 17p13.3 region with ∼150 bp per probe density; CNV breakpoint junctions were mapped to nucleotide resolution by polymerase chain reaction and Sanger sequencing. Studied rearrangements include 5 interstitial deletions, 14 tandem duplications, 7 terminal deletions and 13 complex genomic rearrangements (CGRs). Within the 17p13.3 region, Alu-Alu-mediated rearrangements were identified in 80% of the interstitial deletions, 46% of the tandem duplications and 50% of the CGRs, indicating that this mechanism was a major contributor for formation of breakpoint junctions. Our studies suggest that Alu repetitive elements facilitate formation of non-recurrent CNVs, CGRs and other structural aberrations of chromosome 17 at p13.3. The common observation of Alu-mediated rearrangement in CGRs and breakpoint junction sequences analysis further demonstrates that this type of mechanism is unlikely attributed to NAHR, but rather may be due to a recombination-coupled DNA replicative repair process.
Collapse
Affiliation(s)
- Shen Gu
- Department of Molecular & Human Genetics
| | - Bo Yuan
- Department of Molecular & Human Genetics
| | | | | | | | - Sandesh C S Nagamani
- Department of Molecular & Human Genetics, Texas Children's Hospital, Houston, TX 77030, USA and
| | - Ayelet Erez
- Department of Molecular & Human Genetics, Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | - Carlos A Bacino
- Department of Molecular & Human Genetics, Texas Children's Hospital, Houston, TX 77030, USA and
| | | | | | | | - Weimin Bi
- Department of Molecular & Human Genetics
| | - James R Lupski
- Department of Molecular & Human Genetics, Department of Pediatrics and Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA, Texas Children's Hospital, Houston, TX 77030, USA and
| |
Collapse
|
32
|
Complex genomic rearrangements at the PLP1 locus include triplication and quadruplication. PLoS Genet 2015; 11:e1005050. [PMID: 25749076 PMCID: PMC4352052 DOI: 10.1371/journal.pgen.1005050] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/02/2015] [Indexed: 02/07/2023] Open
Abstract
Inverted repeats (IRs) can facilitate structural variation as crucibles of genomic rearrangement. Complex duplication-inverted triplication-duplication (DUP-TRP/INV-DUP) rearrangements that contain breakpoint junctions within IRs have been recently associated with both MECP2 duplication syndrome (MIM#300260) and Pelizaeus-Merzbacher disease (PMD, MIM#312080). We investigated 17 unrelated PMD subjects with copy number gains at the PLP1 locus including triplication and quadruplication of specific genomic intervals-16/17 were found to have a DUP-TRP/INV-DUP rearrangement product. An IR distal to PLP1 facilitates DUP-TRP/INV-DUP formation as well as an inversion structural variation found frequently amongst normal individuals. We show that a homology-or homeology-driven replicative mechanism of DNA repair can apparently mediate template switches within stretches of microhomology. Moreover, we provide evidence that quadruplication and potentially higher order amplification of a genomic interval can occur in a manner consistent with rolling circle amplification as predicted by the microhomology-mediated break induced replication (MMBIR) model.
Collapse
|
33
|
Hamdan H, Kockara NT, Jolly LA, Haun S, Wight PA. Control of human PLP1 expression through transcriptional regulatory elements and alternatively spliced exons in intron 1. ASN Neuro 2015; 7:7/1/1759091415569910. [PMID: 25694552 PMCID: PMC4342368 DOI: 10.1177/1759091415569910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
These authors contributed equally to this work. Although the myelin proteolipid protein gene (PLP1) encodes the most abundant protein in central nervous system (CNS) myelin, not much is known about the mechanisms that govern expression of the human gene (hPLP1). Much more is known about the processes that regulate Plp1 gene expression in rodents. From studies with Plp1-lacZ transgenic mice, it was determined that the first intron of mouse Plp1 (mPlp1) is required to attain high levels of expression in brain, concurrent with the active myelination period. Other studies have suggested that within mPlp1 intron 1 (>8 kb) lie several regions with enhancer-like activity. To test whether these sequences (and possibly others) in hPLP1 intron 1 are functional, deletion-transfection analysis was performed with hPLP1-lacZ constructs that contain various portions of the intron, or lack it altogether. Results presented here demonstrate the importance of hPLP1 intron 1 in achieving maximal levels of expression in the immortalized oligodendroglial cell line, Oli-neu. Deletion analysis indicates that the intron contains multiple positive regulatory elements which are active in Oli-neu cells. Some of these elements appear to be functionally conserved between human and mouse, while others are not. Furthermore, our studies demonstrate that multiple splice variants can be formed due to inclusion of extra (supplementary) exons from what is classically thought of as hPLP1 intron 1. Thus, splicing of these novel exons (which are not recognized as such in mPlp1 due to lack of conserved splice sites) must utilize factors common to both human and mouse since Oli-neu cells are of mouse origin.
Collapse
Affiliation(s)
- Hamdan Hamdan
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Neriman T Kockara
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lee Ann Jolly
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Shirley Haun
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Patricia A Wight
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
34
|
Chen C, Ma H, Zhang F, Chen L, Xing X, Wang S, Zhang X, Luo Y. Screening of Duchenne muscular dystrophy (DMD) mutations and investigating its mutational mechanism in Chinese patients. PLoS One 2014; 9:e108038. [PMID: 25244321 PMCID: PMC4171529 DOI: 10.1371/journal.pone.0108038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/25/2014] [Indexed: 11/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a common X-linked recessive disease of muscle degeneration and death. In order to provide accurate and reliable genetic counseling and prenatal diagnosis, we screened DMD mutations in a cohort of 119 Chinese patients using multiplex ligation-dependent probe amplification (MLPA) and denaturing high performance liquid chromatography (DHPLC) followed by Sanger sequencing. In these unrelated DMD patients, we identified 11 patients with DMD small mutations (9.2%) and 81 patients with DMD deletions/duplications (del/dup) (68.1%), of which 64 (79.0%) were deletions, 16 (19.8%) were duplications, and one (1.2%) was both deletion and duplication. Furthermore, we analyzed the frequency of DMD breakpoint in the 64 deletion cases by calculating exon-deletion events of certain exon interval that revealed a novel mutation hotspot boundary. To explore why DMD rearrangement breakpoints were predisposed to specific regions (hotspot), we precisely characterized junction sequences of breakpoints at the nucleotide level in 21 patients with exon deleted/duplicated in DMD with a high-resolution SNP microarray assay. There were no exactly recurrent breakpoints and there was also no significant difference between single-exon del/dup and multiple-exon del/dup cases. The data from the current study provided a comprehensive strategy to detect DMD mutations for clinical practice, and identified two deletion hotspots at exon 43–55 and exon 10–23 by calculating exon-deletion events of certain exon interval. Furthermore, this is the first study to characterize DMD breakpoint at the nucleotide level in a Chinese population. Our observations provide better understanding of the mechanism for DMD gene rearrangements.
Collapse
Affiliation(s)
- Chen Chen
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Chinese Ministry of Education, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongwei Ma
- Department of Developing Pediatrics, Shengjing Hospital, China Medical University, Shenyang, China
| | - Feng Zhang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Lu Chen
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xuesha Xing
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Chinese Ministry of Education, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Shusen Wang
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Chinese Ministry of Education, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Luo
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Chinese Ministry of Education, College of Basic Medical Science, China Medical University, Shenyang, China
- * E-mail:
| |
Collapse
|
35
|
Laššuthová P, Žaliová M, Inoue K, Haberlová J, Sixtová K, Sakmaryová I, Paděrová K, Mazanec R, Zámečník J, Šišková D, Garbern J, Seeman P. Three new PLP1 splicing mutations demonstrate pathogenic and phenotypic diversity of Pelizaeus-Merzbacher disease. J Child Neurol 2014; 29:924-31. [PMID: 23771846 DOI: 10.1177/0883073813492387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/09/2013] [Indexed: 11/16/2022]
Abstract
Pelizaeus-Merzbacher disease is a severe X-linked disorder of central myelination caused by mutations affecting the proteolipid protein gene. We describe 3 new PLP1 splicing mutations, their effect on splicing and associated phenotypes. Mutation c.453_453+6del7insA affects the exon 3B donor splice site and disrupts the PLP1-transcript without affecting the DM20, was found in a patient with severe Pelizaeus-Merzbacher disease and in his female cousin with early-onset spastic paraparesis. Mutation c.191+1G>A causes exon 2 skipping with a frame shift, is expected to result in a functionally null allele, and was found in a patient with mild Pelizaeus-Merzbacher disease and in his aunt with late-onset spastic paraparesis. Mutation c.696+1G>A utilizes a cryptic splice site in exon 5, causes partial exon 5 skipping and in-frame deletion, and was found in an isolated patient with a severe classical Pelizaeus-Merzbacher. PLP1 splice-site mutations express a variety of disease phenotypes mediated by different molecular pathogenic mechanisms.
Collapse
Affiliation(s)
- Petra Laššuthová
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Markéta Žaliová
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Ken Inoue
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Jana Haberlová
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Klára Sixtová
- Department of Paediatric Neurology, Thomayer's Hospital, Prague, Czech Republic
| | - Iva Sakmaryová
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Kateřina Paděrová
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Radim Mazanec
- Department of Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Josef Zámečník
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Dana Šišková
- Department of Paediatric Neurology, Thomayer's Hospital, Prague, Czech Republic
| | - Jim Garbern
- Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Pavel Seeman
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| |
Collapse
|
36
|
Xiao J, Zhang L, Wang J, Jiang Y, Jin L, Lu J, Jin L, Zhong C, Xu X, Zhang F. Rearrangement structure-independent strategy of CNV breakpoint analysis. Mol Genet Genomics 2014; 289:755-63. [PMID: 24737421 DOI: 10.1007/s00438-014-0850-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 03/28/2014] [Indexed: 12/21/2022]
Abstract
Rare copy number variations (CNVs) generated by human genomic rearrangements have been shown to play an important role in pathogenesis of human diseases and cancers. CNV breakpoint analysis can help define genomic location, genetic content and sequence structure of pathogenic CNVs. This process is vital to elucidate CNV mutational mechanism and etiology of CNV-associated disorders. However, it is technically challenging to map CNV breakpoints at base-pair level, especially in the genomic regions with sequence complexity. In this study, we developed a new method of capture and breakpoint approaching sequencing (CBAS) to efficiently obtain CNV breakpoint sequences. This strategy is independent of CNV structures and applicable to various CNV types. As was demonstrated in CNV-associated patients with neurological disorders, CBAS achieved fine mapping of breakpoint sequences for compound deletion, complex duplication, and translocation. Intriguingly, CBAS also revealed unexpected CNV complexity involving long-range DNA rearrangement. Our observations showed that CBAS is an efficient method for obtaining CNV breakpoint sequence and mapping insertional events as well. This method can facilitate the researches on CNV-associated human diseases and cancers. CBAS is also applicable to mapping the integration sites of retrovirus (such as HIV) and transgenes in model organisms.
Collapse
Affiliation(s)
- Jianqiu Xiao
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
An emerging phenotype of Xq22 microdeletions in females with severe intellectual disability, hypotonia and behavioral abnormalities. J Hum Genet 2014; 59:300-6. [DOI: 10.1038/jhg.2014.21] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 12/28/2022]
|
38
|
Bickhart DM, Liu GE. The challenges and importance of structural variation detection in livestock. Front Genet 2014; 5:37. [PMID: 24600474 PMCID: PMC3927395 DOI: 10.3389/fgene.2014.00037] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 01/31/2014] [Indexed: 01/25/2023] Open
Abstract
Recent studies in humans and other model organisms have demonstrated that structural variants (SVs) comprise a substantial proportion of variation among individuals of each species. Many of these variants have been linked to debilitating diseases in humans, thereby cementing the importance of refining methods for their detection. Despite progress in the field, reliable detection of SVs still remains a problem even for human subjects. Many of the underlying problems that make SVs difficult to detect in humans are amplified in livestock species, whose lower quality genome assemblies and incomplete gene annotation can often give rise to false positive SV discoveries. Regardless of the challenges, SV detection is just as important for livestock researchers as it is for human researchers, given that several productive traits and diseases have been linked to copy number variations (CNVs) in cattle, sheep, and pig. Already, there is evidence that many beneficial SVs have been artificially selected in livestock such as a duplication of the agouti signaling protein gene that causes white coat color in sheep. In this review, we will list current SV and CNV discoveries in livestock and discuss the problems that hinder routine discovery and tracking of these polymorphisms. We will also discuss the impacts of selective breeding on CNV and SV frequencies and mention how SV genotyping could be used in the future to improve genetic selection.
Collapse
Affiliation(s)
- Derek M Bickhart
- Animal Improvement Programs Laboratory, United States Department of Agriculture-Agricultural Research Service Beltsville, MD, USA
| | - George E Liu
- Bovine Functional Genomics Laboratory, United States Department of Agriculture-Agricultural Research Service Beltsville, MD, USA
| |
Collapse
|
39
|
Morimura T, Numata Y, Nakamura S, Hirano E, Gotoh L, Goto YI, Urushitani M, Inoue K. Attenuation of endoplasmic reticulum stress in Pelizaeus-Merzbacher disease by an anti-malaria drug, chloroquine. Exp Biol Med (Maywood) 2014; 239:489-501. [PMID: 24521562 DOI: 10.1177/1535370213520108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pelizaeus-Merzbacher disease (PMD) is a hypomyelinating disorder caused by the duplication and missense mutations of the proteolipid protein 1 (PLP1) gene. PLP1 missense proteins accumulate in the endoplasmic reticulum (ER) of premature oligodendrocytes and induce severe ER stress followed by apoptosis of the cells. Here, we demonstrate that an anti-malaria drug, chloroquine, decreases the amount of an ER-resident mutant PLP1 containing an alanine-243 to valine (A243V) substitution, which induces severe PMD in human. By preventing mutant PLP1 translation through enhancing the phosphorylation of eukaryotic initiation factor 2 alpha, chloroquine ameliorated the ER stress induced by the mutant protein in HeLa cells. Chroloquine also attenuated ER stress in the primary oligodendrocytes obtained from myelin synthesis deficit (msd) mice, which carry the same PLP1 mutation. In the spinal cords of msd mice, chloroquine inhibited ER stress and upregulated the expression of marker genes of mature oligodendrocytes. Chloroquine-mediated attenuation of ER stress was observed in HeLa cells treated with tunicamycin, an N-glycosylation inhibitor, but not with thapsigargin, a sarco/ER Ca(2+)ATPase inhibitor, which confirms its efficacy against ER stress caused by nascent proteins. These findings indicate that chloroquine is an ER stress attenuator with potential use in treating PMD and possibly other ER stress-related diseases.
Collapse
Affiliation(s)
- Toshifumi Morimura
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawahigashi-machi, Kodaira-shi, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
The role of microhomology in genomic structural variation. Trends Genet 2014; 30:85-94. [PMID: 24503142 DOI: 10.1016/j.tig.2014.01.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/03/2014] [Accepted: 01/05/2014] [Indexed: 02/06/2023]
Abstract
Genomic structural variation, which can be defined as differences in the copy number, orientation, or location of relatively large DNA segments, is not only crucial in evolution, but also gives rise to genomic disorders. Whereas the major mechanisms that generate structural variation have been well characterised, insights into additional mechanisms are emerging from the identification of short regions of DNA sequence homology, also known as microhomology, at chromosomal breakpoints. In addition, functional studies are elucidating the characteristics of microhomology-mediated pathways, which are mutagenic. Here, we describe the features and mechanistic models of microhomology-mediated events, discuss their physiological and pathological significance, and highlight recent advances in this rapidly evolving field of research.
Collapse
|
41
|
Surace C, Berardinelli F, Masotti A, Roberti MC, Da Sacco L, D'Elia G, Sirleto P, Digilio MC, Cusmai R, Grotta S, Petrocchi S, Hachem ME, Pisaneschi E, Ciocca L, Russo S, Lepri FR, Sgura A, Angioni A. Telomere shortening and telomere position effect in mild ring 17 syndrome. Epigenetics Chromatin 2014; 7:1. [PMID: 24393457 PMCID: PMC3892072 DOI: 10.1186/1756-8935-7-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/13/2013] [Indexed: 11/24/2022] Open
Abstract
Background Ring chromosome 17 syndrome is a rare disease that arises from the breakage and reunion of the short and long arms of chromosome 17. Usually this abnormality results in deletion of genetic material, which explains the clinical features of the syndrome. Moreover, similar phenotypic features have been observed in cases with complete or partial loss of the telomeric repeats and conservation of the euchromatic regions. We studied two different cases of ring 17 syndrome, firstly, to clarify, by analyzing gene expression analysis using real-time qPCR, the role of the telomere absence in relationship with the clinical symptoms, and secondly, to look for a new model of the mechanism of ring chromosome transmission in a rare case of familial mosaicism, through cytomolecular and quantitative fluorescence in-situ hybridization (Q-FISH) investigations. Results The results for the first case showed that the expression levels of genes selected, which were located close to the p and q ends of chromosome 17, were significantly downregulated in comparison with controls. Moreover, for the second case, we demonstrated that the telomeres were conserved, but were significantly shorter than those of age-matched controls; data from segregation analysis showed that the ring chromosome was transmitted only to the affected subjects of the family. Conclusions Subtelomeric gene regulation is responsible for the phenotypic aspects of ring 17 syndrome; telomere shortening influences the phenotypic spectrum of this disease and strongly contributes to the familial transmission of the mosaic ring. Together, these results provide new insights into the genotype-phenotype relationships in mild ring 17 syndrome.
Collapse
Affiliation(s)
- Cecilia Surace
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | | | - Andrea Masotti
- Gene Expression-Microarrays Laboratory, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Maria Cristina Roberti
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Letizia Da Sacco
- Gene Expression-Microarrays Laboratory, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Gemma D'Elia
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Pietro Sirleto
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | | | - Raffaella Cusmai
- Neurology Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Simona Grotta
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Stefano Petrocchi
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - May El Hachem
- Dermatology Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Elisa Pisaneschi
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Laura Ciocca
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Serena Russo
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Francesca Romana Lepri
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | | | - Adriano Angioni
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| |
Collapse
|
42
|
Appikatla S, Bessert D, Lee I, Hüttemann M, Mullins C, Somayajulu-Nitu M, Yao F, Skoff RP. Insertion of proteolipid protein into oligodendrocyte mitochondria regulates extracellular pH and adenosine triphosphate. Glia 2013; 62:356-73. [PMID: 24382809 DOI: 10.1002/glia.22591] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 11/08/2022]
Abstract
Proteolipid protein (PLP) and DM20, the most abundant myelin proteins, are coded by the human PLP1 and non-human Plp1 PLP gene. Mutations in the PLP1 gene cause Pelizaeus-Merzbacher disease (PMD) with duplications of the native PLP1 gene accounting for 70% of PLP1 mutations. Humans with PLP1 duplications and mice with extra Plp1 copies have extensive neuronal degeneration. The mechanism that causes neuronal degeneration is unknown. We show that native PLP traffics to mitochondria when the gene is duplicated in mice and in humans. This report is the first demonstration of a specific cellular defect in brains of PMD patients; it validates rodent models as ideal models to study PMD. Insertion of nuclear-encoded mitochondrial proteins requires specific import pathways; we show that specific cysteine motifs, part of the Mia40/Erv1 mitochondrial import pathway, are present in PLP and are required for its insertion into mitochondria. Insertion of native PLP into mitochondria of transfected cells acidifies media, partially due to increased lactate; it also increases adenosine triphosphate (ATP) in the media. The same abnormalities are found in the extracellular space of mouse brains with extra copies of Plp1. These physiological abnormalities are preventable by mutations in PLP cysteine motifs, a hallmark of the Mia40/Erv1 pathway. Increased extracellular ATP and acidosis lead to neuronal degeneration. Our findings may be the mechanism by which microglia are activated and proinflammatory molecules are upregulated in Plp1 transgenic mice (Tatar et al. (2010) ASN Neuro 2:art:e00043). Manipulation of this metabolic pathway may restore normal metabolism and provide therapy for PMD patients.
Collapse
Affiliation(s)
- Sunita Appikatla
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Matsufuji M, Osaka H, Gotoh L, Shimbo H, Takashima S, Inoue K. Partial PLP1 deletion causing X-linked dominant spastic paraplegia type 2. Pediatr Neurol 2013; 49:477-81. [PMID: 24095575 DOI: 10.1016/j.pediatrneurol.2013.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/01/2013] [Accepted: 07/13/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND Proteolipid protein 1 gene (PLP1) mutations result in a continuum of neurological findings characterized by X-linked hypomyelinating leukodystrophies of the central nervous system, from mild spastic paraplegia type 2 to severe Pelizaeus-Merzbacher disease. PATIENTS We report spastic paraplegia type 2 in three individuals in one family. A 29-year-old man developed progressive spastic quadriplegia from early childhood with dysarthria, ataxia, dysphagia, and intellectual delay, but he displayed no nystagmus. His mother developed adult-onset mild spastic diplegia with dementia developing in later life, whereas his sister exhibited spastic diplegia from childhood, complicated by motor developmental delay and dysphagia. All three individuals had initially mild but progressive neurological phenotypes, no nystagmus, normal brainstem auditory-evoked potentials, and demyelinating peripheral neuropathy, but with varying clinical severity. RESULTS A 33-kb deletion encompassing exon 2 to 7 of PLP1 was identified in all three patients. Cloning of the junction fragment of the genomic recombination revealed a short palindromic sequence at the distal breakpoint, potentially facilitating a double-strand deoxyribonucleic acid break, followed by nonhomologous end joining. X-inactivation study and sequencing of the undeleted PLP1 alleles failed to explain the differences in severity between the two female patients. CONCLUSIONS PLP1 partial deletion is a rare cause of spastic paraplegia type 2 and exhibits X-linked dominant inheritance with variable expressivity.
Collapse
Affiliation(s)
- Mayumi Matsufuji
- Yanagawa Institute for Developmental Disabilities, Fukuoka, Japan.
| | | | | | | | | | | |
Collapse
|
44
|
Verdin H, D'haene B, Beysen D, Novikova Y, Menten B, Sante T, Lapunzina P, Nevado J, Carvalho CMB, Lupski JR, De Baere E. Microhomology-mediated mechanisms underlie non-recurrent disease-causing microdeletions of the FOXL2 gene or its regulatory domain. PLoS Genet 2013; 9:e1003358. [PMID: 23516377 PMCID: PMC3597517 DOI: 10.1371/journal.pgen.1003358] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/18/2013] [Indexed: 11/17/2022] Open
Abstract
Genomic disorders are often caused by recurrent copy number variations (CNVs), with nonallelic homologous recombination (NAHR) as the underlying mechanism. Recently, several microhomology-mediated repair mechanisms—such as microhomology-mediated end-joining (MMEJ), fork stalling and template switching (FoSTeS), microhomology-mediated break-induced replication (MMBIR), serial replication slippage (SRS), and break-induced SRS (BISRS)—were described in the etiology of non-recurrent CNVs in human disease. In addition, their formation may be stimulated by genomic architectural features. It is, however, largely unexplored to what extent these mechanisms contribute to rare, locus-specific pathogenic CNVs. Here, fine-mapping of 42 microdeletions of the FOXL2 locus, encompassing FOXL2 (32) or its regulatory domain (10), serves as a model for rare, locus-specific CNVs implicated in genetic disease. These deletions lead to blepharophimosis syndrome (BPES), a developmental condition affecting the eyelids and the ovary. For breakpoint mapping we used targeted array-based comparative genomic hybridization (aCGH), quantitative PCR (qPCR), long-range PCR, and Sanger sequencing of the junction products. Microhomology, ranging from 1 bp to 66 bp, was found in 91.7% of 24 characterized breakpoint junctions, being significantly enriched in comparison with a random control sample. Our results show that microhomology-mediated repair mechanisms underlie at least 50% of these microdeletions. Moreover, genomic architectural features, like sequence motifs, non-B DNA conformations, and repetitive elements, were found in all breakpoint regions. In conclusion, the majority of these microdeletions result from microhomology-mediated mechanisms like MMEJ, FoSTeS, MMBIR, SRS, or BISRS. Moreover, we hypothesize that the genomic architecture might drive their formation by increasing the susceptibility for DNA breakage or promote replication fork stalling. Finally, our locus-centered study, elucidating the etiology of a large set of rare microdeletions involved in a monogenic disorder, can serve as a model for other clustered, non-recurrent microdeletions in genetic disease. Genomic disorder is a general term describing conditions caused by genomic aberrations leading to a copy number change of one or more genes. Copy number changes with the same length and clustered breakpoints for a group of patients with the same disorder are named recurrent rearrangements. These originate mostly from a well-studied mechanism, namely nonallelic homologous recombination (NAHR). In contrast, non-recurrent rearrangements vary in size, have scattered breakpoints, and can originate from several different mechanisms that are not fully understood. Here we tried to gain further insight into the extent to which these mechanisms contribute to non-recurrent rearrangements and into the possible role of the surrounding genomic architecture. To this end, we investigated a unique group of patients with non-recurrent deletions of the FOXL2 region causing blepharophimosis syndrome. We observed that the majority of these deletions can result from several mechanisms mediated by microhomology. Furthermore, our data suggest that rare pathogenic microdeletions do not occur at random genome sequences, but are possibly guided by the surrounding genomic architecture. Finally, our study, elucidating the etiology of a unique cohort of locus-specific microdeletions implicated in genetic disease, can serve as a model for the formation of genomic aberrations in other genetic disorders.
Collapse
Affiliation(s)
- Hannah Verdin
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Martínez-Montero P, Muñoz-Calero M, Vallespín E, Campistol J, Martorell L, Ruiz-Falcó MJ, Santana A, Pons R, Dinopoulos A, Sierra C, Nevado J, Molano J. PLP1gene analysis in 88 patients with leukodystrophy. Clin Genet 2013; 84:566-71. [DOI: 10.1111/cge.12103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/16/2013] [Accepted: 01/16/2013] [Indexed: 01/11/2023]
Affiliation(s)
| | - M Muñoz-Calero
- INGEMM, IdIPAZ, CIBERER; Hospital Universitario La Paz; Madrid Spain
| | - E Vallespín
- INGEMM, IdIPAZ, CIBERER; Hospital Universitario La Paz; Madrid Spain
| | | | - L Martorell
- Molecular Genetics Unit; Hospital Sant Joan de Deu; Barcelona Spain
| | - MJ Ruiz-Falcó
- Neurology Service; Hospital Infantil Universitario Niño Jesús; Madrid Spain
| | - A Santana
- Genetics Unit; C. U. Insular Materno Infantil; Las Palmas de Gran Canaria Spain
| | - R Pons
- Paediatric Neurology Service; University of Athens; "Attiko" University Hospital Athens; Athens Greece
| | - A Dinopoulos
- Paediatric Neurology Service; University of Athens; "Attiko" University Hospital Athens; Athens Greece
| | - C Sierra
- Paediatric Neurology Service; Complejo Hospitalario de Jaén; Jaén Spain
| | - J Nevado
- INGEMM, IdIPAZ, CIBERER; Hospital Universitario La Paz; Madrid Spain
| | - J Molano
- INGEMM, IdIPAZ, CIBERER; Hospital Universitario La Paz; Madrid Spain
| |
Collapse
|
46
|
Yamamoto T, Shimojima K. Pelizaeus-Merzbacher disease as a chromosomal disorder. Congenit Anom (Kyoto) 2013; 53:3-8. [PMID: 23480352 DOI: 10.1111/cga.12005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/04/2012] [Indexed: 12/29/2022]
Abstract
Pelizaeus-Merzbacher disease (PMD) is a congenital hypomyelination disorder caused by alterations affecting the proteolipid protein 1 gene (PLP1) located on Xq22.2. Generally, patients with PLP1 missense mutations show the most severe form of PMD (connatal form); however, two-thirds of patients with PMD carry PLP1 duplications and present typical manifestations of the disorder, recognized as the classical form. Other rare PLP1 abnormalities have been also identified, including X-chromosome translocations, triplications, and a partial duplication, all involving PLP1. The genomic structure of the distal end of the PLP1 locus, characterized by repeated genomic segments, contributes to the chromosomal rearrangements around PLP1 and the manifestation of PMD. Thus, PMD is recognized as a chromosomal disorder.
Collapse
Affiliation(s)
- Toshiyuki Yamamoto
- Institute for Integrated Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan.
| | | |
Collapse
|
47
|
Torisu H, Iwaki A, Takeshita K, Hiwatashi A, Sanefuji M, Fukumaki Y, Hara T. Clinical and genetic characterization of a 2-year-old boy with complete PLP1 deletion. Brain Dev 2012; 34:852-6. [PMID: 22401669 DOI: 10.1016/j.braindev.2012.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 02/11/2012] [Accepted: 02/13/2012] [Indexed: 10/28/2022]
Abstract
We report herein a case of 2-year-old boy diagnosed with a mild form of Pelizaeus-Merzbacher disease due to deletion of the entire proteolipid protein 1 (PLP1) gene. The patient demonstrated spastic quadriplegia, mental retardation, and microcephaly. He exhibited brainstem auditory evoked potentials with prolonged interpeak latencies and magnetic resonance imaging characteristics suggestive of hypomyelination in most areas of the brain with the exception of the brainstem, cerebellar peduncles, corpus callosum, and the posterior limbs of the internal capsules. Proton magnetic resonance spectroscopy revealed a mildly reduced ratio of N-acetyl aspartate to creatine levels in the white matter, suggesting axonal involvement. Additionally, nerve conduction velocity of the lower extremities was mildly decreased. Genetic analysis showed a deletion of PLP1 in this patient. Further genome mapping followed by sequence analysis of the deletion breakpoints revealed that a genomic region, about 73 kb in length, including the entire PLP1 and RAB9B, was deleted. The size of the deletion was the smallest among those previously reported in this region. Except for the 1-base pair microhomology, there were no homologous sequences between the regions around the distal and proximal breakpoints, which suggests that the deletion occurred by nonhomologous end joining.
Collapse
Affiliation(s)
- Hiroyuki Torisu
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Arlt MF, Rajendran S, Birkeland SR, Wilson TE, Glover TW. De novo CNV formation in mouse embryonic stem cells occurs in the absence of Xrcc4-dependent nonhomologous end joining. PLoS Genet 2012; 8:e1002981. [PMID: 23028374 PMCID: PMC3447954 DOI: 10.1371/journal.pgen.1002981] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/01/2012] [Indexed: 11/20/2022] Open
Abstract
Spontaneous copy number variant (CNV) mutations are an important factor in genomic structural variation, genomic disorders, and cancer. A major class of CNVs, termed nonrecurrent CNVs, is thought to arise by nonhomologous DNA repair mechanisms due to the presence of short microhomologies, blunt ends, or short insertions at junctions of normal and de novo pathogenic CNVs, features recapitulated in experimental systems in which CNVs are induced by exogenous replication stress. To test whether the canonical nonhomologous end joining (NHEJ) pathway of double-strand break (DSB) repair is involved in the formation of this class of CNVs, chromosome integrity was monitored in NHEJ–deficient Xrcc4−/− mouse embryonic stem (ES) cells following treatment with low doses of aphidicolin, a DNA replicative polymerase inhibitor. Mouse ES cells exhibited replication stress-induced CNV formation in the same manner as human fibroblasts, including the existence of syntenic hotspot regions, such as in the Auts2 and Wwox loci. The frequency and location of spontaneous and aphidicolin-induced CNV formation were not altered by loss of Xrcc4, as would be expected if canonical NHEJ were the predominant pathway of CNV formation. Moreover, de novo CNV junctions displayed a typical pattern of microhomology and blunt end use that did not change in the absence of Xrcc4. A number of complex CNVs were detected in both wild-type and Xrcc4−/− cells, including an example of a catastrophic, chromothripsis event. These results establish that nonrecurrent CNVs can be, and frequently are, formed by mechanisms other than Xrcc4-dependent NHEJ. Copy number variants (CNVs) are a major factor in genetic variation and are a common and important class of mutation in genomic disorders, yet there is limited understanding of how many CNVs arise and the risk factors involved. One DNA damage response pathway implicated in CNV formation is nonhomologous end joining (NHEJ), which repairs broken DNA ends by Xrcc4-dependent direct ligation. We examined the effects of loss of Xrcc4 and NHEJ on CNV formation following replication stress in mouse cells. Cells lacking NHEJ displayed unaltered CNV frequencies, locations, and breakpoint structures compared to normal cells. These results establish that CNV mutations in a cell model system, and likely in vivo, arise by a mutagenic mechanism other than canonical NHEJ, a pattern similar to that reported for model translocation events. Potential roles of alternative end joining and template switching are discussed.
Collapse
Affiliation(s)
- Martin F. Arlt
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sountharia Rajendran
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Shanda R. Birkeland
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Thomas E. Wilson
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (TEW); (TWG)
| | - Thomas W. Glover
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (TEW); (TWG)
| |
Collapse
|
49
|
Lv Y, Cao LH, Pang H, Lu LN, Li JL, Fu Y, Qi SL, Luo Y, Li-Ling J. Combined genetic and imaging diagnosis for two large Chinese families affected with Pelizaeus-Merzbacher disease. GENETICS AND MOLECULAR RESEARCH 2012; 11:2035-44. [PMID: 22911587 DOI: 10.4238/2012.august.6.7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Pelizaeus-Merzbacher disease (PMD) is a rare X-linked recessive disorder characterized by nystagmus, impaired motor development, ataxia, and progressive spasticity. Genetically defective or altered levels of proteolipid protein (PLP1) or gap-junction alpha protein 12 gene have been found to be a common cause. Here we report on two large Han Chinese families affected with this disease. The probands of both families had produced sons featuring cerebral palsy that had never been correctly diagnosed. PMD was suspected after careful analysis of family history and clinical features. Three rounds of molecular testing, including RT-PCR, genetics linkage and SRY sequence analyses, in combination with fetal ultrasound and magnetic resonance imaging, confirmed the diagnosis. In Family 1, in addition to two patients, three carriers were identified, including one who was not yet married. Genetic testing indicated that a fetus did not have the disease. A healthy girl was born later. In Family 2, two patients and two carriers were identified, while a fetus was genetically normal. A healthy girl was born later. We concluded that by combining genetic testing and imaging, awareness of the symptoms of PMD and understanding of its molecular biology, there is great benefit for families that are at risk for producing offspring affected with this severe disease.
Collapse
Affiliation(s)
- Y Lv
- Department of Medical Genetics, School of Basic Medicine, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mechanisms for recurrent and complex human genomic rearrangements. Curr Opin Genet Dev 2012; 22:211-20. [PMID: 22440479 DOI: 10.1016/j.gde.2012.02.012] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 01/07/2023]
Abstract
During the last two decades, the importance of human genome copy number variation (CNV) in disease has become widely recognized. However, much is not understood about underlying mechanisms. We show how, although model organism research guides molecular understanding, important insights are gained from study of the wealth of information available in the clinic. We describe progress in explaining nonallelic homologous recombination (NAHR), a major cause of copy number change occurring when control of allelic recombination fails, highlight the growing importance of replicative mechanisms to explain complex events, and describe progress in understanding extreme chromosome reorganization (chromothripsis). Both nonhomologous end-joining and aberrant replication have significant roles in chromothripsis. As we study CNV, the processes underlying human genome evolution are revealed.
Collapse
|