1
|
Ng BW, Kaukonen MK, McClements ME, Shamsnajafabadi H, MacLaren RE, Cehajic-Kapetanovic J. Genetic therapies and potential therapeutic applications of CRISPR activators in the eye. Prog Retin Eye Res 2024; 102:101289. [PMID: 39127142 DOI: 10.1016/j.preteyeres.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Conventional gene therapy involving supplementation only treats loss-of-function diseases and is limited by viral packaging sizes, precluding therapy of large genes. The discovery of CRISPR/Cas has led to a paradigm shift in the field of genetic therapy, with the promise of precise gene editing, thus broadening the range of diseases that can be treated. The initial uses of CRISPR/Cas have focused mainly on gene editing or silencing of abnormal variants via utilising Cas endonuclease to trigger the target cell endogenous non-homologous end joining. Subsequently, the technology has evolved to modify the Cas enzyme and even its guide RNA, leading to more efficient editing tools in the form of base and prime editing. Further advancements of this CRISPR/Cas technology itself have expanded its functional repertoire from targeted editing to programmable transactivation, shifting the therapeutic focus to precise endogenous gene activation or upregulation with the potential for epigenetic modifications. In vivo experiments using this platform have demonstrated the potential of CRISPR-activators (CRISPRa) to treat various loss-of-function diseases, as well as in regenerative medicine, highlighting their versatility to overcome limitations associated with conventional strategies. This review summarises the molecular mechanisms of CRISPRa platforms, the current applications of this technology in vivo, and discusses potential solutions to translational hurdles for this therapy, with a focus on ophthalmic diseases.
Collapse
Affiliation(s)
- Benjamin Wj Ng
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Maria K Kaukonen
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Hoda Shamsnajafabadi
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
2
|
Raja E, Clarin MTRDC, Yanagisawa H. Matricellular Proteins in the Homeostasis, Regeneration, and Aging of Skin. Int J Mol Sci 2023; 24:14274. [PMID: 37762584 PMCID: PMC10531864 DOI: 10.3390/ijms241814274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Matricellular proteins are secreted extracellular proteins that bear no primary structural functions but play crucial roles in tissue remodeling during development, homeostasis, and aging. Despite their low expression after birth, matricellular proteins within skin compartments support the structural function of many extracellular matrix proteins, such as collagens. In this review, we summarize the function of matricellular proteins in skin stem cell niches that influence stem cells' fate and self-renewal ability. In the epidermal stem cell niche, fibulin 7 promotes epidermal stem cells' heterogeneity and fitness into old age, and the transforming growth factor-β-induced protein ig-h3 (TGFBI)-enhances epidermal stem cell growth and wound healing. In the hair follicle stem cell niche, matricellular proteins such as periostin, tenascin C, SPARC, fibulin 1, CCN2, and R-Spondin 2 and 3 modulate stem cell activity during the hair cycle and may stabilize arrector pili muscle attachment to the hair follicle during piloerections (goosebumps). In skin wound healing, matricellular proteins are upregulated, and their functions have been examined in various gain-and-loss-of-function studies. However, much remains unknown concerning whether these proteins modulate skin stem cell behavior, plasticity, or cell-cell communications during wound healing and aging, leaving a new avenue for future studies.
Collapse
Affiliation(s)
- Erna Raja
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
| | - Maria Thea Rane Dela Cruz Clarin
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
- Ph.D. Program in Humanics, School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
| |
Collapse
|
3
|
Dong H, Ferruzzi J, Liu M, Brewster LP, Leshnower BG, Gleason RL. Effect of Aging, Sex, and Gene (Fbln5) on Arterial Stiffness of Mice: 20 Weeks Adult Fbln5-knockout Mice Have Older Arteries than 100 Weeks Wild-Type Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542920. [PMID: 37398425 PMCID: PMC10312538 DOI: 10.1101/2023.05.30.542920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The arterial stiffening is a strong independent predictor of cardiovascular risk and has been used to characterize the biological age of arteries ('arterial age'). Here we revealed that the Fbln5 gene knockout (Fbln5 -/- ) significantly increases the arterial stiffening for both male and female mice. We also showed that the arterial stiffening increases with natural aging, but the stiffening effect of Fbln5 -/- is much more severe than aging. The arterial stiffening of 20 weeks old mice with Fbln5 -/- is much higher than that at 100 weeks in wild-type (Fbln5 +/+ ) mice, which indicates that 20 weeks mice (equivalent to ∼26 years old humans) with Fbln5 -/- have older arteries than 100 weeks wild-type mice (equivalent to ∼77 years humans). Histological microstructure changes of elastic fibers in the arterial tissue elucidate the underlying mechanism of the increase of arterial stiffening due to Fbln5-knockout and aging. These findings provide new insights to reverse 'arterial age' due to abnormal mutations of Fbln5 gene and natural aging. This work is based on a total of 128 biaxial testing samples of mouse arteries and our recently developed unified-fiber-distribution (UFD) model. The UFD model considers the fibers in the arterial tissue as a unified distribution, which is more physically consistent with the real fiber distribution of arterial tissues than the popular fiber-family-based models (e.g., the well-know Gasser-Ogden-Holzapfel [GOH] model) that separate the fiber distribution into several fiber families. Thus, the UFD model achieves better accuracies with less material parameters. To our best knowledge, the UFD model is the only existing accurate model that could capture the property/stiffness differences between different groups of the experimental data discussed here.
Collapse
|
4
|
Ravel JM, Comel M, Wandzel M, Bronner M, Tatopoulos A, Renaud M, Lambert L, Bursztejn AC, Bonnet C. First report of a short in-frame biallelic deletion removing part of the EGF-like domain calcium-binding motif in LTBP4 and causing autosomal recessive cutis laxa type 1C. Am J Med Genet A 2022; 188:3343-3349. [PMID: 35972031 DOI: 10.1002/ajmg.a.62954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/01/2022] [Accepted: 08/01/2022] [Indexed: 01/31/2023]
Abstract
Cutis laxa (CL) is a rare connective tissue disorder characterized by wrinkled, abundant and sagging skin, sometimes associated with systemic impairment. Biallelic alterations in latent transforming growth factor beta-binding protein 4 gene (LTBP4) cause autosomal recessive type 1C cutis laxa (ARCL1C, MIM #613177). The present report describes the case of a 17-months-old girl with cutis laxa together with a literature review of previous ARCL1C cases. Based on proband main clinical signs (cutis laxa and pulmonary emphysema), clinical exome sequencing (CES) was performed and showed a new nine base-pairs homozygous in-frame deletion in LTBP4 gene. RT-PCR and cDNA Sanger sequencing were performed in order to clarify its impact on RNA. This report demonstrates that a genetic alteration in the EGF-like 14 domain calcium-binding motif of LTBP4 gene is likely responsible for cutis laxa in our patient.
Collapse
Affiliation(s)
- Jean-Marie Ravel
- Laboratoire de génétique médicale, CHRU Nancy, Nancy, France.,Université de Lorraine, INSERM UMR_S1256, NGERE, Nancy, France
| | - Margot Comel
- Laboratoire de génétique médicale, CHRU Nancy, Nancy, France
| | - Marion Wandzel
- Laboratoire de génétique médicale, CHRU Nancy, Nancy, France
| | - Myriam Bronner
- Laboratoire de génétique médicale, CHRU Nancy, Nancy, France
| | | | - Mathilde Renaud
- Université de Lorraine, INSERM UMR_S1256, NGERE, Nancy, France.,Service de génétique médicale, CHRU de Nancy, Nancy, France
| | - Laëtitia Lambert
- Université de Lorraine, INSERM UMR_S1256, NGERE, Nancy, France.,Service de génétique médicale, CHRU de Nancy, Nancy, France
| | | | - Céline Bonnet
- Laboratoire de génétique médicale, CHRU Nancy, Nancy, France.,Université de Lorraine, INSERM UMR_S1256, NGERE, Nancy, France
| |
Collapse
|
5
|
Zhang X, Alanazi YF, Jowitt TA, Roseman AM, Baldock C. Elastic Fibre Proteins in Elastogenesis and Wound Healing. Int J Mol Sci 2022; 23:4087. [PMID: 35456902 PMCID: PMC9027394 DOI: 10.3390/ijms23084087] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 12/30/2022] Open
Abstract
As essential components of our connective tissues, elastic fibres give tissues such as major blood vessels, skin and the lungs their elasticity. Their formation is complex and co-ordinately regulated by multiple factors. In this review, we describe key players in elastogenesis: fibrillin-1, tropoelastin, latent TGFβ binding protein-4, and fibulin-4 and -5. We summarise their roles in elastogenesis, discuss the effect of their mutations on relevant diseases, and describe their interactions involved in forming the elastic fibre network. Moreover, we look into their roles in wound repair for a better understanding of their potential application in tissue regeneration.
Collapse
Affiliation(s)
- Xinyang Zhang
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (X.Z.); (T.A.J.)
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK;
| | - Yasmene F. Alanazi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Thomas A. Jowitt
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (X.Z.); (T.A.J.)
| | - Alan M. Roseman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK;
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (X.Z.); (T.A.J.)
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK;
| |
Collapse
|
6
|
Moset Zupan A, Nietupski C, Schutte SC. Cyclic Adenosine Monophosphate Eliminates Sex Differences in Estradiol-Induced Elastin Production from Engineered Dermal Substitutes. Int J Mol Sci 2021; 22:ijms22126358. [PMID: 34198681 PMCID: PMC8232104 DOI: 10.3390/ijms22126358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022] Open
Abstract
Lack of adult cells' ability to produce sufficient amounts of elastin and assemble functional elastic fibers is an issue for creating skin substitutes that closely match native skin properties. The effects of female sex hormones, primarily estrogen, have been studied due to the known effects on elastin post-menopause, thus have primarily included older mostly female populations. In this study, we examined the effects of female sex hormones on the synthesis of elastin by female and male human dermal fibroblasts in engineered dermal substitutes. Differences between the sexes were observed with 17β-estradiol treatment alone stimulating elastin synthesis in female substitutes but not male. TGF-β levels were significantly higher in male dermal substitutes than female dermal substitutes and the levels did not change with 17β-estradiol treatment. The male dermal substitutes had a 1.5-fold increase in cAMP concentration in the presence of 17β-estradiol compared to no hormone controls, while cAMP concentrations remained constant in the female substitutes. When cAMP was added in addition to 17β-estradiol and progesterone in the culture medium, the sex differences were eliminated, and elastin synthesis was upregulated by 2-fold in both male and female dermal substitutes. These conditions alone did not result in functionally significant amounts of elastin or complete elastic fibers. The findings presented provide insights into differences between male and female cells in response to female sex steroid hormones and the involvement of the cAMP pathway in elastin synthesis. Further explorations into the signaling pathways may identify better targets to promote elastic fiber synthesis in skin substitutes.
Collapse
Affiliation(s)
- Andreja Moset Zupan
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (A.M.Z.); (C.N.)
| | - Carolyn Nietupski
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (A.M.Z.); (C.N.)
| | - Stacey C. Schutte
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (A.M.Z.); (C.N.)
- Department of Research, Shriners Hospitals for Children-Cincinnati, Cincinnati, OH 45221, USA
- Correspondence:
| |
Collapse
|
7
|
Stum MG, Tadenev ALD, Seburn KL, Miers KE, Poon PP, McMaster CR, Robinson C, Kane C, Silva KA, Cliften PF, Sundberg JP, Reinholdt LG, John SWM, Burgess RW. Genetic analysis of Pycr1 and Pycr2 in mice. Genetics 2021; 218:6178002. [PMID: 33734376 DOI: 10.1093/genetics/iyab048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/10/2021] [Indexed: 01/09/2023] Open
Abstract
The final step in proline biosynthesis is catalyzed by three pyrroline-5-carboxylate reductases, PYCR1, PYCR2, and PYCR3, which convert pyrroline-5-carboxylate (P5C) to proline. Mutations in human PYCR1 and ALDH18A1 (P5C Synthetase) cause Cutis Laxa (CL), whereas mutations in PYCR2 cause hypomyelinating leukodystrophy 10 (HLD10). Here, we investigated the genetics of Pycr1 and Pycr2 in mice. A null allele of Pycr1 did not show integument or CL-related phenotypes. We also studied a novel chemically-induced mutation in Pycr2. Mice with recessive loss-of-function mutations in Pycr2 showed phenotypes consistent with neurological and neuromuscular disorders, including weight loss, kyphosis, and hind-limb clasping. The peripheral nervous system was largely unaffected, with only mild axonal atrophy in peripheral nerves. A severe loss of subcutaneous fat in Pycr2 mutant mice is reminiscent of a CL-like phenotype, but primary features such as elastin abnormalities were not observed. Aged Pycr2 mutant mice had reduced white blood cell counts and altered lipid metabolism, suggesting a generalized metabolic disorder. PYCR1 and -2 have similar enzymatic and cellular activities, and consistent with previous studies, both were localized in the mitochondria in fibroblasts. Both PYCR1 and -2 were able to complement the loss of Pro3, the yeast enzyme that converts P5C to proline, confirming their activity as P5C reductases. In mice, Pycr1; Pycr2 double mutants were sub-viable and unhealthy compared to either single mutant, indicating the genes are largely functionally redundant. Proline levels were not reduced, and precursors were not increased in serum from Pycr2 mutant mice or in lysates from skin fibroblast cultures, but placing Pycr2 mutant mice on a proline-free diet worsened the phenotype. Thus, Pycr1 and -2 have redundant functions in proline biosynthesis, and their loss makes proline a semi-essential amino acid. These findings have implications for understanding the genetics of CL and HLD10, and for modeling these disorders in mice.
Collapse
Affiliation(s)
| | | | | | | | - Pak P Poon
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | | | - Carolyn Robinson
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Coleen Kane
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | - Paul F Cliften
- Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | - Simon W M John
- The Jackson Laboratory, Bar Harbor, ME 04609, USA.,Department of Ophthalmology, Howard Hughes Medical Institute, New York, NY 10032, USA.,Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
8
|
Heinz A. Elastic fibers during aging and disease. Ageing Res Rev 2021; 66:101255. [PMID: 33434682 DOI: 10.1016/j.arr.2021.101255] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/29/2020] [Accepted: 12/30/2020] [Indexed: 02/08/2023]
Abstract
Elastic fibers are essential constituents of the extracellular matrix of higher vertebrates and endow several tissues and organs including lungs, skin and blood vessels with elasticity and resilience. During the human lifespan, elastic fibers are exposed to a variety of enzymatic, chemical and biophysical influences, and accumulate damage due to their low turnover. Aging of elastin and elastic fibers involves enzymatic degradation, oxidative damage, glycation, calcification, aspartic acid racemization, binding of lipids and lipid peroxidation products, carbamylation and mechanical fatigue. These processes can trigger an impairment or loss of elastic fiber function and are associated with severe pathologies. There are different inherited or acquired pathological conditions, which influence the structure and function of elastic fibers and microfibrils predominantly in the cardiorespiratory system and skin. Inherited elastic-fiber pathologies have a direct or indirect impact on elastic-fiber formation due to mutations in the fibrillin genes (fibrillinopathies), in the elastin gene (elastinopathies) or in genes encoding proteins that are associated with microfibrils or elastic fibers. Acquired elastic-fiber pathologies appear age-related or as a result of multiple factors impairing tissue homeostasis. This review gives an overview on the fate of elastic fibers over the human lifespan in health and disease.
Collapse
|
9
|
Gharesouran J, Hosseinzadeh H, Ghafouri-Fard S, Jabbari Moghadam Y, Ahmadian Heris J, Jafari-Rouhi AH, Taheri M, Rezazadeh M. New insight into clinical heterogeneity and inheritance diversity of FBLN5-related cutis laxa. Orphanet J Rare Dis 2021; 16:51. [PMID: 33509220 PMCID: PMC7845118 DOI: 10.1186/s13023-021-01696-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/18/2021] [Indexed: 12/21/2022] Open
Abstract
Background FBLN5-related cutis laxa (CL) is a rare disorder that involves elastic fiber-enriched tissues and is characterized by lax skin and variable systemic involvement such as pulmonary emphysema, arterial involvement, inguinal hernias, hollow viscus diverticula and pyloric stenosis. This type of CL follows mostly autosomal recessive (AR) and less commonly autosomal dominant patterns of inheritance. Results In this study, we detected a novel homozygous missense variant in exon 6 of FBLN5 gene (c.G544C, p.A182P) by using whole exome sequencing in a consanguineous Iranian family with two affected members. Our twin patients showed some of the clinical manifestation of FBLN5-related CL but they did not present pulmonary complications, gastrointestinal and genitourinary abnormalities. The notable thing about this monozygotic twin sisters is that only one of them showed ventricular septal defect, suggesting that this type of CL has intrafamilial variability. Co-segregation analysis showed the patients’ parents and relatives were heterozygous for detected variation suggesting AR form of the CL. In silico prediction tools showed that this mutation is pathogenic and 3D modeling of the normal and mutant protein revealed relative structural alteration of fibulin-5 suggesting that the A182P can contribute to the CL phenotype via the combined effect of lack of protein function and partly misfolding-associated toxicity. Conclusion We underlined the probable roles and functions of the involved domain of fibulin-5 and proposed some possible mechanisms involved in AR form of FBLN5-related CL. However, further functional studies and subsequent clinical and molecular investigations are needed to confirm our findings.
Collapse
Affiliation(s)
- Jalal Gharesouran
- Molecular Genetics Division, GMG Center, Tabriz, Iran.,Division of Medical Genetics, Tabriz Children's Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Hosseinzadeh
- Molecular Genetics Division, GMG Center, Tabriz, Iran.,Division of Medical Genetics, Tabriz Children's Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yalda Jabbari Moghadam
- Department of Otorhinolaryngology, School of Medicine, Sina Medical Research and Training Hospital, Children Medical Research and Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Pediatrics, School of Medicine, Children Medical Research and Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Rezazadeh
- Department of Medical Genetics, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Morlino S, Nardella G, Castellana S, Micale L, Copetti M, Fusco C, Castori M. Review of clinical and molecular variability in autosomal recessive cutis laxa 2A. Am J Med Genet A 2020; 185:955-965. [PMID: 33369135 DOI: 10.1002/ajmg.a.62047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/10/2020] [Accepted: 12/13/2020] [Indexed: 11/06/2022]
Abstract
ATP6V0A2-related cutis laxa, also known as autosomal recessive cutis laxa type 2A (ARCL2A), is a subtype of hereditary cutis laxa originally characterized by skin, skeletal, and neurological involvement, and a combined defect of N-glycosylation and O-glycosylation. The associated clinical spectrum subsequently expanded to a less severe phenotype dominated by cutaneous involvement. At the moment, ARCL2A was described in a few case reports and series only. An Italian adult woman ARCL2A with a phenotype restricted to skin and the two novel c.3G>C and c.1101dup ATP6V0A2 variants has been reported. A systematic literature review allowed us to identify 69 additional individuals from 64 families. Available data were scrutinized in order to describe the clinical and molecular variability of ARCL2A. About 78.3% of known variants were predicted null alleles, while 11 were missense and 2 affected noncanonical splice sites. Age at ascertainment appeared as the unique phenotypic discriminator with earlier age more commonly associated with facial dysmorphism (p .02), high/cleft palate (p .005), intellectual disability/global developmental delay (p .013), and seizures (p .024). No specific genotype-phenotype correlations were identified. This work confirmed the existence of an attenuated phenotype associated with ATP6V0A2 biallelic variants and offers an updated critique to the clinical and molecular variability of ARCL2A.
Collapse
Affiliation(s)
- Silvia Morlino
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Grazia Nardella
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Stefano Castellana
- Unit of Bioinformatics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Lucia Micale
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Massimiliano Copetti
- Unit of Biostatistics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Carmela Fusco
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| |
Collapse
|
11
|
Safka Brozkova D, Stojkovic T, Haberlová J, Mazanec R, Windhager R, Fernandes Rosenegger P, Hacker S, Züchner S, Kochański A, Leonard-Louis S, Francou B, Latour P, Senderek J, Seeman P, Auer-Grumbach M. Demyelinating Charcot-Marie-Tooth neuropathy associated with FBLN5 mutations. Eur J Neurol 2020; 27:2568-2574. [PMID: 32757322 DOI: 10.1111/ene.14463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/29/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Charcot-Marie-Tooth disease type 1 (CMT1) is a group of autosomal dominantly inherited demyelinating sensorimotor neuropathies. Symptoms usually start in the first to second decade and include distal muscle weakness and wasting, sensory disturbances and foot deformities. The most frequent cause is a duplication of PMP22 whilst point mutations in PMP22 and other genes are rare causes. Recently, FBLN5 mutations have been reported in CMT1 families. METHODS Individuals with FBLN5-associated CMT1 were compiled from clinical and research genetic testing laboratories. Clinical data were extracted from medical records or obtained during patients' visits at our centres or primary care sites. RESULTS Nineteen CMT1 families containing 38 carriers of three different FBLN5 missense variants were identified and a mutational hotspot at c.1117C>T (p.Arg373Cys) was confirmed. Compared to patients with the common PMP22 duplication, individuals with FBLN5 variants had a later age of diagnosis (third to fifth decade) and less severely reduced motor median nerve conduction velocities (around 31 m/s). The most frequent clinical presentations were prominent sensory disturbances and painful sensations, often as initial symptom and pronounced in the upper limbs, contrasting with rather mild to moderate motor deficits. CONCLUSIONS Our study confirms the relevance of FBLN5 mutations in CMT1. It is proposed to include FBLN5 in the genetic work-up of individuals suspected with CMT1, particularly when diagnosis is established beyond the first and second decade and comparably moderate motor deficits contrast with early and marked sensory involvement. FBLN5-associated CMT1 has a recognizable clinical phenotype and should be referred to as CMT1H according to the current classification scheme.
Collapse
Affiliation(s)
- D Safka Brozkova
- DNA Laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - T Stojkovic
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, APHP, G-H Pitié-Salpêtrière, Paris, France
| | - J Haberlová
- DNA Laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - R Mazanec
- Department of Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - R Windhager
- Department of Orthopaedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - P Fernandes Rosenegger
- Department of Orthopaedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - S Hacker
- Department of Orthopaedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - S Züchner
- Dr John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - A Kochański
- Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - S Leonard-Louis
- Unité de Pathologie Neuromusculaire, Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, APHP, G-H Pitié-Salpêtrière, Paris, France
| | - B Francou
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, APHP, Hôpital Kremlin-Bicêtre, Paris, France
| | - P Latour
- Service de Biochimie et Biologie Moléculaire Grand Est, CHU de Lyon, GH Est, Bron, France
| | - J Senderek
- Department of Neurology, Friedrich-Baur-Institute, LMU Munich, Munich, Germany
| | - P Seeman
- DNA Laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - M Auer-Grumbach
- Department of Orthopaedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Beyens A, Boel A, Symoens S, Callewaert B. Cutis laxa: A comprehensive overview of clinical characteristics and pathophysiology. Clin Genet 2020; 99:53-66. [PMID: 33058140 DOI: 10.1111/cge.13865] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/17/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
Abstract
Cutis laxa (CL) syndromes comprise a rare group of multisystem disorders that share loose redundant skin folds as hallmark clinical feature. CL results from impaired elastic fiber assembly and homeostasis, and the known underlying gene defects affect different extracellular matrix proteins, intracellular trafficking, or cellular metabolism. Due to the underlying clinical and molecular heterogeneity, the diagnostic work-up of CL patients is often challenging. In this review, we provide a practical approach to the broad differential diagnosis of CL syndromes, provide an overview of the molecular pathogenesis of the different subtypes, and suggest general management guidelines.
Collapse
Affiliation(s)
- Aude Beyens
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Dermatology, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Annekatrien Boel
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sofie Symoens
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Kapoor S, Vats P, Polipalli S, Yuvaraj P. Predominant Motor Delay as a Major Presenting Clinical Sign in Cutis Laxa— Report of a Case with Review of Literature. Neurol India 2020; 68:919-921. [DOI: 10.4103/0028-3886.293457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Biallelic variants in EFEMP1 in a man with a pronounced connective tissue phenotype. Eur J Hum Genet 2019; 28:445-452. [PMID: 31792352 DOI: 10.1038/s41431-019-0546-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 12/30/2022] Open
Abstract
Connective tissue disorders are a spectrum of diseases that affect the integrity of tissues including skin, vasculature, and joints. They are often caused by variants that disrupt genes encoding components of extracellular matrix (ECM). The fibulin glycoproteins are ECM proteins important for integrity of tissues including dermis, retina, fascia, and vasculature. The fibulin family consists of seven members (fibulins-1 to -7) and is defined by a fibulin-type domain at the C-terminus. The family is associated with human diseases, for instance a variant in FBLN1, encoding fibulin-1, is associated with synpolydactyly, while one in EFEMP1, encoding fibulin-3, causes Doyne honeycomb degeneration of the retina. Loss-of-function of fibulins-4 and -5 causes cutis laxa, while variants in fibulins-5 and -6 are associated with age-related macular degeneration. Of note, EFEMP1 is not currently associated with any connective tissue disorder. Here we show biallelic loss-of-function variants in EFEMP1 in an individual with multiple and recurrent abdominal and thoracic herniae, myopia, hypermobile joints, scoliosis, and thin translucent skin. Fibroblasts from this individual express significantly lower EFEMP1 transcript than age-matched control cells. A skin biopsy, visualised using light microscopy, showed normal structure and abundance of elastic fibres. The phenotype of this individual is remarkably similar to the Efemp1 knockout mouse model that displays multiple herniae with premature aging and scoliosis. We conclude that loss of EFEMP1 function in this individual is the cause of a connective tissue disorder with a novel combination of phenotypic features, and can perhaps explain similar, previously reported cases in the literature.
Collapse
|
15
|
De novo variants in an extracellular matrix protein coding gene, fibulin-5 (FBLN5) are associated with pseudoexfoliation. Eur J Hum Genet 2019; 27:1858-1866. [PMID: 31358954 DOI: 10.1038/s41431-019-0482-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 07/05/2019] [Accepted: 07/16/2019] [Indexed: 02/08/2023] Open
Abstract
Fibulin-5 (FBLN5), an extracellular scaffold protein, plays a crucial role in the activation of Lysyl oxidase like-1 (LOXL1), a tropoelastin crosslinking enzyme, and subsequent deposition of elastin in the extracellular matrix. Following study identifies polymorphisms within FBLN5 gene as risk factors and its aberrant expression in the pathogenesis of an ocular disorder, pseudoexfoliation (PEX). Exons and exon-intron boundaries within FBLN5 gene were scanned through fluorescence-based capillary electrophoresis for polymorphisms as risk factors for PEX pathogenesis in recruited study subjects with Indian ethnicity. mRNA and protein expression of FBLN5 was checked in lens capsule of study subjects through qRT-PCR and western blotting, respectively. In vitro functional analysis of risk variants was done through luciferase reporter assays. Thirty study subjects from control and PEX affected groups were scanned for potential risk variants. Putative polymorphisms identified by scanning were further evaluated for genetic association in a larger sample size comprising of 338 control and 375 PEX affected subjects. Two noncoding polymorphisms, hg38 chr14:g.91947643G>A (rs7149187:G>A) and hg38 chr14:g.91870431T>C (rs929608:T>C) within FBLN5 gene are found to be significantly associated with PEX as risk factors with a p-value of 0.005 and 0.004, respectively. Molecular assays showed a decreased expression of FBLN5 at both mRNA and protein level in lens capsule of pseudoexfoliation syndrome (PEXS) affected subjects than control. This study unravels two novel risk variants within FBLN5 gene in the pathogenesis of PEX. Further, a decreased expression of FBLN5 in PEXS affected lens capsules implicates a pathogenic link between extracellular matrix maintenance and onset of PEX.
Collapse
|
16
|
Okuneva EG, Kozina AA, Baryshnikova NV, Krasnenko AY, Tsukanov KY, Klimchuk OI, Surkova EI, Ilinsky VV. A novel elastin gene frameshift mutation in a Russian family with cutis laxa: a case report. BMC DERMATOLOGY 2019; 19:4. [PMID: 30704477 PMCID: PMC6357400 DOI: 10.1186/s12895-019-0084-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/28/2019] [Indexed: 12/30/2022]
Abstract
Background Cutis laxa (CL) is a rare connective tissue disorder characterized by loose, redundant, inelastic and wrinkled skin. Patients develop a prematurely aged appearance. Inheritance can be autosomal dominant or autosomal recessive. The X-linked form is now classified in the group of copper transport diseases. Autosomal dominant CL is characterized by wrinkled, redundant and sagging, inelastic skin and in some cases is associated with internal organ involvement. Case presentation We report a familial case of autosomal dominant CL, which includes a 33-year-old woman and her 11-year-old son with dry, thin and wrinkled skin that appeared prematurely aged. No serious involvement of internal organs was found. In both patients, we identified novel heterozygous mutation c.2323delG (p.Ala775fs) in exon 34 of elastin transcript NM_001278939.1. Similar frameshift mutations in the last exons of elastin gene were previously reported in patients with autosomal dominant CL. Conclusions Our results show a novel frameshift mutation that was found in patients with cutis laxa. Exome sequencing is effective and useful technology for properly diagnosis of diseases with similar phenotype to ensure proper treatment is provided.
Collapse
Affiliation(s)
- E G Okuneva
- Genotek Ltd., Nastavnicheskii pereulok 17/1, 105120, Moscow, Russia
| | - A A Kozina
- Institute of Biomedical Chemistry, Pogodinskaya street 10 building 8, 119121, Moscow, Russia
| | - N V Baryshnikova
- Genotek Ltd., Nastavnicheskii pereulok 17/1, 105120, Moscow, Russia.,Pirogov Russian National Research Medical University, Ostrovitianova street 1, 117997, Moscow, Russia
| | - A Yu Krasnenko
- Genotek Ltd., Nastavnicheskii pereulok 17/1, 105120, Moscow, Russia.,Pirogov Russian National Research Medical University, Ostrovitianova street 1, 117997, Moscow, Russia
| | - K Yu Tsukanov
- Genotek Ltd., Nastavnicheskii pereulok 17/1, 105120, Moscow, Russia
| | - O I Klimchuk
- Genotek Ltd., Nastavnicheskii pereulok 17/1, 105120, Moscow, Russia
| | - E I Surkova
- Genotek Ltd., Nastavnicheskii pereulok 17/1, 105120, Moscow, Russia.
| | - V V Ilinsky
- Pirogov Russian National Research Medical University, Ostrovitianova street 1, 117997, Moscow, Russia.,Vavilov Institute of General Genetics, Gubkina street 3, 119333, Moscow, Russia
| |
Collapse
|
17
|
Roles of short fibulins, a family of matricellular proteins, in lung matrix assembly and disease. Matrix Biol 2018; 73:21-33. [DOI: 10.1016/j.matbio.2018.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/26/2017] [Accepted: 02/01/2018] [Indexed: 12/19/2022]
|
18
|
Extracellular Interactions between Fibulins and Transforming Growth Factor (TGF)-β in Physiological and Pathological Conditions. Int J Mol Sci 2018; 19:ijms19092787. [PMID: 30227601 PMCID: PMC6163299 DOI: 10.3390/ijms19092787] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional peptide growth factor that has a vital role in the regulation of cell growth, differentiation, inflammation, and repair in a variety of tissues, and its dysregulation mediates a number of pathological conditions including fibrotic disorders, chronic inflammation, cardiovascular diseases, and cancer progression. Regulation of TGF-β signaling is multifold, but one critical site of regulation is via interaction with certain extracellular matrix (ECM) microenvironments, as TGF-β is primarily secreted as a biologically inactive form sequestrated into ECM. Several ECM proteins are known to modulate TGF-β signaling via cell–matrix interactions, including thrombospondins, SPARC (Secreted Protein Acidic and Rich in Cystein), tenascins, osteopontin, periostin, and fibulins. Fibulin family members consist of eight ECM glycoproteins characterized by a tandem array of calcium-binding epidermal growth factor-like modules and a common C-terminal domain. Fibulins not only participate in structural integrity of basement membrane and elastic fibers, but also serve as mediators for cellular processes and tissue remodeling as they are highly upregulated during embryonic development and certain disease processes, especially at the sites of epithelial–mesenchymal transition (EMT). Emerging studies have indicated a close relationship between fibulins and TGF-β signaling, but each fibulin plays a different role in a context-dependent manner. In this review, regulatory interactions between fibulins and TGF-β signaling are discussed. Understanding biological roles of fibulins in TGF-β regulation may introduce new insights into the pathogenesis of some human diseases.
Collapse
|
19
|
Lin CJ, Lin CY, Stitziel NO. Genetics of the extracellular matrix in aortic aneurysmal diseases. Matrix Biol 2018; 71-72:128-143. [PMID: 29656146 DOI: 10.1016/j.matbio.2018.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 12/17/2022]
Abstract
Aortic aneurysms are morbid conditions that can lead to rupture or dissection and are categorized as thoracic (TAA) or abdominal aortic aneurysms (AAA) depending on their location. While AAA shares overlapping risk factors with atherosclerotic cardiovascular disease, TAA exhibits strong heritability. Human genetic studies in the past two decades have successfully identified numerous genes involved in both familial and sporadic forms of aortic aneurysm. In this review we will discuss the genetic basis of aortic aneurysm, focusing on the extracellular matrix and how insights from these studies have informed our understanding of human biology and disease pathogenesis.
Collapse
Affiliation(s)
- Chien-Jung Lin
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - Chieh-Yu Lin
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nathan O Stitziel
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; McDonell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
20
|
A novel case of autosomal dominant cutis laxa in a consanguineous family: report and literature review. Clin Dysmorphol 2017; 26:142-147. [PMID: 28383366 DOI: 10.1097/mcd.0000000000000179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Autosomal dominant cutis laxa (ADCL, OMIM #123700) is a rare connective tissue disorder characterized by loose, redundant skin folds that may be apparent form birth or appear later in life. Most severely affected areas are the neck, axillar regions, trunk, and groin. Typically, patients present with characteristic facial features including a premature aged appearance, long philtrum, a high forehead, large ears, and a beaked nose. Cardiovascular and pulmonary complications include bicuspid aortic valves, aortic root dilatation, and emphysema. Sporadically, these complications have been documented to cause premature death. Several rare findings including urogenital anomalies and gastroesophageal problems can be also occur. Most patients harbor a frameshift mutation in one of the five last exons of the ELN gene (ADCL1, OMIM #123700), whereas one patient was described to have a tandem duplication in the FBLN5 gene (ADCL2, OMIM #614434). Here, we present a female ADCL patient, from a consanguineous family, with a novel mutation in ELN and review 39 previously reported ADCL patients. All patients have various skin findings, whereas cardiovascular, pulmonary findings, and multiple hernia were present in 61, 28, and 38% of patients, respectively. Strabismus, urogenital anomalies, gastroesophageal problems, and scoliosis may rarely be present. A clear definition of the ADCL syndrome can enable more accurate genetic counseling.
Collapse
|
21
|
Genome-wide association analysis for chronic venous disease identifies EFEMP1 and KCNH8 as susceptibility loci. Sci Rep 2017; 7:45652. [PMID: 28374850 PMCID: PMC5379489 DOI: 10.1038/srep45652] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/28/2017] [Indexed: 12/31/2022] Open
Abstract
Chronic venous disease (CVD) is a multifactorial condition representing one of the most common disorders among populations of Western countries. The heritability of about 17% suggests genetic risk factors in CVD etiology. However, so far the genetic causes are unknown. We undertook the hitherto first genome-wide association study (GWAS) for CVD, analyzing more than 1.93 M SNPs in 4,942 German individuals, followed by replication in two independent German data sets. The combined analysis of discovery and replication stages (2,269 cases and 7,765 controls) yielded robust associations within the two genes EFEMP1 and KCNH8 (rs17278665, rs727139 with P < 5 × 10−8), and suggestive association within gene SKAP2 (rs2030136 with P < 5 × 10−7). Association signals of rs17278665 and rs727139 reside in regions of low linkage disequilibrium containing no other genes. Data from the ENCODE and Roadmap Epigenomics projects show that tissue specific marks overlap with the variants. SNPs rs17278665 and rs2030136 are known eQTLs. Our study demonstrates that GWAS are a valuable tool to study the genetic component of CVD. With our approach, we identified two novel genome-wide significant susceptibility loci for this common disease. Particularly, the extracellular matrix glycoprotein EFEMP1 is promising for future functional studies due to its antagonistic role in vessel development and angiogenesis.
Collapse
|
22
|
Abstract
Age-related macular degeneration (AMD), widely prevalent across the globe, is a major stakeholder among adult visual morbidity and blindness, not only in the Western world but also in Asia. Several risk factors have been identified, including critical genetic factors, which were never imagined 2 decades ago. The etiopathogenesis is emerging to demonstrate that immune and complement-related inflammation pathway members chronically exposed to environmental insults could justifiably influence disease morbidity and treatment outcomes. Approximately half a dozen physiological and biochemical cascades are disrupted in the AMD disease genesis, eventually leading to the distortion and disruption of the subretinal space, subretinal pigment epithelium, and Bruch membrane, thus setting off chaos and disorder for signs and symptoms to manifest. Approximately 3 dozen genetic factors have so far been identified, including the recent ones, through powerful genomic technologies and large robust sample sizes. The noteworthy genetic variants (common and rare) are complement factor H, complement factor H-related genes 1 to 5, C3, C9, ARMS2/HTRA1, vascular endothelial growth factor A, vascular endothelial growth factor receptor 2/KDR, and rare variants (show causal link) such as TIMP3, fibrillin, COL4A3, MMP19, and MMP9. Despite the enormous amount of scientific information generated over the years, diagnostic genetic or biomarker tests are still not available for clinicians to understand the natural course of the disease and its management in a patient. However, further research in the field should reduce this gap not only by aiding the clinician but also through the possibilities of clinical intervention with complement pathway-related inhibitors entering preclinical and clinical trials in the near future.
Collapse
|
23
|
Lambert NG, ElShelmani H, Singh MK, Mansergh FC, Wride MA, Padilla M, Keegan D, Hogg RE, Ambati BK. Risk factors and biomarkers of age-related macular degeneration. Prog Retin Eye Res 2016; 54:64-102. [PMID: 27156982 DOI: 10.1016/j.preteyeres.2016.04.003] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/01/2016] [Accepted: 04/12/2016] [Indexed: 02/03/2023]
Abstract
A biomarker can be a substance or structure measured in body parts, fluids or products that can affect or predict disease incidence. As age-related macular degeneration (AMD) is the leading cause of blindness in the developed world, much research and effort has been invested in the identification of different biomarkers to predict disease incidence, identify at risk individuals, elucidate causative pathophysiological etiologies, guide screening, monitoring and treatment parameters, and predict disease outcomes. To date, a host of genetic, environmental, proteomic, and cellular targets have been identified as both risk factors and potential biomarkers for AMD. Despite this, their use has been confined to research settings and has not yet crossed into the clinical arena. A greater understanding of these factors and their use as potential biomarkers for AMD can guide future research and clinical practice. This article will discuss known risk factors and novel, potential biomarkers of AMD in addition to their application in both academic and clinical settings.
Collapse
Affiliation(s)
- Nathan G Lambert
- Ambati Lab, John A. Moran Eye Center, 65 Mario Capecchi Drive, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA.
| | - Hanan ElShelmani
- Ocular Development and Neurobiology Research Group, Zoology Department, School of Natural Sciences, University of Dublin, Trinity College, Dublin 2, Ireland.
| | - Malkit K Singh
- Ambati Lab, John A. Moran Eye Center, 65 Mario Capecchi Drive, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA.
| | - Fiona C Mansergh
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| | - Michael A Wride
- Ocular Development and Neurobiology Research Group, Zoology Department, School of Natural Sciences, University of Dublin, Trinity College, Dublin 2, Ireland.
| | - Maximilian Padilla
- Ambati Lab, John A. Moran Eye Center, 65 Mario Capecchi Drive, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA.
| | - David Keegan
- Mater Misericordia Hospital, Eccles St, Dublin 7, Ireland.
| | - Ruth E Hogg
- Centre for Experimental Medicine, Institute of Clinical Science Block A, Grosvenor Road, Belfast, Co.Antrim, Northern Ireland, UK.
| | - Balamurali K Ambati
- Ambati Lab, John A. Moran Eye Center, 65 Mario Capecchi Drive, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA.
| |
Collapse
|
24
|
Qa'aty N, Vincent M, Wang Y, Wang A, Mitts TF, Hinek A. Synthetic ligands of the elastin receptor induce elastogenesis in human dermal fibroblasts via activation of their IGF-1 receptors. J Dermatol Sci 2015; 80:175-85. [PMID: 26475432 DOI: 10.1016/j.jdermsci.2015.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/19/2015] [Accepted: 10/01/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND We have previously reported that a mixture of peptides obtained after chemical or enzymatic degradation of bovine elastin, induced new elastogenesis in human skin. OBJECTIVE Now, we investigated the elastogenic potential of synthetic peptides mimicking the elastin-derived, VGVAPG sequence, IGVAPG sequence that we found in the rice bran, and a similar peptide, VGVTAG that we identified in the IGF-1-binding protein-1 (IGFBP-1). RESULTS We now demonstrate that treatment with each of these xGVxxG peptides (recognizable by the anti-elastin antibody), up-regulated the levels of elastin-encoding mRNA, tropoelastin protein, and the deposition of new elastic fibers in cultures of human dermal fibroblasts and in cultured explants of human skin. Importantly, we found that such induction of new elastogenesis may involve two parallel signaling pathways triggered after activation of IGF-1 receptor. In the first one, the xGVxxG peptides interact with the cell surface elastin receptor, thereby causing the downstream activation of the c-Src kinase and a consequent cross-activation of the adjacent IGF-1R, even in the absence of its principal ligand. In the second pathway their hydrophobic association with the N-terminal domain (VGVTAG) of the serum-derived IGFBP-1 induces conformational changes of this IGF-1 chaperone allowing for the release of its cargo and a consequent ligand-specific phosphorylation of IGF-1R. CONCLUSION We present a novel, clinically relevant mechanism in which products of partial degradation of dermal elastin may stimulate production of new elastic fibers by dermal fibroblasts. Our findings particularly encourage the use of biologically safe synthetic xGVxxG peptides for regeneration of the injured or aged human skin.
Collapse
Affiliation(s)
- Nour Qa'aty
- Physiology & Experimental Medicine Program, Hospital for Sick Children, ON, Canada; Institute of Medical Science, University of Toronto, ON, Canada
| | - Matthew Vincent
- Physiology & Experimental Medicine Program, Hospital for Sick Children, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| | - Yanting Wang
- Physiology & Experimental Medicine Program, Hospital for Sick Children, ON, Canada
| | - Andrew Wang
- Physiology & Experimental Medicine Program, Hospital for Sick Children, ON, Canada
| | | | - Aleksander Hinek
- Physiology & Experimental Medicine Program, Hospital for Sick Children, ON, Canada; Institute of Medical Science, University of Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada.
| |
Collapse
|
25
|
Fischer-Zirnsak B, Escande-Beillard N, Ganesh J, Tan Y, Al Bughaili M, Lin A, Sahai I, Bahena P, Reichert S, Loh A, Wright G, Liu J, Rahikkala E, Pivnick E, Choudhri A, Krüger U, Zemojtel T, van Ravenswaaij-Arts C, Mostafavi R, Stolte-Dijkstra I, Symoens S, Pajunen L, Al-Gazali L, Meierhofer D, Robinson P, Mundlos S, Villarroel C, Byers P, Masri A, Robertson S, Schwarze U, Callewaert B, Reversade B, Kornak U. Recurrent De Novo Mutations Affecting Residue Arg138 of Pyrroline-5-Carboxylate Synthase Cause a Progeroid Form of Autosomal-Dominant Cutis Laxa. Am J Hum Genet 2015; 97:483-92. [PMID: 26320891 DOI: 10.1016/j.ajhg.2015.08.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/03/2015] [Indexed: 11/24/2022] Open
Abstract
Progeroid disorders overlapping with De Barsy syndrome (DBS) are collectively denoted as autosomal-recessive cutis laxa type 3 (ARCL3). They are caused by biallelic mutations in PYCR1 or ALDH18A1, encoding pyrroline-5-carboxylate reductase 1 and pyrroline-5-carboxylate synthase (P5CS), respectively, which both operate in the mitochondrial proline cycle. We report here on eight unrelated individuals born to non-consanguineous families clinically diagnosed with DBS or wrinkly skin syndrome. We found three heterozygous mutations in ALDH18A1 leading to amino acid substitutions of the same highly conserved residue, Arg138 in P5CS. A de novo origin was confirmed in all six probands for whom parental DNA was available. Using fibroblasts from affected individuals and heterologous overexpression, we found that the P5CS-p.Arg138Trp protein was stable and able to interact with wild-type P5CS but showed an altered sub-mitochondrial distribution. A reduced size upon native gel electrophoresis indicated an alteration of the structure or composition of P5CS mutant complex. Furthermore, we found that the mutant cells had a reduced P5CS enzymatic activity leading to a delayed proline accumulation. In summary, recurrent de novo mutations, affecting the highly conserved residue Arg138 of P5CS, cause an autosomal-dominant form of cutis laxa with progeroid features. Our data provide insights into the etiology of cutis laxa diseases and will have immediate impact on diagnostics and genetic counseling.
Collapse
|
26
|
Vanakker O, Callewaert B, Malfait F, Coucke P. The Genetics of Soft Connective Tissue Disorders. Annu Rev Genomics Hum Genet 2015; 16:229-55. [DOI: 10.1146/annurev-genom-090314-050039] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Olivier Vanakker
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Fransiska Malfait
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Paul Coucke
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
| |
Collapse
|
27
|
Gardeitchik T, Mohamed M, Fischer B, Lammens M, Lefeber D, Lace B, Parker M, Kim KJ, Lim BC, Häberle J, Garavelli L, Jagadeesh S, Kariminejad A, Guerra D, Leão M, Keski-Filppula R, Brunner H, Nijtmans L, van den Heuvel B, Wevers R, Kornak U, Morava E. Clinical and biochemical features guiding the diagnostics in neurometabolic cutis laxa. Eur J Hum Genet 2014; 22:888-95. [PMID: 23963297 PMCID: PMC4060105 DOI: 10.1038/ejhg.2013.154] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 01/01/2023] Open
Abstract
Patients with cutis laxa (CL) have wrinkled, sagging skin with decreased elasticity. Skin symptoms are associated with variable systemic involvement. The most common, genetically highly heterogeneous form of autosomal recessive CL, ARCL2, is frequently associated with variable metabolic and neurological symptoms. Progeroid symptoms, dysmorphic features, hypotonia and psychomotor retardation are highly overlapping in the early phase of these disorders. This makes the genetic diagnosis often challenging. In search for discriminatory symptoms, we prospectively evaluated clinical, neurologic, metabolic and genetic features in our patient cohort referred for suspected ARCL. From a cohort of 26 children, we confirmed mutations in genes associated with ARCL in 16 children (14 probands), including 12 novel mutations. Abnormal glycosylation and gyration abnormalities were mostly, but not always associated with ATP6V0A2 mutations. Epilepsy was most common in ATP6V0A2 defects. Corpus callosum dysgenesis was associated with PYCR1 and ALDH18A1 mutations. Dystonic posturing was discriminatory for PYCR1 and ALDH18A1 defects. Metabolic markers of mitochondrial dysfunction were found in one patient with PYCR1 mutations. So far unreported white matter abnormalities were found associated with GORAB and RIN2 mutations. We describe a large cohort of CL patients with neurologic involvement. Migration defects and corpus callosum hypoplasia were not always diagnostic for a specific genetic defect in CL. All patients with ATP6V0A2 defects had abnormal glycosylation. To conclude, central nervous system and metabolic abnormalities were discriminatory in this genetically heterogeneous group, although not always diagnostic for a certain genetic defect in CL.
Collapse
Affiliation(s)
- Thatjana Gardeitchik
- Department of Pediatrics, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Miski Mohamed
- Department of Pediatrics, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Björn Fischer
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin, Berlin, Germany
| | - Martin Lammens
- Department of Pathology, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Dirk Lefeber
- Department of Neurology, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Baiba Lace
- Medical Genetics Clinic, Children's Clinical University Hospital, Riga, Latvia
| | - Michael Parker
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Sheffield, UK
| | - Ki-Joong Kim
- Department of Pediatrics, Seoul National University Hospital, Seoul, South Korea
| | - Bing C Lim
- Department of Pediatrics, Seoul National University Hospital, Seoul, South Korea
| | - Johannes Häberle
- Department of Pediatrics, University Children's Hospital, Zürich, Switzerland
| | - Livia Garavelli
- Clinical Genetics Unit, Obstetric and Pediatric Department, Santa Maria Nuova Hospital IRCCS, Reggio Emilia, Italy
| | | | | | - Deanna Guerra
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Michel Leão
- Pediatric Neurology Unit and Neurogenetics Unit, Hospital S João, Porto, Portugal
| | | | - Han Brunner
- Department of Human Genetics, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Leo Nijtmans
- Department of Pediatrics, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bert van den Heuvel
- Department of Pediatrics, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
- Laboratory for Genetic Endocrine and Metabolic Diseases, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ron Wevers
- Department of Pediatrics, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
- Laboratory for Genetic Endocrine and Metabolic Diseases, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin, Berlin, Germany
- FG Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Eva Morava
- Department of Pediatrics, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
- Hayward Genetics Center, Tulane University Medical Center, New Orleans, LA, USA
| |
Collapse
|
28
|
Kantaputra PN, Kaewgahya M, Wiwatwongwana A, Wiwatwongwana D, Sittiwangkul R, Iamaroon A, Dejkhamron P. Cutis laxa with pulmonary emphysema, conjunctivochalasis, nasolacrimal duct obstruction, abnormal hair, and a novel FBLN5 mutation. Am J Med Genet A 2014; 164A:2370-7. [PMID: 24962763 DOI: 10.1002/ajmg.a.36630] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 05/16/2014] [Indexed: 12/15/2022]
Abstract
We report on a 4-year-old girl with autosomal recessive cutis laxa, type IA, or pulmonary emphysema type (ARCL1A; OMIM #219100), with loose and wrinkled skin, mitral and tricuspid valve prolapse, conjunctivochalasis, obstructed nasolacrimal ducts, hypoplastic maxilla, and early childhood-onset pulmonary emphysema. Mutation analysis of FBLN5 showed a homozygous c.432C>G missense mutation, and heterozygosity in the parents. This is predicted to cause amino acid substitution p.Cys144Trp. Conjunctivochalasis or redundant folds of conjunctiva and obstructed nasolacrimal ducts have not been reported to be associated with FBLN5 mutations. Histopathological study of the conjunctival biopsy showed that most blood vessels had normal elastic fibers. The gingiva appeared normal, but histologically elastic fibers were defective. Scanning electron micrography of scalp hair demonstrated hypoplastic hair follicles. The cuticles appear intact underneath the filamentous meshwork.
Collapse
Affiliation(s)
- Piranit Nik Kantaputra
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai, Thailand; Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand; Craniofacial Genetics Laboratory, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand; Dentaland Clinic, Chiang Mai, Thailand
| | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Hadj-Rabia S, Callewaert BL, Bourrat E, Kempers M, Plomp AS, Layet V, Bartholdi D, Renard M, De Backer J, Malfait F, Vanakker OM, Coucke PJ, De Paepe AM, Bodemer C. Twenty patients including 7 probands with autosomal dominant cutis laxa confirm clinical and molecular homogeneity. Orphanet J Rare Dis 2013; 8:36. [PMID: 23442826 PMCID: PMC3599008 DOI: 10.1186/1750-1172-8-36] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/14/2013] [Indexed: 01/15/2023] Open
Abstract
Background Elastin gene mutations have been associated with a variety of phenotypes. Autosomal dominant cutis laxa (ADCL) is a rare disorder that presents with lax skin, typical facial characteristics, inguinal hernias, aortic root dilatation and pulmonary emphysema. In most patients, frameshift mutations are found in the 3’ region of the elastin gene (exons 30-34) which result in a C-terminally extended protein, though exceptions have been reported. Methods We clinically and molecularly characterized the thus far largest cohort of ADCL patients, consisting of 19 patients from six families and one sporadic patient. Results Molecular analysis showed C-terminal frameshift mutations in exon 30, 32, and 34 of the elastin gene and identified a mutational hotspot in exon 32 (c.2262delA). This cohort confirms the previously reported clinical constellation of skin laxity (100%), inguinal hernias (51%), aortic root dilatation (55%) and emphysema (37%). Conclusion ADCL is a clinically and molecularly homogeneous disorder, but intra- and interfamilial variability in the severity of organ involvement needs to be taken into account. Regular cardiovascular and pulmonary evaluations are imperative in the clinical follow-up of these patients.
Collapse
Affiliation(s)
- Smail Hadj-Rabia
- Service de Dermatologie - Centre de référence national des Maladies Génétiques à Expression Cutanée MAGEC, INSERM U781, Hôpital Necker - Enfants Malades, Université Paris V-Descartes, 149, rue de Sèvres 75743 Paris Cedex 15, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Šafka Brozková D, Laššuthová P, Neupauerová J, Krůtová M, Haberlová J, Stejskal D, Seeman P. Czech family confirms the link between FBLN5 and Charcot-Marie-Tooth type 1 neuropathy. ACTA ACUST UNITED AC 2013; 136:e232. [PMID: 23328402 DOI: 10.1093/brain/aws333] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Callewaert B, Su CT, Van Damme T, Vlummens P, Malfait F, Vanakker O, Schulz B, Mac Neal M, Davis EC, Lee JGH, Salhi A, Unger S, Heimdal K, De Almeida S, Kornak U, Gaspar H, Bresson JL, Prescott K, Gosendi ME, Mansour S, Piérard GE, Madan-Khetarpal S, Sciurba FC, Symoens S, Coucke PJ, Van Maldergem L, Urban Z, De Paepe A. Comprehensive clinical and molecular analysis of 12 families with type 1 recessive cutis laxa. Hum Mutat 2012; 34:111-21. [PMID: 22829427 DOI: 10.1002/humu.22165] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 07/06/2012] [Indexed: 12/17/2022]
Abstract
Autosomal recessive cutis laxa type I (ARCL type I) is characterized by generalized cutis laxa with pulmonary emphysema and/or vascular complications. Rarely, mutations can be identified in FBLN4 or FBLN5. Recently, LTBP4 mutations have been implicated in a similar phenotype. Studying FBLN4, FBLN5, and LTBP4 in 12 families with ARCL type I, we found bi-allelic FBLN5 mutations in two probands, whereas nine probands harbored biallelic mutations in LTBP4. FBLN5 and LTBP4 mutations cause a very similar phenotype associated with severe pulmonary emphysema, in the absence of vascular tortuosity or aneurysms. Gastrointestinal and genitourinary tract involvement seems to be more severe in patients with LTBP4 mutations. Functional studies showed that most premature termination mutations in LTBP4 result in severely reduced mRNA and protein levels. This correlated with increased transforming growth factor-beta (TGFβ) activity. However, one mutation, c.4127dupC, escaped nonsense-mediated decay. The corresponding mutant protein (p.Arg1377Alafs(*) 27) showed reduced colocalization with fibronectin, leading to an abnormal morphology of microfibrils in fibroblast cultures, while retaining normal TGFβ activity. We conclude that LTBP4 mutations cause disease through both loss of function and gain of function mechanisms.
Collapse
Affiliation(s)
- Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lin DS, Chang JH, Liu HL, Wei CH, Yeung CY, Ho CS, Shu CH, Chiang MF, Chuang CK, Huang YW, Wu TY, Jian YR, Huang ZD, Lin SP. Compound heterozygous mutations in PYCR1 further expand the phenotypic spectrum of De Barsy syndrome. Am J Med Genet A 2011; 155A:3095-3099. [PMID: 22052856 DOI: 10.1002/ajmg.a.34326] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 09/05/2011] [Indexed: 12/25/2022]
Abstract
De Barsy syndrome (DBS) is characterized by progeroid features, ophthalmological abnormalities, intrauterine growth retardation, and cutis laxa. Recently, PYCR1 mutations were identified in cutis laxa with progeroid features. Herein, we report on a DBS patient born to a nonconsanguineous Chinese family. The exceptional observation of congenital glaucoma, aortic root dilatation, and idiopathic hypertrophic pyloric stenosis in this patient widened the range of symptoms that have been noted in DBS. Mutation analysis of PYCR1 revealed compound heterozygous PYCR1 mutations, including a p.P115fsX7 null mutation allele and a second allele with two missense mutations in cis: p.G248E and p.G297R. The effect of mutation results in a reduction of PYCR1 mRNA expression and PYCR1 protein expression in skin fibroblasts from the patient. The findings presented here suggest a mutation screening of PYCR1 and cardiovascular survey in patients with DBS.
Collapse
Affiliation(s)
- Dar-Shong Lin
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Alexiades-Armenakas M. Aging facial skin: infrared broad band light technologies. Facial Plast Surg Clin North Am 2011; 19:361-70. [PMID: 21763996 DOI: 10.1016/j.fsc.2011.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The application of infrared broadband light is the more recent addition of nonsurgical laser and light-based treatment for skin laxity and rhytids. Infrared broadband light, when used with the mobile technique, offers a painless, safe, nonsurgical alternative treatment option for treatment of skin laxity on the face and neck. Multiple clinical studies have demonstrated improvements in skin laxity correlated histologically with neocollagenesis and neoelastogenesis over a 6-12 month period. The consistency of clinical improvement in skin laxity supports the use of this approach for moderate skin laxity.
Collapse
Affiliation(s)
- Macrene Alexiades-Armenakas
- Department of Dermatology, Dermatology and Laser Surgery Center, Yale University School of Medicine, 955 Park Avenue, New York, NY 10028, USA.
| |
Collapse
|
35
|
Kretz R, Bozorgmehr B, Kariminejad MH, Rohrbach M, Hausser I, Baumer A, Baumgartner M, Giunta C, Kariminejad A, Häberle J. Defect in proline synthesis: pyrroline-5-carboxylate reductase 1 deficiency leads to a complex clinical phenotype with collagen and elastin abnormalities. J Inherit Metab Dis 2011; 34:731-9. [PMID: 21487760 DOI: 10.1007/s10545-011-9319-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/15/2011] [Accepted: 03/18/2011] [Indexed: 12/16/2022]
Abstract
Pyrroline-5-carboxylate reductase 1 (PYCR1) catalyzes the last step in proline synthesis. Deficiency of PYCR1, caused by a defect in PYCR1, was recently described in patients with cutis laxa, intrauterine growth retardation, developmental dysplasia of the hips and mental retardation. In this paper, we describe additional six patients (ages ranging from 4 months to 55 years) from four Iranian families with clinical manifestations of a wrinkly skin disorder. All patients have distinct facial features comprising triangular face, loss of adipose tissue and thin pointed nose. Additional features are short stature, wrinkling over dorsum of hand and feet, visible veins over the chest and hyperextensible joints. Three of the patients from a large consanguineous family do not have mental retardation, while the remaining three patients from three unrelated families have mental and developmental delay. Mutation analysis revealed the presence of disease-causing variants in PYCR1, including a novel deletion of the entire PYCR1 gene in one family, and in each of the other patients the homozygous missense mutations c.616G > A (p.Gly206Arg), c.89T > A (p.Ile30Lys) and c.572G > A (p.Gly191Glu) respectively, the latter two of which are novel. Light- and electron microscopy investigations of skin biopsies showed smaller and fragmented elastic fibres, abnormal morphology of the mitochondria and their cristae, and slightly abnormal collagen fibril diameters with irregular outline and variable size. In conclusion, this study adds information on the natural course of PYCR1 deficiency and sheds light on the pathophysiology of this disorder. However, the exact pathogenesis of this new disorder and the role of proline in the development of the clinical phenotype remain to be fully explained.
Collapse
Affiliation(s)
- Rita Kretz
- Division of Metabolism, Kinderspital Zurich, Pediatric Research Centre, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lin DS, Yeung CY, Liu HL, Ho CS, Shu CH, Chuang CK, Huang YW, Wu TY, Huang ZD, Jian YR, Lin SP. A novel mutation in PYCR1 causes an autosomal recessive cutis laxa with premature aging features in a family. Am J Med Genet A 2011; 155A:1285-1289. [PMID: 21567914 DOI: 10.1002/ajmg.a.33963] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 01/22/2011] [Indexed: 01/18/2023]
Abstract
The autosomal recessive form of type II cutis laxa (ARCL II) is characterized by the appearance of redundant, inelastic skin with wrinkling, an aged look and additional variable systemic involvement including intrauterine growth retardation, failure to thrive, developmental delay, dysmorphism, osseous abnormality, and CNS manifestations. Several genetic defects have been found in patients and families with the clinical manifestations of ARCL II. Recently, mutations in PYCR1 have been linked to cutis laxa with progeroid features. We ascertained two siblings with of ARCL II born to non-consanguineous parents. Mutation analysis of PYCR1 revealed a novel single-base deletion (c.345delC) in exon 4 leading to frame-shift and premature stop of translation. The effect of this mutation results in a strong reduction of PYCR1 expression in skin fibroblasts from affected siblings. These two cases extend the genotypic spectrum of PYCR1-related ARCL II.
Collapse
Affiliation(s)
- Dar-Shong Lin
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Baets J, Timmerman V. Inherited peripheral neuropathies: a myriad of genes and complex phenotypes. Brain 2011; 134:1587-90. [DOI: 10.1093/brain/awr114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Auer-Grumbach M, Weger M, Fink-Puches R, Papić L, Fröhlich E, Auer-Grumbach P, El Shabrawi-Caelen L, Schabhüttl M, Windpassinger C, Senderek J, Budka H, Trajanoski S, Janecke AR, Haas A, Metze D, Pieber TR, Guelly C. Fibulin-5 mutations link inherited neuropathies, age-related macular degeneration and hyperelastic skin. ACTA ACUST UNITED AC 2011; 134:1839-52. [PMID: 21576112 DOI: 10.1093/brain/awr076] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To identify the disease-causing gene responsible for an autosomal dominantly inherited Charcot-Marie-Tooth neuropathy subtype in a family excluded for mutations in the common Charcot-Marie-Tooth genes, we used array-based sequence capture to simultaneously analyse the disease-linked protein coding exome at chromosome 14q32. A missense mutation in fibulin-5, encoding a widely expressed constituent of the extracellular matrix that has an essential role in elastic fibre assembly and has been shown to cause cutis laxa, was detected as the only novel non-synonymous sequence variant within the disease interval. Screening of 112 index probands with unclassified Charcot-Marie-Tooth neuropathies detected two further fibulin-5 missense mutations in two families with Charcot-Marie-Tooth disease and hyperextensible skin. Since fibulin-5 mutations have been described in patients with age-related macular degeneration, an additional 300 probands with exudative age-related macular degeneration were included in this study. Two further fibulin-5 missense mutations were identified in six patients. A mild to severe peripheral neuropathy was detected in the majority of patients with age-related macular degeneration carrying mutations in fibulin-5. This study identifies fibulin-5 as a gene involved in Charcot-Marie-Tooth neuropathies and reveals heterozygous fibulin-5 mutations in 2% of our patients with age-related macular degeneration. Furthermore, it adumbrates a new syndrome by linking concurrent pathologic alterations affecting peripheral nerves, eyes and skin to mutations in the fibulin-5 gene.
Collapse
Affiliation(s)
- Michaela Auer-Grumbach
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Medical University of Graz, Stiftingtalstraße 24; A-8010 Graz, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Callewaert B, Renard M, Hucthagowder V, Albrecht B, Hausser I, Blair E, Dias C, Albino A, Wachi H, Sato F, Mecham RP, Loeys B, Coucke PJ, De Paepe A, Urban Z. New insights into the pathogenesis of autosomal-dominant cutis laxa with report of five ELN mutations. Hum Mutat 2011; 32:445-55. [PMID: 21309044 DOI: 10.1002/humu.21462] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 01/11/2011] [Indexed: 12/16/2022]
Abstract
Autosomal dominant cutis laxa (ADCL) is characterized by a typical facial appearance and generalized loose skin folds, occasionally associated with aortic root dilatation and emphysema. We sequenced exons 28-34 of the ELN gene in five probands with ADCL features and found five de novo heterozygous mutations: c.2296_2299dupGCAG (CL-1), c.2333delC (CL-2), c.2137delG (CL-3), c.2262delA (monozygotic twin CL-4 and CL-5), and c.2124del25 (CL-6). Four probands (CL-1,-2,-3,-6) presented with progressive aortic root dilatation. CL-2 and CL-3 also had bicuspid aortic valves. CL-2 presented with severe emphysema. Electron microscopy revealed elastic fiber fragmentation and diminished dermal elastin deposition. RT-PCR studies showed stable mutant mRNA in all patients. Exon 32 skipping explains a milder phenotype in patients with exon 32 mutations. Mutant protein expression in fibroblast cultures impaired deposition of tropoelastin onto microfibril-containing fibers, and enhanced tropoelastin coacervation and globule formation leading to lower amounts of mature, insoluble elastin. Mutation-specific effects also included endoplasmic reticulum stress and increased apoptosis. Increased pSMAD2 staining in ADCL fibroblasts indicated enhanced transforming growth factor beta (TGF-β) signaling. We conclude that ADCL is a systemic disease with cardiovascular and pulmonary complications, associated with increased TGF-β signaling and mutation-specific differences in endoplasmic reticulum stress and apoptosis.
Collapse
Affiliation(s)
- Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ohara H, Akatsuka S, Nagai H, Liu YT, Jiang L, Okazaki Y, Yamashita Y, Nakamura T, Toyokuni S. Stage-specific roles of fibulin-5 during oxidative stress-induced renal carcinogenesis in rats. Free Radic Res 2010; 45:211-20. [PMID: 20942562 DOI: 10.3109/10715762.2010.523702] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
By using a rat model of renal cell carcinoma (RCC) induced by ferric nitrilotriacetate (Fe-NTA), this study performed genome-wide analysis to identify target genes during carcinogenesis. It screened for genes with decreased expression in RCCs, with simultaneous loss of heterozygosity, eventually to focus on the fibulin-5 (fbln5) gene. Oxidative damage via Fe-NTA markedly increased Fbln5 in the proximal tubules. RCCs presented lower levels of Fbln5. However, a fraction of RCCs presenting pulmonary metastasis revealed significantly higher levels of Fbln5 than those without metastasis, accompanied by immunopositivity of RCC cells and myofibroblast proliferation. Experiments revealed that RCC cell lines showed lower expression of fbln5 than its non-transformed counterpart NRK52E, but that fbln5 transfection to RCC cell lines changed neither proliferation nor migration/invasion. The data suggest that Fbln5 plays a role not only in the tissue repair and remodelling after renal tubular oxidative damage but also in RCC metastasis, presumably as a cytokine.
Collapse
Affiliation(s)
- Hiroki Ohara
- Department of Pathology and Biological Responses, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Schneider R, Jensen SA, Whiteman P, McCullagh JSO, Redfield C, Handford PA. Biophysical characterisation of fibulin-5 proteins associated with disease. J Mol Biol 2010; 401:605-17. [PMID: 20599547 DOI: 10.1016/j.jmb.2010.06.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 06/18/2010] [Accepted: 06/19/2010] [Indexed: 10/19/2022]
Abstract
FBLN5 encodes fibulin-5, an extracellular matrix calcium-binding glycoprotein that is essential for elastic fibre formation. FBLN5 mutations are associated with two distinct human diseases, age-related macular degeneration (AMD) and cutis laxa (CL), but the biochemical basis for the pathogenic effects of these mutations is poorly understood. Two missense mutations found in AMD patients (I169T and G267S) and two missense mutations found in CL patients (G202R and S227P) were analysed in a native-like context in recombinant fibulin-5 fragments. Limited proteolysis, NMR spectroscopy and chromophoric calcium chelation experiments showed that the G267S and S227P substitutions cause long-range structural effects consistent with protein misfolding. Cellular studies using fibroblast cells further demonstrated that these recombinant forms of mutant fibulin-5 were not present in the extracellular medium, consistent with retention. In contrast, no significant effects of I169T and G202R substitutions on protein fold and secretion were identified. These data establish protein misfolding as a causative basis for the effects of G267S and S227P substitutions in AMD and CL, respectively, and raise the possibility that the I169T and G202R substitutions may be polymorphisms or may increase susceptibility to disease.
Collapse
Affiliation(s)
- Ralf Schneider
- Laboratory of Genes and Development, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | | | |
Collapse
|
42
|
[Multiple intracranial aneurysms associated with cutis laxa syndrome: a report of 2 patients with 8 intracranial aneurysms]. ACTA ACUST UNITED AC 2010; 91:307-10. [PMID: 20508564 DOI: 10.1016/s0221-0363(10)70045-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Renard M, Holm T, Veith R, Callewaert BL, Adès LC, Baspinar O, Pickart A, Dasouki M, Hoyer J, Rauch A, Trapane P, Earing MG, Coucke PJ, Sakai LY, Dietz HC, De Paepe AM, Loeys BL. Altered TGFbeta signaling and cardiovascular manifestations in patients with autosomal recessive cutis laxa type I caused by fibulin-4 deficiency. Eur J Hum Genet 2010; 18:895-901. [PMID: 20389311 DOI: 10.1038/ejhg.2010.45] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fibulin-4 is a member of the fibulin family, a group of extracellular matrix proteins prominently expressed in medial layers of large veins and arteries. Involvement of the FBLN4 gene in cardiovascular pathology was shown in a murine model and in three patients affected with cutis laxa in association with systemic involvement. To elucidate the contribution of FBLN4 in human disease, we investigated two cohorts of patients. Direct sequencing of 17 patients with cutis laxa revealed no FBLN4 mutations. In a second group of 22 patients presenting with arterial tortuosity, stenosis and aneurysms, FBLN4 mutations were identified in three patients, two homozygous missense mutations (p.Glu126Lys and p.Ala397Thr) and compound heterozygosity for missense mutation p.Glu126Val and frameshift mutation c.577delC. Immunoblotting analysis showed a decreased amount of fibulin-4 protein in the fibroblast culture media of two patients, a finding sustained by diminished fibulin-4 in the extracellular matrix of the aortic wall on immunohistochemistry. pSmad2 and CTGF immunostaining of aortic and lung tissue revealed an increase in transforming growth factor (TGF)beta signaling. This was confirmed by pSmad2 immunoblotting of fibroblast cultures. In conclusion, patients with recessive FBLN4 mutations are predominantly characterized by aortic aneurysms, arterial tortuosity and stenosis. This confirms the important role of fibulin-4 in vascular elastic fiber assembly. Furthermore, we provide the first evidence for the involvement of altered TGFbeta signaling in the pathogenesis of FBLN4 mutations in humans.
Collapse
Affiliation(s)
- Marjolijn Renard
- Center for Medical Genetics, University Hospital Ghent, De Pintelaan 185, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yanagisawa H, Davis EC. Unraveling the mechanism of elastic fiber assembly: The roles of short fibulins. Int J Biochem Cell Biol 2010; 42:1084-93. [PMID: 20236620 DOI: 10.1016/j.biocel.2010.03.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 02/20/2010] [Accepted: 03/08/2010] [Indexed: 12/29/2022]
Abstract
Evolution of elastic fibers is associated with establishment of the closed circulation system. Primary roles of elastic fibers are to provide elasticity and recoiling to tissues and organs and to maintain the structural integrity against mechanical strain over a lifetime. Elastic fibers are comprised of an insoluble elastin core and surrounding mantle of microfibrils. Elastic fibers are formed in a regulated, stepwise manner, which includes the formation of a microfibrillar scaffold, deposition and integration of tropoelastin monomers into the scaffold, and cross-linking of the monomers to form an insoluble, functional polymer. In recent years, an increasing number of glycoproteins have been identified and shown to be located on or surrounding elastic fibers. Among them, the short fibulins-3, -4 and -5 particularly drew attention because of their potent elastogenic activity. Fibulins-3, -4 and -5 are characterized by tandem repeats of calcium binding EGF-like motifs and a C-terminal fibulin module, which is conserved throughout fibulin family members. Initial biochemical characterization and gene expression studies predicted that fibulins might be involved in structural support and/or matrix-cell interactions. Recent analyses of short fibulin knockout mice have revealed their critical roles in elastic fiber development in vivo. We review recent findings on the elastogenic functions of short fibulins and discuss the molecular mechanism underlying their activity in vitro and in vivo.
Collapse
Affiliation(s)
- Hiromi Yanagisawa
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.
| | | |
Collapse
|
45
|
Badger SA, Soong CV, O'Donnell ME, Sharif MA, Makar RR, Hughes AE. Common polymorphisms of Fibulin-5 and the risk of abdominal aortic aneurysm development. Vasc Med 2010; 15:113-7. [PMID: 20133342 DOI: 10.1177/1358863x09355667] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Fibulin-5 is a crucial protein in the connective tissue structure of the aortic wall. The purpose of this study was to determine if genetic variation within the Fibulin-5 gene was associated with abdominal aortic aneurysms (AAA). AAA patients, with disease-free controls, were recruited and a past medical history questionnaire completed. Three single nucleotide polymorphisms (SNPs) in the FBLN5 gene (rs2498834, rs2430366 and rs2254320) were genotyped. The two cohorts were compared and haplotype analysis performed. A total of 230 AAA cases and 278 controls were successfully genotyped. The mean age was 71.9 years (+/- 6.8). No difference between cases and controls was found in the distribution of alleles of FBLN5 SNPs rs2498834 (p = 0.47), rs2430366 (p = 0.45) or rs2254320 (p = 0.46). Haplotype analysis did not reveal any significant difference. In conclusion, genetic variation within FBLN5 is unlikely to play any role in the development of AAA.
Collapse
Affiliation(s)
- Stephen A Badger
- Vascular and Endovascular Surgery Department, Belfast City Hospital, Belfast, Northern Ireland.
| | | | | | | | | | | |
Collapse
|
46
|
Jones RPO, Ridley C, Jowitt TA, Wang MC, Howard M, Bobola N, Wang T, Bishop PN, Kielty CM, Baldock C, Lotery AJ, Trump D. Structural effects of fibulin 5 missense mutations associated with age-related macular degeneration and cutis laxa. Invest Ophthalmol Vis Sci 2009; 51:2356-62. [PMID: 20007835 DOI: 10.1167/iovs.09-4620] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE AMD has a complex etiology with environmental and genetic risk factors. Ten fibulin 5 sequence variants have been associated with AMD and two other fibulin 5 mutations cause autosomal-recessive cutis laxa. Fibulin 5 is a 52-kDa calcium-binding epidermal growth factor (cbEGF)-rich extracellular matrix protein that is essential for the formation of elastic tissues. Biophysical techniques were used to detect structural changes in the fibulin 5 mutants and to determine whether changes are predictive of pathogenicity. METHODS Native PAGE, nonreduced SDS-PAGE, size-exclusion column multiangle laser light scattering, sedimentation velocity, and circular dichroism (CD) were used to investigate the mobility, hydrodynamic radii, folding, and oligomeric states of the fibulin 5 mutants in the absence and presence of Ca(2+). RESULTS CD showed that all mutants are folded, although perturbations to secondary structure contents were detected. Both cutis laxa mutants increased dimerization. Most other mutants slightly increased self-association in the absence of Ca(2+) but this was also demonstrated by G202R, a polymorphism detected in a control individual. The AMD-associated mutant G412E showed lower-than-expected mobility during native-PAGE, the largest hydrodynamic radius for the monomer form and the highest levels of aggregation in both the absence and presence of Ca(2+). CONCLUSIONS The results identified structural differences for the disease-causing cutis laxa mutants and for one AMD variant (G412E), suggesting that this may also be pathogenic. Although the other AMD-associated mutants showed no gross structural differences, they cannot be excluded as pathogenic by differences outside the scope of this study-for example, disruption of heterointeractions.
Collapse
Affiliation(s)
- Richard P O Jones
- Genetic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, St. Mary's Hospital, Manchester, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yanagisawa H, Schluterman MK, Brekken RA. Fibulin-5, an integrin-binding matricellular protein: its function in development and disease. J Cell Commun Signal 2009; 3:337-47. [PMID: 19798595 PMCID: PMC2778585 DOI: 10.1007/s12079-009-0065-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 08/31/2009] [Indexed: 01/03/2023] Open
Abstract
Interactions between the extracellular matrix (ECM) and cells are critical in embryonic development, tissue homeostasis, physiological remodeling, and tumorigenesis. Matricellular proteins, a group of ECM components, mediate cell-ECM interactions. One such molecule, Fibulin-5 is a 66-kDa glycoprotein secreted by various cell types, including vascular smooth muscle cells (SMCs), fibroblasts, and endothelial cells. Fibulin-5 contributes to the formation of elastic fibers by binding to structural components including tropoelastin and fibrillin-1, and to cross-linking enzymes, aiding elastic fiber assembly. Mice deficient in the fibulin-5 gene (Fbln5) exhibit systemic elastic fiber defects with manifestations of loose skin, tortuous aorta, emphysematous lung and genital prolapse. Although Fbln5 expression is down-regulated after birth, following the completion of elastic fiber formation, expression is reactivated upon tissue injury, affecting diverse cellular functions independent of its elastogenic function. Fibulin-5 contains an evolutionally conserved arginine-glycine-aspartic acid (RGD) motif in the N-terminal region, which mediates binding to a subset of integrins, including alpha5beta1, alphavbeta3, and alphavbeta5. Fibulin-5 enhances substrate attachment of endothelial cells, while inhibiting migration and proliferation in a cell type- and context-dependent manner. The antagonistic function of fibulin-5 in angiogenesis has been demonstrated in vitro and in vivo; fibulin-5 may block angiogenesis by inducing the anti-angiogenic molecule thrompospondin-1, by antagonizing VEGF(165)-mediated signaling, and/or by antagonizing fibronectin-mediated signaling through directly binding and blocking the alpha5beta1 fibronectin receptor. The overall effect of fibulin-5 on tumor growth depends on the balance between the inhibitory property of fibulin-5 on angiogenesis and the direct effect of fibulin-5 on proliferation and migration of tumor cells. However, the effect of tumor-derived versus host microenvironment-derived fibulin-5 remains to be evaluated.
Collapse
Affiliation(s)
- Hiromi Yanagisawa
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148 USA
| | - Marie K. Schluterman
- Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-8593 USA
| | - Rolf A. Brekken
- Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-8593 USA
| |
Collapse
|
48
|
Fibulin-4 conducts proper elastogenesis via interaction with cross-linking enzyme lysyl oxidase. Proc Natl Acad Sci U S A 2009; 106:19029-34. [PMID: 19855011 DOI: 10.1073/pnas.0908268106] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Great arteries, as well as lungs and skin, contain elastic fibers as important components to maintain their physiological functions. Although recent studies have revealed that a glycoprotein fibulin-4 (FBLN4) is indispensable for the assembly of mature elastic fibers, it remains to be elucidated how FBLN4 takes part in elastogenesis. Here, we report a dose-dependent requirement for FBLN4 in the development of the elastic fibers in arteries, and a specific role of FBLN4 in recruiting the elastin-cross-linking enzyme, lysyl oxidase (LOX). Reduced expression of Fbln4, which was achieved with a smooth muscle-specific Cre-mediated gene deletion, caused arterial stiffness. Electron-microscopic examination revealed disorganized thick elastic laminae with aberrant deposition of elastin. Aneurysmal dilation of the ascending aorta was found when the Fbln4 expression level was reduced to an even lower level, whereas systemic Fbln4 null mice died perinatally from rupture of the diaphragm. We also found a specific interaction between FBLN4 and the propeptide of LOX, which efficiently promotes assembly of LOX onto tropoelastin. These data suggest a mechanism of elastogenesis, in which a sufficient amount of FBLN4 is essential for tethering LOX to tropoelastin to facilitate cross-linking.
Collapse
|
49
|
Freeman L, Lomas A, Hodson N, Sherratt M, Mellody K, Weiss A, Shuttleworth A, Kielty C. Fibulin-5 interacts with fibrillin-1 molecules and microfibrils. Biochem J 2009; 388:1-5. [PMID: 15790312 PMCID: PMC1186687 DOI: 10.1042/bj20050368] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fibulin-5 plays an important role in elastic fibre formation in vivo. We have investigated the molecular interactions between fibulin-5 and components of fibrillin-rich microfibrils which form a template for elastin. Fibulin-5 interacted in a dose-dependent manner with a fibrillin-1 N-terminal sequence and with tropoelastin, but not with MAGP-1 (microfibril-associated glycoprotein-1) or decorin. Fibulin-5 did not inhibit interactions between fibrillin-1 N- and C-terminal fragments, or fibrillin-1 interactions with tropoelastin. Fibulin-5 may provide a link between tropoelastin and microfibrils in the pericellular space during elastic fibre assembly.
Collapse
Affiliation(s)
- Lyle J. Freeman
- *Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, U.K
| | - Amanda Lomas
- *Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, U.K
| | - Nigel Hodson
- *Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, U.K
| | - Michael J. Sherratt
- *Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, U.K
| | - Kieran T. Mellody
- *Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, U.K
| | - Anthony S. Weiss
- †Molecular Biotechnology, School of Molecular and Microbial Biosciences G08, University of Sydney, Sydney, NSW 2006, Australia
| | - Adrian Shuttleworth
- *Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, U.K
| | - Cay M. Kielty
- *Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
50
|
Jones RPO, Wang MC, Jowitt TA, Ridley C, Mellody KT, Howard M, Wang T, Bishop PN, Lotery AJ, Kielty CM, Baldock C, Trump D. Fibulin 5 forms a compact dimer in physiological solutions. J Biol Chem 2009; 284:25938-43. [PMID: 19617354 PMCID: PMC2757994 DOI: 10.1074/jbc.m109.011627] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fibulin 5 is a 52-kDa calcium-binding epidermal growth factor (cbEGF)-rich extracellular matrix protein that is essential for the formation of elastic tissues. Missense mutations in fibulin 5 cause the elastin disorder cutis laxa and have been associated with age-related macular degeneration, a leading cause of blindness. We investigated the structure, hydrodynamics, and oligomerization of fibulin 5 using small angle x-ray scattering, EM, light scattering, circular dichroism, and sedimentation. Compact structures for the monomer were determined by small angle x-ray scattering and EM, and are supported by close agreement between the theoretical sedimentation of the structures and the experimental sedimentation of the monomer in solution. EM showed that monomers associate around a central cavity to form a dimer. Light scattering and equilibrium sedimentation demonstrated that the equilibrium between the monomer and the dimer is dependent upon NaCl and Ca2+ concentrations and that the dimer is dominant under physiological conditions. The dimerization of fragments containing just the cbEGF domains suggests that intermolecular interactions between cbEGFs cause dimerization of fibulin 5. It is possible that fibulin 5 functions as a dimer during elastinogenesis or that dimerization may provide a method for limiting interactions with binding partners such as tropoelastin.
Collapse
Affiliation(s)
- Richard P O Jones
- Genetic Medicine, Manchester Academic Health Science Centre, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|