1
|
Li M, Zhang H, Tao R, Chen A, Zhou P, Yu C, Bian Y, Zhang S, Fang C, Li C. Exploring Y-chromosomal STRs and SNPs for forensic and genetic insights in the Jiangsu Han population. BMC Genomics 2025; 26:440. [PMID: 40316924 PMCID: PMC12048932 DOI: 10.1186/s12864-025-11634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/24/2025] [Indexed: 05/04/2025] Open
Abstract
Y-chromosome short tandem repeats (Y-STRs) and single nucleotide polymorphisms (Y-SNPs) are valuable genetic markers used for individual identification, forensic applications, and the study of paternal lineage history. This study analyzed the genetic polymorphism and paternal genetic structure of the Han population in Jiangsu Province by examining 374 unrelated male individuals using 29 Y-STRs and 183 Y-SNPs. Forensic parameters were calculated, and the discriminatory power of five Y-STR systems (MHT, EXT, PPY12, Yfiler, and Y29) was compared. Genetic structure was assessed in the context of the Jiangsu Han and other Chinese populations. Results showed that the Y29 system had the highest discriminatory capacity, identifying 374 unique haplotypes with HD and DC values of 1. Seven major haplogroups (C, D, J, K, O, Q, R) and 83 terminal haplogroups were identified, with haplogroup O being the most predominant (approximately 85%). Subdivision of haplogroup O revealed that the Jiangsu Han population exhibits genetic characteristics of both Southern and Northern Han groups. Population genetic analyses further confirmed that the Jiangsu Han clustered closely with Southern Han populations. Genetic admixture results revealed that the Jiangsu Han population derives 89% of their ancestry from Southern Han populations, while retaining 11% Northern Han contributions. The study provides valuable insights into the genetic structure of the Jiangsu Han population, with significant implications for forensic genetics, anthropological research, and broader population genetics studies.
Collapse
Affiliation(s)
- Min Li
- Department of Forensic Medicine, School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Han Zhang
- Institute of Forensic Science, Fudan University, Shanghai, 200032, China
| | - Ruiyang Tao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Academy of Forensic Sciences, Ministry of Justice, Shanghai, 200063, China
| | - Anqi Chen
- Institute of Forensic Science, Fudan University, Shanghai, 200032, China
| | - Peng Zhou
- Department of Forensic Medicine, School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Chunjiang Yu
- Department of Forensic Medicine, School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Yingnan Bian
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Academy of Forensic Sciences, Ministry of Justice, Shanghai, 200063, China
| | - Suhua Zhang
- Institute of Forensic Science, Fudan University, Shanghai, 200032, China
| | - Chen Fang
- Department of Forensic Medicine, School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Chengtao Li
- Institute of Forensic Science, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Academy of Forensic Sciences, Ministry of Justice, Shanghai, 200063, China.
| |
Collapse
|
2
|
You H, Lee SD, Cho S. A machine learning approach for estimating Eastern Asian origins from massive screening of Y chromosomal short tandem repeats polymorphisms. Int J Legal Med 2025; 139:531-540. [PMID: 39775035 PMCID: PMC11850560 DOI: 10.1007/s00414-024-03406-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
Inferring the ancestral origin of DNA evidence recovered from crime scenes is crucial in forensic investigations, especially in the absence of a direct suspect match. Ancestry informative markers (AIMs) have been widely researched and commercially developed into panels targeting multiple continental regions. However, existing forensic ancestry inference panels typically group East Asian individuals into a homogenous category without further differentiation. In this study, we screened Y chromosomal short tandem repeat (Y-STR) haplotypes from 10,154 Asian individuals to explore their genetic structure and generate an ancestry inference tool through a machine learning (ML) approach. Our research identified distinct genetic separations between East Asians and their neighboring Southwest Asians, with tendencies of northern and southern differentiation observed within East Asian populations. All machine learning models developed in this study demonstrated high accuracy, with the Asian classification model achieving an optimal performance of 82.92% and the East Asian classification model reaching 84.98% accuracy. This work not only deepens the understanding of genetic substructures within Asian populations but also showcases the potential of ML in forensic ancestry inference using extensive Y-STR data. By employing computational methods to analyze intricate genetic datasets, we can enhance the resolution of ancestry in forensic contexts involving Asian populations.
Collapse
Affiliation(s)
- Haeun You
- Department of Forensic Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Soong Deok Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Institute of Forensic and Anthropological Science, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Sohee Cho
- Institute of Forensic and Anthropological Science, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
3
|
Wang M, Duan S, Sun Q, Liu K, Liu Y, Wang Z, Li X, Wei L, Liu Y, Nie S, Zhou K, Ma Y, Yuan H, Liu B, Hu L, Liu C, He G. YHSeqY3000 panel captures all founding lineages in the Chinese paternal genomic diversity database. BMC Biol 2025; 23:18. [PMID: 39838386 PMCID: PMC11752814 DOI: 10.1186/s12915-025-02122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND The advancements in second-/third-generation sequencing technologies, alongside computational innovations, have significantly enhanced our understanding of the genomic structure of Y-chromosomes and their unique phylogenetic characteristics. These researches, despite the challenges posed by the lack of population-scale genomic databases, have the potential to revolutionize our approach to high-resolution, population-specific Y-chromosome panels and databases for anthropological and forensic applications. OBJECTIVES This study aimed to develop the highest-resolution Y-targeted sequencing panel, utilizing time-stamped, core phylogenetic informative mutations identified from high-coverage sequences in the YanHuang cohort. This panel is intended to provide a new tool for forensic complex pedigree search and paternal biogeographical ancestry inference, as well as explore the general patterns of the fine-scale paternal evolutionary history of ethnolinguistically diverse Chinese populations. RESULTS The sequencing performance of the East Asian-specific Y-chromosomal panel, including 2999-core SNP variants, was found to be robust and reliable. The YHSeqY3000 panel was designed to capture the genetic diversity of Chinese paternal lineages from 3500 years ago, identifying 408 terminal lineages in 2097 individuals across 41 genetically and geographically distinct populations. We identified a fine-scale paternal substructure that was correlating with ancient population migrations and expansions. New evidence was provided for extensive gene flow events between minority ethnic groups and Han Chinese people, based on the integrative Chinese Paternal Genomic Diversity Database. CONCLUSIONS This work successfully integrated Y-chromosome-related basic genomic science with forensic and anthropological translational applications, emphasizing the necessity of comprehensively characterizing Y-chromosome genomic diversity from genomically under-representative populations. This is particularly important in the second phase of our population-specific medical or anthropological genomic cohorts, where dense sampling strategies are employed.
Collapse
Affiliation(s)
- Mengge Wang
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
- Department of Oto-Rhino-Laryngology, West China Hospital of Sichuan University, Chengdu, 610000, China.
| | - Shuhan Duan
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637100, China
- Department of Oto-Rhino-Laryngology, West China Hospital of Sichuan University, Chengdu, 610000, China
| | - Qiuxia Sun
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Kaijun Liu
- School of International Tourism and Culture, Guizhou Normal University, Guiyang, 550025, China
- MoFang Human Genome Research Institute, Tianfu Software Park, Chengdu, 610042, Sichuan, China
| | - Yan Liu
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637100, China
| | - Zhiyong Wang
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Xiangping Li
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Lanhai Wei
- School of Ethnology and Anthropology, Inner Mongolia Normal University, Hohhot, 010028, Inner Mongolia, China
| | - Yunhui Liu
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Kun Zhou
- MoFang Human Genome Research Institute, Tianfu Software Park, Chengdu, 610042, Sichuan, China
| | - Yongxin Ma
- Department of Medical Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Huijun Yuan
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
| | - Bing Liu
- Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Lan Hu
- Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Guanglin He
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
| |
Collapse
|
4
|
Wang M, Liu Y, Luo L, Feng Y, Wang Z, Yang T, Yuan H, Liu C, He G. Genomic insights into Neolithic founding paternal lineages around the Qinghai-Xizang Plateau using integrated YanHuang resource. iScience 2024; 27:111456. [PMID: 39759003 PMCID: PMC11696643 DOI: 10.1016/j.isci.2024.111456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/16/2024] [Accepted: 11/19/2024] [Indexed: 01/07/2025] Open
Abstract
Indigenous populations of the Qinghai-Xizang Plateau exhibit unique high-altitude adaptations, especially within Tibeto-Burman (TB) groups. However, the paternal genetic heritage of eastern Plateau regions remains less explored. We present one integrative Y chromosome dataset of 9,901 modern and ancient individuals, including whole Y chromosome sequences from 1,297 individuals and extensive Y-SNP/STR genotype data. We reveal the Paleolithic common origin and following divergence of Qinghai-Xizang Plateau ancestors from East Asian lowlands, marked by subsequent isolation and Holocene expansion involving local hunter-gatherers and millet-farming communities. We identified two key TB-related founding lineages, D-Z31591 and O-CTS4658, which underwent significant expansions around 5,000 years ago on the Qinghai-Xizang Plateau and its eastern Tibetan-Yi Corridor. The genetic legacy of these TB lineages highlights crucial migration pathways linking the Plateau and lowland southwestern China. Our findings align paternal genetic structures with East Asian geography and linguistic groups, underscoring the utility of Y chromosome analyses in unraveling complex paternal histories.
Collapse
Affiliation(s)
- Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
- Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, China
| | - Yunhui Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Lintao Luo
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Yuhang Feng
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Ting Yang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
| | - Huijun Yuan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, China
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
- Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, China
| |
Collapse
|
5
|
Zhu K, Hu C, Yang M, Zhang X, Guo J, Xie M, Yang X, Ma H, Wang R, Zhao J, Tao L, He H, Wan W, Zhang Q, Jin L, Zuo Y, Zhou B, Huang J, Wang CC. The demic diffusion of Han culture into the Yunnan-Guizhou plateau inferred from ancient genomes. Natl Sci Rev 2024; 11:nwae387. [PMID: 39687206 PMCID: PMC11647586 DOI: 10.1093/nsr/nwae387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 12/18/2024] Open
Affiliation(s)
- Kongyang Zhu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Forensic Medicine, Guizhou Medical University, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, China
| | - Changguo Hu
- Guizhou Provincial Institute of Cultural Relics and Archaeology, China
| | - Meiqing Yang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Forensic Medicine, Guizhou Medical University, China
| | - Xinglong Zhang
- Guizhou Provincial Institute of Cultural Relics and Archaeology, China
| | - Jianxin Guo
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, China
| | - Mingxia Xie
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Forensic Medicine, Guizhou Medical University, China
| | - Xiaomin Yang
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, China
| | - Hao Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, China
| | - Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, China
| | - Jing Zhao
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, China
| | - Le Tao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, China
| | - Haifeng He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, China
| | - Wen Wan
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Forensic Medicine, Guizhou Medical University, China
| | - Qun Zhang
- Department of Archaeology, School of History, Wuhan University, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, China
| | - Yunjie Zuo
- Guizhou Provincial Institute of Cultural Relics and Archaeology, China
| | - Bisu Zhou
- Guizhou Provincial Institute of Cultural Relics and Archaeology, China
| | - Jiang Huang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Forensic Medicine, Guizhou Medical University, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, China
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, China
| |
Collapse
|
6
|
Wang Z, Wang M, Hu L, He G, Nie S. Evolutionary profiles and complex admixture landscape in East Asia: New insights from modern and ancient Y chromosome variation perspectives. Heliyon 2024; 10:e30067. [PMID: 38756579 PMCID: PMC11096704 DOI: 10.1016/j.heliyon.2024.e30067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Human Y-chromosomes are characterized by nonrecombination and uniparental inheritance, carrying traces of human history evolution and admixture. Large-scale population-specific genomic sources based on advanced sequencing technologies have revolutionized our understanding of human Y chromosome diversity and its anthropological and forensic applications. Here, we reviewed and meta-analyzed the Y chromosome genetic diversity of modern and ancient people from China and summarized the patterns of founding lineages of spatiotemporally different populations associated with their origin, expansion, and admixture. We emphasized the strong association between our identified founding lineages and language-related human dispersal events correlated with the Sino-Tibetan, Altaic, and southern Chinese multiple-language families related to the Hmong-Mien, Tai-Kadai, Austronesian, and Austro-Asiatic languages. We subsequently summarize the recent advances in translational applications in forensic and anthropological science, including paternal biogeographical ancestry inference (PBGAI), surname investigation, and paternal history reconstruction. Whole-Y sequencing or high-resolution panels with high coverage of terminal Y chromosome lineages are essential for capturing the genomic diversity of ethnolinguistically diverse East Asians. Generally, we emphasized the importance of including more ethnolinguistically diverse, underrepresented modern and spatiotemporally different ancient East Asians in human genetic research for a comprehensive understanding of the paternal genetic landscape of East Asians with a detailed time series and for the reconstruction of a reference database in the PBGAI, even including new technology innovations of Telomere-to-Telomere (T2T) for new genetic variation discovery.
Collapse
Affiliation(s)
- Zhiyong Wang
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510275, China
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| |
Collapse
|
7
|
Sun Y, Wang M, Sun Q, Liu Y, Duan S, Wang Z, Zhou Y, Zhong J, Huang Y, Huang X, Yang Q, Li X, Su H, Cai Y, Jiang X, Chen J, Yan J, Nie S, Hu L, Yang J, Tang R, Wang CC, Liu C, Deng X, Yun L, He G. Distinguished biological adaptation architecture aggravated population differentiation of Tibeto-Burman-speaking people. J Genet Genomics 2024; 51:517-530. [PMID: 37827489 DOI: 10.1016/j.jgg.2023.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
Tibeto-Burman (TB) people have endeavored to adapt to the hypoxic, cold, and high-UV high-altitude environments in the Tibetan Plateau and complex disease exposures in lowland rainforests since the late Paleolithic period. However, the full landscape of genetic history and biological adaptation of geographically diverse TB-speaking people, as well as their interaction mechanism, remain unknown. Here, we generate a whole-genome meta-database of 500 individuals from 39 TB-speaking populations and present a comprehensive landscape of genetic diversity, admixture history, and differentiated adaptative features of geographically different TB-speaking people. We identify genetic differentiation related to geography and language among TB-speaking people, consistent with their differentiated admixture process with incoming or indigenous ancestral source populations. A robust genetic connection between the Tibetan-Yi corridor and the ancient Yellow River people supports their Northern China origin hypothesis. We finally report substructure-related differentiated biological adaptative signatures between highland Tibetans and Loloish speakers. Adaptative signatures associated with the physical pigmentation (EDAR and SLC24A5) and metabolism (ALDH9A1) are identified in Loloish people, which differed from the high-altitude adaptative genetic architecture in Tibetan. TB-related genomic resources provide new insights into the genetic basis of biological adaptation and better reference for the anthropologically informed sampling design in biomedical and genomic cohort research.
Collapse
Affiliation(s)
- Yuntao Sun
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China; Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China; Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Guangzhou Forensic Science Institute, Guangzhou, Guangdong 510055, China.
| | - Qiuxia Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Yan Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Clinical Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yunyu Zhou
- School of Stomatology, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Jun Zhong
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Yuguo Huang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China
| | - Xinyu Huang
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qingxin Yang
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xiangping Li
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Haoran Su
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Yan Cai
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China; Department of Medical Laboratory, North Sichuan Medical College, Nanchong, Sichuan 637007, China
| | - Xiucheng Jiang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Jing Chen
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030600, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030600, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Junbao Yang
- School of Clinical Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Chuan-Chao Wang
- School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, Guangdong 510230, China
| | - Xiaohui Deng
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Libing Yun
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China.
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China.
| |
Collapse
|
8
|
Ahammad I, Bhattacharjee A, Chowdhury ZM, Rahman A, Hossain MU, Dewan G, Talukder S, Das KC, Keya CA, Salimullah M. Gut microbiome composition reveals the distinctiveness between the Bengali people and the Indigenous ethnicities in Bangladesh. Commun Biol 2024; 7:500. [PMID: 38664512 PMCID: PMC11045797 DOI: 10.1038/s42003-024-06191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Ethnicity has a significant role in shaping the composition of the gut microbiome, which has implications in human physiology. This study intends to investigate the gut microbiome of Bengali people as well as several indigenous ethnicities (Chakma, Marma, Khyang, and Tripura) residing in the Chittagong Hill Tracts areas of Bangladesh. Following fecal sample collection from each population, part of the bacterial 16 s rRNA gene was amplified and sequenced using Illumina NovaSeq platform. Our findings indicated that Bangladeshi gut microbiota have a distinct diversity profile when compared to other countries. We also found out that Bangladeshi indigenous communities had a higher Firmicutes to Bacteroidetes ratio than the Bengali population. The investigation revealed an unclassified bacterium that was differentially abundant in Bengali samples while the genus Alistipes was found to be prevalent in Chakma samples. Further research on these bacteria might help understand diseases associated with these populations. Also, the current small sample-sized pilot study hindered the comprehensive understanding of the gut microbial diversity of the Bangladeshi population and its potential health implications. However, our study will help establish a basic understanding of the gut microbiome of the Bangladeshi population.
Collapse
Affiliation(s)
- Ishtiaque Ahammad
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, 1349, Bangladesh
| | - Arittra Bhattacharjee
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, 1349, Bangladesh
| | - Zeshan Mahmud Chowdhury
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, 1349, Bangladesh
| | - Anisur Rahman
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, 1349, Bangladesh
| | - Mohammad Uzzal Hossain
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, 1349, Bangladesh
| | - Gourab Dewan
- Rangamati Medical College, Hospital Road, Rangamati-4500, Rangamati, Bangladesh
| | - Shiny Talukder
- Rangamati Medical College, Hospital Road, Rangamati-4500, Rangamati, Bangladesh
| | - Keshob Chandra Das
- Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, 1349, Bangladesh
| | - Chaman Ara Keya
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Md Salimullah
- Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, 1349, Bangladesh.
| |
Collapse
|
9
|
Woravatin W, Stoneking M, Srikummool M, Kampuansai J, Arias L, Kutanan W. South Asian maternal and paternal lineages in southern Thailand and the role of sex-biased admixture. PLoS One 2023; 18:e0291547. [PMID: 37708147 PMCID: PMC10501589 DOI: 10.1371/journal.pone.0291547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Previous genome-wide studies have reported South Asian (SA) ancestry in several Mainland Southeast Asian (MSEA) populations; however, additional details concerning population history, in particular the role of sex-specific aspects of the SA admixture in MSEA populations can be addressed with uniparental markers. Here, we generated ∼2.3 mB sequences of the male-specific portions of the Y chromosome (MSY) of a Tai-Kadai (TK)-speaking Southern Thai group (SouthernThai_TK), and complete mitochondrial (mtDNA) genomes of the SouthernThai_TK and an Austronesian (AN)-speaking Southern Thai (SouthernThai_AN) group. We identified new mtDNA haplogroups, e.g. Q3, E1a1a1, B4a1a and M7c1c3 that have not previously reported in Thai populations, but are frequent in Island Southeast Asia and Oceania, suggesting interactions between MSEA and these regions. SA prevalent mtDNA haplogroups were observed at frequencies of ~35-45% in the Southern Thai groups; both of them showed more genetic relatedness to Austroasiatic (AA) speaking Mon than to any other group. For MSY, SouthernThai_TK had ~35% SA prevalent haplogroups and exhibited closer genetic affinity to Central Thais. We also analyzed published data from other MSEA populations and observed SA ancestry in some additional MSEA populations that also reflects sex-biased admixture; in general, most AA- and AN-speaking groups in MSEA were closer to SA than to TK groups based on mtDNA, but the opposite pattern was observed for the MSY. Overall, our results of new genetic lineages and sex-biased admixture from SA to MSEA groups attest to the additional value that uniparental markers can add to studies of genome-wide variation.
Collapse
Affiliation(s)
- Wipada Woravatin
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Biométrie et Biologie Évolutive, UMR 5558, CNRS & Université de Lyon, Lyon, France
| | - Metawee Srikummool
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Jatupol Kampuansai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Leonardo Arias
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Centre for Linguistics, Faculty of Humanities, Leiden University, Leiden, The Netherlands
| | - Wibhu Kutanan
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
10
|
Shen-Gunther J, Gunther RS, Cai H, Wang Y. A Customized Human Mitochondrial DNA Database (hMITO DB v1.0) for Rapid Sequence Analysis, Haplotyping and Geo-Mapping. Int J Mol Sci 2023; 24:13505. [PMID: 37686313 PMCID: PMC10488239 DOI: 10.3390/ijms241713505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
The field of mitochondrial genomics has advanced rapidly and has revolutionized disciplines such as molecular anthropology, population genetics, and medical genetics/oncogenetics. However, mtDNA next-generation sequencing (NGS) analysis for matrilineal haplotyping and phylogeographic inference remains hindered by the lack of a consolidated mitogenome database and an efficient bioinformatics pipeline. To address this, we developed a customized human mitogenome database (hMITO DB) embedded in a CLC Genomics workflow for read mapping, variant analysis, haplotyping, and geo-mapping. The database was constructed from 4286 mitogenomes. The macro-haplogroup (A to Z) distribution and representative phylogenetic tree were found to be consistent with published literature. The hMITO DB automated workflow was tested using mtDNA-NGS sequences derived from Pap smears and cervical cancer cell lines. The auto-generated read mapping, variants track, and table of haplotypes and geo-origins were completed in 15 min for 47 samples. The mtDNA workflow proved to be a rapid, efficient, and accurate means of sequence analysis for translational mitogenomics.
Collapse
Affiliation(s)
- Jane Shen-Gunther
- Gynecologic Oncology & Clinical Investigation, Department of Clinical Investigation, Brooke Army Medical Center, Fort Sam Houston, San Antonio, TX 78234, USA
| | - Rutger S. Gunther
- Nuclear Medicine & Molecular Imaging, Department of Radiology, Brooke Army Medical Center, Fort Sam Houston, San Antonio, TX 78234, USA;
| | - Hong Cai
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA;
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Yufeng Wang
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA;
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
11
|
He G, Adnan A, Al-Qahtani WS, Safhi FA, Yeh HY, Hadi S, Wang CC, Wang M, Liu C, Yao J. Genetic admixture history and forensic characteristics of Tibeto-Burman-speaking Qiang people explored via the newly developed Y-STR panel and genome-wide SNP data. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.939659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fine-scale patterns of population genetic structure and diversity of ethnolinguistically diverse populations are important for biogeographical ancestry inference, kinship testing, and development and validation of new kits focused on forensic personal identification. Analyses focused on forensic markers and genome-wide single nucleotide polymorphism (SNP) data can provide new insights into the origin, admixture processes, and forensic characteristics of targeted populations. Qiang people had a large sample size among Tibeto-Burmanspeaking populations, which widely resided in the middle latitude of the Tibetan Plateau. However, their genetic structure and forensic features have remained uncharacterized because of the paucity of comprehensive genetic analyses. Here, we first developed and validated the forensic performance of the AGCU-Y30 Y-short tandem repeats (STR) panel, which contains slowly and moderately mutating Y-STRs, and then we conducted comprehensive population genetic analyses based on Y-STRs and genome-wide SNPs to explore the admixture history of Qiang people and their neighbors. The validated results of this panel showed that the new Y-STR kit was sensitive and robust enough for forensic applications. Haplotype diversity (HD) ranging from 0.9932 to 0.9996 and allelic frequencies ranging from 0.001946 to 0.8326 in 514 Qiang people demonstrated that all included markers were highly polymorphic in Tibeto-Burman people. Population genetic analyses based on Y-STRs [RST, FST, multidimensional scaling (MDS) analysis, neighboring-joining (NJ) tree, principal component analysis (PCA), and median-joining network (MJN)] revealed that the Qiang people harbored a paternally close relationship with lowland Tibetan-Yi corridor populations. Furthermore, we conducted a comprehensive population admixture analysis among modern and ancient Eurasian populations based on genome-wide shared SNPs. We found that the Qiang people were a genetically admixed population and showed closest relationship with Tibetan and Neolithic Yellow River farmers. Admixture modeling showed that Qiang people shared the primary ancestry related to Tibetan, supporting the hypothesis of common origin between Tibetan and Qiang people from North China.
Collapse
|
12
|
Yang Z, Chen H, Lu Y, Gao Y, Sun H, Wang J, Jin L, Chu J, Xu S. Genetic evidence of tri-genealogy hypothesis on the origin of ethnic minorities in Yunnan. BMC Biol 2022; 20:166. [PMID: 35864541 PMCID: PMC9306206 DOI: 10.1186/s12915-022-01367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 07/05/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Yunnan is located in Southwest China and consists of great cultural, linguistic, and genetic diversity. However, the genomic diversity of ethnic minorities in Yunnan is largely under-investigated. To gain insights into population history and local adaptation of Yunnan minorities, we analyzed 242 whole-exome sequencing data with high coverage (~ 100-150 ×) of Yunnan minorities representing Achang, Jingpo, Dai, and Deang, who were linguistically assumed to be derived from three ancient lineages (the tri-genealogy hypothesis), i.e., Di-Qiang, Bai-Yue, and Bai-Pu. RESULTS Yunnan minorities show considerable genetic differences. Di-Qiang populations likely migrated from the Tibetan area about 6700 years ago. Genetic divergence between Bai-Yue and Di-Qiang was estimated to be 7000 years, and that between Bai-Yue and Bai-Pu was estimated to be 5500 years. Bai-Pu is relatively isolated, but gene flow from surrounding Di-Qiang and Bai-Yue populations was also found. Furthermore, we identified genetic variants that are differentiated within Yunnan minorities possibly due to the living circumstances and habits. Notably, we found that adaptive variants related to malaria and glucose metabolism suggest the adaptation to thalassemia and G6PD deficiency resulting from malaria resistance in the Dai population. CONCLUSIONS We provided genetic evidence of the tri-genealogy hypothesis as well as new insights into the genetic history and local adaptation of the Yunnan minorities.
Collapse
Affiliation(s)
- Zhaoqing Yang
- Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Hao Chen
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yang Gao
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China
| | - Hao Sun
- Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China
| | - Jiayou Chu
- Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China.
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China.
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
13
|
Xiong J, Du P, Chen G, Tao Y, Zhou B, Yang Y, Wang H, Yu Y, Chang X, Allen E, Sun C, Zhou J, Zou Y, Xu Y, Meng H, Tan J, Li H, Wen S. Sex-Biased Population Admixture Mediated Subsistence Strategy Transition of Heishuiguo People in Han Dynasty Hexi Corridor. Front Genet 2022; 13:827277. [PMID: 35356424 PMCID: PMC8960071 DOI: 10.3389/fgene.2022.827277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/10/2022] [Indexed: 01/12/2023] Open
Abstract
The Hexi Corridor was an important arena for culture exchange and human migration between ancient China and Central and Western Asia. During the Han Dynasty (202 BCE–220 CE), subsistence strategy along the corridor shifted from pastoralism to a mixed pastoralist-agriculturalist economy. Yet the drivers of this transition remain poorly understood. In this study, we analyze the Y-chromosome and mtDNA of 31 Han Dynasty individuals from the Heishuiguo site, located in the center of the Hexi Corridor. A high-resolution analysis of 485 Y-SNPs and mitogenomes was performed, with the Heishuiguo population classified into Early Han and Late Han groups. It is revealed that (1) when dissecting genetic lineages, the Yellow River Basin origin haplogroups (i.e., Oα-M117, Oβ-F46, Oγ-IMS-JST002611, and O2-P164+, M134-) reached relatively high frequencies for the paternal gene pools, while haplogroups of north East Asian origin (e.g., D4 and D5) dominated on the maternal side; (2) in interpopulation comparison using PCA and Fst heatmap, the Heishuiguo population shifted from Southern-Northern Han cline to Northern-Northwestern Han/Hui cline with time, indicating genetic admixture between Yellow River immigrants and natives. By comparison, in maternal mtDNA views, the Heishuiguo population was closely clustered with certain Mongolic-speaking and Northwestern Han populations and exhibited genetic continuity through the Han Dynasty, which suggests that Heishuiguo females originated from local or neighboring regions. Therefore, a sex-biased admixture pattern is observed in the Heishuiguo population. Additionally, genetic contour maps also reveal the same male-dominated migration from the East to Hexi Corridor during the Han Dynasty. This is also consistent with historical records, especially excavated bamboo slips. Combining historical records, archeological findings, stable isotope analysis, and paleoenvironmental studies, our uniparental genetic investigation on the Heishuiguo population reveals how male-dominated migration accompanied with lifestyle adjustments brought by these eastern groups may be the main factor affecting the subsistence strategy transition along the Han Dynasty Hexi Corridor.
Collapse
Affiliation(s)
- Jianxue Xiong
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Panxin Du
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Guoke Chen
- Institute of Cultural Relics and Archaeology in Gansu Province, Lanzhou, China
| | - Yichen Tao
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Boyan Zhou
- Division of Biostatistics, Department of Population Health, School of Medicine, New York University, New York, NY, United States
| | - Yishi Yang
- Institute of Cultural Relics and Archaeology in Gansu Province, Lanzhou, China
| | - Hui Wang
- Institute of Archaeological Science, Fudan University, Shanghai, China
- Center for the Belt and Road Archaeology and Ancient Civilizations (BRAAC), Fudan University, Shanghai, China
| | - Yao Yu
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Xin Chang
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Edward Allen
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Chang Sun
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Juanjuan Zhou
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yetao Zou
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yiran Xu
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Hailiang Meng
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingze Tan
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
- *Correspondence: Jingze Tan, ; Hui Li, ; Shaoqing Wen,
| | - Hui Li
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
- *Correspondence: Jingze Tan, ; Hui Li, ; Shaoqing Wen,
| | - Shaoqing Wen
- Institute of Archaeological Science, Fudan University, Shanghai, China
- Center for the Belt and Road Archaeology and Ancient Civilizations (BRAAC), Fudan University, Shanghai, China
- *Correspondence: Jingze Tan, ; Hui Li, ; Shaoqing Wen,
| |
Collapse
|
14
|
Improving the regional Y-STR haplotype resolution utilizing haplogroup-determining Y-SNPs and the application of machine learning in Y-SNP haplogroup prediction in a forensic Y-STR database: A pilot study on male Chinese Yunnan Zhaoyang Han population. Forensic Sci Int Genet 2021; 57:102659. [PMID: 35007855 DOI: 10.1016/j.fsigen.2021.102659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 11/23/2022]
Abstract
Improving the resolution of the current widely used Y-chromosomal short tandem repeat (Y-STR) dataset is of great importance for forensic investigators, and the current approach is limited, except for the addition of more Y-STR loci. In this research, a regional Y-DNA database was investigated to improve the Y-STR haplotype resolution utilizing a Y-SNP Pedigree Tagging System that includes 24 Y-chromosomal single nucleotide polymorphism (Y-SNP) loci. This pilot study was conducted in the Chinese Yunnan Zhaoyang Han population, and 3473 unrelated male individuals were enrolled. Based on data on the male haplogroups under different panels, the matched or near-matching (NM) Y-STR haplotype pairs from different haplogroups indicated the critical roles of haplogroups in improving the regional Y-STR haplotype resolution. A classic median-joining network analysis was performed using Y-STR or Y-STR/Y-SNP data to reconstruct population substructures, which revealed the ability of Y-SNPs to correct misclassifications from Y-STRs. Additionally, population substructures were reconstructed using multiple unsupervised or supervised dimensionality reduction methods, which indicated the potential of Y-STR haplotypes in predicting Y-SNP haplogroups. Haplogroup prediction models were built based on nine publicly accessible machine-learning (ML) approaches. The results showed that the best prediction accuracy score could reach 99.71% for major haplogroups and 98.54% for detailed haplogroups. Potential influences on prediction accuracy were assessed by adjusting the Y-STR locus numbers, selecting Y-STR loci with various mutabilities, and performing data processing. ML-based predictors generally presented a better prediction accuracy than two available predictors (Nevgen and EA-YPredictor). Three tree models were developed based on the Yfiler Plus panel with unprocessed input data, which showed their strong generalization ability in classifying various Chinese Han subgroups (validation dataset). In conclusion, this study revealed the significance and application prospects of Y-SNP haplogroups in improving regional Y-STR databases. Y-SNP haplogroups can be used to discriminate NM Y-STR haplotype pairs, and it is important for forensic Y-STR databases to develop haplogroup prediction tools to improve the accuracy of biogeographic ancestry inferences.
Collapse
|
15
|
Guo J, Wang W, Zhao K, Li G, He G, Zhao J, Yang X, Chen J, Zhu K, Wang R, Ma H, Xu B, Wang C. Genomic insights into
Neolithic
farming‐related migrations in the junction of east and southeast
Asia. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021. [DOI: 10.1002/ajpa.24434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jianxin Guo
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, State Key Laboratory of Marine Environmental Science Xiamen University Xiamen China
| | - Weitao Wang
- Yunnan Modern Forensic Institute Kunming China
| | - Kai Zhao
- Yunnan Modern Forensic Institute Kunming China
| | | | - Guanglin He
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, State Key Laboratory of Marine Environmental Science Xiamen University Xiamen China
| | - Jing Zhao
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, State Key Laboratory of Marine Environmental Science Xiamen University Xiamen China
| | - Xiaomin Yang
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, State Key Laboratory of Marine Environmental Science Xiamen University Xiamen China
| | - Jinwen Chen
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, State Key Laboratory of Marine Environmental Science Xiamen University Xiamen China
| | - Kongyang Zhu
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, State Key Laboratory of Marine Environmental Science Xiamen University Xiamen China
| | - Rui Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, State Key Laboratory of Marine Environmental Science Xiamen University Xiamen China
| | - Hao Ma
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, State Key Laboratory of Marine Environmental Science Xiamen University Xiamen China
| | - Bingying Xu
- Research Center of Biomedical Engineering Kunming Medical University Kunming China
| | - Chuan‐Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, State Key Laboratory of Marine Environmental Science Xiamen University Xiamen China
| |
Collapse
|
16
|
何 传锦, 张 荣芳, 邹 磊, 郑 冰洁, 宋 丹璐, 黄 景峰, 兰 江维. [Not Available]. FA YI XUE ZA ZHI 2021; 37:699-703. [PMID: 35191237 DOI: 10.12116/j.issn.1004-5619.2020.500901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
|
17
|
Sun J, Li YX, Ma PC, Yan S, Cheng HZ, Fan ZQ, Deng XH, Ru K, Wang CC, Chen G, Wei LH. Shared paternal ancestry of Han, Tai-Kadai-speaking, and Austronesian-speaking populations as revealed by the high resolution phylogeny of O1a-M119 and distribution of its sub-lineages within China. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 174:686-700. [PMID: 33555039 DOI: 10.1002/ajpa.24240] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The aim of this research was to explore the origin, diversification, and demographic history of O1a-M119 over the past 10,000 years, as well as its role during the formation of East Asian and Southeast Asian populations, particularly the Han, Tai-Kadai-speaking, and Austronesian-speaking populations. MATERIALS AND METHODS Y-chromosome sequences (n = 141) of the O1a-M119 lineage, including 17 newly generated in this study, were used to reconstruct a revised phylogenetic tree with age estimates, and identify sub-lineages. The geographic distribution of 12 O1a-M119 sub-lineages was summarized, based on 7325 O1a-M119 individuals identified among 60,009 Chinese males. RESULTS A revised phylogenetic tree, age estimation, and distribution maps indicated continuous expansion of haplogroup O1a-M119 over the past 10,000 years, and differences in demographic history across geographic regions. We propose several sub-lineages of O1a-M119 as founding paternal lineages of Han, Tai-Kadai-speaking, and Austronesian-speaking populations. The sharing of several young O1a-M119 sub-lineages with expansion times less than 6000 years between these three population groups supports a partial common ancestry for them in the Neolithic Age; however, the paternal genetic divergence pattern is much more complex than previous hypotheses based on ethnology, archeology, and linguistics. DISCUSSION Our analyses contribute to a better understanding of the demographic history of O1a-M119 sub-lineages over the past 10,000 years during the emergence of Han, Austronesians, Tai-Kadai-speaking populations. The data described in this study will assist in understanding of the history of Han, Tai-Kadai-speaking, and Austronesian-speaking populations from ethnology, archeology, and linguistic perspectives in the future.
Collapse
Affiliation(s)
- Jin Sun
- Xingyi Normal University for Nationalities, Xingyi, China
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
| | - Ying-Xiang Li
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
| | - Peng-Cheng Ma
- School of Life Sciences, Jilin University, Changchun, China
| | - Shi Yan
- School of Ethnology and Sociology, Minzu University of China, Beijing, China
| | - Hui-Zhen Cheng
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
| | - Zhi-Quan Fan
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
| | - Xiao-Hua Deng
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
- Center for collation and studies of Fujian local literature, Fujian University of Technology, Fuzhou, China
| | - Kai Ru
- Enlighten Co., Ltd., Shanghai, China
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
| | - Gang Chen
- Hunan Key Lab of Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Lan-Hai Wei
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
- B&R International Joint Laboratory for Eurasian Anthropology, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Kutanan W, Shoocongdej R, Srikummool M, Hübner A, Suttipai T, Srithawong S, Kampuansai J, Stoneking M. Cultural variation impacts paternal and maternal genetic lineages of the Hmong-Mien and Sino-Tibetan groups from Thailand. Eur J Hum Genet 2020; 28:1563-1579. [PMID: 32690935 PMCID: PMC7576213 DOI: 10.1038/s41431-020-0693-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/17/2020] [Accepted: 06/26/2020] [Indexed: 11/09/2022] Open
Abstract
The Hmong-Mien (HM) and Sino-Tibetan (ST) speaking groups are known as hill tribes in Thailand; they were the subject of the first studies to show an impact of patrilocality vs. matrilocality on patterns of mitochondrial (mt) DNA vs. male-specific portion of the Y chromosome (MSY) variation. However, HM and ST groups have not been studied in as much detail as other Thai groups; here we report and analyze 234 partial MSY sequences (∼2.3 mB) and 416 complete mtDNA sequences from 14 populations that, when combined with our previous published data, provides the largest dataset yet for the hill tribes. We find a striking difference between Hmong and IuMien (Mien-speaking) groups: the Hmong are genetically different from both the IuMien and all other Thai groups, whereas the IuMien are genetically more similar to other linguistic groups than to the Hmong. In general, we find less of an impact of patrilocality vs. matrilocality on patterns of mtDNA vs. MSY variation than previous studies. However, there is a dramatic difference in the frequency of MSY and mtDNA lineages of Northeast Asian (NEA) origin vs. Southeast Asian (SEA) origin in HM vs. ST groups: HM groups have high frequencies of NEA MSY lineages but lower frequencies of NEA mtDNA lineages, while ST groups show the opposite. A potential explanation is that the ancestors of Thai HM groups were patrilocal, while the ancestors of Thai ST groups were matrilocal. Overall, these results attest to the impact of cultural practices on patterns of mtDNA vs. MSY variation.
Collapse
Affiliation(s)
- Wibhu Kutanan
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany.
| | - Rasmi Shoocongdej
- Department of Archaeology, Faculty of Archaeology, Silpakorn University, Bangkok, 10200, Thailand
| | - Metawee Srikummool
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Alexander Hübner
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Thanatip Suttipai
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Suparat Srithawong
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jatupol Kampuansai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50202, Thailand.,Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, 50202, Thailand
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany.
| |
Collapse
|
19
|
Zou X, He G, Wang M, Huo L, Chen X, Liu J, Wang S, Ye Z, Wang F, Wang Z, Hou Y. Genetic diversity and phylogenetic structure of four Tibeto-Burman-speaking populations in Tibetan-Yi corridor revealed by insertion/deletion polymorphisms. Mol Genet Genomic Med 2020; 8:e1140. [PMID: 32017463 PMCID: PMC7196475 DOI: 10.1002/mgg3.1140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Insertion/deletion polymorphisms (InDels), combined with all the desirable features of both short tandem repeat and single nucleotide polymorphism, have been used in archaeological and anthropological research, population genetics and forensic application. METHODS Thirty InDels in 530 individuals residing in the Tibetan-Yi corridor (142 Dujiangyan Tibetans, 164 Muli Tibetans, 187 Xichang Yis, and 37 Yanyuan Mosuos) were genotyped using the Investigator DIPplex. Forensic parameters and allele frequency spectrum were calculated. Genetic relationships between the investigated populations and worldwide and nationwide populations were assessed based on both the allele frequency distribution and genotype data. RESULTS The combined powers of exclusion were 0.9807 (Dujiangyan Tibetan), 0.9880 (Muli Tibetan), 0.9852 (Xichang Yi) and 0.9892 (Yanyuan Mosuo). The combined powers of discrimination were 0.999999999983 (Dujiangyan Tibetan), 0.999999999942 (Muli Tibetan), 0.999999999982 (Xichang Yi) and 0.999999999962 (Yanyuan Mosuo), respectively. The comprehensive population comparisons among worldwide and nationwide populations uniformly illustrated that the investigated populations have a genetically closer relationship with Tibeto-Burman-speaking populations and geographically adjacent populations. CONCLUSION These 30 loci can be regarded as an efficient genetic tool in forensic individual identification and as a supplementary tool in paternity testing in Dujiangyan Tibetan, Muli Tibetan, Xichang Yi, and Yanyuan Mosuo. The genetic proximity between the four populations in the Tibetan-Yi corridor and other populations is strongly correlated with the linguistic origin and geographical distance.
Collapse
Affiliation(s)
- Xing Zou
- Institute of Forensic MedicineWest China School of Basic Science & Forensic MedicineSichuan UniversityChengduChina
| | - Guanglin He
- Institute of Forensic MedicineWest China School of Basic Science & Forensic MedicineSichuan UniversityChengduChina
| | - Mengge Wang
- Institute of Forensic MedicineWest China School of Basic Science & Forensic MedicineSichuan UniversityChengduChina
| | - Liwen Huo
- Chongqing Hechuan District Public Security BureauChongqingChina
| | - Xu Chen
- Department of Clinical LaboratoryThe First People’s Hospital of Liangshan Yi Autonomous PrefectureXichangChina
| | - Jing Liu
- Institute of Forensic MedicineWest China School of Basic Science & Forensic MedicineSichuan UniversityChengduChina
| | - Shouyu Wang
- Institute of Forensic MedicineWest China School of Basic Science & Forensic MedicineSichuan UniversityChengduChina
| | - Ziwei Ye
- Institute of Forensic MedicineWest China School of Basic Science & Forensic MedicineSichuan UniversityChengduChina
| | - Fei Wang
- Institute of Forensic MedicineWest China School of Basic Science & Forensic MedicineSichuan UniversityChengduChina
| | - Zheng Wang
- Institute of Forensic MedicineWest China School of Basic Science & Forensic MedicineSichuan UniversityChengduChina
| | - Yiping Hou
- Institute of Forensic MedicineWest China School of Basic Science & Forensic MedicineSichuan UniversityChengduChina
| |
Collapse
|
20
|
Srithawong S, Muisuk K, Srikummool M, Mahasirikul N, Triyarach S, Sriprasert K, Kutanan W. Genetic structure of the ethnic Lao groups from mainland Southeast Asia revealed by forensic microsatellites. Ann Hum Genet 2020; 84:357-369. [PMID: 32115685 DOI: 10.1111/ahg.12379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/15/2023]
Abstract
PURPOSE Laotians and Lao Isan are widely spread Lao groups who live in Laos and northeastern Thailand, respectively. We explored the genetic structure between them and other ethnic groups from Thailand to clarify historical patterns of admixture between Tai-Kadai and Austroasiatic speakers, and to expand the forensic reference database for the region. SUBJECTS AND METHODS We combined new genetic data for 554 individuals from 12 populations, typed for 15 autosomal short tandem repeats, with available data from 14 populations from Thailand, for a total of 1,153 raw genotypes belonging to 26 populations. We calculated forensic parameters and performed various analyses on genetic diversity, genetic structure, genetic admixture, and genetic relationships among the studied populations. RESULTS Forensic estimators suggest a good power of discrimination with the combined power of exclusion ranging from 0.993628 to 0.999991 and a combined power of discrimination value greater than 0.99999999. Generally, the two Laotian groups were genetically similar, but the central Laotians from Vientiane have a closer genetic relationship to the Lao Isan than the northern Laotians from Luang Prabang. The Lao genetic ancestry forms the majority of the Lao Isan genetic makeup, while Austroasiatic ancestry is present at ∼10%-50%. CONCLUSIONS Lao Isan populations show signs of Lao ancestry and admixture with local Austroasiatic ancestry, which reflect historical migrations from Laos to Thailand. Lao speakers are genetically more homogeneous than Austroasiatic speakers, suggesting differential historical processes.
Collapse
Affiliation(s)
- Suparat Srithawong
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Kanha Muisuk
- Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Metawee Srikummool
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | | | - Saksuriya Triyarach
- Faculty of Business Administration and Accountancy, Khon Kaen University, Khon Kaen, Thailand
| | - Kamnikone Sriprasert
- Faculty of Economics and Business Administration, National University of Laos, Vientiane, Lao People's Democratic Republic
| | - Wibhu Kutanan
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
21
|
Abstract
The rapidly decreasing costs of generating genetic data sequencing and the ease of new DNA collection technologies have opened up new opportunities for anthropologists to conduct field-based genetic studies. An exciting aspect of this work comes from linking genetic data with the kinds of individual-level traits evolutionary anthropologists often rely on, such as those collected in long-term demographic and ethnographic studies. However, combining these two types of data raises a host of ethical questions related to the collection, analysis and reporting of such data. Here we address this conundrum by examining one particular case, the collection and analysis of paternity data. We are particularly interested in the logistics and ethics involved in genetic paternity testing in the localized settings where anthropologists often work. We discuss the particular issues related to paternity testing in these settings, including consent and disclosure, consideration of local identity and beliefs and developing a process of continued community engagement. We then present a case study of our own research in Namibia, where we developed a multi-tiered strategy for consent and community engagement, built around a double-blind procedure for data collection, analysis and reporting. Paternity testing in anthropology raises ethical and methodological issues. We summarize these and describe a novel double-blind method used in our work.
Collapse
|
22
|
Xu B, Guo J, Huang Y, Chen X, Deng X, Wang CC. The paternal genetic structure of Jingpo and Dai in southwest China. Ann Hum Biol 2019; 46:279-283. [PMID: 31179767 DOI: 10.1080/03014460.2019.1624821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Yunnan province harbours substantial genetic, cultural and linguistic diversity, with the largest number of Aborigines in China, but the relationship among these Aborigines remains enigmatic. This study genotyped 45 Y chromosomal single nucleotide polymorphisms (SNPs) of 500 males from two aboriginal cross-border populations, Jingpo and Dai, from Dehong, Yunnan. It is reported that Haplogroup O2a2b1a1-M117 is the dominant lineage in both Jingpo and Dai. The Jingpo people show affinity with Tibeto-Burman speaking populations with a relatively high frequency of Haplogroup D-M174, and the Dai people are generally genetically similar with Tai-Kadai speaking populations with high frequencies of Haplogroup O1a-M119 and O1b1a1a-M95, which is consistent with their language classification.
Collapse
Affiliation(s)
- Bingying Xu
- Research Center of Biomedical Engineering, Kunming Medical University, Kunming, PR China
| | - Jianxin Guo
- Department of History, Xiamen University, Xiamen, PR China.,Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, PR China
| | - Ying Huang
- Research Center of Biomedical Engineering, Kunming Medical University, Kunming, PR China
| | - Xueyun Chen
- Research Center of Biomedical Engineering, Kunming Medical University, Kunming, PR China
| | - Xiaohua Deng
- Fujian University of Technology, Fuzhou, PR China
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, PR China
| |
Collapse
|
23
|
The massive assimilation of indigenous East Asian populations in the origin of Muslim Hui people inferred from paternal Y chromosome. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 169:341-347. [DOI: 10.1002/ajpa.23823] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/14/2019] [Accepted: 03/02/2019] [Indexed: 11/07/2022]
|
24
|
He G, Wang Z, Zou X, Wang M, Liu J, Wang S, Ye Z, Chen P, Hou Y. Tai-Kadai-speaking Gelao population: Forensic features, genetic diversity and population structure. Forensic Sci Int Genet 2019; 40:e231-e239. [PMID: 30910535 DOI: 10.1016/j.fsigen.2019.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 12/12/2022]
Abstract
Genetic analyses of geographically and ethno-linguistically different populations are essential for understanding population stratification and genomic structure in medical Genome-Wide Association Studies (GWAS) and genetic variation and diversity related to forensic and population genetics studies. Here, we genotyped 30 autosomal insertion/deletion (Indel) markers from 502 Tai-Kadai-speaking Gelao individuals residing in the rugged topographical area in Southeastern China. In addition, two comprehensive population genetic comparisons of 15,327 individuals from 95 worldwide populations and of 6122 individuals from Asia and adjoining populations were conducted based on allele frequency data and raw genotype data, respectively. All studied markers were found to be in Hardy-Weinberg equilibrium. The combined power of discrimination in the Gelao minority group was 0.999999999975, and the combined probability of exclusion was 0.9879. Our results from the forensic statistical parameters indicated that this Indel panel can be independently used as a powerful tool in forensic individual identification but can only be used as a complementary tool in paternity cases involving East Asians. We also found significant allele frequency differences between the Gelao and other continental populations with respect to the markers grouped in clusters ∼Ⅳ, suggesting that these can be used as forensic ancestry informative Indel markers to distinguish the Gelao from other continental populations. Genetic ancestry analyses demonstrated that Tai-Kadai-speaking Gelao share a dominant ancestry component with Hmong-Mien-speaking Miao. Our population genetic results from multidimensional scaling plots, principal component analysis, neighboring-joining tree construction and hierarchical clustering also suggested that the Zunyi Gelao are genetically closer to their linguistically or geographically close populations, such as the Han Chinese, Guizhou Bouyei and the Hubei Tujia, than to Turkic and Tibeto-Burman speakers.
Collapse
Affiliation(s)
- Guanglin He
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xing Zou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Mengge Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Shouyu Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Ziwei Ye
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Pengyu Chen
- Center of Forensic Expertise, Affiliated Hospital of Zunyi Medical University, Zunyi 563099, Guizhou, China; School of Forensic Medicine, Zunyi Medical University, Zunyi 563099, Guizhou, China.
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
25
|
Genetic characteristics of Y-chromosome short tandem repeat haplotypes from cigarette butt samples presumed to be smoked by North Korean men. Genes Genomics 2018; 40:819-824. [PMID: 30047114 DOI: 10.1007/s13258-018-0701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/11/2018] [Indexed: 10/17/2022]
Abstract
Korea has been divided into South Korea and North Korea for over 70 years. DNA profiles of the North Korean population have never been reported in the Y-chromosome STR Haplotype Reference Database (YHRD; https://yhrd.org ). To investigate genetic features of Y-chromosome STR haplotypes of the North Korean population for the first time. Genomic DNA was isolated from 838 cigarette butts assumed to have been smoked by North Korean men and amplified with PowerPlex Y23 (PPY23) kit. Statistical parameters were calculated using Nei's formula and analysis of molecular variance (AMOVA). Multidimensional scaling (MDS) plot was constructed by the AMOVA tool and neighbor-joining (NJ) tree was constructed by MEGA 6.06. A total of 121 haplotypes were analyzed for PPY23 loci from a sample population. Haplotype diversity and discrimination capacity were 0.9992 and 0.9837, respectively. Genetic diversities ranged from 0.2981 to 0.9716. For the 16 Y-filer loci and eight minimal loci, respectively 90.9 and 82.6% of the matched haplotypes were estimated to belong to haplogroup O, representing the Southeast and East Asian type. The MDS plot and NJ tree indicated that the samples are most closely related to South Korean. In addition, p-value in the pairwise comparison to the South Korean was slightly above statistical significance (p = 0.0534). The Y-STR haplotypes of the samples were unique and highly genetically polymorphic. Despite the separation between North and South Korea for 70 years, they can still be considered a single genetic population, based on Y-STR haplotypes.
Collapse
|
26
|
Zhang M. Diversity of language structure is shaped by demographic activities: Comment on "Rethinking foundations of language from a multidisciplinary perspective" by T. Gong et al. Phys Life Rev 2018; 26-27:146-148. [PMID: 30042017 DOI: 10.1016/j.plrev.2018.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Menghan Zhang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
27
|
He G, Wang Z, Zou X, Chen X, Liu J, Wang M, Hou Y. Genetic diversity and phylogenetic characteristics of Chinese Tibetan and Yi minority ethnic groups revealed by non-CODIS STR markers. Sci Rep 2018; 8:5895. [PMID: 29651125 PMCID: PMC5897523 DOI: 10.1038/s41598-018-24291-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/13/2018] [Indexed: 12/16/2022] Open
Abstract
Non-CODIS STRs, with high polymorphism and allele frequency difference among ethnically and geographically different populations, play a crucial role in population genetics, molecular anthropology, and human forensics. In this work, 332 unrelated individuals from Sichuan Province (237 Tibetan individuals and 95 Yi individuals) are firstly genotyped with 21 non-CODIS autosomal STRs, and phylogenetic relationships with 26 previously investigated populations (9,444 individuals) are subsequently explored. In the Sichuan Tibetan and Yi, the combined power of discrimination (CPD) values are 0.9999999999999999999 and 0.9999999999999999993, and the combined power of exclusion (CPE) values are 0. 999997 and 0.999999, respectively. Analysis of molecular variance (AMOVA), principal component analysis (PCA), multidimensional scaling plots (MDS) and phylogenetic analysis demonstrated that Sichuan Tibetan has a close genetic relationship with Tibet Tibetan, and Sichuan Yi has a genetic affinity with Yunnan Bai group. Furthermore, significant genetic differences have widely existed between Chinese minorities (most prominently for Tibetan and Kazakh) and Han groups, but no population stratifications rather a homogenous group among Han populations distributed in Northern and Southern China are observed. Aforementioned results suggested that these 21 STRs are highly polymorphic and informative in the Sichuan Tibetan and Yi, which are suitable for population genetics and forensic applications.
Collapse
Affiliation(s)
- Guanglin He
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xing Zou
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Xu Chen
- Department of Clinical Laboratory, the First People's Hospital of Liangshan Yi Autonomous Prefecture, Xichang, Sichuan, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Mengge Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
28
|
Affiliation(s)
- Elaine Y. Y. Cheung
- National Centre for Forensic Studies, Faculty of Science and Technology, University of Canberra, Bruce, Australia
| | - Michelle Elizabeth Gahan
- National Centre for Forensic Studies, Faculty of Science and Technology, University of Canberra, Bruce, Australia
| | - Dennis McNevin
- National Centre for Forensic Studies, Faculty of Science and Technology, University of Canberra, Bruce, Australia
| |
Collapse
|
29
|
Li J, Zeng W, Zhang Y, Ko AMS, Li C, Zhu H, Fu Q, Zhou H. Ancient DNA reveals genetic connections between early Di-Qiang and Han Chinese. BMC Evol Biol 2017; 17:239. [PMID: 29202706 PMCID: PMC5716020 DOI: 10.1186/s12862-017-1082-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 11/17/2017] [Indexed: 12/04/2022] Open
Abstract
Background Ancient Di-Qiang people once resided in the Ganqing region of China, adjacent to the Central Plain area from where Han Chinese originated. While gene flow between the Di-Qiang and Han Chinese has been proposed, there is no evidence to support this view. Here we analyzed the human remains from an early Di-Qiang site (Mogou site dated ~4000 years old) and compared them to other ancient DNA across China, including an early Han-related site (Hengbei site dated ~3000 years old) to establish the underlying genetic relationship between the Di-Qiang and ancestors of Han Chinese. Results We found Mogou mtDNA haplogroups were highly diverse, comprising 14 haplogroups: A, B, C, D (D*, D4, D5), F, G, M7, M8, M10, M13, M25, N*, N9a, and Z. In contrast, Mogou males were all Y-DNA haplogroup O3a2/P201; specifically one male was further assigned to O3a2c1a/M117 using targeted unique regions on the non-recombining region of the Y-chromosome. We compared Mogou to 7 other ancient and 38 modern Chinese groups, in a total of 1793 individuals, and found that Mogou shared close genetic distances with Taojiazhai (a more recent Di-Qiang population), Hengbei, and Northern Han. We modeled their interactions using Approximate Bayesian Computation, and support was given to a potential admixture of ~13-18% between the Mogou and Northern Han around 3300–3800 years ago. Conclusions Mogou harbors the earliest genetically identifiable Di-Qiang, ancestral to the Taojiazhai, and up to ~33% paternal and ~70% of its maternal haplogroups could be found in present-day Northern Han Chinese. Electronic supplementary material The online version of this article (10.1186/s12862-017-1082-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiawei Li
- College of Life Science, Jilin University, Changchun, 130023, People's Republic of China
| | - Wen Zeng
- Ancient DNA Laboratory, Research Center for Chinese Frontier Archaeology, Jilin University, Changchun, 130012, People's Republic of China
| | - Ye Zhang
- College of Life Science, Jilin University, Changchun, 130023, People's Republic of China
| | - Albert Min-Shan Ko
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing, 100044, People's Republic of China
| | - Chunxiang Li
- College of Life Science, Jilin University, Changchun, 130023, People's Republic of China
| | - Hong Zhu
- Ancient DNA Laboratory, Research Center for Chinese Frontier Archaeology, Jilin University, Changchun, 130012, People's Republic of China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing, 100044, People's Republic of China.
| | - Hui Zhou
- College of Life Science, Jilin University, Changchun, 130023, People's Republic of China. .,Ancient DNA Laboratory, Research Center for Chinese Frontier Archaeology, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
30
|
The genomic landscape of Nepalese Tibeto-Burmans reveals new insights into the recent peopling of Southern Himalayas. Sci Rep 2017; 7:15512. [PMID: 29138459 PMCID: PMC5686152 DOI: 10.1038/s41598-017-15862-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2022] Open
Abstract
While much research attention has focused on demographic processes that enabled human diffusion on the Tibetan plateau, little is known about more recent colonization of Southern Himalayas. In particular, the history of migrations, admixture and/or isolation of populations speaking Tibeto-Burman languages, which is supposed to be quite complex and to have reshaped patterns of genetic variation on both sides of the Himalayan arc, remains only partially elucidated. We thus described the genomic landscape of previously unsurveyed Tibeto-Burman (i.e. Sherpa and Tamang) and Indo-Aryan communities from remote Nepalese valleys. Exploration of their genomic relationships with South/East Asian populations provided evidence for Tibetan admixture with low-altitude East Asians and for Sherpa isolation. We also showed that the other Southern Himalayan Tibeto-Burmans derived East Asian ancestry not from the Tibetan/Sherpa lineage, but from low-altitude ancestors who migrated from China plausibly across Northern India/Myanmar, having experienced extensive admixture that reshuffled the ancestral Tibeto-Burman gene pool. These findings improved the understanding of the impact of gene flow/drift on the evolution of high-altitude Himalayan peoples and shed light on migration events that drove colonization of the southern Himalayan slopes, as well as on the role played by different Tibeto-Burman groups in such a complex demographic scenario.
Collapse
|
31
|
Abstract
Background There are few studies analyzed concurrently the prevalence and genotypes of Helicobacter pylori infection with the ancestor origins from different ethnics, especially with including minority groups. We recruited a total of 289 patients in MaeSot, Thailand (154 Thai, 14 Thai-Chinese, 29 Karen and 92 Hmong ethnics). The virulence genes and genealogy of the strains were determined by PCR-based sequencing. Results Based on culture and histology/immunohistochemistry, the prevalence of H. pylori infection was 54.5% (158/289). Among 152 isolates cultured, the East-Asian-type cagA was predominant genotype among strains from Hmong, Thai-Chinese and Thai (96.0% [48/50], 85.7% [6/7] and 62.7% [47/75], respectively), whilst majority of strains from Karen had Western-type cagA (73.3% [11/15]). Patients infected with the East-Asian-type cagA strains had significantly higher activity and intestinal metaplasia in the antrum and activity in the corpus than those with Western-type cagA (P = 0.024, 0.006 and 0.005, respectively). The multilocus sequencing typing analysis discriminated that most strains from Hmong and Thai-Chinese belonged to hspEAsia (92.0 and 85.7%, respectively), whereas strains from Karen predominantly possessed hpAsia2 (86.7%) and strains from Thai were classified into hspEAsia (45.2%) and hpAsia2 (31.1%). Conclusions Helicobacter pylori genotypes were relatively different among ethnic groups in Thailand and were associated with the source of ancestor even living in a small rural town. Caution and careful check-up are required especially on Hmong ethnic associated with high prevalence of virulence genotypes of H. pylori. Electronic supplementary material The online version of this article (doi:10.1186/s13099-017-0205-x) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
He G, Li Y, Zou X, Zhang Y, Li H, Wang M, Wu J. X-chromosomal STR-based genetic structure of Sichuan Tibetan minority ethnicity group and its relationships to various groups. Int J Legal Med 2017; 132:409-413. [PMID: 28868577 DOI: 10.1007/s00414-017-1672-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022]
Abstract
The X-chromosomal short tandem repeats (STRs) with more informative than autosomal STRs in some complicated biological relationships identification due to its specific mode of genetic transmission can be used as a complementary tool in forensic case practices. In this study, we presented the population genetic data of 19 X-STRs, consisting of DXS10174, DXS10075, DXS10079, DXS101, DXS10101, DXS10103, DXS10134, DXS10135, DXS10148, DXS10159, DXS10162, DXS10164, DXS6789, DXS6809, DXS7132, DXS7423, DXS7424, DXS8378, and HPRTB loci, in a sample of 235 individuals of Tibetan nationality from Sichuan province, Southwest China. All 19 X-STR loci were consistent with Hardy-Weinberg equilibrium. The results showed that the combined power of discrimination in females and males are 0.999999999999999999997 and 0.9999999999997, respectively. In addition, the mean paternity exclusion chances based on the formula of MECKrüger, MECKishida, and MECDesmarais as well as MECDesmarais Duo are 0.99999991, 0.9999999999924, 0.9999999999929, and 0.999999985, respectively. In summary, our findings suggested that the AGCU X19 kit can be considered to serve as a high polymorphic information tool for forensic identification and kinship testing in the Sichuan Tibetan population. Furthermore, population genetic structure investigation between Sichuan Tibetan population and other 19 populations using PCA, MDS, and phylogenetic tree illustrated that significant genetic difference was observed between the Sichuan Tibetan and Malay, as well as the Xinjiang Uyghur population.
Collapse
Affiliation(s)
- Guanglin He
- Department of Forensic Genetics, West China School of Basic Sciences and Forensic Medicine, Sichuan University (West China University of Medical Sciences), Chengdu, 610041, Sichuan, People's Republic of China
| | - Ye Li
- Department of Forensic Genetics, West China School of Basic Sciences and Forensic Medicine, Sichuan University (West China University of Medical Sciences), Chengdu, 610041, Sichuan, People's Republic of China
| | - Xing Zou
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400042, China
| | - Ying Zhang
- Department of Obstetrics and Gynecology, Dujiangyan Medical Central, Dujiangyan, Sichuan, 611830, China
| | - Hepei Li
- Department of Forensic Genetics, West China School of Basic Sciences and Forensic Medicine, Sichuan University (West China University of Medical Sciences), Chengdu, 610041, Sichuan, People's Republic of China
| | - Mengge Wang
- Department of Forensic Genetics, West China School of Basic Sciences and Forensic Medicine, Sichuan University (West China University of Medical Sciences), Chengdu, 610041, Sichuan, People's Republic of China
| | - Jin Wu
- Department of Forensic Genetics, West China School of Basic Sciences and Forensic Medicine, Sichuan University (West China University of Medical Sciences), Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
33
|
Yao HB, Tang S, Yao X, Yeh HY, Zhang W, Xie Z, Du Q, Ma L, Wei S, Gong X, Zhang Z, Li Q, Xu B, Zhang HQ, Chen G, Wang CC. The genetic admixture in Tibetan-Yi Corridor. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 164:522-532. [DOI: 10.1002/ajpa.23291] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/14/2017] [Accepted: 07/23/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Hong-Bing Yao
- Key Laboratory of Evidence Science of Gansu Province; Gansu Institute of Political Science and Law; Lanzhou 730070 China
| | | | | | - Hui-Yuan Yeh
- School of Humanities and School of Medicine; Nanyang Technological University; 639798 Singapore
| | - Wanhu Zhang
- People's Hospital of Gaotai; Gaotai Gansu Province 734300 China
| | - Zhiyan Xie
- People's Hospital of Gaotai; Gaotai Gansu Province 734300 China
| | - Qiajun Du
- Lanzhou University Second Hospital Clinical Laboratory; Lanzhou Gansu Province 730000 China
| | - Liying Ma
- Key Laboratory of Evidence Science of Gansu Province; Gansu Institute of Political Science and Law; Lanzhou 730070 China
| | - Shuoyun Wei
- Key Laboratory of Evidence Science of Gansu Province; Gansu Institute of Political Science and Law; Lanzhou 730070 China
| | - Xue Gong
- Key Laboratory of Evidence Science of Gansu Province; Gansu Institute of Political Science and Law; Lanzhou 730070 China
| | - Zilong Zhang
- Key Laboratory of Evidence Science of Gansu Province; Gansu Institute of Political Science and Law; Lanzhou 730070 China
| | - Quanfang Li
- Key Laboratory of Evidence Science of Gansu Province; Gansu Institute of Political Science and Law; Lanzhou 730070 China
| | - Bingying Xu
- School of Forensic Medicine; Kunming Medical University; Kunming 650500 China
| | - Hu-Qin Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology, Xi'an Jiaotong University; Xi'an 710049 China
| | | | - Chuan-Chao Wang
- Department of Anthropology and Ethnology; Xiamen University; Xiamen 361005 China
- Department of Archaeogenetics and Eurasia3angle research group; Max Planck Institute for the Science of Human History; Jena D-07745 Germany
- Department of Genetics; Harvard Medical School; Boston Massachusetts 02115
| |
Collapse
|
34
|
Rej PH, Deka R, Norton HL. Understanding influences of culture and history on mtDNA variation and population structure in three populations from Assam, Northeast India. Am J Hum Biol 2017; 29. [PMID: 28121389 DOI: 10.1002/ajhb.22955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Positioned at the nexus of India, China, and Southeast Asia, Northeast India is presumed to have served as a channel for land-based human migration since the Upper Pleistocene. Assam is the largest state in the Northeast. We characterized the genetic background of three populations and examined the ways in which their population histories and cultural practices have influenced levels of intrasample and intersample variation. METHODS We examined sequence data from the mtDNA hypervariable control region and selected diagnostic mutations from the coding region in 128 individuals from three ethnic groups currently living in Assam: two Scheduled tribes (Sonowal Kachari and Rabha), and the non-Scheduled Tai Ahom. RESULTS The populations of Assam sampled here express mtDNA lineages indicative of South Asian, Southeast Asian, and East Asian ancestry. We discovered two completely novel haplogroups in Assam that accounted for 6.2% of the lineages in our sample. We also identified a new subhaplogroup of M9a that is prevalent in the Sonowal Kachari of Assam (19.1%), but not present in neighboring Arunachal Pradesh, indicating substantial regional population structuring. Employing a large comparative dataset into a series of multidimensional scaling (MDS) analyses, we saw the Rabha cluster with populations sampled from Yunnan Province, indicating that the historical matrilineality of the Rabha has maintained lineages from Southern China. CONCLUSION Assam has undergone multiple colonization events in the time since the initial peopling event, with populations from Southern China and Southeast Asia having the greatest influence on maternal lineages in the region.
Collapse
Affiliation(s)
- Peter H Rej
- Department of Anthropology, University of Florida, Gainesville, Florida, 32611.,Genetics Institute, University of Florida, Gainesville, Florida, 32610
| | - Ranjan Deka
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, Ohio, 45267
| | - Heather L Norton
- Department of Anthropology, University of Cincinnati, Ohio, 45221
| |
Collapse
|
35
|
|
36
|
Zhou HY, Shu HY, Dai J, Li HC, Tang L, Wang HW, Ni B. Maternal genetic backgrounds contribute to the genetic susceptibility of tongue cancer patients in Hunan, central of China. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:347-352. [PMID: 28278694 DOI: 10.1080/24701394.2016.1278539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondrial DNA (mtDNA) mutations played crucial roles on affecting the susceptibility to cancer. In this study, to investigate whether mitochondrial DNA mutations contributed to the genetic susceptibility of Chinese tongue cancer patients, mtDNA control regions of 105 Chinese tongue cancer patients were amplified and sequenced, the mutations were recorded by comparing with the revised Cambridge Reference Sequence (rCRS), which were attributed to certain mtDNA haplogroups based on the specific variations motif of each patients. The Miao Chinese group (a Chinese ethnic minority) from surrounding region has no essential difference with tongue cancer group, which was taken as the matched control group with principal component analysis by taking the haplogroups frequency of 105 tongue cancer individuals and 354 healthy individuals of eight groups from the similar geographic regions as input factors. This was supported by the smallest genetic distance between tongue cancer and Miao_2 groups. Further, the statistical analysis based on mtDNA variations of hypervariable sequence I (HVSI) indicated that 13 variations including 16,124, 16,148, 16,182C, 16,183C, 16,227, 16,266A, 16,249, 16,272, 16,291, 16,327, 16,335, 16,497, and 16,519 have significant differences between tongue cancer group and matched control group. Comparison of mtDNA haplogroups between tongue cancer and control groups indicated that mtDNA haplogroups C, F2*, and M10 have significant differences. It's worth noting that 16,327 and 16,291 was the defining variation of haplogroups C and F2*, respectively. Our results suggested that mitochondrial DNA may play a crucial role for the maternal genetic susceptibility of tongue cancer patients from Hunan, central of China.
Collapse
Affiliation(s)
- Hai-Yan Zhou
- a Key Laboratory of Genetics and Birth Health of Hunan Province , Family Planning Institute of Hunan Province , Changsha , Hunan Province , China
| | - Hong-Ying Shu
- a Key Laboratory of Genetics and Birth Health of Hunan Province , Family Planning Institute of Hunan Province , Changsha , Hunan Province , China
| | - Jie Dai
- b Department of Head & Neck (Oncoplastic Surgery) , Hunan Cancer Hospital , Changsha , Hunan Province , China
| | - Hong-Chao Li
- b Department of Head & Neck (Oncoplastic Surgery) , Hunan Cancer Hospital , Changsha , Hunan Province , China
| | - Li Tang
- c Department of Reproduction and Genetics , The First Affiliated Hospital of Kunming Medical University , Kunming , Yunnan Province , China.,d Department of Reproduction and Genetics, The First People's Hospital of Yunnan Province , Kunming , Yunnan Province , China
| | - Hua-Wei Wang
- c Department of Reproduction and Genetics , The First Affiliated Hospital of Kunming Medical University , Kunming , Yunnan Province , China
| | - Bin Ni
- a Key Laboratory of Genetics and Birth Health of Hunan Province , Family Planning Institute of Hunan Province , Changsha , Hunan Province , China
| |
Collapse
|
37
|
Genetic structure of Tibetan populations in Gansu revealed by forensic STR loci. Sci Rep 2017; 7:41195. [PMID: 28112227 PMCID: PMC5255561 DOI: 10.1038/srep41195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/15/2016] [Indexed: 01/07/2023] Open
Abstract
The origin and diversification of Sino-Tibetan speaking populations have been long-standing hot debates. However, the limited genetic information of Tibetan populations keeps this topic far from clear. In the present study, we genotyped 15 forensic autosomal short tandem repeats (STRs) from 803 unrelated Tibetan individuals from Gansu Province (635 from Gannan and 168 from Tianzhu) in northwest China. We combined these data with published dataset to infer a detailed population affinities and genetic substructure of Sino-Tibetan populations. Our results revealed Tibetan populations in Gannan and Tianzhu are genetically very similar with Tibetans from other regions. The Tibetans in Tianzhu have received more genetic influence from surrounding lowland populations. The genetic structure of Sino-Tibetan populations was strongly correlated with linguistic affiliations. Although the among-population variances are relatively small, the genetic components for Tibetan, Lolo-Burmese, and Han Chinese were quite distinctive, especially for the Deng, Nu, and Derung of Lolo-Burmese. Han Chinese but not Tibetans are suggested to share substantial genetic component with southern natives, such as Tai-Kadai and Hmong-Mien speaking populations, and with other lowland East Asian populations, which implies there might be extensive gene flow between those lowland groups and Han Chinese after Han Chinese were separated from Tibetans. The dataset generated in present study is also valuable for forensic identification and paternity tests in China.
Collapse
|
38
|
Xu FL, Yao J, Ding M, Shi ZS, Wu X, Zhang JJ, Wang BJ. Characterization of mitochondrial DNA polymorphisms in the Han population in Liaoning Province, Northeast China. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:250-255. [PMID: 28093929 DOI: 10.1080/24701394.2016.1275597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study characterized the genetic variations of mitochondrial DNA (mtDNA) to elucidate the maternal genetic structure of Liaoning Han Chinese. A total of 317 blood samples of unrelated individuals were collected for analysis in Liaoning Province. The mtDNA samples were analyzed using two distinct methods: sequencing of the hypervariable sequences I and II (HVSI and HVSII), and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the coding region. The results indicated a high gene diversity value (0.9997 ± 0.0003), a high polymorphism information content (0.99668) and a random match probability (0.00332). These samples were classified into 305 haplotypes, with 9 shared haplotypes. The most common haplogroup was D4 (12.93%). The principal component analysis map, the phylogenetic tree map, and the genetic distance matrix all indicated that the genetic distance of the Liaoning Han population from the Tibetan group was distant, whereas that from the Miao group was relatively close.
Collapse
Affiliation(s)
- Feng-Ling Xu
- a School of Forensic Medicine , China Medical University , Shenyang , China
| | - Jun Yao
- a School of Forensic Medicine , China Medical University , Shenyang , China
| | - Mei Ding
- a School of Forensic Medicine , China Medical University , Shenyang , China
| | - Zhang-Sen Shi
- a School of Forensic Medicine , China Medical University , Shenyang , China
| | - Xue Wu
- a School of Forensic Medicine , China Medical University , Shenyang , China
| | - Jing-Jing Zhang
- a School of Forensic Medicine , China Medical University , Shenyang , China
| | - Bao-Jie Wang
- a School of Forensic Medicine , China Medical University , Shenyang , China
| |
Collapse
|
39
|
Exploring the maternal history of the Tai people. J Hum Genet 2016; 61:721-9. [PMID: 27098877 DOI: 10.1038/jhg.2016.36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/10/2016] [Accepted: 03/17/2016] [Indexed: 01/04/2023]
Abstract
In the past decades, the Tai people are increasingly being focused by genetic studies. However, a systematic genetic study of the whole Tai people is still lacking, thus making the population structure as well as the demographic history of this group uninvestigated from genetic perspective. Here we extensively analyzed the variants of hypervariable segments I and II (HVS-I and HVS-II) of mitochondrial DNA (mtDNA) of 719 Tai samples from 19 populations, covering virtually all of the current Tai people's residences. We observed a general close genetic affinity of the Tai people, reflecting a common origin of this group. Taken into account the phylogeographic analyses of their shared components, including haplogroups F1a, M7b and B5a, our study supported a southern Yunnan origin of the Tai people, consistent with the historical records. In line with their diverse cultures and languages, substantial genetic divergences can be observed among different Tai populations that could be attributable to assimilation of maternal components from neighboring populations. Our study further implied the advent of rice agriculture in Mainland Southeast Asia at ∼5 kya (kilo years ago) had greatly promoted the population expansion of the Tai people.
Collapse
|
40
|
Mersha TB. Mapping asthma-associated variants in admixed populations. Front Genet 2015; 6:292. [PMID: 26483834 PMCID: PMC4586512 DOI: 10.3389/fgene.2015.00292] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/03/2015] [Indexed: 12/19/2022] Open
Abstract
Admixed populations arise when two or more previously isolated populations interbreed. Mapping asthma susceptibility loci in an admixed population using admixture mapping (AM) involves screening the genome of individuals of mixed ancestry for chromosomal regions that have a higher frequency of alleles from a parental population with higher asthma risk as compared with parental population with lower asthma risk. AM takes advantage of the admixture created in populations of mixed ancestry to identify genomic regions where an association exists between genetic ancestry and asthma (in contrast to between the genotype of the marker and asthma). The theory behind AM is that chromosomal segments of affected individuals contain a significantly higher-than-average proportion of alleles from the high-risk parental population and thus are more likely to harbor disease-associated loci. Criteria to evaluate the applicability of AM as a gene mapping approach include: (1) the prevalence of the disease differences in ancestral populations from which the admixed population was formed; (2) a measurable difference in disease-causing alleles between the parental populations; (3) reduced linkage disequilibrium (LD) between unlinked loci across chromosomes and strong LD between neighboring loci; (4) a set of markers with noticeable allele-frequency differences between parental populations that contributes to the admixed population (single nucleotide polymorphisms (SNPs) are the markers of choice because they are abundant, stable, relatively cheap to genotype, and informative with regard to the LD structure of chromosomal segments); and (5) there is an understanding of the extent of segmental chromosomal admixtures and their interactions with environmental factors. Although genome-wide association studies have contributed greatly to our understanding of the genetic components of asthma, the large and increasing degree of admixture in populations across the world create many challenges for further efforts to map disease-causing genes. This review, summarizes the historical context of admixed populations and AM, and considers current opportunities to use AM to map asthma genes. In addition, we provide an overview of the potential limitations and future directions of AM in biomedical research, including joint admixture and association mapping for asthma and asthma-related disorders.
Collapse
Affiliation(s)
- Tesfaye B Mersha
- Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati Cincinnati, OH, USA
| |
Collapse
|
41
|
Kang L, Wang CC, Chen F, Yao D, Jin L, Li H. Northward genetic penetration across the Himalayas viewed from Sherpa people. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:342-9. [PMID: 24617465 DOI: 10.3109/19401736.2014.895986] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Himalayas have been suggested as a natural barrier for human migrations, especially the northward dispersals from the Indian Subcontinent to Tibetan Plateau. However, although the majority of Sherpa have a Tibeto-Burman origin, considerable genetic components from Indian Subcontinent have been observed in Sherpa people living in Tibet. The western Y chromosomal haplogroups R1a1a-M17, J-M304, and F*-M89 comprise almost 17% of Sherpa paternal gene pool. In the maternal side, M5c2, M21d, and U from the west also count up to 8% of Sherpa people. Those lineages with South Asian origin indicate that the Himalayas have been permeable to bidirectional gene flow.
Collapse
Affiliation(s)
- Longli Kang
- a Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet , Ministry of Education, Tibet University for Nationalities , Xianyang , Shaanxi , China and
| | - Chuan-Chao Wang
- b Ministry of Education Key Laboratory of Contemporary Anthropology , School of Life Sciences, Fudan University , Shanghai , China
| | - Feng Chen
- a Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet , Ministry of Education, Tibet University for Nationalities , Xianyang , Shaanxi , China and
| | - Dali Yao
- b Ministry of Education Key Laboratory of Contemporary Anthropology , School of Life Sciences, Fudan University , Shanghai , China
| | - Li Jin
- b Ministry of Education Key Laboratory of Contemporary Anthropology , School of Life Sciences, Fudan University , Shanghai , China
| | - Hui Li
- a Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet , Ministry of Education, Tibet University for Nationalities , Xianyang , Shaanxi , China and.,b Ministry of Education Key Laboratory of Contemporary Anthropology , School of Life Sciences, Fudan University , Shanghai , China
| |
Collapse
|
42
|
Ancient DNA reveals that the genetic structure of the northern Han Chinese was shaped prior to 3,000 years ago. PLoS One 2015; 10:e0125676. [PMID: 25938511 PMCID: PMC4418768 DOI: 10.1371/journal.pone.0125676] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 03/21/2015] [Indexed: 11/29/2022] Open
Abstract
The Han Chinese are the largest ethnic group in the world, and their origins, development, and expansion are complex. Many genetic studies have shown that Han Chinese can be divided into two distinct groups: northern Han Chinese and southern Han Chinese. The genetic history of the southern Han Chinese has been well studied. However, the genetic history of the northern Han Chinese is still obscure. In order to gain insight into the genetic history of the northern Han Chinese, 89 human remains were sampled from the Hengbei site which is located in the Central Plain and dates back to a key transitional period during the rise of the Han Chinese (approximately 3,000 years ago). We used 64 authentic mtDNA data obtained in this study, 27 Y chromosome SNP data profiles from previously studied Hengbei samples, and genetic datasets of the current Chinese populations and two ancient northern Chinese populations to analyze the relationship between the ancient people of Hengbei and present-day northern Han Chinese. We used a wide range of population genetic analyses, including principal component analyses, shared mtDNA haplotype analyses, and geographic mapping of maternal genetic distances. The results show that the ancient people of Hengbei bore a strong genetic resemblance to present-day northern Han Chinese and were genetically distinct from other present-day Chinese populations and two ancient populations. These findings suggest that the genetic structure of northern Han Chinese was already shaped 3,000 years ago in the Central Plain area.
Collapse
|
43
|
Li YC, Wang HW, Tian JY, Liu LN, Yang LQ, Zhu CL, Wu SF, Kong QP, Zhang YP. Ancient inland human dispersals from Myanmar into interior East Asia since the Late Pleistocene. Sci Rep 2015; 5:9473. [PMID: 25826227 PMCID: PMC4379912 DOI: 10.1038/srep09473] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/27/2015] [Indexed: 01/08/2023] Open
Abstract
Given the existence of plenty of river valleys connecting Southeast and East Asia, it is possible that some inland route(s) might have been adopted by the initial settlers to migrate into the interior of East Asia. Here we analyzed mitochondrial DNA (mtDNA) HVS variants of 845 newly collected individuals from 14 Myanmar populations and 5,907 published individuals from 115 populations from Myanmar and its surroundings. Enrichment of basal lineages with the highest genetic diversity in Myanmar suggests that Myanmar was likely one of the differentiation centers of the early modern humans. Intriguingly, some haplogroups were shared merely between Myanmar and southwestern China, hinting certain genetic connection between both regions. Further analyses revealed that such connection was in fact attributed to both recent gene flow and certain ancient dispersals from Myanmar to southwestern China during 25-10 kya, suggesting that, besides the coastal route, the early modern humans also adopted an inland dispersal route to populate the interior of East Asia.
Collapse
Affiliation(s)
- Yu-Chun Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua-Wei Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
| | - Jiao-Yang Tian
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Na Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
| | - Li-Qin Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
| | - Chun-Ling Zhu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
| | - Shi-Fang Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
| |
Collapse
|
44
|
A genetic contribution from the Far East into Ashkenazi Jews via the ancient Silk Road. Sci Rep 2015; 5:8377. [PMID: 25669617 PMCID: PMC4323646 DOI: 10.1038/srep08377] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/14/2015] [Indexed: 11/08/2022] Open
Abstract
Contemporary Jews retain a genetic imprint from their Near Eastern ancestry, but obtained substantial genetic components from their neighboring populations during their history. Whether they received any genetic contribution from the Far East remains unknown, but frequent communication with the Chinese has been observed since the Silk Road period. To address this issue, mitochondrial DNA (mtDNA) variation from 55,595 Eurasians are analyzed. The existence of some eastern Eurasian haplotypes in eastern Ashkenazi Jews supports an East Asian genetic contribution, likely from Chinese. Further evidence indicates that this connection can be attributed to a gene flow event that occurred less than 1.4 kilo-years ago (kya), which falls within the time frame of the Silk Road scenario and fits well with historical records and archaeological discoveries. This observed genetic contribution from Chinese to Ashkenazi Jews demonstrates that the historical exchange between Ashkenazim and the Far East was not confined to the cultural sphere but also extended to an exchange of genes.
Collapse
|
45
|
Emery L, Magnaye K, Bigham A, Akey J, Bamshad M. Estimates of continental ancestry vary widely among individuals with the same mtDNA haplogroup. Am J Hum Genet 2015; 96:183-93. [PMID: 25620206 DOI: 10.1016/j.ajhg.2014.12.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/09/2014] [Indexed: 01/07/2023] Open
Abstract
The association between a geographical region and an mtDNA haplogroup(s) has provided the basis for using mtDNA haplogroups to infer an individual's place of origin and genetic ancestry. Although it is well known that ancestry inferences using mtDNA haplogroups and those using genome-wide markers are frequently discrepant, little empirical information exists on the magnitude and scope of such discrepancies between multiple mtDNA haplogroups and worldwide populations. We compared genetic-ancestry inferences made by mtDNA-haplogroup membership to those made by autosomal SNPs in ∼940 samples of the Human Genome Diversity Panel and recently admixed populations from the 1000 Genomes Project. Continental-ancestry proportions often varied widely among individuals sharing the same mtDNA haplogroup. For only half of mtDNA haplogroups did the highest average continental-ancestry proportion match the highest continental-ancestry proportion of a majority of individuals with that haplogroup. Prediction of an individual's mtDNA haplogroup from his or her continental-ancestry proportions was often incorrect. Collectively, these results indicate that for most individuals in the worldwide populations sampled, mtDNA-haplogroup membership provides limited information about either continental ancestry or continental region of origin.
Collapse
|
46
|
Kutanan W, Srikummool M, Pittayaporn P, Seielstad M, Kangwanpong D, Kumar V, Prombanchachai T, Chantawannakul P. Admixed origin of the Kayah (Red Karen) in Northern Thailand revealed by biparental and paternal markers. Ann Hum Genet 2015; 79:108-21. [PMID: 25590861 DOI: 10.1111/ahg.12100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/27/2014] [Indexed: 11/27/2022]
Abstract
This study analyzes the autosomal short tandem repeats (STRs) variation and the presence of Y chromosomal haplogroups from 44 individuals of the Kayah or Red Karen (KA) in Northern Thailand. The results based on autosomal STRs indicated that the KA exhibited closer genetic relatedness to populations from adjacent regions in Southeast Asia (SEA) than populations from Northeast Asia (NEA) and Tibet. Moreover, an admixed origin of the KA forming three population groups was observed: NEA, Southern China, and Northern Thailand. The NEA populations made a minor genetic contribution to the KA, while the rest came from populations speaking Sino-Tibetan (ST) languages from Southern China and Tai-Kadai (TK) speaking groups from Northern Thailand. The presence of six paternal haplogroups, composed of dual haplogroups prevalent in NEA (NO, N, and D1) and SEA (O2 and O3) as well as the intermediate genetic position of the KA between the SEA and NEA also indicated an admixed origin of male KA lineages. Our genetic results thus agree with findings in linguistics that Karenic languages are ST languages that became heavily influenced by TK during their southward spread. A result of the Mongol invasions during the 13th century A.D. is one possible explanation for genetic contribution of NEA to the KA.
Collapse
Affiliation(s)
- Wibhu Kutanan
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Gao SZ, Zhang Y, Wei D, Li HJ, Zhao YB, Cui YQ, Zhou H. Ancient DNA reveals a migration of the ancient Di-qiang populations into Xinjiang as early as the early Bronze Age. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2014; 157:71-80. [PMID: 25546319 DOI: 10.1002/ajpa.22690] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 11/11/2022]
Abstract
Xinjiang is at the crossroads between East and West Eurasia, and it harbors a relatively complex genetic history. In order to better understand the population movements and interactions in this region, mitochondrial and Y chromosome analyses on 40 ancient human remains from the Tianshanbeilu site in eastern Xinjiang were performed. Twenty-nine samples were successfully assigned to specific mtDNA haplogroups, including the west Eurasian maternal lineages of U and W and the east Eurasian maternal lineages of A, C, D, F, G, Z, M7, and M10. In the male samples, two Y chromosome haplogroups, C* and N1 (xN1a, N1c), were successfully assigned. Our mitochondrial and Y-chromosomal DNA analyses combined with the archaeological studies revealed that the Di-qiang populations from the Hexi Corridor had migrated to eastern Xinjiang and admixed with the Eurasian steppe populations in the early Bronze Age.
Collapse
Affiliation(s)
- Shi-Zhu Gao
- Laboratory of Ancient DNA, Department of Molecular Biology, School of Life Sciences, Jilin University, Changchun, 130012, China; Department of Biopharmacy, College of Pharmacia Sciences, School of Life Sciences, Jilin University, Changchun, 130012, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Kutanan W, Kitpipit T, Phetpeng S, Thanakiatkrai P. Forensic STR loci reveal common genetic ancestry of the Thai-Malay Muslims and Thai Buddhists in the deep Southern region of Thailand. J Hum Genet 2014; 59:675-81. [PMID: 25339232 DOI: 10.1038/jhg.2014.93] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 11/09/2022]
Abstract
Among the people living in the five deep Southern Thai provinces, Thai-Malay Muslims (MUS) constitute the majority, while the remaining are Thai Buddhists (BUD). Cultural, linguistic and religious differences between these two populations have been previously reported. However, their biological relationship has never been investigated. In this study, we aimed to reveal the genetic structure and genetic affinity between MUS and BUD by analyzing 15 autosomal short tandem repeats. Both distance and model-based clustering methods showed significant genetic homogeneity between these two populations, suggesting a common biological ancestry. After Islamization in this region during the fourteenth century AD, gradual albeit nonstatistically significant genetic changes occurred within these two populations. Cultural barriers possibly influenced these genetic changes. MUS have closer admixture to Malaysian-Malay Muslims than BUD countrywide. Admixture proportions also support certain degree of genetic dissimilarity between the two studied populations, as shown by the unequal genetic contribution from Malaysian-Malay Muslims. Cultural transformation and recent minor genetic admixture are the likely processes that shaped the genetic structure of both MUS and BUD.
Collapse
Affiliation(s)
- Wibhu Kutanan
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Thitika Kitpipit
- Forensic Science Program, Department of Applied Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Sukanya Phetpeng
- DNA Analysis Center, Scientific Crime Detection Division 10, Royal Thai Police, Songkhla, Thailand
| | - Phuvadol Thanakiatkrai
- Forensic Science Program, Department of Applied Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
49
|
Abstract
Sex-biased admixture has been observed in a wide variety of admixed populations. Genetic variation in sex chromosomes and functions of quantities computed from sex chromosomes and autosomes have often been examined to infer patterns of sex-biased admixture, typically using statistical approaches that do not mechanistically model the complexity of a sex-specific history of admixture. Here, expanding on a model of Verdu and Rosenberg (2011) that did not include sex specificity, we develop a model that mechanistically examines sex-specific admixture histories. Under the model, multiple source populations contribute to an admixed population, potentially with their male and female contributions varying over time. In an admixed population descended from two source groups, we derive the moments of the distribution of the autosomal admixture fraction from a specific source population as a function of sex-specific introgression parameters and time. Considering admixture processes that are constant in time, we demonstrate that surprisingly, although the mean autosomal admixture fraction from a specific source population does not reveal a sex bias in the admixture history, the variance of autosomal admixture is informative about sex bias. Specifically, the long-term variance decreases as the sex bias from a contributing source population increases. This result can be viewed as analogous to the reduction in effective population size for populations with an unequal number of breeding males and females. Our approach suggests that it may be possible to use the effect of sex-biased admixture on autosomal DNA to assist with methods for inference of the history of complex sex-biased admixture processes.
Collapse
|
50
|
Zhao YB, Zhang Y, Li HJ, Cui YQ, Zhu H, Zhou H. Ancient DNA evidence reveals that the Y chromosome haplogroup Q1a1 admixed into the Han Chinese 3,000 years ago. Am J Hum Biol 2014; 26:813-21. [DOI: 10.1002/ajhb.22604] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/20/2014] [Accepted: 07/29/2014] [Indexed: 12/25/2022] Open
Affiliation(s)
- Yong-Bin Zhao
- College of Life Science; Jilin University; Changchun China
- College of Life Science; Jilin Normal University; Siping China
| | - Ye Zhang
- College of Life Science; Jilin University; Changchun China
| | - Hong-Jie Li
- Laboratory of Ancient DNA; Research Center for Chinese Frontier Archaeology of Jilin University; Changchun China
| | - Ying-Qiu Cui
- College of Life Science; Jilin University; Changchun China
| | - Hong Zhu
- Laboratory of Ancient DNA; Research Center for Chinese Frontier Archaeology of Jilin University; Changchun China
| | - Hui Zhou
- College of Life Science; Jilin University; Changchun China
- Laboratory of Ancient DNA; Research Center for Chinese Frontier Archaeology of Jilin University; Changchun China
| |
Collapse
|