1
|
Garretson A, Dumont BL, Handel MA. Reproductive genomics of the mouse: implications for human fertility and infertility. Development 2023; 150:dev201313. [PMID: 36779988 PMCID: PMC10836652 DOI: 10.1242/dev.201313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Genetic analyses of mammalian gametogenesis and fertility have the potential to inform about two important and interrelated clinical areas: infertility and contraception. Here, we address the genetics and genomics underlying gamete formation, productivity and function in the context of reproductive success in mammalian systems, primarily mouse and human. Although much is known about the specific genes and proteins required for meiotic processes and sperm function, we know relatively little about other gametic determinants of overall fertility, such as regulation of gamete numbers, duration of gamete production, and gamete selection and function in fertilization. As fertility is not a binary trait, attention is now appropriately focused on the oligogenic, quantitative aspects of reproduction. Multiparent mouse populations, created by complex crossing strategies, exhibit genetic diversity similar to human populations and will be valuable resources for genetic discovery, helping to overcome current limitations to our knowledge of mammalian reproductive genetics. Finally, we discuss how what we know about the genomics of reproduction can ultimately be brought to the clinic, informing our concepts of human fertility and infertility, and improving assisted reproductive technologies.
Collapse
Affiliation(s)
- Alexis Garretson
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston, MA 02111, USA
| | - Beth L. Dumont
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston, MA 02111, USA
| | - Mary Ann Handel
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston, MA 02111, USA
| |
Collapse
|
2
|
Roberts EK, Tardif S, Wright EA, Platt RN, Bradley RD, Hardy DM. Rapid divergence of a gamete recognition gene promoted macroevolution of Eutheria. Genome Biol 2022; 23:155. [PMID: 35821049 PMCID: PMC9275260 DOI: 10.1186/s13059-022-02721-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Speciation genes contribute disproportionately to species divergence, but few examples exist, especially in vertebrates. Here we test whether Zan, which encodes the sperm acrosomal protein zonadhesin that mediates species-specific adhesion to the egg's zona pellucida, is a speciation gene in placental mammals. RESULTS Genomic ontogeny reveals that Zan arose by repurposing of a stem vertebrate gene that was lost in multiple lineages but retained in Eutheria on acquiring a function in egg recognition. A 112-species Zan sequence phylogeny, representing 17 of 19 placental Orders, resolves all species into monophyletic groups corresponding to recognized Orders and Suborders, with <5% unsupported nodes. Three other rapidly evolving germ cell genes (Adam2, Zp2, and Prm1), a paralogous somatic cell gene (TectA), and a mitochondrial gene commonly used for phylogenetic analyses (Cytb) all yield trees with poorer resolution than the Zan tree and inferior topologies relative to a widely accepted mammalian supertree. Zan divergence by intense positive selection produces dramatic species differences in the protein's properties, with ordinal divergence rates generally reflecting species richness of placental Orders consistent with expectations for a speciation gene that acts across a wide range of taxa. Furthermore, Zan's combined phylogenetic utility and divergence exceeds those of all other genes known to have evolved in Eutheria by positive selection, including the only other mammalian speciation gene, Prdm9. CONCLUSIONS Species-specific egg recognition conferred by Zan's functional divergence served as a mode of prezygotic reproductive isolation that promoted the extraordinary adaptive radiation and success of Eutheria.
Collapse
Affiliation(s)
- Emma K. Roberts
- Department of Biological Sciences, Texas Tech University, Lubbock, TX USA
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Steve Tardif
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX USA
- Reproductive Biology Division, JangoBio, Fitchburg, WI USA
| | - Emily A. Wright
- Department of Biological Sciences, Texas Tech University, Lubbock, TX USA
| | - Roy N. Platt
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX USA
| | - Robert D. Bradley
- Department of Biological Sciences, Texas Tech University, Lubbock, TX USA
- Natural Science Research Laboratory, Museum of Texas Tech University, Lubbock, TX USA
| | - Daniel M. Hardy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX USA
| |
Collapse
|
3
|
Soni V, Vos M, Eyre-Walker A. A new test suggests hundreds of amino acid polymorphisms in humans are subject to balancing selection. PLoS Biol 2022; 20:e3001645. [PMID: 35653351 PMCID: PMC9162324 DOI: 10.1371/journal.pbio.3001645] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
The role that balancing selection plays in the maintenance of genetic diversity remains unresolved. Here, we introduce a new test, based on the McDonald–Kreitman test, in which the number of polymorphisms that are shared between populations is contrasted to those that are private at selected and neutral sites. We show that this simple test is robust to a variety of demographic changes, and that it can also give a direct estimate of the number of shared polymorphisms that are directly maintained by balancing selection. We apply our method to population genomic data from humans and provide some evidence that hundreds of nonsynonymous polymorphisms are subject to balancing selection.
Collapse
Affiliation(s)
- Vivak Soni
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Michiel Vos
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Penryn, United Kingdom
| | - Adam Eyre-Walker
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Keeble S, Firman RC, Sarver BAJ, Clark NL, Simmons LW, Dean MD. Evolutionary, proteomic, and experimental investigations suggest the extracellular matrix of cumulus cells mediates fertilization outcomes†. Biol Reprod 2021; 105:1043-1055. [PMID: 34007991 PMCID: PMC8511658 DOI: 10.1093/biolre/ioab082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/29/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022] Open
Abstract
Studies of fertilization biology often focus on sperm and egg interactions. However, before gametes interact, mammalian sperm must pass through the cumulus layer; in mice, this consists of several thousand cells tightly glued together with hyaluronic acid and other proteins. To better understand the role of cumulus cells and their extracellular matrix, we perform proteomic experiments on cumulus oophorus complexes (COCs) in house mice (Mus musculus), producing over 24,000 mass spectra to identify 711 proteins. Seven proteins known to stabilize hyaluronic acid and the extracellular matrix were especially abundant (using spectral counts as an indirect proxy for abundance). Through comparative evolutionary analyses, we show that three of these evolve rapidly, a classic signature of genes that influence fertilization rate. Some of the selected sites overlap regions of the protein known to impact function. In a follow-up experiment, we compared COCs from females raised in two different social environments. Female mice raised in the presence of multiple males produced COCs that were smaller and more resistant to dissociation by hyaluronidase compared to females raised in the presence of a single male, consistent with a previous study that demonstrated such females produced COCs that were more resistant to fertilization. Although cumulus cells are often thought of as enhancers of fertilization, our evolutionary, proteomic, and experimental investigations implicate their extracellular matrix as a potential mediator of fertilization outcomes.
Collapse
Affiliation(s)
- Sara Keeble
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Renée C Firman
- Centre for Evolutionary Biology, School of Biological Sciences (M092), University of Western Australia, Australia
| | - Brice A J Sarver
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Nathan L Clark
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), University of Western Australia, Australia
| | - Matthew D Dean
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
5
|
Schaschl H, Wallner B. Population-specific, recent positive directional selection suggests adaptation of human male reproductive genes to different environmental conditions. BMC Evol Biol 2020; 20:27. [PMID: 32054438 PMCID: PMC7020506 DOI: 10.1186/s12862-019-1575-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/30/2019] [Indexed: 01/18/2023] Open
Abstract
Background Recent human transcriptomic analyses revealed a very large number of testis-enriched genes, many of which are involved in spermatogenesis. This comprehensive transcriptomic data lead us to the question whether positive selection was a decisive force influencing the evolution and variability of testis-enriched genes in humans. We used two methodological approaches to detect different levels of positive selection, namely episodic positive diversifying selection (i.e., past selection) in the human lineage within primate phylogeny, potentially driven by sperm competition, and recent positive directional selection in contemporary human populations, which would indicate adaptation to different environments. Results In the human lineage (after correction for multiple testing) we found that only the gene TULP2, for which no functional data are yet available, is subject to episodic positive diversifying selection. Using less stringent statistical criteria (uncorrected p-values), also the gene SPATA16, which has a pivotal role in male fertility and for which episodes of adaptive evolution have been suggested, also displays a putative signal of diversifying selection in the human branch. At the same time, we found evidence for recent positive directional selection acting on several human testis-enriched genes (MORC1, SLC9B1, ROPN1L, DMRT1, PLCZ1, RNF17, FAM71D and WBP2NL) that play important roles in human spermatogenesis and fertilization. Most of these genes are population-specifically under positive selection. Conclusion Episodic diversifying selection, possibly driven by sperm competition, was not an important force driving the evolution of testis-enriched genes in the human lineage. Population-specific, recent positive directional selection suggests an adaptation of male reproductive genes to different environmental conditions. Positive selection acts on eQTLS and sQTLs, indicating selective effects on important gene regulatory functions. In particular, the transcriptional diversity regulated by sQTLs in testis-enriched genes may be important for spermatocytes to respond to environmental and physiological stress.
Collapse
Affiliation(s)
- Helmut Schaschl
- Department of Evolutionary Anthropology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| | - Bernard Wallner
- Department of Behavioural Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| |
Collapse
|
6
|
Swegen A, Smith ND, Gibb Z, Curry BJ, Aitken RJ. The serine protease testisin is present on the surface of capacitated stallion spermatozoa and interacts with key zona pellucida binding proteins. Andrology 2018; 7:199-212. [PMID: 30549223 DOI: 10.1111/andr.12569] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/28/2018] [Accepted: 11/03/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND OBJECTIVES Serine proteases are emerging as important players in the spermatozoon's acquisition of functional competence. This study aimed to characterize the serine protease testisin (PRSS21) in stallion spermatozoa, examining its surface expression, possible origins in the testis and epididymis, and changes in response to capacitation and acrosome reaction, as well as its capacity to form high molecular weight complexes and interact with other proteins. MATERIALS AND METHODS The role of serine proteases in spontaneous capacitation and acrosome reaction of stallion spermatozoa was established using the serine protease inhibitor, AEBSF. Testisin localization, before and after exposure of stallion spermatozoa to capacitating conditions and calcium ionophore, was examined using live cell immunofluorescence and flow cytometry. Immunohistochemistry of testicular and epididymal tissues was used to further dissect the origins of sperm testisin. Testisin's participation in high molecular weight protein complexes and identification of its interacting partner proteins were investigated using Blue Native PAGE, co-immunoprecipitation, and mass spectrometry, with interrogation of protein-protein interaction databases and gene ontology analysis of partner proteins used to further explore the potential roles of the testisin-containing complex in sperm function. RESULTS Testisin surface expression increased significantly in capacitated spermatozoa (p < 0.001), increased further following acrosome reaction (p < 0.01), and was localized to the equatorial region of the sperm head. Testisin was also detected in luminal fluid within the caput and corpus regions of the epididymis, epididymal spermatozoa, and epididymal epithelial cells. Testisin formed several multiprotein complexes; co-immunoprecipitation revealed interactions of testisin with a multitude of zona pellucida-binding proteins, including ZPBP, ZAN, acrosin, several heat-shock proteins, and components of the TCP1 complex. CONCLUSION Testisin appears to form part of the zona pellucida-binding complex in stallion spermatozoa and may be involved in the proteolytic cascade that prepares the sperm surface for interaction with the oocyte.
Collapse
Affiliation(s)
- A Swegen
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia
| | - N D Smith
- Analytical and Biomolecular Research Facility, University of Newcastle, Callaghan, NSW, Australia
| | - Z Gibb
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia
| | - B J Curry
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia
| | - R J Aitken
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
7
|
Romero MR, Pérez-Figueroa A, Carrera M, Swanson WJ, Skibinski DOF, Diz AP. RNA-seq coupled to proteomic analysis reveals high sperm proteome variation between two closely related marine mussel species. J Proteomics 2018; 192:169-187. [PMID: 30189323 DOI: 10.1016/j.jprot.2018.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/10/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022]
Abstract
Speciation mechanisms in marine organisms have attracted great interest because of the apparent lack of substantial barriers to genetic exchange in marine ecosystems. Marine mussels of the Mytilus edulis species complex provide a good model to study mechanisms underlying species formation. They hybridise extensively at many localities and both pre- and postzygotic isolating mechanisms may be operating. Mussels have external fertilisation and sperm cells should show specific adaptations for survival and successful fertilisation. Sperm thus represent key targets in investigations of the molecular mechanisms underlying reproductive isolation. We undertook a deep transcriptome sequencing (RNA-seq) of mature male gonads and a 2DE/MS-based proteome analysis of sperm from Mytilus edulis and M. galloprovincialis raised in a common environment. We provide evidence of extensive expression differences between the two mussel species, and general agreement between the transcriptomic and proteomic results in the direction of expression differences between species. Differential expression is marked for mitochondrial genes and for those involved in spermatogenesis, sperm motility, sperm-egg interactions, the acrosome reaction, sperm capacitation, ATP reserves and ROS production. Proteins and their corresponding genes might thus be good targets in further genomic analysis of reproductive barriers between these closely related species. SIGNIFICANCE: Model systems for the study of fertilization include marine invertebrates with external fertilisation, such as abalones, sea urchins and mussels, because of the ease with which large quantities of gametes released into seawater can be collected after induced spawning. Unlike abalones and sea urchins, hybridisation has been reported between mussels of different Mytilus spp., which thus makes them very appealing for the study of reproductive isolation at both pre- and postzygotic levels. There is a lack of empirical proteomic studies on sperm samples comparing different Mytilus species, which could help to advance this study. A comparative analysis of sperm proteomes across different taxa may provide important insights into the fundamental molecular processes and mechanisms involved in reproductive isolation. It might also contribute to a better understanding of sperm function and of the adaptive evolution of sperm proteins in different taxa. There is now growing evidence from genomics studies that multiple protein complexes and many individual proteins might have important functions in sperm biology and the fertilisation process. From an applied perspective, the identification of sperm-specific proteins could also contribute to the improved understanding of fertility problems and as targets for fertility control.
Collapse
Affiliation(s)
- Mónica R Romero
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain; Marine Research Centre, University of Vigo (CIM-UVIGO), Isla de Toralla, Vigo, Spain
| | - Andrés Pérez-Figueroa
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain
| | | | - Willie J Swanson
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, USA
| | - David O F Skibinski
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK
| | - Angel P Diz
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain; Marine Research Centre, University of Vigo (CIM-UVIGO), Isla de Toralla, Vigo, Spain.
| |
Collapse
|
8
|
Kekäläinen J, Evans JP. Gamete-mediated mate choice: towards a more inclusive view of sexual selection. Proc Biol Sci 2018; 285:20180836. [PMID: 30051836 PMCID: PMC6083266 DOI: 10.1098/rspb.2018.0836] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 06/26/2018] [Indexed: 12/23/2022] Open
Abstract
'Sperm competition'-where ejaculates from two or more males compete for fertilization-and 'cryptic female choice'-where females bias this contest to suit their reproductive interests-are now part of the everyday lexicon of sexual selection. Yet the physiological processes that underlie these post-ejaculatory episodes of sexual selection remain largely enigmatic. In this review, we focus on a range of post-ejaculatory cellular- and molecular-level processes, known to be fundamental for fertilization across most (if not all) sexually reproducing species, and point to their putative role in facilitating sexual selection at the level of the cells and gametes, called 'gamete-mediated mate choice' (GMMC). In this way, we collate accumulated evidence for GMMC across different mating systems, and emphasize the evolutionary significance of such non-random interactions among gametes. Our overall aim in this review is to build a more inclusive view of sexual selection by showing that mate choice often acts in more nuanced ways than has traditionally been assumed. We also aim to bridge the conceptual divide between proximal mechanisms of reproduction, and adaptive explanations for patterns of non-random sperm-egg interactions that are emerging across an increasingly diverse array of taxa.
Collapse
Affiliation(s)
- Jukka Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
9
|
Proteomics of phosphorylation and protein dynamics during fertilization and meiotic exit in the Xenopus egg. Proc Natl Acad Sci U S A 2017; 114:E10838-E10847. [PMID: 29183978 DOI: 10.1073/pnas.1709207114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fertilization releases the meiotic arrest and initiates the events that prepare the egg for the ensuing developmental program. Protein degradation and phosphorylation are known to regulate protein activity during this process. However, the full extent of protein loss and phosphoregulation is still unknown. We examined absolute protein and phosphosite dynamics of the fertilization response by mass spectrometry-based proteomics in electroactivated eggs. To do this, we developed an approach for calculating the stoichiometry of phosphosites from multiplexed proteomics that is compatible with dynamic, stable, and multisite phosphorylation. Overall, the data suggest that degradation is limited to a few low-abundance proteins. However, this degradation promotes extensive dephosphorylation that occurs over a wide range of abundances during meiotic exit. We also show that eggs release a large amount of protein into the medium just after fertilization, most likely related to the blocks to polyspermy. Concomitantly, there is a substantial increase in phosphorylation likely tied to calcium-activated kinases. We identify putative degradation targets and components of the slow block to polyspermy. The analytical approaches demonstrated here are broadly applicable to studies of dynamic biological systems.
Collapse
|
10
|
Springate L, Frasier TR. Gamete compatibility genes in mammals: candidates, applications and a potential path forward. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170577. [PMID: 28878999 PMCID: PMC5579115 DOI: 10.1098/rsos.170577] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/31/2017] [Indexed: 06/01/2023]
Abstract
Fertilization represents a critical stage in biology, where successful alleles of a previous generation are shuffled into new arrangements and subjected to the forces of selection in the next generation. Although much research has been conducted on how variation in morphological and behavioural traits lead to variation in fertilization patterns, surprisingly little is known about fertilization at a molecular level, and specifically about how genes expressed on the sperm and egg themselves influence fertilization patterns. In mammals, several genes have been identified whose products are expressed on either the sperm or the egg, and which influence the fertilization process, but the specific mechanisms are not yet known. Additionally, in 2014 an interacting pair of proteins was identified: 'Izumo' on the sperm, and 'Juno' on the egg. With the identification of these genes comes the first opportunity to understand the molecular aspects of fertilization in mammals, and to identify how the genetic characteristics of these genes influence fertilization patterns. Here, we review recent progress in our understanding of fertilization and gamete compatibility in mammals, which should provide a helpful guide to researchers interested in untangling the molecular mechanisms of fertilization and the resulting impacts on population biology and evolutionary processes.
Collapse
|
11
|
Some assembly required: evolutionary and systems perspectives on the mammalian reproductive system. Cell Tissue Res 2015; 363:267-278. [DOI: 10.1007/s00441-015-2257-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/05/2015] [Indexed: 12/30/2022]
|
12
|
Kosman ET, Levitan DR. Sperm competition and the evolution of gametic compatibility in externally fertilizing taxa. Mol Hum Reprod 2014; 20:1190-7. [PMID: 25323969 DOI: 10.1093/molehr/gau069] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Proteins expressed on the surface of sperm and egg mediate gametic compatibility and these proteins can be subject to intense positive selection. In this review, we discuss what is known about the patterns of adaptive evolution of gamete recognition proteins (GRPs). We focus on species that broadcast eggs and sperm into the environment for external fertilization, as the ease of observing and manipulating gamete interactions has allowed for greater advances in the understanding of GRP evolution, uncomplicated by confounding behavioral and physiological components that offer alternative evolutionary targets in internal fertilizers. We discuss whether interspecific mechanisms, such as selection to avoid fertilization between species (reinforcement selection), or intraspecific mechanisms, such as selection to increase (or decrease) the affinity between eggs and sperm based on the intensity of sperm competition, may be responsible for the pattern of GRP evolution observed. Variation in these proteins appears to influence gametic compatibility; GRP divergence among species is a better predictor of hybrid fertilization than neutral genetic markers and GRP variation within species predicts reproductive success among individuals within a population. Evidence suggests that sperm competition may play a large role in the evolution of gametic compatibility.
Collapse
Affiliation(s)
- E T Kosman
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - D R Levitan
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
13
|
Molecular and cellular mechanisms of sperm-oocyte interactions opinions relative to in vitro fertilization (IVF). Int J Mol Sci 2014; 15:12972-97. [PMID: 25054321 PMCID: PMC4139886 DOI: 10.3390/ijms150712972] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/07/2014] [Accepted: 06/24/2014] [Indexed: 12/17/2022] Open
Abstract
One of the biggest prerequisites for pregnancy is the fertilization step, where a human haploid spermatozoon interacts and penetrates one haploid oocyte in order to produce the diploid zygote. Although fertilization is defined by the presence of two pronuclei and the extraction of the second polar body the process itself requires preparation of both gametes for fertilization to take place at a specific time. These preparations include a number of consecutive biochemical and molecular events with the help of specific molecules and with the consequential interaction between the two gametes. These events take place at three different levels and in a precise order, where the moving spermatozoon penetrates (a) the outer vestments of the oocyte, known as the cumulus cell layer; (b) the zona pellucida (ZP); where exocytosis of the acrosome contents take place and (c) direct interaction of the spermatozoon with the plasma membrane of the oocyte, which involves a firm adhesion of the head of the spermatozoon with the oocyte plasma membrane that culminates with the fusion of both sperm and oocyte membranes (Part I). After the above interactions, a cascade of molecular signal transductions is initiated which results in oocyte activation. Soon after the entry of the first spermatozoon into the oocyte and oocyte activation, the oocyte’s coat (the ZP) and the oocyte’s plasma membrane seem to change quickly in order to initiate a fast block to a second spermatozoon (Part II). Sometimes, two spermatozoa fuse with one oocyte, an incidence of 1%–2%, resulting in polyploid fetuses that account for up to 10%–20% of spontaneously aborted human conceptuses. The present review aims to focus on the first part of the human sperm and oocyte interactions, emphasizing the latest molecular and cellular mechanisms controlling this process.
Collapse
|
14
|
Claw KG, George RD, Swanson WJ. Detecting coevolution in mammalian sperm-egg fusion proteins. Mol Reprod Dev 2014; 81:531-8. [PMID: 24644026 DOI: 10.1002/mrd.22321] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 03/07/2014] [Indexed: 02/02/2023]
Abstract
Interactions between sperm and egg proteins can occur physically between gamete surface-binding proteins, and genetically between gamete proteins that work in complementary pathways in which they may not physically interact. Physically interacting sperm-egg proteins have been functionally identified in only a few species, and none have been verified within mammals. Candidate genes on both the sperm and egg surfaces exist, but gene deletion studies do not support functional interactions between these sperm-egg proteins; interacting sperm-egg proteins thus remain elusive. Cooperative gamete proteins undergo rapid evolution, and it is predicted that these sperm-egg proteins will also have correlated evolutionary rates due to compensatory changes on both the sperm and egg. To explore potential physical and genetic interactions in sperm-egg proteins, we sequenced four candidate genes from diverse primate species, and used regression and likelihood methods to test for signatures of coevolution between sperm-egg gene pairs. With both methods, we found that the egg protein CD9 coevolves with the sperm protein IZUMO1, suggesting a physical or genetic interaction occurs between them. With regression analysis, we found that CD9 and CRISP2 have correlated rates of evolution, and with likelihood analysis, that CD9 and CRISP1 have correlated rates. This suggests that the different tests may reflect different levels of interaction, be it physical or genetic. Coevolution tests thus provide an exploratory method for detecting potentially interacting sperm-egg protein pairs.
Collapse
Affiliation(s)
- Katrina G Claw
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | | | | |
Collapse
|
15
|
Sylvestre EL, Robert C, Pennetier S, Labrecque R, Gilbert I, Dufort I, Léveillé MC, Sirard MA. Evolutionary conservation of the oocyte transcriptome among vertebrates and its implications for understanding human reproductive function. Mol Hum Reprod 2013; 19:369-79. [PMID: 23340479 DOI: 10.1093/molehr/gat006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cross-phylum and cross-species comparative transcriptomic analyses provide an evolutionary perspective on how specific tissues use genomic information. A significant mRNA subset present in the oocytes of most vertebrates is stabilized or stored for post-LH surge use. Since transcription is arrested in the oocyte before ovulation, this RNA is important for completing maturation and sustaining embryo development until zygotic genome activation. We compared the human oocyte transcriptome with an oocyte-enriched subset of mouse, bovine and frog (Xenopus laevis) genes in order to evaluate similarities between species. Graded temperature stringency hybridization on a multi-species oocyte cDNA array was used to measure the similarity of preferentially expressed sequences to the human oocyte library. Identity analysis of 679 human orthologs compared with each identified official gene symbol found in the subtractive (somatic-oocyte) libraries comprising our array revealed that bovine/human similarity was greater than mouse/human or frog/human similarity. However, based on protein sequence, mouse/human similarity was greater than bovine/human similarity. Among the genes over-expressed in oocytes relative to somatic tissue in Xenopus, Mus and Bos, a high level of conservation was found relative to humans, especially for genes involved in early embryonic development.
Collapse
Affiliation(s)
- Eve-Lyne Sylvestre
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Université Laval, Québec, QC, Canada G1V 0A6
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Gabrovska PN, Smith RA, Tiang T, Weinstein SR, Haupt LM, Griffiths LR. Development of an eight gene expression profile implicating human breast tumours of all grade. Mol Biol Rep 2011; 39:3879-92. [PMID: 21766182 DOI: 10.1007/s11033-011-1167-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 06/30/2011] [Indexed: 10/18/2022]
Abstract
The goal of improving systemic treatment of breast cancers is to evolve from treating every patient with non-specific cytotoxic chemotherapy/hormonal therapy, to a more individually-tailored direct treatment. Although anatomic staging and histological grade are important prognostic factors, they often fail to predict the clinical course of this disease. This study aimed to develop a gene expression profile associated with breast cancers of differing grades. We extracted mRNA from FFPE archival breast IDC tissue samples (Grades I-III), including benign tumours. Affymetrix GeneChip(®) Human Genome U133 Plus 2.0 Arrays were used to determine gene expression profiles and validated by Q-PCR. IHC was used to detect the AXIN2 protein in all tissues. From the array data, an independent group t-test revealed that 178 genes were significantly (P ≤ 0.01) differentially expressed between three grades of malignant breast tumours when compared to benign tissues. From these results, eight genes were significantly differentially expressed in more than one comparison group and are involved in processes implicated in breast cancer development and/or progression. The two most implicated candidates genes were CLD10 and ESPTI1 as their gene expression profile from the microarray analysis was replicated in Q-PCR analyses of the original tumour samples as well as in an extended population. The IHC revealed a significant association between AXIN2 protein expression and ER status. It is readily acknowledged and established that significant differences exist in gene expression between different cancer grades. Expansion of this approach may lead to an improved ability to discriminate between cancer grade and other pathological factors.
Collapse
Affiliation(s)
- P N Gabrovska
- Genomics Research Centre, Griffith Health Institute, Griffith University, Gold Coast Campus, Parklands Drive, Southport, QLD, 4222, Australia
| | | | | | | | | | | |
Collapse
|
17
|
Xie X, Qiu WG, Lipke PN. Accelerated and adaptive evolution of yeast sexual adhesins. Mol Biol Evol 2011; 28:3127-37. [PMID: 21633112 DOI: 10.1093/molbev/msr145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There is a recent emergence of interest in the genes involved in gametic recognition as drivers of reproductive isolation. The recent population genomic sequencing of two species of sexually primitive yeasts (Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A, Koufopanou V et al. [23 co-authors]. 2009. Population genomics of domestic and wild yeasts. Nature 458:337-341.) has provided data for systematic study of the roles these genes play in the early evolution of sex and speciation. Here, we discovered that among genes encoding cell surface proteins, the sexual adhesin genes have evolved significantly more rapidly than others, both within and between Saccharomyces cerevisiae and its closest relative S. paradoxus. This result was supported by analyses using the PAML pairwise model, a modified McDonald-Kreitman test, and the PAML branch model. Moreover, using a combination of a new statistic of neutrality, an information theory-based measure of evolutionary variability, and functional characterization of amino acid changes, we found that a higher proportion of amino acid changes are fixed in the sexual adhesins than in other proteins and a greater proportion of the fixed amino acid changes either between the two species or the two subgroups of S. paradoxus are functionally dissimilar or radically different. These results suggest that the accelerated evolution of sexual adhesin genes may facilitate speciation, or incipient speciation, and promote sexual selection in general.
Collapse
Affiliation(s)
- Xianfa Xie
- Department of Biology, Brooklyn College, City University of New York, NY, USA.
| | | | | |
Collapse
|
18
|
Tardif S, Cormier N. Role of zonadhesin during sperm-egg interaction: a species-specific acrosomal molecule with multiple functions. Mol Hum Reprod 2011; 17:661-8. [PMID: 21602212 DOI: 10.1093/molehr/gar039] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Sperm-zona adhesion is an essential event in mammalian fertilization, failure of which causes sterility. However, the molecular mechanisms involved in this process are still poorly understood. It has been suggested by few laboratories studying gamete interaction that acrosomal molecules are implicated in sperm-zona pellucida adhesion prior to the acrosome reaction (AR). Zonadhesin, a sperm-specific protein located in the acrosome is critically involved in zona binding. Here we describe the cellular and molecular interaction of zonadhesin during fertilization and also discuss its role in species-specific gamete interaction--an intriguing question in biology. We propose a model in which sperm could transiently expose acrosomal molecules that adhere to the zona independently of the AR in a 'kiss and run' mechanism. This could be a valuable framework for further investigations and a detailed understanding of the molecular events during gamete adhesion is likely to provide new approaches for the design of more effective male contraceptives and better diagnostic methods for sperm dysfunction.
Collapse
Affiliation(s)
- Steve Tardif
- Reproductive and Developmental Biology Group, Maternal and Child Health Sciences Laboratories, Centre for Oncology and Molecular Medicine, Division of Medical Sciences, Ninewells Hospital, University of Dundee, DD1 9SY, Dundee, UK.
| | | |
Collapse
|
19
|
Abstract
In this review, I describe how evolutionary genomics is uniquely suited to spearhead advances in understanding human disease risk, owing to the privileged position of genes as fundamental causes of phenotypic variation, and the ability of population genetic and phylogenetic methods to robustly infer processes of natural selection, drift, and mutation from genetic variation at the levels of family, population, species, and clade. I first provide an overview of models for the origins and maintenance of genetically based disease risk in humans. I then discuss how analyses of genetic disease risk can be dovetailed with studies of positive and balancing selection, to evaluate the degree to which the 'genes that make us human' also represent the genes that mediate risk of polygenic disease. Finally, I present four basic principles for the nascent field of human evolutionary medical genomics, each of which represents a process that is nonintuitive from a proximate perspective. Joint consideration of these principles compels novel forms of interdisciplinary analyses, most notably studies that (i) analyze tradeoffs at the level of molecular genetics, and (ii) identify genetic variants that are derived in the human lineage or in specific populations, and then compare individuals with derived versus ancestral alleles.
Collapse
Affiliation(s)
- Bernard J Crespi
- Department of Biosciences, Simon Fraser University Burnaby, BC, Canada
| |
Collapse
|
20
|
Chen S, Costa V, Beja-Pereira A. Evolutionary patterns of two major reproduction candidate genes (Zp2 and Zp3) reveal no contribution to reproductive isolation between bovine species. BMC Evol Biol 2011; 11:24. [PMID: 21266067 PMCID: PMC3037879 DOI: 10.1186/1471-2148-11-24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 01/25/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It has been established that mammalian egg zona pellucida (ZP) glycoproteins are responsible for species-restricted binding of sperm to unfertilized eggs, inducing the sperm acrosome reaction, and preventing polyspermy. In mammals, ZP apparently represents a barrier to heterospecific fertilization and thus probably contributes to reproductive isolation between species. The evolutionary relationships between some members of the tribe Bovini are complex and highly debatable, particularly, those involving Bos and Bison species for which interspecific hybridization is extensively documented. Because reproductive isolation is known to be a major precursor of species divergence, testing evolutionary patterns of ZP glycoproteins may shed some light into the speciation process of these species. To this end, we have examined intraspecific and interspecific genetic variation of two ZP genes (Zp2 and Zp3) for seven representative species (111 individuals) from the Bovini tribe, including five species from Bos and Bison, and two species each from genera Bubalus and Syncerus. RESULTS A pattern of low levels of intraspecific polymorphism and interspecific divergence was detected for the two sequenced fragments each for Zp2 and Zp3. At intraspecific level, none of neutrality tests detected deviations from neutral equilibrium expectations for the two genes. Several haplotypes in both genes were shared by multiple species from Bos and Bison. CONCLUSIONS Here we argue that neither ancestral polymorphism nor introgressive hybridization alone can fully account for haplotype sharing among species from Bos and Bison, and that both scenarios have contributed to such a pattern of haplotype sharing observed here. Additionally, codon-based tests revealed strong evidence for purifying selection in the Zp3 coding haplotype sequences and weak evidence for purifying selection in the Zp2 coding haplotype sequences. Contrary to a general genetic pattern that genes or genomic regions contributing to reproductive isolation between species often evolve rapidly and show little or no gene flow between species, these results demonstrate that, particularly, those sequenced exons of the Zp2 and the Zp3 did not show any contribution to reproductive isolation between the bovine species studied here.
Collapse
Affiliation(s)
- Shanyuan Chen
- Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | | | | |
Collapse
|
21
|
Diversity-enhancing selection acts on a female reproductive protease family in four subspecies of Drosophila mojavensis. Genetics 2011; 187:865-76. [PMID: 21212232 DOI: 10.1534/genetics.110.124743] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Protein components of the Drosophila male ejaculate are critical modulators of reproductive success, several of which are known to evolve rapidly. Recent evidence of adaptive evolution in female reproductive tract proteins suggests this pattern may reflect sexual selection at the molecular level. Here we explore the evolutionary dynamics of a five-paralog gene family of female reproductive proteases within geographically isolated subspecies of Drosophila mojavensis. Remarkably, four of five paralogs show exceptionally low differentiation between subspecies and unusually structured haplotypes that suggest the retention of old polymorphisms. These gene genealogies are accompanied by deviations from neutrality consistent with diversifying selection. While diversifying selection has been observed among the reproductive molecules of mammals and marine invertebrates, our study provides the first evidence of this selective regime in any Drosophila reproductive protein, male or female.
Collapse
|
22
|
Giesecke K, Sieme H, Distl O. Infertility and candidate gene markers for fertility in stallions: A review. Vet J 2010; 185:265-71. [DOI: 10.1016/j.tvjl.2009.07.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 07/16/2009] [Accepted: 07/27/2009] [Indexed: 02/04/2023]
|
23
|
Tomaiuolo M, Levitan D. Modeling How Reproductive Ecology Can Drive Protein Diversification and Result in Linkage Disequilibrium between Sperm and Egg Proteins. Am Nat 2010; 176:14-25. [DOI: 10.1086/652999] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Tardif S, Wilson MD, Wagner R, Hunt P, Gertsenstein M, Nagy A, Lobe C, Koop BF, Hardy DM. Zonadhesin is essential for species specificity of sperm adhesion to the egg zona pellucida. J Biol Chem 2010; 285:24863-70. [PMID: 20529856 DOI: 10.1074/jbc.m110.123125] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interaction of rapidly evolving molecules imparts species specificity to sperm-egg recognition in marine invertebrates, but it is unclear whether comparable interactions occur during fertilization in any vertebrate species. In mammals, the sperm acrosomal protein zonadhesin is a rapidly evolving molecule with species-specific binding activity for the egg zona pellucida (ZP). Here we show using null mice produced by targeted disruption of Zan that zonadhesin confers species specificity to sperm-ZP adhesion. Sperm capacitation selectively exposed a partial von Willebrand D domain of mouse zonadhesin on the surface of living, motile cells. Antibodies to the exposed domain inhibited adhesion of wild-type spermatozoa to the mouse ZP but did not inhibit adhesion of spermatozoa lacking zonadhesin. Zan(-/-) males were fertile, and their spermatozoa readily fertilized mouse eggs in vitro. Remarkably, however, loss of zonadhesin increased adhesion of mouse spermatozoa to pig, cow, and rabbit ZP but not mouse ZP. We conclude that zonadhesin mediates species-specific ZP adhesion, and Zan(-/-) males are fertile because their spermatozoa retain adhesion capability that is not species-specific. Mammalian sperm-ZP adhesion is therefore molecularly robust, and species-specific egg recognition by a protein in the sperm acrosome is conserved between invertebrates and vertebrates, even though the adhesion molecules themselves are unrelated.
Collapse
Affiliation(s)
- Steve Tardif
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430-6540, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Findlay GD, Swanson WJ. Proteomics enhances evolutionary and functional analysis of reproductive proteins. Bioessays 2010; 32:26-36. [PMID: 20020477 DOI: 10.1002/bies.200900127] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Reproductive proteins maintain species-specific barriers to fertilization, affect the outcome of sperm competition, mediate reproductive conflicts between the sexes, and potentially contribute to the formation of new species. However, the specific proteins and molecular mechanisms that underlie these processes are understood in only a handful of cases. Advances in genomic and proteomic technologies enable the identification of large suites of reproductive proteins, making it possible to dissect reproductive phenotypes at the molecular level. We first review these technological advances and describe how reproductive proteins are identified in diverse animal taxa. We then discuss the dynamic evolution of reproductive proteins and the potential selective forces that act on them. Finally, we describe molecular and genomic tools for functional analysis and detail how evolutionary data may be used to make predictions about interactions among reproductive proteins.
Collapse
Affiliation(s)
- Geoffrey D Findlay
- Department of Genome Sciences, University of Washington, Seattle, 98195-5065, USA.
| | | |
Collapse
|
26
|
Dorus S, Wasbrough ER, Busby J, Wilkin EC, Karr TL. Sperm proteomics reveals intensified selection on mouse sperm membrane and acrosome genes. Mol Biol Evol 2010; 27:1235-46. [PMID: 20080865 DOI: 10.1093/molbev/msq007] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spermatozoa are a focal point for the impact of sexual selection due to sperm competition and sperm-female interactions in a wide range of sexually reproducing organisms. In-depth molecular investigation of the ramifications of these selective regimes has been limited due to a lack of information concerning the molecular composition of sperm. In this study, we utilize three previously published proteomic data sets in conjunction with our whole mouse sperm proteomic analysis to delineate cellular regions of sperm most impacted by positive selection. Interspecific analysis reveals robust evolutionary acceleration of sperm cell membrane genes (which include genes encoding acrosomal and sperm cell surface proteins) relative to other sperm genes, and evidence for positive selection in approximately 22% of sperm cell membrane components was obtained using maximum likelihood models. The selective forces driving the accelerated evolution of these membrane proteins may occur at a number of locations during sperm development, maturation, and transit through the female reproductive tract where the sperm cell membrane and eventually the acrosome are exposed to the extracellular milieu and available for direct cell-cell interactions.
Collapse
Affiliation(s)
- Steve Dorus
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Dun MD, Mitchell LA, Aitken RJ, Nixon B. Sperm-zona pellucida interaction: molecular mechanisms and the potential for contraceptive intervention. Handb Exp Pharmacol 2010:139-178. [PMID: 20839091 DOI: 10.1007/978-3-642-02062-9_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
At the moment of insemination, millions of mammalian sperm cells are released into the female reproductive tract with the single goal of finding the oocyte. The spermatozoa subsequently ignore the thousands of cells they make contact with during their journey to the site of fertilization, until they reach the surface of the oocyte. At this point, they bind tenaciously to the acellular coat, known as the zona pellucida, which surrounds the oocyte and orchestrate a cascade of cellular interactions that culminate in fertilization. These exquisitely cell- and species- specific recognition events are among the most strategically important cellular interactions in biology. Understanding the cellular and molecular mechanisms that underpin them has implications for the etiology of human infertility and the development of novel targets for fertility regulation. Herein we describe our current understanding of the molecular basis of successful sperm-zona pellucida binding.
Collapse
Affiliation(s)
- Matthew D Dun
- Reproductive Science Group, School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | | | | | | |
Collapse
|
28
|
Tardif S, Brady HA, Breazeale KR, Bi M, Thompson LD, Bruemmer JE, Bailey LB, Hardy DM. Zonadhesin D3-polypeptides vary among species but are similar in Equus species capable of interbreeding. Biol Reprod 2009; 82:413-21. [PMID: 19794156 DOI: 10.1095/biolreprod.109.077891] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Zonadhesin is a rapidly evolving protein in the sperm acrosome that confers species specificity to sperm-zona pellucida adhesion. Though structural variation in zonadhesin likely contributes to its species-specific function, the protein has not previously been characterized in organisms capable of interbreeding. Here we compared properties of zonadhesin in several animals, including the horse (Equus caballus), donkey (E. asinus), and Grevy's zebra (E. grevyi) to determine if variation in zonadhesin correlates with ability of gametes to cross-fertilize. Zonadhesin localized to the apical acrosomes of spermatozoa from all three Equus species, similar to its localization in other animals. Likewise, in horse and donkey testis, zonadhesin was detected only in germ cells, first in the acrosomal granule of round spermatids and then in the developing acrosomes of elongating spermatids. Among non-Equus species, D3-domain polypeptides of mature, processed zonadhesin varied markedly in size and detergent solubility. However, zonadhesin D3-domain polypeptides in horse, donkey, and zebra spermatozoa exhibited identical electrophoretic mobility and detergent solubility. Equus zonadhesin D3-polypeptides (p110/p80 doublet) were most similar in size to porcine and bovine zonadhesin D3-polypeptides (p105). Sequence comparisons revealed that the horse zonadhesin precursor's domain content and arrangement are similar to those of zonadhesin from other large animals. Partial sequences of horse and donkey zonadhesin were much more similar to each other (>99% identity) than they were to orthologous sequences of human, pig, rabbit, and mouse zonadhesin (52%-72% identity). We conclude that conservation of zonadhesin D3-polypeptide properties correlates with ability of Equus species to interbreed.
Collapse
Affiliation(s)
- Steve Tardif
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
O'Connor TD, Mundy NI. Genotype-phenotype associations: substitution models to detect evolutionary associations between phenotypic variables and genotypic evolutionary rate. ACTA ACUST UNITED AC 2009; 25:i94-100. [PMID: 19478022 PMCID: PMC2687985 DOI: 10.1093/bioinformatics/btp231] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Motivation: Mapping between genotype and phenotype is one of the primary goals of evolutionary genetics but one that has received little attention at the interspecies level. Recent developments in phylogenetics and statistical modelling have typically been used to examine molecular and phenotypic evolution separately. We have used this background to develop phylogenetic substitution models to test for associations between evolutionary rate of genotype and phenotype. We do this by creating hybrid rate matrices between genotype and phenotype. Results: Simulation results show our models to be accurate in detecting genotype–phenotype associations and robust for various factors that typically affect maximum likelihood methods, such as number of taxa, level of relevant signal, proportion of sites affected and length of evolutionary divergence. Further, simulations show that our method is robust to homogeneity assumptions. We apply the models to datasets of male reproductive system genes in relation to mating systems of primates. We show that evolution of semenogelin II is significantly associated with mating systems whereas two negative control genes (cytochrome b and peptidase inhibitor 3) show no significant association. This provides the first hybrid substitution model of which we are aware to directly test the association between genotype and phenotype using a phylogenetic framework. Availability: Perl and HYPHY scripts are available upon request from the authors. Contact:to252@cam.ac.uk Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
|
30
|
Duplication, selection and gene conversion in a Drosophila mojavensis female reproductive protein family. Genetics 2009; 181:1451-65. [PMID: 19204376 DOI: 10.1534/genetics.108.099044] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Protein components of the Drosophila male ejaculate, several of which evolve rapidly, are critical modulators of reproductive success. Recent studies of female reproductive tract proteins indicate they also are extremely divergent between species, suggesting that reproductive molecules may coevolve between the sexes. Our current understanding of intersexual coevolution, however, is severely limited by the paucity of genetic and evolutionary studies on the female molecules involved. Physiological evidence of ejaculate-female coadaptation, paired with a promiscuous mating system, makes Drosophila mojavensis an exciting model system in which to study the evolution of reproductive proteins. Here we explore the evolutionary dynamics of a five-paralog gene family of female reproductive proteases within populations of D. mojavensis and throughout the repleta species group. We show that the proteins have experienced ongoing gene duplication and adaptive evolution and further exhibit dynamic patterns of pseudogenation, copy number variation, gene conversion, and selection within geographically isolated populations of D. mojavensis. The integration of these patterns in a single gene family has never before been documented in a reproductive protein.
Collapse
|
31
|
Kelley JL, Swanson WJ. Positive selection in the human genome: from genome scans to biological significance. Annu Rev Genomics Hum Genet 2008; 9:143-60. [PMID: 18505377 DOI: 10.1146/annurev.genom.9.081307.164411] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Here we review the evidence for positive selection in the human genome and its role in human evolution and population differentiation. In recent years, there has been a dramatic increase in the use of genome-wide scans to identify adaptively evolving loci in the human genome. Attention is now turning to understanding the biological relevance and adaptive significance of the regions identified as being subject to recent positive selection. Examples of adaptively evolving loci are discussed, specifically LCT and FOXP2. Comprehensive studies of these loci also provide information about the functional relevance of the selected alleles. We discuss current studies examining the role of positive selection in shaping copy number variation and noncoding genomic regions and highlight challenges presented by the study of positive selection in the human genome.
Collapse
Affiliation(s)
- Joanna L Kelley
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
32
|
Berlin S, Qu L, Ellegren H. Adaptive evolution of gamete-recognition proteins in birds. J Mol Evol 2008; 67:488-96. [PMID: 18850060 DOI: 10.1007/s00239-008-9165-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 08/20/2008] [Accepted: 09/03/2008] [Indexed: 12/13/2022]
Abstract
Gamete-recognition proteins have been shown to evolve by positive selection in diverse organism groups, such as marine invertebrates and mammals, although underlying evolutionary mechanisms driving this rapid divergence are poorly understood. However, several hypotheses have been put forward to explain the observed pattern, including different forms of sexual conflict and sperm competition. Because female gametes require more energy to produce than male gametes, female organisms suffer more when fertilisation goes wrong. One process that results in a failed mammalian fertilisation is polyspermy, when >1 sperm fertilises the egg. However in birds, there is no such sexual conflict because multiple sperm typically bind and fuse with the egg. If sexual conflict driven by polyspermy avoidance is important for the evolution of gamete-recognition proteins in vertebrates, we expect to find positive selection in the genes to be less pronounced in birds. We therefore sequenced six genes (ZP1, ZP2, ZP4, ZPAX, CD9, and Acrosin) encoding gamete-recognition proteins in several bird species to test for positive selection. For comparison, we also analysed ortologous sequences in a set of mammalian species. We found no major differences in the occurrence of adaptive evolution and the strength of selection between bird and mammal orthologs. From this we conclude that polyspermy avoidance does not act as the main underlying evolutionary force shaping the rate of evolution in these genes. We discuss other possible processes that could explain positive selection of gamete-recognition proteins in birds and mammals, such as hybridisation avoidance, cryptic female choice, and postcopulatory sperm competition.
Collapse
Affiliation(s)
- Sofia Berlin
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, 752 36, Uppsala, Sweden
| | | | | |
Collapse
|
33
|
Reed LK, LaFlamme BA, Markow TA. Genetic architecture of hybrid male sterility in Drosophila: analysis of intraspecies variation for interspecies isolation. PLoS One 2008; 3:e3076. [PMID: 18728782 PMCID: PMC2517651 DOI: 10.1371/journal.pone.0003076] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 08/07/2008] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The genetic basis of postzygotic isolation is a central puzzle in evolutionary biology. Evolutionary forces causing hybrid sterility or inviability act on the responsible genes while they still are polymorphic, thus we have to study these traits as they arise, before isolation is complete. METHODOLOGY/PRINCIPAL FINDINGS Isofemale strains of D. mojavensis vary significantly in their production of sterile F(1) sons when females are crossed to D. arizonae males. We took advantage of the intraspecific polymorphism, in a novel design, to perform quantitative trait locus (QTL) mapping analyses directly on F(1) hybrid male sterility itself. We found that the genetic architecture of the polymorphism for hybrid male sterility (HMS) in the F(1) is complex, involving multiple QTL, epistasis, and cytoplasmic effects. CONCLUSIONS/SIGNIFICANCE The role of extensive intraspecific polymorphism, multiple QTL, and epistatic interactions in HMS in this young species pair shows that HMS is arising as a complex trait in this system. Directional selection alone would be unlikely to maintain polymorphism at multiple loci, thus we hypothesize that directional selection is unlikely to be the only evolutionary force influencing postzygotic isolation.
Collapse
Affiliation(s)
- Laura K Reed
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA.
| | | | | |
Collapse
|
34
|
Abstract
Genes expressed in testes are critical to male reproductive success, affecting spermatogenesis, sperm competition, and sperm-egg interaction. Comparing the evolution of testis proteins at different taxonomic levels can reveal which genes and functional classes are targets of natural and sexual selection and whether the same genes are targets among taxa. Here we examine the evolution of testis-expressed proteins at different levels of divergence among three rodents, mouse (Mus musculus), rat (Rattus norvegicus), and deer mouse (Peromyscus maniculatus), to identify rapidly evolving genes. Comparison of expressed sequence tags (ESTs) from testes suggests that proteins with testis-specific expression evolve more rapidly on average than proteins with maximal expression in other tissues. Genes with the highest rates of evolution have a variety of functional roles including signal transduction, DNA binding, and egg-sperm interaction. Most of these rapidly evolving genes have not been identified previously as targets of selection in comparisons among more divergent mammals. To determine if these genes are evolving rapidly among closely related species, we sequenced 11 of these genes in six Peromyscus species and found evidence for positive selection in five of them. Together, these results demonstrate rapid evolution of functionally diverse testis-expressed proteins in rodents, including the identification of amino acids under lineage-specific selection in Peromyscus. Evidence for positive selection among closely related species suggests that changes in these proteins may have consequences for reproductive isolation.
Collapse
|
35
|
|
36
|
Turner LM, Hoekstra HE. Reproductive protein evolution within and between species: maintenance of divergent ZP3 alleles in Peromyscus. Mol Ecol 2008; 17:2616-28. [PMID: 18466231 DOI: 10.1111/j.1365-294x.2008.03780.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In a variety of animal taxa, proteins involved in reproduction evolve more rapidly than nonreproductive proteins. Most studies of reproductive protein evolution, however, focus on divergence between species, and little is known about differentiation among populations within a species. Here we investigate the molecular population genetics of the protein ZP3 within two Peromyscus species. ZP3 is an egg coat protein involved in primary binding of egg and sperm and is essential for fertilization. We find that amino acid polymorphism in the sperm-combining region of ZP3 is high relative to silent polymorphism in both species of Peromyscus. In addition, while there is geographical structure at a mitochondrial gene (Cytb), a nuclear gene (Lcat) and eight microsatellite loci, we find no evidence for geographical structure at Zp3 in Peromyscus truei. These patterns are consistent with the maintenance of ZP3 alleles by balancing selection, possibly due to sexual conflict or pathogen resistance. However, we do not find evidence that reinforcement promotes ZP3 diversification; allelic variation in P. truei is similar among populations, including populations allopatric and sympatric with sibling species. In fact, most alleles are present in all populations sampled across P. truei's range. While additional data are needed to identify the precise evolutionary forces responsible for sequence variation in ZP3, our results suggest that in Peromyscus, selection to maintain divergent alleles within species contributes to the pattern of rapid amino acid substitution observed among species.
Collapse
Affiliation(s)
- Leslie M Turner
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
37
|
Directional and balancing selection in human beta-defensins. BMC Evol Biol 2008; 8:113. [PMID: 18416833 PMCID: PMC2373304 DOI: 10.1186/1471-2148-8-113] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 04/16/2008] [Indexed: 01/04/2023] Open
Abstract
Background In primates, infection is an important force driving gene evolution, and this is reflected in the importance of infectious disease in human morbidity today. The beta-defensins are key components of the innate immune system, with antimicrobial and cell signalling roles, but also reproductive functions. Here we examine evolution of beta-defensins in catarrhine primates and variation within different human populations. Results We show that five beta-defensin genes that do not show copy number variation in humans show evidence of positive selection in catarrhine primates, and identify specific codons that have been under selective pressure. Direct haplotyping of DEFB127 in humans suggests long-term balancing selection: there are two highly diverged haplotype clades carrying different variants of a codon that, in primates, is positively selected. For DEFB132, we show that extensive diversity, including a four-state amino acid polymorphism (valine, isoleucine, alanine and threonine at position 93), is present in hunter-gatherer populations, both African and non-African, but not found in samples from agricultural populations. Conclusion Some, but not all, beta-defensin genes show positive selection in catarrhine primates. There is suggestive evidence of different selective pressures on these genes in humans, but the nature of the selective pressure remains unclear and is likely to differ between populations.
Collapse
|
38
|
Babushok DV, Ohshima K, Ostertag EM, Chen X, Wang Y, Mandal PK, Okada N, Abrams CS, Kazazian HH. A novel testis ubiquitin-binding protein gene arose by exon shuffling in hominoids. Genome Res 2007; 17:1129-38. [PMID: 17623810 PMCID: PMC1933510 DOI: 10.1101/gr.6252107] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Most new genes arise by duplication of existing gene structures, after which relaxed selection on the new copy frequently leads to mutational inactivation of the duplicate; only rarely will a new gene with modified function emerge. Here we describe a unique mechanism of gene creation, whereby new combinations of functional domains are assembled at the RNA level from distinct genes, and the resulting chimera is then reverse transcribed and integrated into the genome by the L1 retrotransposon. We characterized a novel gene, which we termed PIP5K1A and PSMD4-like (PIPSL), created by this mechanism from an intergenic transcript between the phosphatidylinositol-4-phosphate 5-kinase (PIP5K1A) and the 26S proteasome subunit (PSMD4) genes in a hominoid ancestor. PIPSL is transcribed specifically in the testis both in humans and chimpanzees, and is post-transcriptionally repressed by independent mechanisms in these primate lineages. The PIPSL gene encodes a chimeric protein combining the lipid kinase domain of PIP5K1A and the ubiquitin-binding motifs of PSMD4. Strong positive selection on PIPSL led to its rapid divergence from the parental genes PIP5K1A and PSMD4, forming a chimeric protein with a distinct cellular localization and minimal lipid kinase activity, but significant affinity for cellular ubiquitinated proteins. PIPSL is a tightly regulated, testis-specific novel ubiquitin-binding protein formed by an unusual exon-shuffling mechanism in hominoid primates and represents a key example of rapid evolution of a testis-specific gene.
Collapse
Affiliation(s)
- Daria V. Babushok
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kazuhiko Ohshima
- Nagahama Institute of Bio-Science and Technology, Nagahama 526-0829, Japan
| | - Eric M. Ostertag
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xinsheng Chen
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yanfeng Wang
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Prabhat K. Mandal
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | - Charles S. Abrams
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Haig H. Kazazian
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Corresponding author.E-mail ; fax (215) 573-7760
| |
Collapse
|