1
|
Jaijyan DK, Govindasamy K, Lee M, Zhu H. A chemical method for generating live-attenuated, replication-defective DNA viruses for vaccine development. CELL REPORTS METHODS 2022; 2:100287. [PMID: 36160049 PMCID: PMC9499982 DOI: 10.1016/j.crmeth.2022.100287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/22/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022]
Abstract
The development of a chemically attenuated, replication-incompetent virus vaccine can provide protection against diseases caused by DNA viruses. In this study, we have developed a method to produce live-attenuated, replication-defective viruses using centanamycin (CM), a chemical compound that alkylates the A-T-rich minor groove of the DNA and thereby blocks DNA replication. We tested the efficacy of CM to produce live-attenuated, replication-defective human cytomegalovirus, mouse cytomegalovirus, and herpes simplex virus-2 (HSV-2), suggesting a broad application for generating live-attenuated, replication-defective DNA viruses. Mass spectrometry analysis showed that CM alkylate viral DNA at the adenine-N3 position. Moreover, mice immunization with CM-attenuated mouse cytomegalovirus (MCMV) produced a robust immune response and reduced the viral load in immunized animals against challenges with live, wild-type MCMV. Our study offers a unifying and attractive therapeutic opportunity that chemically attenuated live DNA viruses can be readily developed as new frontline vaccines.
Collapse
Affiliation(s)
- Dabbu Kumar Jaijyan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers – New Jersey Medical School, 225 Warren Street, Newark, NJ 07103, USA
| | - Kavitha Govindasamy
- New Jersey Center for Science, Technology and Mathematics, Kean University, Union, NJ, USA
| | - Moses Lee
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Hua Zhu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers – New Jersey Medical School, 225 Warren Street, Newark, NJ 07103, USA
| |
Collapse
|
2
|
Alder A, Struck NS, Xu M, Johnson JW, Wang W, Pallant D, Cook MA, Rambow J, Lemcke S, Gilberger TW, Wright GD. A non-reactive natural product precursor of the duocarmycin family has potent and selective antimalarial activity. Cell Chem Biol 2021; 29:840-853.e6. [PMID: 34710358 DOI: 10.1016/j.chembiol.2021.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/15/2021] [Accepted: 10/02/2021] [Indexed: 11/27/2022]
Abstract
We identify a selective nanomolar inhibitor of blood-stage malarial proliferation from a screen of microbial natural product extracts. The responsible compound, PDE-I2, is a precursor of the anticancer duocarmycin family that preserves the class's sequence-specific DNA binding but lacks its signature DNA alkylating cyclopropyl warhead. While less active than duocarmycin, PDE-I2 retains comparable antimalarial potency to chloroquine. Importantly, PDE-I2 is >1,000-fold less toxic to human cell lines than duocarmycin, with mitigated impacts on eukaryotic chromosome stability. PDE-I2 treatment induces severe defects in parasite nuclear segregation leading to impaired daughter cell formation during schizogony. Time-of-addition studies implicate parasite DNA metabolism as the target of PDE-I2, with defects observed in DNA replication and chromosome integrity. We find the effect of duocarmycin and PDE-I2 on parasites is phenotypically indistinguishable, indicating that the DNA binding specificity of duocarmycins is sufficient and the genotoxic cyclopropyl warhead is dispensable for the parasite-specific selectivity of this compound class.
Collapse
Affiliation(s)
- Arne Alder
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, Department of Cellular Parasitology, 20359 Hamburg, Germany; University of Hamburg, Department of Biology, 20146 Hamburg, Germany
| | - Nicole S Struck
- Bernhard Nocht Institute for Tropical Medicine, Department of Cellular Parasitology, 20359 Hamburg, Germany; M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; German Centre for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Min Xu
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Jarrod W Johnson
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Wenliang Wang
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Daniel Pallant
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Michael A Cook
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Janis Rambow
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, Department of Cellular Parasitology, 20359 Hamburg, Germany; University of Hamburg, Department of Biology, 20146 Hamburg, Germany
| | - Sarah Lemcke
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, Department of Cellular Parasitology, 20359 Hamburg, Germany; University of Hamburg, Department of Biology, 20146 Hamburg, Germany
| | - Tim W Gilberger
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, Department of Cellular Parasitology, 20359 Hamburg, Germany; University of Hamburg, Department of Biology, 20146 Hamburg, Germany.
| | - Gerard D Wright
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
3
|
Abstract
As the world gets closer to eliminating malaria, the scientific community worldwide has begun to realize the importance of malaria transmission-blocking interventions. The onus of breaking the life cycle of the human malaria parasite Plasmodium falciparum predominantly rests upon transmission-blocking drugs because of emerging resistance to commonly used schizonticides and insecticides. This third part of our review series on malaria transmission-blocking entails transmission-blocking potential of preclinical transmission-blocking antimalarials and other non-malaria drugs/experimental compounds that are not in clinical or preclinical development for malaria but possess transmission-blocking potential. Collective analysis of the structure and the activity of these experimental compounds might pave the way toward generation of novel prototypes of next-generation transmission-blocking drugs.
Collapse
|
4
|
Good MF, Stanisic DI. Whole parasite vaccines for the asexual blood stages ofPlasmodium. Immunol Rev 2019; 293:270-282. [DOI: 10.1111/imr.12819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Michael F. Good
- Institute for Glycomics Griffith University Gold Coast Qld. Australia
| | | |
Collapse
|
5
|
Narula AK, Azad CS, Nainwal LM. New dimensions in the field of antimalarial research against malaria resurgence. Eur J Med Chem 2019; 181:111353. [DOI: 10.1016/j.ejmech.2019.05.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/16/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022]
|
6
|
Kiakos K, Englinger B, Yanow SK, Wernitznig D, Jakupec MA, Berger W, Keppler BK, Hartley JA, Lee M, Patil PC. Design, synthesis, nuclear localization, and biological activity of a fluorescent duocarmycin analog, HxTfA. Bioorg Med Chem Lett 2018; 28:1342-1347. [PMID: 29548574 DOI: 10.1016/j.bmcl.2018.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/23/2018] [Accepted: 03/05/2018] [Indexed: 01/20/2023]
Abstract
HxTfA 4 is a fluorescent analog of a potent cytotoxic and antimalarial agent, TfA 3, which is currently being investigated for the development of an antimalarial vaccine, PlasProtect®. HxTfA contains a p-anisylbenzimidazole or Hx moiety, which is endowed with a blue emission upon excitation at 318 nm; thus enabling it to be used as a surrogate for probing the cellular fate of TfA using confocal microscopy, and addressing the question of nuclear localization. HxTfA exhibits similar selectivity to TfA for A-tract sequences of DNA, alkylating adenine-N3, albeit at 10-fold higher concentrations. It also possesses in vitro cytotoxicity against A549 human lung carcinoma cells and Plasmodium falciparum. Confocal microscopy studies showed for the first time that HxTfA, and by inference TfA, entered A549 cells and localized in the nucleus to exert its biological activity. At biologically relevant concentrations, HxTfA elicits DNA damage response as evidenced by a marked increase in the levels of γH2AX observed by confocal microscopy and immunoblotting studies, and ultimately induces apoptosis.
Collapse
Affiliation(s)
- Konstantinos Kiakos
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London WC1E 6BT, United Kingdom; Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria.
| | - Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | | | - Debora Wernitznig
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Michael A Jakupec
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Walter Berger
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria; Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - John A Hartley
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Moses Lee
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Pravin C Patil
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| |
Collapse
|
7
|
Ssemaganda A, Low LM, Verhoeft KR, Wambuzi M, Kawoozo B, Nabasumba SB, Mpendo J, Bagaya BS, Kiwanuka N, Stanisic DI, Berners-Price SJ, Good MF. Gold(i) phosphine compounds as parasite attenuating agents for malaria vaccine and drug development. Metallomics 2018; 10:444-454. [DOI: 10.1039/c7mt00311k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The asexual blood-stagePlasmodiumparasite attenuating properties of gold(i) phosphine compounds are exploited in a novel strategy for malaria vaccine development.
Collapse
Affiliation(s)
| | | | | | - Mathias Wambuzi
- UVRI-IAVI HIV Vaccine Program
- Uganda Virus Research Institute
- Entebbe
- Uganda
| | - Barbarah Kawoozo
- UVRI-IAVI HIV Vaccine Program
- Uganda Virus Research Institute
- Entebbe
- Uganda
| | | | - Juliet Mpendo
- UVRI-IAVI HIV Vaccine Program
- Uganda Virus Research Institute
- Entebbe
- Uganda
| | - Bernard S. Bagaya
- UVRI-IAVI HIV Vaccine Program
- Uganda Virus Research Institute
- Entebbe
- Uganda
- Department of Immunology and Molecular Biology
| | - Noah Kiwanuka
- UVRI-IAVI HIV Vaccine Program
- Uganda Virus Research Institute
- Entebbe
- Uganda
| | | | | | | |
Collapse
|
8
|
El-Deeb IM, Rose FJ, Healy PC, von Itzstein M. A versatile synthesis of "tafuramycin A": a potent anticancer and parasite attenuating agent. Org Biomol Chem 2016; 12:4260-4. [PMID: 24838868 DOI: 10.1039/c4ob00842a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An improved and versatile synthesis of tafuramycin A, a potent anticancer and parasite-attenuating agent, is reported. The three major improvements that optimized yield, simplified purification and allowed the synthesis of more versatile duocarmycin analogues are: a first-time reported regioselective bromination using DMAP as catalyst; the control of the aryl radical alkene cyclization step to prevent the dechlorination side reaction; and the design of a new protection/deprotection method to avoid furan double bond reduction during the classical O-benzyl deprotection in the final step. This alternative protection/deprotection strategy provides ready access to duocarmycin seco-analogues that carry labile functionalities under reducing reaction conditions. Tafuramycin A (3) was prepared in either 8 steps from intermediate 6 or 7 steps from intermediate 17 in 52% or 37% yield respectively. Our strategy provides a significant improvement on the original procedure (11% overall yield) and greater versatility for analogue development.
Collapse
Affiliation(s)
- Ibrahim M El-Deeb
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| | | | | | | |
Collapse
|
9
|
Whole organism blood stage vaccines against malaria. Vaccine 2015; 33:7469-75. [DOI: 10.1016/j.vaccine.2015.09.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 09/04/2015] [Accepted: 09/14/2015] [Indexed: 11/17/2022]
|
10
|
Patil PC, Lee M. An efficient synthesis of furano analogs of duocarmycin C1 and C2: seco-iso-cyclopropylfurano[e]indoline-trimethoxyindole and seco-cyclopropylfurano[f]quinoline-trimethoxyindole. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.04.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Controlling the radical 5-exo-trig cyclization, and selective synthesis of seco-iso-cyclopropylfurano[e]indoline (seco-iso-CFI) and seco-cyclopropylthiophene[e]indoline (seco-CTI) DNA alkylating subunit of the duocarmycins. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.06.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Good MF, Reiman JM, Rodriguez IB, Ito K, Yanow SK, El-Deeb IM, Batzloff MR, Stanisic DI, Engwerda C, Spithill T, Hoffman SL, Lee M, McPhun V. Cross-species malaria immunity induced by chemically attenuated parasites. J Clin Invest 2013; 123:66634. [PMID: 23863622 PMCID: PMC4011145 DOI: 10.1172/jci66634] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 04/26/2013] [Indexed: 01/29/2023] Open
Abstract
Vaccine development for the blood stages of malaria has focused on the induction of antibodies to parasite surface antigens, most of which are highly polymorphic. An alternate strategy has evolved from observations that low-density infections can induce antibody-independent immunity to different strains. To test this strategy, we treated parasitized red blood cells from the rodent parasite Plasmodium chabaudi with seco-cyclopropyl pyrrolo indole analogs. These drugs irreversibly alkylate parasite DNA, blocking their ability to replicate. After administration in mice, DNA from the vaccine could be detected in the blood for over 110 days and a single vaccination induced profound immunity to different malaria parasite species. Immunity was mediated by CD4+ T cells and was dependent on the red blood cell membrane remaining intact. The human parasite, Plasmodium falciparum, could also be attenuated by treatment with seco-cyclopropyl pyrrolo indole analogs. These data demonstrate that vaccination with chemically attenuated parasites induces protective immunity and provide a compelling rationale for testing a blood-stage parasite-based vaccine targeting human Plasmodium species.
Collapse
|
13
|
Barrett MP, Gemmell CG, Suckling CJ. Minor groove binders as anti-infective agents. Pharmacol Ther 2013; 139:12-23. [PMID: 23507040 DOI: 10.1016/j.pharmthera.2013.03.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 01/22/2013] [Indexed: 12/29/2022]
Abstract
Minor groove binders are small molecules that form strong complexes with the minor groove of DNA. There are several structural types of which distamycin and netropsin analogues, oligoamides built from heterocyclic and aromatic amino acids, and bis-amidines separated by aromatic and heterocyclic rings are of particular pharmaceutical interest. These molecules have helical topology that approximately matches the curvature of DNA in the minor groove. Depending upon the precise structure of the minor groove binder, selectivity can be obtained with respect to the DNA base sequence to which the compound binds. Minor groove binders have found substantial applications in anti-cancer therapy but their significance in anti-infective therapy has also been significant and is growing. For example, compounds of the bis-amidine class have been notable contributors to antiparasitic therapy for many years with examples such as berenil and pentamidine being well-known. A recent growth area has been inreased sophistication in the oligoamide class. High sequence selectivity is now possible and compounds with distinct antibacterial, antifungal, antiviral, and antiparasitic activity have all been identified. Importantly, the structures of the most active compounds attacking the various infective organisms differ significantly but not necessarily predictively. This poses interesting questions of mechanism of action with many different targets involved in DNA processing being candidates. Access of compounds to specific cell types also plays a role and in some cases, can be decisive. Prospects for a range of selective therapeutic agents from this class of compounds are higher now than for some considerable time.
Collapse
Affiliation(s)
- Michael P Barrett
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, United Kingdom.
| | | | | |
Collapse
|
14
|
Aberrant sporogonic development of Dmc1 (a meiotic recombinase) deficient Plasmodium berghei parasites. PLoS One 2012; 7:e52480. [PMID: 23285059 PMCID: PMC3528682 DOI: 10.1371/journal.pone.0052480] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 11/19/2012] [Indexed: 11/19/2022] Open
Abstract
Background In Plasmodium, meiosis occurs in diploid zygotes as they develop into haploid motile ookinetes inside the mosquito. Further sporogonic development involves transformation of ookinetes into oocysts and formation of infective sporozoites. Methodology/Principal Findings Reverse genetics was employed to examine the role of the meiotic specific recombinase Dmc1, a bacterial RecA homolog during sporogony in Plasmodium berghei. PbDmc1 knockout (KO) parasites showed normal asexual growth kinetics compared to WT parasites; however oocyst formation in mosquitoes was reduced by 50 to 80%. Moreover, the majority of oocysts were retarded in their growth and were smaller in size compared to WT parasites. Only a few Dmc1 KO parasites completed maturation resulting in formation of fewer sporozoites which were incapable of infecting naive mice or hepatocytes in vitro. PbDmc1 KO parasites were shown to be approximately 18 times more sensitive to Bizelesin, a DNA alkylating drug compared to WT parasites as reflected by impairment of oocyst formation and sporogonic development in the mosquito vector. Conclusions/Significance Our findings suggest that PbDmc1 plays a critical role in malaria transmission biology.
Collapse
|
15
|
Dechy-Cabaret O, Benoit-Vical F. Effects of Antimalarial Molecules on the Gametocyte Stage of Plasmodium falciparum: The Debate. J Med Chem 2012; 55:10328-44. [DOI: 10.1021/jm3005898] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Odile Dechy-Cabaret
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP
44099, F-31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Françoise Benoit-Vical
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP
44099, F-31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
- Service de Parasitologie-Mycologie
and Faculté de Médecine de Rangueil, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| |
Collapse
|
16
|
Engwerda CR, Minigo G, Amante FH, McCarthy JS. Experimentally induced blood stage malaria infection as a tool for clinical research. Trends Parasitol 2012; 28:515-21. [PMID: 23041118 DOI: 10.1016/j.pt.2012.09.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/10/2012] [Accepted: 09/13/2012] [Indexed: 11/29/2022]
Abstract
A system for experimentally induced blood stage malaria infection (IBSM) with Plasmodium falciparum by direct intravenous inoculation of infected erythrocytes was developed at the Queensland Institute of Medical Research (QIMR) more than 15 years ago. Since that time, this system has been used in several studies to investigate the protective effect of vaccines, the clearance kinetics of parasites following drug treatment, and to improve understanding of the early events in blood stage infection. In this article, we will review the development of IBSM and the applications for which it is being employed. We will discuss the advantages and disadvantages of IBSM, and finish by describing some exciting new areas of research that have been made possible by this system.
Collapse
|
17
|
Alam A, Goyal M, Iqbal MS, Pal C, Dey S, Bindu S, Maity P, Bandyopadhyay U. Novel antimalarial drug targets: hope for new antimalarial drugs. Expert Rev Clin Pharmacol 2012; 2:469-89. [PMID: 22112223 DOI: 10.1586/ecp.09.28] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Malaria is a major global threat, that results in more than 2 million deaths each year. The treatment of malaria is becoming extremely difficult due to the emergence of drug-resistant parasites, the absence of an effective vaccine, and the spread of insecticide-resistant vectors. Thus, malarial therapy needs new chemotherapeutic approaches leading to the search for new drug targets. Here, we discuss different approaches to identifying novel antimalarial drug targets. We have also given due attention to the existing validated targets with a view to develop novel, rationally designed lead molecules. Some of the important parasite proteins are claimed to be the targets; however, further in vitro or in vivo structure-function studies of such proteins are crucial to validate these proteins as suitable targets. The interactome analysis among apicoplast, mitochondrion and genomic DNA will also be useful in identifying vital pathways or proteins regulating critical pathways for parasite growth and survival, and could be attractive targets. Molecules responsible for parasite invasion to host erythrocytes and ion channels of infected erythrocytes, essential for intra-erythrocyte survival and stage progression of parasites are also becoming attractive targets. This review will discuss and highlight the current understanding regarding the potential antimalarial drug targets, which could be utilized to develop novel antimalarials.
Collapse
Affiliation(s)
- Athar Alam
- Division of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
From multiply active natural product to candidate drug? Antibacterial (and other) minor groove binders for DNA. Future Med Chem 2012; 4:971-89. [DOI: 10.4155/fmc.12.52] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Natural products that bind to DNA in the minor groove are valuable templates for drug design. Examples include distamycin, netropsin, duocarmycin and anthramycin. Anticancer and anti-infective drugs feature strongly amongst their derivatives. The structures and activities of chemotypes with various therapeutic actions are discussed in the context of the broader field of therapeutically active minor groove binders. The evolution of a series of exceptionally potent and nontoxic antibacterial compounds is discussed using the general design principle of introducing additional hydrophobicity into the distamycin template to increase the strength of binding to DNA. As well as potent antibacterial compounds, antifungal and antiparasitic compounds with exceptional cellular activity against trypanosomes have been identified. Possible mechanisms of action including gene regulation and topoisomerase inhibition are discussed with the need in mind to understand selective toxicity in the series to support future drug discovery.
Collapse
|
19
|
Burrows JN, Waterson D. Discovering New Medicines to Control and Eradicate Malaria. TOPICS IN MEDICINAL CHEMISTRY 2011. [DOI: 10.1007/7355_2011_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Chavda S, Babu B, Yanow SK, Jardim A, Spithill TW, Kiakos K, Kluza J, Hartley JA, Lee M. A novel achiral seco-cyclopropylpyrido[e]indolone (CPyI) analog of CC-1065 and the duocarmycins: synthesis, DNA interactions, in vivo anticancer and anti-parasitic evaluation. Bioorg Med Chem 2010; 18:5016-24. [PMID: 20579889 DOI: 10.1016/j.bmc.2010.05.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 05/26/2010] [Accepted: 05/31/2010] [Indexed: 11/23/2022]
Abstract
The synthesis of an achiral seco-hydroxy-aza-CBI-TMI analog (8) of the duocarmycins is reported. Its specificity for the DNA minor groove of AT-rich sequences and covalent bonding to adenine-N3 was ascertained by a thermal cleavage assay. Compound 8 was found to be cytotoxic in the nanomolar range against murine and human cancer cells. It was further demonstrated that compound 8 was active against murine melanoma (B16-F0) grown in C57BL/6 mice. Compound 8 was also shown to inhibit the growth of the protozoan parasites Leishmania donovani, Leishmania mexicana, Trypanosoma brucei, and Plasmodium falciparum in culture.
Collapse
Affiliation(s)
- Sameer Chavda
- Division of Natural Sciences and Department of Chemistry, Hope College, 35 East 12th Street, Holland, MI 49423, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Purcell LA, Leitao R, Ono T, Yanow SK, Pradel G, Spithill TW, Rodriguez A. A putative kinase-related protein (PKRP) from Plasmodium berghei mediates infection in the midgut and salivary glands of the mosquito. Int J Parasitol 2010; 40:979-88. [PMID: 20227415 PMCID: PMC2875340 DOI: 10.1016/j.ijpara.2010.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/04/2010] [Accepted: 02/09/2010] [Indexed: 11/16/2022]
Abstract
The completion of the Plasmodium (malaria) life cycle in the mosquito requires the parasite to traverse first the midgut and later the salivary gland epithelium. We have identified a putative kinase-related protein (PKRP) that is predicted to be an atypical protein kinase, which is conserved across many species of Plasmodium. The pkrp gene encodes a RNA of about 5300 nucleotides that is expressed as a 90kDa protein in sporozoites. Targeted disruption of the pkrp gene in Plasmodium berghei, a rodent model of malaria, compromises the ability of parasites to infect different tissues within the mosquito host. Early infection of mosquito midgut is reduced by 58-71%, midgut oocyst production is reduced by 50-90% and those sporozoites that are produced are defective in their ability to invade mosquito salivary glands. Midgut sporozoites are not morphologically different from wild-type parasites by electron microscopy. Some sporozoites that emerged from oocysts were attached to the salivary glands but most were found circulating in the mosquito hemocoel. Our findings indicate that a signalling pathway involving PbPKRP regulates the level of Plasmodium infection in the mosquito midgut and salivary glands.
Collapse
Affiliation(s)
- Lisa A. Purcell
- Institute of Parasitology and Centre for Host-Parasite Interactions, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
- Department of Medical Parasitology, New York University School of Medicine, 341 E 25
Street, New York, NY 10010, USA
| | - Ricardo Leitao
- Department of Medical Parasitology, New York University School of Medicine, 341 E 25
Street, New York, NY 10010, USA
| | - Takeshi Ono
- Department of Medical Parasitology, New York University School of Medicine, 341 E 25
Street, New York, NY 10010, USA
- Department of Global Infectious Diseases and Tropical Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Japan
| | - Stephanie K. Yanow
- Provincial Laboratory for Public Health, 8440-112
Street, Edmonton, AB T6G 2J2, Canada
| | - Gabriele Pradel
- Research Center for Infectious Diseases, University of Würzburg, Josef-Schneider-Str. 2/D15, Würzburg, Germany, 97080
| | - Terry W. Spithill
- Institute of Parasitology and Centre for Host-Parasite Interactions, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, Australia, 2678
| | - Ana Rodriguez
- Department of Medical Parasitology, New York University School of Medicine, 341 E 25
Street, New York, NY 10010, USA
| |
Collapse
|
22
|
Synthesis and antiprotozoal activity of 1,2,3,4-tetrahydro-2-thioxopyrimidine analogs of combretastatin A-4. Med Chem Res 2010. [DOI: 10.1007/s00044-010-9334-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Delves MJ, Sinden RE. A semi-automated method for counting fluorescent malaria oocysts increases the throughput of transmission blocking studies. Malar J 2010; 9:35. [PMID: 20113492 PMCID: PMC2824803 DOI: 10.1186/1475-2875-9-35] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 01/29/2010] [Indexed: 11/30/2022] Open
Abstract
Background Malaria transmission is now recognized as a key target for intervention. Evaluation of the Plasmodium oocyst burden in the midguts of Anopheles spp. is important for many of assays investigating transmission. However, current assays are very time-consuming, manually demanding and patently subject to observer-observer variation. Methods This report presents the development of a method to rapidly, accurately and consistently determine oocyst burdens on mosquito midguts using GFP-expressing Plasmodium berghei and a custom-written macro for ImageJ. The counting macro was optimized and found to be fit-for-purpose by performing gametocyte membrane feeds with parasite infected blood. Dissected midguts were counted both manually and using the automated macro, then compared. The optimized settings for the macro were then validated by using it to determine the transmission blocking efficacies of two anti-malarial compounds - dehydroepiandrosterone sulphate and lumefantrine, in comparison to manually determined analysis of the same experiment. Results Concurrence of manual and macro counts was very high (R2 = 0.973) and reproducible. Estimated transmission blocking efficacies between manual and automated analysis were highly concordant, indicating that dehydroepiandrosterone sulphate has little or no transmission blocking potential, whilst lumefantrine strongly inhibits sporogony. Conclusion Recognizing a potential five-fold increase in throughput, the resulting reduction in personnel costs, and the absence of inter-operator/laboratory variation possible with this approach, this counting macro may be a benefit to the malaria community.
Collapse
Affiliation(s)
- Michael J Delves
- Division of Cell and Molecular Biology, Imperial College London, London, UK.
| | | |
Collapse
|
24
|
Zarlenga DS, Gasbarre LC. From parasite genomes to one healthy world: Are we having fun yet? Vet Parasitol 2009; 163:235-49. [PMID: 19560277 DOI: 10.1016/j.vetpar.2009.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In 1990, the Human Genome Sequencing Project was established. This laid the ground work for an explosion of sequence data that has since followed. As a result of this effort, the first complete genome of an animal, Caenorhabditis elegans was published in 1998. The sequence of Drosophila melanogaster was made available in March, 2000 and in the following year, working drafts of the human genome were generated with the completed sequence (92%) being released in 2003. Recent advancements and next-generation technologies have made sequencing common place and have infiltrated every aspect of biological research, including parasitology. To date, sequencing of 32 apicomplexa and 24 nematode genomes are either in progress or near completion, and over 600k nematode EST and 200k apicomplexa EST submissions fill the databases. However, the winds have shifted and efforts are now refocusing on how best to store, mine and apply these data to problem solving. Herein we tend not to summarize existing X-omics datasets or present new technological advances that promise future benefits. Rather, the information to follow condenses up-to-date-applications of existing technologies to problem solving as it relates to parasite research. Advancements in non-parasite systems are also presented with the proviso that applications to parasite research are in the making.
Collapse
Affiliation(s)
- Dante S Zarlenga
- USDA, ARS, ANRI Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA.
| | | |
Collapse
|
25
|
Fidock DA, Eastman RT, Ward SA, Meshnick SR. Recent highlights in antimalarial drug resistance and chemotherapy research. Trends Parasitol 2008; 24:537-44. [PMID: 18938106 PMCID: PMC2718548 DOI: 10.1016/j.pt.2008.09.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 09/15/2008] [Accepted: 09/16/2008] [Indexed: 01/07/2023]
Abstract
This review summarizes recent investigations into antimalarial drug resistance and chemotherapy, including reports of some of the many exciting talks and posters on this topic that were presented at the third Molecular Approaches to Malaria meeting held in Lorne, Australia, in February 2008 (MAM 2008). After surveying this area of research, we focus on two important questions: what is the molecular contribution of pfcrt to chloroquine resistance, and what is the mechanism of action of artemisinin? We conclude with thoughts about the current state of antimalarial chemotherapy and priorities moving forward.
Collapse
Affiliation(s)
- David A Fidock
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
26
|
Purcell LA, Yanow SK, Lee M, Spithill TW, Rodriguez A. Chemical attenuation of Plasmodium berghei sporozoites induces sterile immunity in mice. Infect Immun 2008; 76:1193-9. [PMID: 18174336 PMCID: PMC2258828 DOI: 10.1128/iai.01399-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 11/16/2007] [Accepted: 12/19/2007] [Indexed: 11/20/2022] Open
Abstract
Radiation and genetic attenuation of Plasmodium sporozoites are two approaches for whole-organism vaccines that protect against malaria. We evaluated chemical attenuation of sporozoites as an alternative vaccine strategy. Sporozoites were treated with the DNA sequence-specific alkylating agent centanamycin, a compound that significantly affects blood stage parasitemia and transmission of murine malaria and also inhibits Plasmodium falciparum growth in vitro. Here we show that treatment of Plasmodium berghei sporozoites with centanamycin impaired parasite function both in vitro and in vivo. The infection of hepatocytes by sporozoites in vitro was significantly reduced, and treated parasites showed arrested liver stage development. Inoculation of mice with sporozoites that were treated in vitro with centanamycin failed to produce blood stage infections. Furthermore, BALB/c and C57BL/6 mice vaccinated with treated sporozoites were protected against subsequent challenge with wild-type sporozoites. Our findings demonstrate that chemically attenuated sporozoites could be a viable alternative for the production of an effective liver stage vaccine for malaria.
Collapse
Affiliation(s)
- Lisa A Purcell
- Institute of Parasitology and Centre for Host-Parasite Interactions, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X3V9, Canada
| | | | | | | | | |
Collapse
|