1
|
Fei-Zhou Z, Mei-Xia H, Xiaofen T, Lei W, Xuan J, Lan-Fang T. Plastic bronchitis associated with human bocavirus 1 infection in children. Pediatr Pulmonol 2024; 59:2754-2760. [PMID: 38869182 DOI: 10.1002/ppul.27113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/01/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Plastic bronchitis (PB) is a clinical-pathological syndrome characterized by the abnormal accumulation of endogenous substances in the bronchial airways, causing partial or complete obstruction and resulting in impaired lung ventilation. METHODS In this retrospective analysis, we aim to summarize the clinical manifestations, imaging characteristics, diagnostic methods, and treatment approaches to enhance clinicians' ability to detect children who are infected with human bocavirus 1 (hBoV 1) and develop PB. RESULTS In the period from January 2021 to January 2024, a total of six hBoV 1 infection children were diagnosed with PB through bronchoscopy. The onset of the condition was mainly concentrated between June and December. The detection methods used included metagenomic next-generation sequencing for pathogen identification (three cases) and respiratory pathogen nucleic acid 13-plex detection (oropharyngeal swab) (three cases), both of which confirmed the presence of hBoV 1. Out of the six children with PB, two were girls and four were boys. Their ages ranged from 10 months to 4 years old. Common symptoms reported by all patients included fever, cough, and wheezing. Chest high-resolution computed tomography scans revealed atelectasis in six cases, in addition to pneumonia. After the removal of the plastic bronchi via bronchoscopy, the airway obstruction symptoms in the children were relieved, and no recurrence was observed during the follow-up period. Pathological findings indicated cellulose exudation and inflammatory cell infiltration, consistent with nonlymphatic PB. CONCLUSION When children infected with hBoV 1 exhibit persistent or worsening symptoms such as cough, fever, and wheezing despite treatment, clinicians should remain highly vigilant for the potential occurrence of PB. Bronchoscopy plays a crucial role not only in diagnosing the presence of a plastic bronchus but also in effectively treating PB.
Collapse
Affiliation(s)
- Zhang Fei-Zhou
- Department of Pulmonology, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huang Mei-Xia
- Department of Pulmonology, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Xiaofen
- Department of Pulmonology, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wu Lei
- Department of Pulmonology, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Xuan
- Department of Radiology, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tang Lan-Fang
- Department of Pulmonology, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Karaaslan C, Wirz O, Tan G, Globinska A, Boonpiyathad T, Hedman K, Vaselek S, Venermo MS, Jartti T, Akdis M, Akdis CA. B cell immune response to human bocaviruses. Clin Exp Allergy 2024; 54:388-401. [PMID: 38321724 DOI: 10.1111/cea.14453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Human bocaviruses (HBoVs) have been demonstrated in respiratory and gastrointestinal infections; however, the immune response to them has not been studied in detail. In this study, we investigated the B cell immune responses to HBoV1 and HBoV2, representing two different species of bocaviruses in humans. METHODS We analyzed the effects of stimulations with HBoV1 and 2 virus-like particles (VLPs) and of co-stimulation with HBoV1-rhinovirus (RV) on cells of the immune system by flow cytometry, transcriptomics, and luminometric immune assays. RESULTS Human B cells, and particularly B regulatory cells (Breg cells), showed an increased immune response to HBoV1-VLPs stimulation. These immune responses were also supported by increased IL-1RA and PDL1 expressions in IL-10+ B cells from peripheral blood mononuclear cells (PBMCs) stimulated with HBoV1-VLPs. In addition, increased levels of IL-10 and IL-1RA were determined in the supernatants of PBMCs following HBoV1-VLPs stimulation. HBoV1-VLPs and RV co-stimulation increased the IL-10+ B cell population. Transcriptome analysis by next-generation RNA sequencing showed an increased expression of IL-10 signalling and Breg cell markers in PBMCs stimulated with HBoV1-VLPs. Furthermore, TGF-β and chemoattractants MIP-1α, MIP-1β and IP10 protein levels were high in the supernatants of PBMCs stimulated with HBoV1-VLPs. CONCLUSIONS The findings demonstrate that in Breg cells, IL-10 signalling pathways, and anti-inflammatory activity are induced by HBoV1, which can explain the often mild nature of the disease. In addition, the immune regulatory response induced by HBoV1-VLPs may indicate a potential immunomodulatory role of HBoV1 on the immune system and may represent an immune regulatory strategy.
Collapse
Affiliation(s)
- Cagatay Karaaslan
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Molecular Biology Section, Biology Department, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Oliver Wirz
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Anna Globinska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Tadech Boonpiyathad
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Klaus Hedman
- Department of Virology, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital Diagnostics Center, Helsinki, Finland
| | - Slavica Vaselek
- Molecular Biology Section, Biology Department, Faculty of Science, Hacettepe University, Ankara, Turkey
| | | | - Tuomas Jartti
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
3
|
Colazo Salbetti MB, Boggio GA, Moreno L, Adamo MP. Human bocavirus respiratory infection: Tracing the path from viral replication and virus-cell interactions to diagnostic methods. Rev Med Virol 2023; 33:e2482. [PMID: 37749807 DOI: 10.1002/rmv.2482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
Human bocaviruses were first described between 2005 and 2010, identified in respiratory and enteric tract samples of children. Screening studies have shown worldwide distribution. Based on phylogenetic analysis, they were classified into four genotypes (HBoV1-4). From a clinical perspective, human bocavirus 1 (HBoV1) is considered the most relevant, since it can cause upper and lower acute respiratory tract infection, mainly in infants, including common cold, bronchiolitis, and pneumonia, as well as wheezing in susceptible patients. However, the specific processes leading to structural, biochemical, and functional changes resulting in the different clinical presentations have not been elucidated yet. This review surveys the interactions between the virus and target cells that can potentially explain disease-causing mechanisms. It also summarises the clinical phenotype of cases, stressing the role of HBoV1 as an aetiological agent of lower acute respiratory infection in infants, together with laboratory tests for detection and diagnosis. By exploring the current knowledge on the epidemiology of HBoV1, insights into the complex scenario of paediatric respiratory infections are presented, as well as the potential effects that changes in the circulation can have on the dynamics of respiratory agents, spotlighting the benefits of comprehensively increase insights into incidence, interrelationships with co-circulating agents and potential control of HBoV1.
Collapse
Affiliation(s)
- María Belén Colazo Salbetti
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| | - Gabriel Amilcar Boggio
- Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| | - Laura Moreno
- Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| | - María Pilar Adamo
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| |
Collapse
|
4
|
Christensen A, Kesti O, Elenius V, Eskola AL, Døllner H, Altunbulakli C, Akdis CA, Söderlund-Venermo M, Jartti T. Human bocaviruses and paediatric infections. THE LANCET CHILD & ADOLESCENT HEALTH 2019; 3:418-426. [PMID: 30948251 DOI: 10.1016/s2352-4642(19)30057-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/16/2022]
Abstract
Human bocavirus 1 (HBoV1), belonging to the Parvoviridae family, was discovered in 2005, in nasopharyngeal samples from children with respiratory tract infections. Three additional bocaviruses, HBoV2-4, were discovered in 2009-10. These viruses have mainly been found in faecal samples and their role in human diseases is still uncertain. HBoV1 causes a wide spectrum of respiratory diseases in children, including common cold, acute otitis media, pneumonia, bronchiolitis, and asthma exacerbations. HBoV1 DNA can persist in airway secretions for months after an acute infection. Consequently, acute HBoV1 infection cannot be diagnosed with standard DNA PCR; quantitative PCR and serology are better diagnostic approaches. Because of their high clinical specificity, diagnostic developments such as HBoV1 mRNA and antigen detection have shown promising results. This Review summarises the knowledge on human bocaviruses, with a special focus on HBoV1.
Collapse
Affiliation(s)
- Andreas Christensen
- Department of Medical Microbiology, St Olavs Hospital, Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Olli Kesti
- Department of Paediatrics, Turku University Hospital and University of Turku, Turku, Finland
| | - Varpu Elenius
- Department of Paediatrics, Turku University Hospital and University of Turku, Turku, Finland
| | - Anna L Eskola
- Department of Education, University of Turku, Turku, Finland
| | - Henrik Døllner
- Department of Pediatrics, St Olavs Hospital, Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Can Altunbulakli
- Swiss Institute of Allergy and Asthma Research, University of Zürich and Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zürich and Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | | | - Tuomas Jartti
- Department of Paediatrics, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
5
|
Kalyanaraman N. In silico prediction of potential vaccine candidates on capsid protein of human bocavirus 1. Mol Immunol 2017; 93:193-205. [PMID: 29207326 DOI: 10.1016/j.molimm.2017.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/18/2017] [Accepted: 11/26/2017] [Indexed: 02/07/2023]
Abstract
Human bocavirus 1 (HBoV1) is a newly identified parvovirus that causes serious respiratory infection among children across the globe. Aim of the present study was to predict immunogenic residues located on the VP2 protein of HBoV1 towards development of epitope based vaccines. Several computational tools were employed to predict epitopes (bothT and B cell restricted) with stringent regulation for the improvement of confidence. After meticulous analysis, the peptide "TTPWTYFNFNQY" was identified as potential candidate for development of preventive vaccine. Of note, the epitope "TTPWTYFNFNQY" was found to be recognized by fifteen different alleles belonging to seven HLA supertypes (A1, A3, A24, A26, B7, B58 and B62). Further, mutational variability analysis pointed that most of the amino acids were well conserved. Docking scores obtained from ClusPro and Autodock Vina for selected epitopes displayed energetically favorable and stable interaction of peptide-HLA-I complexes. The core peptide "LLYQMPFFL" was found to recognize by wide range of HLA class II allele recognition thereby qualified as candidate for therapeutic vaccine. Five distinct linear peptides (withT cell epitope superimposition) belonging to B cells were identified in the VP2 protein. Further attention on the enlisted epitopes may shed light on the path for development of diagnostic, therapeutic and preventive tools against HBoV1 infection. Additionally, the predicted epitopes may help us to address the original antigenic sin phenomena observed during consecutive HBoV2-4 infection.
Collapse
Affiliation(s)
- Narayanan Kalyanaraman
- Viral Research Diagnostic Laboratory (VRDL), Department of Microbiology, Govt Theni Medical College, Theni, Tamil Nadu, India.
| |
Collapse
|
6
|
|
7
|
Abstract
Parvovirus B19 (B19V) and human bocavirus 1 (HBoV1), members of the large Parvoviridae family, are human pathogens responsible for a variety of diseases. For B19V in particular, host features determine disease manifestations. These viruses are prevalent worldwide and are culturable in vitro, and serological and molecular assays are available but require careful interpretation of results. Additional human parvoviruses, including HBoV2 to -4, human parvovirus 4 (PARV4), and human bufavirus (BuV) are also reviewed. The full spectrum of parvovirus disease in humans has yet to be established. Candidate recombinant B19V vaccines have been developed but may not be commercially feasible. We review relevant features of the molecular and cellular biology of these viruses, and the human immune response that they elicit, which have allowed a deep understanding of pathophysiology.
Collapse
Affiliation(s)
- Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Guido M, Tumolo MR, Verri T, Romano A, Serio F, De Giorgi M, De Donno A, Bagordo F, Zizza A. Human bocavirus: Current knowledge and future challenges. World J Gastroenterol 2016; 22:8684-8697. [PMID: 27818586 PMCID: PMC5075545 DOI: 10.3748/wjg.v22.i39.8684] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/30/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023] Open
Abstract
Human bocavirus (HBoV) is a parvovirus isolated about a decade ago and found worldwide in both respiratory samples, mainly from early life and children of 6-24 mo of age with acute respiratory infection, and in stool samples, from patients with gastroenteritis. Since then, other viruses related to the first HBoV isolate (HBoV1), namely HBoV2, HBoV3 and HBoV4, have been detected principally in human faeces. HBoVs are small non-enveloped single-stranded DNA viruses of about 5300 nucleotides, consisting of three open reading frames encoding the first two the non-structural protein 1 (NS1) and nuclear phosphoprotein (NP1) and the third the viral capsid proteins 1 and 2 (VP1 and VP2). HBoV pathogenicity remains to be fully clarified mainly due to the lack of animal models for the difficulties in replicating the virus in in vitro cell cultures, and the fact that HBoV infection is frequently accompanied by at least another viral and/or bacterial respiratory and/or gastroenteric pathogen infection. Current diagnostic methods to support HBoV detection include polymerase chain reaction, real-time PCR, enzyme-linked immunosorbent assay and enzyme immunoassay using recombinant VP2 or virus-like particle capsid proteins, although sequence-independent amplification techniques combined with next-generation sequencing platforms promise rapid and simultaneous detection of the pathogens in the future. This review presents the current knowledge on HBoV genotypes with emphasis on taxonomy, phylogenetic relationship and genomic analysis, biology, epidemiology, pathogenesis and diagnostic methods. The emerging discussion on HBoVs as true pathogen or innocent bystander is also emphasized.
Collapse
|
9
|
Abstract
Seroepidemiology studies had been used to research the newly discovered human bocaviruses (HBoVs). Antibodies against the HBoV1–4 VP2 protein virus-like particles (VLPs) were found to be cross-reactive. The aim of the present study was to characterize the seroprevalence of HBoV1 and 2 among healthy populations in China. Recombinant HBoV1 and 2 VLPs were used to establish enzyme-linked immunosorbent assays (ELISAs) for detection of cross-reactivity between HBoV1 and HBoV2 in 1391 serum samples collected from healthy individuals in China. Of these, 884 samples were collected from Beijing and 507 were from Nanjing. Infection with HBoV1 and 2 was prevalent in healthy Chinese people, with the seroprevalence of HBoV1 and 2 in Beijing at 69.2 (612/884) and 64.4% (569/884), respectively. Highest seroprevalence was observed in 3–5-year-olds. The seroprevalence of HBoV1 was significantly decreased between 10–13-year-olds (80.3%) and 14–20-year-olds (62.3%, p< 0.05). For individuals over 20 years, seroprevalence was relatively constant at about 60%. Similar trends were observed in children from Nanjing, with seroprevalence of HBoV1 and 2 for healthy children at 80.7% (409/507) and 81.3% (412/507), respectively. Moreover, both mouse and human antibodies against HBoV1 and HBoV2 VLPs were found to be cross-reactive and 58.4% (813/1391) serum samples were seropositive for both HBoV1 and HBoV2. This finding suggests HBoV is highly prevalent in China and the antibodies produced as a result of infection with either HBoV1 or HBoV 2 will offer future protection. The cross-reactivity between HBoVs is crucial for accurately determining HBoV seroepidemiology.
Collapse
|
10
|
Hirose Y, Hamada H, Wakui T, Ogawa T, Terai M. Characteristic systemic cytokine responses in children with human bocavirus-positive lower respiratory tract infection. Microbiol Immunol 2014. [DOI: 10.1111/1348-0421.12132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yosuke Hirose
- Department of Pediatrics; Tokyo Women's Medical University; Yachiyo Medical Center; Chiba Japan
| | - Hiromichi Hamada
- Department of Pediatrics; Tokyo Women's Medical University; Yachiyo Medical Center; Chiba Japan
| | - Taku Wakui
- Division of Virology; Chiba Prefectural Institute of Public Health; Chiba Japan
| | - Tomoko Ogawa
- Division of Virology; Chiba Prefectural Institute of Public Health; Chiba Japan
| | - Masaru Terai
- Department of Pediatrics; Tokyo Women's Medical University; Yachiyo Medical Center; Chiba Japan
| |
Collapse
|
11
|
Human Bocavirus. Emerg Infect Dis 2014. [PMCID: PMC7173585 DOI: 10.1016/b978-0-12-416975-3.00015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Human bocavirus 1 (HBoV1), family Parvoviridae, subfamily Parvovirinae, genus Bocavirus, is a recently described respiratory virus with a worldwide distribution. It is recognized as one of the most frequently detected respiratory viruses in hospitalized children below 5 years of age and mainly detected in children between 6 and 24 months of age. The severe clinical course of HBoV1 infection can be seen in prematurely born children or children, but rarely adults, with other underlying medical conditions. The seroepidemiological studies show that most of the children are infected with HBoV1 by the age of 6 and that the IgG antibodies remain for life. The routine laboratory diagnostics of HBoV1 infections is almost exclusively based on detection of HBoV1 DNA in respiratory samples by PCR. Due to frequent coinfections with other respiratory viruses, PCR of plasma samples and detection of specific IgM might aid in determining the etiology of infection.
Collapse
|
12
|
Hao R, Ni K, Xia Q, Peng C, Deng Y, Zhao X, Fu Z, Liu W, Liu E. Correlation between nucleotide mutation and viral loads of human bocavirus 1 in hospitalized children with respiratory tract infection. J Gen Virol 2013; 94:1079-1085. [PMID: 23303830 DOI: 10.1099/vir.0.047472-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human bocavirus 1 (HBoV1) parvovirus causes respiratory disease and primarily affects children. Despite its worldwide prevalence, the mechanisms of HBoV1 replication and pathogenesis remain largely undefined. In this study of 846 children hospitalized at the Children's Hospital of Chongqing Medical University in China for respiratory tract infection between June 2009 and May 2011, HBoV1 was detected in 112 (13.2%) by real-time quantitative PCR. The median age of HBoV1-positive patients was 10 months old. Forty-five (40.2%) of the HBoV1 cases were monoinfections, and 67 (59.8%) were viral co-infections. Genotyping of all 112 HBoV1-positive cases yielded 27 full HBoV1 sequences, as well as two NS1 gene sequences, 15 NP1 gene sequences and 10 VP1/VP2 gene sequences harbouring 24, 10 and 43 mutations, respectively. Statistical analysis revealed no relationship between genetic mutations and clinical manifestations of HBoV1-positive patients. However, the viral loads were significantly lower in samples with mutations G236A or A447G in NP1, or G1461A in VP1/VP2, than in samples with wild-type HBoV1. Future studies should investigate whether these mutations in the HBoV1 gene may represent useful markers of disease pathogenesis.
Collapse
Affiliation(s)
- Rui Hao
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing Medical University, Chongqing, PR China
| | - Ke Ni
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing Medical University, Chongqing, PR China
| | - Qiuling Xia
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing Medical University, Chongqing, PR China
| | - Caijing Peng
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing Medical University, Chongqing, PR China
| | - Yu Deng
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xiaodong Zhao
- Department of Renal Immunology, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Zhou Fu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Wei Liu
- Key Laboratory of Molecular Biology of Infectious Diseases, Academy of Military Medical Sciences, Beijing, PR China
| | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
13
|
Guido M, Zizza A, Bredl S, Lindner J, De Donno A, Quattrocchi M, Grima P, Modrow S. Seroepidemiology of human bocavirus in Apulia, Italy. Clin Microbiol Infect 2012; 18:E74-6. [PMID: 22309610 DOI: 10.1111/j.1469-0691.2011.03756.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A serological survey was performed to determine the prevalence of antibodies against human bocavirus in an Apulian population. Anti-hBoV IgG antibodies were analysed in 1206 inhabitants (age range, 1month-84years) using a standardized ELISA test based on the use of recombinant hBoV VP2 virus-like particles. In total, 1075 (89.1%) of 1206 participants (mean age 32±24.8years) displayed anti-hBoV-IgG. The seroprevalence increased significantly (p<0.0001) in children from 2-4years (64.2%) to 5-9years (96.4%). A similar trend was observed in both male and female subjects. In conclusion, our results show that hBoV infection is common in this population, especially in children.
Collapse
Affiliation(s)
- M Guido
- Laboratory of Hygiene, Department of Biological and Environmental Sciences and Technologies, Faculty of Sciences, University of Salento, Lecce Institute of Clinical Physiology, National Research Council, Lecce, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jartti T, Hedman K, Jartti L, Ruuskanen O, Allander T, Söderlund-Venermo M. Human bocavirus-the first 5 years. Rev Med Virol 2011; 22:46-64. [PMID: 22038931 DOI: 10.1002/rmv.720] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/17/2011] [Accepted: 09/19/2011] [Indexed: 12/17/2022]
Abstract
Four species of human bocavirus (HBoV) have been recently discovered and classified in the Bocavirus genus (family Parvoviridae, subfamily Parvovirinae). Although detected both in respiratory and stool samples worldwide, HBoV1 is predominantly a respiratory pathogen, whereas HBoV2, HBoV3, and HBoV4 have been found mainly in stool. A variety of signs and symptoms have been described in patients with HBoV infection including rhinitis, pharyngitis, cough, dyspnea, wheezing, pneumonia, acute otitis media, fever, nausea, vomiting, and diarrhea. Many of these potential manifestations have not been systematically explored, and they have been questioned because of high HBoV co-infection rates in symptomatic subjects and high HBoV detection rates in asymptomatic subjects. However, evidence is mounting to show that HBoV1 is an important cause of lower respiratory tract illness. The best currently available diagnostic approaches are quantitative PCR and serology. This concise review summarizes the current clinical knowledge on HBoV species.
Collapse
Affiliation(s)
- Tuomas Jartti
- Department of Pediatrics, Turku University Hospital, Turku, Finland.
| | | | | | | | | | | |
Collapse
|
15
|
Malecki M, Schildgen V, Schildgen O. Human bocavirus: still more questions than answers. Future Virol 2011. [DOI: 10.2217/fvl.11.78] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human bocavirus was first detected in 2005 and since then has been found in both respiratory secretions from patients with airway infections and in stool samples from patients with gastroenteritis. Meanwhile, four different genotypes have been identified that most likely derive from recombination events. Although the modified Koch’s postulates have not yet been fulfilled completely, owing to the lack of an animal model or a simple cell culture system, there is increasing evidence that the human bocaviruses are serious participants in infectious diseases of the respiratory and the GI tracts. This article reviews the current status of the clinical features of human bocaviruses and provides an overview of the latest findings concerning the biology, phylogeny, epidemiology and diagnostic tools related to human bocaviruses. Furthermore, it discusses the potential pathogenicity of human bocavirus, as well as its persistence and reactivation in hosts.
Collapse
Affiliation(s)
- Monika Malecki
- Kliniken der Stadt Köln gGmbH, Krankenhaus Merheim, Klinikum der Privaten Universität Witten/Herdecke, Institut für Pathologie, Ostmerheimer Str. 200, D-51109 Cologne, Germany
| | - Verena Schildgen
- Kliniken der Stadt Köln gGmbH, Krankenhaus Merheim, Klinikum der Privaten Universität Witten/Herdecke, Institut für Pathologie, Ostmerheimer Str. 200, D-51109 Cologne, Germany
| | | |
Collapse
|
16
|
Detection of human bocavirus 3 in China. Eur J Clin Microbiol Infect Dis 2011; 30:799-805. [DOI: 10.1007/s10096-011-1159-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
|
17
|
Kumar A, Filippone C, Lahtinen A, Hedman L, Söderlund-Venermo M, Hedman K, Franssila R. Comparison of Th-cell immunity against human bocavirus and parvovirus B19: proliferation and cytokine responses are similar in magnitude but more closely interrelated with human bocavirus. Scand J Immunol 2011; 73:135-40. [PMID: 21198754 DOI: 10.1111/j.1365-3083.2010.02483.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human parvovirus B19 (B19) has been, for decades, the only parvovirus known to be pathogenic in humans. Another pathogenic human parvovirus, human bocavirus (HBoV), was recently identified in respiratory samples from children with acute lower respiratory tract symptoms. Both B19 and HBoV are transmitted by the respiratory route. The vast majority of adults are IgG seropositive for HBoV, whereas the HBoV-specific Th-cell immunity has not much been studied. The aim of this study was to increase our knowledge on HBoV-specific Th-cell immunity by examining HBoV-specific T-cell proliferation, Interferon-gamma (IFN-γ), IL-10 and IL-13 responses in 36 asymptomatic adults. Recombinant HBoV VP2 virus-like particles (VLP) were used as antigen. HBoV-specific responses were compared with those elicited by B19 VP2 VLP. Proliferation, IFN-γ and IL-10 responses with HBoV and B19 antigens among B19-seropositive subjects were statistically similar in magnitude, but the cytokine and proliferation responses were much more closely correlated in HBoV than in B19. Therefore, at the collective level, B19-specific Th-cell immunity appears to be more divergent than the HBoV-specific one.
Collapse
Affiliation(s)
- A Kumar
- Department of Virology, Haartman Institute, Helsinki University Central Hospital Laboratory Division, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
18
|
Azoulay E. Emerging Viral Infections. PULMONARY INVOLVEMENT IN PATIENTS WITH HEMATOLOGICAL MALIGNANCIES 2011. [PMCID: PMC7123354 DOI: 10.1007/978-3-642-15742-4_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Elie Azoulay
- Service de Réanimation Médicale, Hôpital Saint Louis, Avenue Claude Vellefaux 1, Paris, 75010 France
| |
Collapse
|
19
|
Williams JV. Déjà vu all over again: Koch's postulates and virology in the 21st century. J Infect Dis 2010; 201:1611-4. [PMID: 20415534 PMCID: PMC2862077 DOI: 10.1086/652406] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 01/19/2010] [Indexed: 12/17/2022] Open
Affiliation(s)
- John V. Williams
- Departments of Pediatrics and Microbiology and Immunology Vanderbilt University School of Medicine and the Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville Tennessee
| |
Collapse
|
20
|
Wang K, Wang W, Yan H, Ren P, Zhang J, Shen J, Deubel V. Correlation between bocavirus infection and humoral response, and co-infection with other respiratory viruses in children with acute respiratory infection. J Clin Virol 2010; 47:148-55. [PMID: 20022295 PMCID: PMC7172221 DOI: 10.1016/j.jcv.2009.11.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 11/08/2009] [Accepted: 11/11/2009] [Indexed: 01/11/2023]
Abstract
BACKGROUND Human bocavirus (HBoV), a recently discovered virus, is prevalent among children with respiratory tract infection throughout the world. Co-infection was frequently found in HBoV-positive patients. Thus, whether HBoV is responsible for the respiratory disease is still arguable. OBJECTIVES A comprehensive study was carried out to integrate clinical and virological prevalence in HBoV-positive outpatient children, and to determine genetic and serologic characteristics of HBoV in Shanghai, China. STUDY DESIGN Nasal/throat swabs and sera were obtained over a 2-year period from 817 children with respiratory tract infection to examine the presence of HBoV and its co-infection. The seroepidemiology of HBoV was studied by ELISA and Western blot against the capsid protein VP2-based fragment. Persistence of HBoV was also analyzed in 12 pairs of return-visit cases. RESULTS HBoV was identified in 96 samples (11.8%). The co-infection rate with other respiratory viruses was 51%. IgM was detected in 55.7% of HBoV RT-PCR-positive patients, and in 72.7% of those who had high viral genome load. In addition, persistent viral DNA positivity was detected in 10 of 12 HBoV-positive cases tested, an average of 14 days later, and one child was still HBoV-positive after 31 days. CONCLUSION HBoV was found frequently in children with respiratory tract symptoms associated with other respiratory viruses, and persisted in the respiratory tract and in serum and urine. The presence of IgM was significantly more prevalent in viremic patients and those diagnosed with high load of HBoV DNA in nasal/throat swabs.
Collapse
Affiliation(s)
- Kai Wang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
21
|
Riipinen A, Väisänen E, Lahtinen A, Karikoski R, Nuutila M, Surcel HM, Taskinen H, Hedman K, Söderlund-Venermo M. Absence of human bocavirus from deceased fetuses and their mothers. J Clin Virol 2009; 47:186-8. [PMID: 20031484 DOI: 10.1016/j.jcv.2009.11.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 10/16/2009] [Accepted: 11/30/2009] [Indexed: 02/06/2023]
Abstract
BACKGROUND The human bocavirus (HBoV), a newly discovered parvovirus, is closely related to the bovine parvovirus and the canine minute virus, which are known to cause adverse pregnancy outcomes. Another human parvovirus, B19, can lead to fetal hydrops, miscarriage and intrauterine fetal death (IUFD). OBJECTIVES To determine the prevalence of HBoV DNA in aborted fetuses and IUFDs. The HBoV serology of the mothers was also studied. STUDY DESIGN We retrospectively studied all available fetuses (N=535) autopsied during 7/1992-12/1995, and 1/2003-12/2005 in Helsinki, Finland. All available formalin-fixed paraffin-embedded fetal tissues - placenta, heart and liver - of 120 miscarriages, 169 IUFDs, and 246 induced abortions were studied by quantitative PCR. We also measured the HBoV IgM and IgG antibodies in the corresponding maternal sera (N=462) mostly of the first trimester. The IgM-positive sera underwent HBoV PCR. RESULTS None of the fetal tissues harbored HBoV DNA. A total of 97% (448/462) of the mothers were positive for IgG antibodies to HBoV, while only 0.9% (4/462) exhibited HBoV-specific IgM antibodies without viremia or respiratory symptoms. One IgM-positive mother had an unexplained fetal loss. CONCLUSIONS We did not find HBoV DNA in any of the deceased fetuses. Almost all pregnant women were HBoV-IgG positive.
Collapse
Affiliation(s)
- Anita Riipinen
- Finnish Institute of Occupational Health, Topeliuksenkatu 41 a A, FIN-00250 Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Numerous viruses are able to cause respiratory tract infections. With the availability of new molecular techniques, the number of pathogens detected in specimens from the human respiratory tract has increased. Some of these viral infections have the potential to lead to severe systemic disease. Other viruses are limited to playing a role in the pathogenesis of the common cold syndrome. This chapter focuses on the viral pathogens that are linked to common cold. It is not the intention to comprehensively review all the viruses that are able to cause respiratory tract infections—this would go beyond the scope of this book. The list of viruses that are briefly reviewed here includes rhinoviruses, respiratory syncytial virus, parainfluenza virus, adenovirus, metapneumovirus and coronavirus. Bocavirus is discussed as one example of a newly identified pathogen with a less established role in the etiology and pathogenesis of common cold. Influenza virus does not cause what is defined as common cold. However, influenza viruses are associated with respiratory disease and the clinical picture of mild influenza and common cold frequently overlaps. Therefore, influenza virus has been included in this chapter. It is important to note that a number of viruses are frequently co-detected with other viruses in humans with respiratory diseases. Therefore, the viral etiology and the role of viruses in the pathogenesis of common cold is complex, and numberous questions remain to be answered.
Collapse
|
23
|
Karalar L, Lindner J, Schimanski S, Kertai M, Segerer H, Modrow S. Prevalence and clinical aspects of human bocavirus infection in children. Clin Microbiol Infect 2009; 16:633-9. [PMID: 19681960 DOI: 10.1111/j.1469-0691.2009.02889.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human bocavirus (HBoV) was recently described as a new member of the Parvoviridae. In order to investigate the suggested association of HBoV with respiratory and gastric disease in infants and young children, sera of 357 paediatric patients hospitalized with infectious and non-infectious diseases were retrospectively analyzed for the presence of HBoV DNA and virus-specific antibodies using quantitative PCR and ELISA, respectively. HBoV seroprevalence was determined to range from 25% in infants younger than 1 year of age to 93% in children aged more than 3 years. Viral loads between 1 x 10(2) and 1.2 x 10(6) geq/mL were observed in 6.7% (20/297) of sera obtained preferentially from young children suffering from infectious diseases. HBoV genomes were furthermore detected in 5% (3/60) of sera collected from individuals with non-infectious illnesses. HBoV DNA was present most frequently in patients with respiratory disease (9.6%). Whereas only 5.2% of patients with upper respiratory tract disease were viraemic, HBoV DNA was found in 14.6% and 10.0% of patients with lower respiratory tract illness and pneumonia, respectively. Acute HBoV infections were also observed in 7.5% of patients with gastroenteritis and in one child with inflammatory bowel disease. None of 77 patients hospitalized for various other infectious diseases (e.g. rash, urinary tract infection, meningitis) displayed viraemia. In 60.9% and 47.8% of DNA-positive children, HBoV-specific IgM and IgG was observed, respectively. The present prospective study provides comprehensive data on the clinical association of acute HBoV infection with respiratory illness and on the seroprevalence of virus-specific antibodies in children.
Collapse
Affiliation(s)
- L Karalar
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Enders M, Lindner J, Wenzel JJ, Baisch C, Schalasta G, Enders G, Modrow S. No detection of human bocavirus in amniotic fluid samples from fetuses with hydrops or isolated effusions. J Clin Virol 2009; 45:300-3. [DOI: 10.1016/j.jcv.2009.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 04/16/2009] [Accepted: 04/20/2009] [Indexed: 11/29/2022]
|
25
|
High prevalence of human parvovirus B19 DNA in myocardial autopsy samples from subjects without myocarditis or dilative cardiomyopathy. J Clin Microbiol 2008; 47:106-10. [PMID: 19005147 DOI: 10.1128/jcm.01672-08] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human parvovirus B19 has been linked to a variety of cardiac diseases, as well as to erythema infectiosum, acute arthropathy, and fetal hydrops. A causal association between viral infection and cardiac disease was frequently postulated following the detection of B19 DNA by PCR in endomyocardial biopsy specimens. Since the lifelong persistence of B19 DNA in bone marrow, skin, synovia, tonsils, and liver was previously reported, the aim of our study was to investigate the possibility of asymptomatic B19 DNA persistence in heart tissue. Myocardial autopsy and postmortem blood samples were prospectively collected from 69 bodies sent to the Department of Forensic Medicine, Freiburg University Medical Center, for inquests. All study subjects were screened for B19-specific antibodies using a commercial enzyme immunoassay. Tissue samples were analyzed by real-time PCR for the presence of viral DNA. Since the presence of B19 genotype 2, known to have been circulating before 1960, would prove long-lasting persistence, the presence of the B19 genotype was retrospectively determined in seven of the study subjects by melting temperature analysis and sequencing of the PCR product. B19 DNA was found in myocardial samples from 46 of 48 seropositive and in none of 21 seronegative individuals. B19 genotype 1 was found in three patients born between 1950 and 1969. Genotype 2 was found in four patients born between 1927 and 1957. Our findings suggest lifelong persistence of B19 DNA in heart tissue. Thus, the detection of B19 DNA in myocardial biopsy specimens alone is not sufficient to postulate a relationship between B19 infection and cardiac disease.
Collapse
|
26
|
Lindner J, Noutsias M, Lassner D, Wenzel J, Schultheiss HP, Kuehl U, Modrow S. Adaptive immune responses against parvovirus B19 in patients with myocardial disease. J Clin Virol 2008; 44:27-32. [PMID: 18980860 DOI: 10.1016/j.jcv.2008.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 09/02/2008] [Accepted: 09/12/2008] [Indexed: 12/15/2022]
Abstract
BACKGROUND Parvovirus B19 (B19V)-DNA is frequently detected in endomyocardial biopsies (EMBs) from patients with acute myocarditis (AMC) and dilated cardiomyopathy (DCM), but also in various healthy tissues. The clinical relevance of this DNA-persistence is unclear. OBJECTIVES To investigate potential pathogenic influences of B19V-DNA in EMBs, we analyzed B19V-specific adaptive immune responses in AMC/DCM patients and healthy controls. STUDY DESIGN 15 AMC/DCM patients with detectable B19V-DNA in EMBs and 51 controls were analyzed for signs of acute B19V-infections and virus-specific immune responses by PCR, ELISA, Western line, and ELISpot-assays. RESULTS Productive B19V-infection was determined in three patients. Slightly lower levels of B19V-specific T-cells were observed in patients as compared to the controls, no differences were observed in virus-specific serology. Viral DNA-load in EMBs could not be correlated to the number of B19V-specific T-cells. No differences in T-cell response, viremia and/or serological markers indicative for viral pathogenesis were observed in patients with inflammatory cardiomyopathy. CONCLUSIONS Discrepancies in B19V-specific adaptive immunity were not observed in AMC/DCM patients as compared to controls. The data indicate that the exclusive detection of B19V-DNA in EMBs is not sufficient to associate B19V with AMC/DCM but should be complemented with additional virological and immunological parameters in further studies.
Collapse
Affiliation(s)
- Juha Lindner
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Clinical and epidemiological aspects of human bocavirus infection. J Clin Virol 2008; 43:391-5. [PMID: 18823816 PMCID: PMC7172253 DOI: 10.1016/j.jcv.2008.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 08/14/2008] [Indexed: 12/26/2022]
Abstract
Human bocavirus was recently described as a novel member of the Parvoviridae to infect humans. Based on accumulating clinical and epidemiological data the virus is currently being associated with respiratory infections in young children and infants and is furthermore discussed as causative agent of gastrointestinal illness.
Collapse
|