1
|
Melintescu A. An improved dynamic metabolic model for application to biota. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 280:107560. [PMID: 39432976 DOI: 10.1016/j.jenvrad.2024.107560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
Any major nuclear facility must ensure the conservation of biodiversity regarding radiation protection of biota. A special concern is for tritium (3H) and radiocarbon (14C) transfer in wild mammals, birds and reptiles. Hydrogen and carbon are the main components of biological tissues and enter the life cycle. The present study improves the scientific bases of a previous model, analyses the uncertainty of input parameters and tests the model for a larger range of mammals and birds. The biological and metabolic half-times for organically bound tritium (OBT) and 14C are linked with energy metabolism and recent results are revised in relation with metabolic scaling. A large data base regarding basal metabolic rate (BMR), field metabolic rate (FMR), and organ mass is used for input information of the present model, which considers brain as a separate compartment. Metabolic energy partition in organs of active animal is defined and the factors affecting the metabolic rate are analysed. Body and ambient temperature, diet and habitat, and phylogeny are important factors considered in animal adaptation to environment. The available experimental data for carbon turnover rates in animals are analysed and it is observed that the experimental conditions are not appropriate for wild animals. The link between 13,14C and 134,137Cs turnover rate is analysed and the present metabolic approach is successfully tested for mammals and reptiles. Considering animal adaptation and the large data base for 134,137Cs, the radiological impact of accidental releases of 3H and 14C on biota can be pursued in the future research.
Collapse
Affiliation(s)
- A Melintescu
- "Horia Hulubei" National Institute for Physics and Nuclear Engineering, Life and Environmental Physics Department, 30 Reactorului St., Bucharest-Magurele, POB MG-6, RO-077125, Romania.
| |
Collapse
|
2
|
Mauritsson K, Jonsson T. A new mechanistic model for individual growth applied to insects under ad libitum conditions. PLoS One 2024; 19:e0309664. [PMID: 39231173 PMCID: PMC11373858 DOI: 10.1371/journal.pone.0309664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024] Open
Abstract
Metabolic theories in ecology interpret ecological patterns at different levels through the lens of metabolism, typically applying allometric power scaling laws to describe rates of energy use. This requires a sound theory for metabolism at the individual level. Commonly used mechanistic growth models lack some potentially important aspects and fail to accurately capture a growth pattern often observed in insects. Recently, a new model (MGM-the Maintenance-Growth Model) was developed for ontogenetic and post-mature growth, based on an energy balance that expresses growth as the net result of assimilation and metabolic costs for maintenance and feeding. The most important contributions of MGM are: 1) the division of maintenance costs into a non-negotiable and a negotiable part, potentially resulting in maintenance costs that increase faster than linearly with mass and are regulated in response to food restriction; 2) differentiated energy allocation strategies between sexes and 3) explicit description of costs for finding and processing food. MGM may also account for effects of body composition and type of growth at the cellular level. The model was here calibrated and evaluated using empirical data from an experiment on house crickets growing under ad libitum conditions. The procedure involved parameter estimations from the literature and collected data, using statistical models to account for individual variation in parameter values. It was found that ingestion rate cannot be generally described by a simple allometry, here requiring a more complex description after maturity. Neither could feeding costs be related to ingestion rate in a simplistic manner. By the unusual feature of maintenance costs increasing faster than linearly with body mass, MGM could well capture the differentiated growth patterns of male and female crickets. Some other mechanistic growth models have been able to provide good predictions of insect growth during early ontogeny, but MGM may accurately describe the trajectory until terminated growth.
Collapse
Affiliation(s)
- Karl Mauritsson
- Ecological Modelling Group, School of Bioscience, University of Skövde, Skövde, Sweden
- Ecological and Environmental Modeling, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Tomas Jonsson
- Ecological Modelling Group, School of Bioscience, University of Skövde, Skövde, Sweden
- Ecological and Environmental Modeling, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
3
|
Berv JS, Singhal S, Field DJ, Walker-Hale N, McHugh SW, Shipley JR, Miller ET, Kimball RT, Braun EL, Dornburg A, Parins-Fukuchi CT, Prum RO, Winger BM, Friedman M, Smith SA. Genome and life-history evolution link bird diversification to the end-Cretaceous mass extinction. SCIENCE ADVANCES 2024; 10:eadp0114. [PMID: 39083615 PMCID: PMC11290531 DOI: 10.1126/sciadv.adp0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024]
Abstract
Complex patterns of genome evolution associated with the end-Cretaceous [Cretaceous-Paleogene (K-Pg)] mass extinction limit our understanding of the early evolutionary history of modern birds. Here, we analyzed patterns of avian molecular evolution and identified distinct macroevolutionary regimes across exons, introns, untranslated regions, and mitochondrial genomes. Bird clades originating near the K-Pg boundary exhibited numerous shifts in the mode of molecular evolution, suggesting a burst of genomic heterogeneity at this point in Earth's history. These inferred shifts in substitution patterns were closely related to evolutionary shifts in developmental mode, adult body mass, and patterns of metabolic scaling. Our results suggest that the end-Cretaceous mass extinction triggered integrated patterns of evolution across avian genomes, physiology, and life history near the dawn of the modern bird radiation.
Collapse
Affiliation(s)
- Jacob S. Berv
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
- Museum of Paleontology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
- Museum of Zoology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sonal Singhal
- Department of Biology, California State University, Dominguez Hills, Carson, CA 90747, USA
| | - Daniel J. Field
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
- Museum of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Nathanael Walker-Hale
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Sean W. McHugh
- Department of Evolution, Ecology, and Population Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - J. Ryan Shipley
- Department of Forest Dynamics, Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, Zürcherstrasse 111 8903, Birmensdorf, Switzerland
| | - Eliot T. Miller
- Center for Avian Population Studies, Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| | - Rebecca T. Kimball
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Edward L. Braun
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - C. Tomomi Parins-Fukuchi
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Richard O. Prum
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
| | - Benjamin M. Winger
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
- Museum of Zoology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matt Friedman
- Museum of Paleontology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Earth and Environmental Sciences, University of Michigan, 1100 North University Avenue, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen A. Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
White CR, Marshall DJ. How and Why Does Metabolism Scale with Body Mass? Physiology (Bethesda) 2023; 38:0. [PMID: 37698354 DOI: 10.1152/physiol.00015.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023] Open
Abstract
Most explanations for the relationship between body size and metabolism invoke physical constraints; such explanations are evolutionarily inert, limiting their predictive capacity. Contemporary approaches to metabolic rate and life history lack the pluralism of foundational work. Here, we call for reforging of the lost links between optimization approaches and physiology.
Collapse
Affiliation(s)
- Craig R White
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Clayton, Victoria, Australia
| | - Dustin J Marshall
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
5
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 1: Foundational principles and theories of regulation. Eur J Appl Physiol 2023; 123:2379-2459. [PMID: 37702789 DOI: 10.1007/s00421-023-05272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/30/2023] [Indexed: 09/14/2023]
Abstract
This contribution is the first of a four-part, historical series encompassing foundational principles, mechanistic hypotheses and supported facts concerning human thermoregulation during athletic and occupational pursuits, as understood 100 years ago and now. Herein, the emphasis is upon the physical and physiological principles underlying thermoregulation, the goal of which is thermal homeostasis (homeothermy). As one of many homeostatic processes affected by exercise, thermoregulation shares, and competes for, physiological resources. The impact of that sharing is revealed through the physiological measurements that we take (Part 2), in the physiological responses to the thermal stresses to which we are exposed (Part 3) and in the adaptations that increase our tolerance to those stresses (Part 4). Exercising muscles impose our most-powerful heat stress, and the physiological avenues for redistributing heat, and for balancing heat exchange with the environment, must adhere to the laws of physics. The first principles of internal and external heat exchange were established before 1900, yet their full significance is not always recognised. Those physiological processes are governed by a thermoregulatory centre, which employs feedback and feedforward control, and which functions as far more than a thermostat with a set-point, as once was thought. The hypothalamus, today established firmly as the neural seat of thermoregulation, does not regulate deep-body temperature alone, but an integrated temperature to which thermoreceptors from all over the body contribute, including the skin and probably the muscles. No work factor needs to be invoked to explain how body temperature is stabilised during exercise.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Mauritsson K, Jonsson T. A new flexible model for maintenance and feeding expenses that improves description of individual growth in insects. Sci Rep 2023; 13:16751. [PMID: 37798309 PMCID: PMC10556006 DOI: 10.1038/s41598-023-43743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
Metabolic theories in ecology interpret ecological patterns at different levels through the lens of metabolism, typically applying allometric scaling to describe energy use. This requires a sound theory for individual metabolism. Common mechanistic growth models, such as 'von Bertalanffy', 'dynamic energy budgets' and the 'ontogenetic growth model' lack some potentially important aspects, especially regarding regulation of somatic maintenance. We develop a model for ontogenetic growth of animals, applicable to ad libitum and food limited conditions, based on an energy balance that expresses growth as the net result of assimilation and metabolic costs for maintenance, feeding and food processing. The most important contribution is the division of maintenance into a 'non-negotiable' and a 'negotiable' part, potentially resulting in hyperallometric scaling of maintenance and downregulated maintenance under food restriction. The model can also account for effects of body composition and type of growth at the cellular level. Common mechanistic growth models often fail to fully capture growth of insects. However, our model was able to capture empirical growth patterns observed in house crickets.
Collapse
Affiliation(s)
- Karl Mauritsson
- Ecological Modelling Group, School of Bioscience, University of Skövde, Skövde, Sweden.
- Ecological and Environmental Modeling, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
| | - Tomas Jonsson
- Ecological Modelling Group, School of Bioscience, University of Skövde, Skövde, Sweden
- Ecological and Environmental Modeling, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
7
|
On the natural selection of body mass allometries. ACTA OECOLOGICA 2023. [DOI: 10.1016/j.actao.2023.103889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
8
|
Downs CJ, Schoenle LA, Goolsby EW, Oakey SJ, Ball R, Jiang RHY, Martin LB. Large Mammals Have More Powerful Antibacterial Defenses Than Expected from Their Metabolic Rates. Am Nat 2023; 201:287-301. [PMID: 36724463 DOI: 10.1086/722504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
AbstractTerrestrial mammals span seven orders of magnitude in body size, ranging from the <2-g Etruscan pygmy shrew (Suncus etruscus) to the >3,900-kg African elephant (Loxodonta africana). Although body size profoundly affects the behavior, physiology, ecology, and evolution of species, how investment in functional immune defenses changes with body size across species is unknown. Here, we (1) developed a novel 12-point dilution curve approach to describe and compare antibacterial capacity against three bacterial species among >160 terrestrial species of mammals and (2) tested published predictions about the scaling of immune defenses. Our study focused on the safety factor hypothesis, which predicts that broad, early-acting immune defenses should scale hypermetrically with body mass. However, our three statistical approaches demonstrated that antibacterial activity in sera across mammals exhibits isometry; killing capacity did not change with body size across species. Intriguingly, this result indicates that the serum of a large mammal is less hospitable to bacteria than would be predicted by its metabolic rates. In other words, if metabolic rates underlie the rates of physiological reactions as postulated by the metabolic theory of ecology, large species should have disproportionately lower antibacterial capacity than small species, but they do not. These results have direct implications for effectively modeling the evolution of immune defenses and identifying potential reservoir hosts of pathogens.
Collapse
|
9
|
Vasseur F, Westgeest AJ, Vile D, Violle C. Solving the grand challenge of phenotypic integration: allometry across scales. Genetica 2022; 150:161-169. [PMID: 35857239 PMCID: PMC9355930 DOI: 10.1007/s10709-022-00158-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
Phenotypic integration is a concept related to the cascade of trait relationships from the lowest organizational levels, i.e. genes, to the highest, i.e. whole-organism traits. However, the cause-and-effect linkages between traits are notoriously difficult to determine. In particular, we still lack a mathematical framework to model the relationships involved in the integration of phenotypic traits. Here, we argue that allometric models developed in ecology offer testable mathematical equations of trait relationships across scales. We first show that allometric relationships are pervasive in biology at different organizational scales and in different taxa. We then present mechanistic models that explain the origin of allometric relationships. In addition, we emphasized that recent studies showed that natural variation does exist for allometric parameters, suggesting a role for genetic variability, selection and evolution. Consequently, we advocate that it is time to examine the genetic determinism of allometries, as well as to question in more detail the role of genome size in subsequent scaling relationships. More broadly, a possible-but so far neglected-solution to understand phenotypic integration is to examine allometric relationships at different organizational levels (cell, tissue, organ, organism) and in contrasted species.
Collapse
Affiliation(s)
- François Vasseur
- CEFE, University Montpellier, CNRS, EPHE, IRD, Montpellier, France.
| | | | - Denis Vile
- LEPSE, University Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Cyrille Violle
- CEFE, University Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
10
|
Metabolic Scaling in Birds and Mammals: How Taxon Divergence Time, Phylogeny, and Metabolic Rate Affect the Relationship between Scaling Exponents and Intercepts. BIOLOGY 2022; 11:biology11071067. [PMID: 36101445 PMCID: PMC9312277 DOI: 10.3390/biology11071067] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022]
Abstract
Simple Summary This study is based on a large dataset and re-evaluates data on the metabolic rate, providing new insights into the similarities and differences across different groups of birds and mammals. We compared six taxonomic groups of mammals and birds according to their energetic characteristics and the geological time of evolutionary origin. The overall metabolic rate of a taxonomic group increases with the geological time of evolutionary origin. The terrestrial mammals and flightless birds have almost equal metabolic levels. The higher the metabolic rate in a group, the less it increases within increasing body size in this group. Abstract Analysis of metabolic scaling in currently living endothermic animal species allowed us to show how the relationship between body mass and the basal metabolic rate (BMR) has evolved in the history of endothermic vertebrates. We compared six taxonomic groups according to their energetic characteristics and the time of evolutionary divergence. We transformed the slope of the regression lines to the common value and analyzed three criteria for comparing BMR of different taxa regardless of body size. Correlation between average field metabolic rate (FMR) of the group and its average BMR was shown. We evaluated the efficiency of self-maintenance in ordinary life (defined BMR/FMR) in six main groups of endotherms. Our study has shown that metabolic scaling in the main groups of endothermic animals correlates with their evolutionary age: the younger the group, the higher the metabolic rate, but the rate increases more slowly with increasing body weight. We found negative linear relationship for scaling exponents and the allometric coefficient in five groups of endotherms: in units of mL O2/h per g, in relative units of allometric coefficients, and also in level or scaling elevation. Mammals that diverged from the main vertebrate stem earlier have a higher “b” exponent than later divergent birds. A new approach using three criteria for comparing BMR of different taxa regardless of body mass will be useful for many biological size-scaling relationships that follow the power function.
Collapse
|
11
|
Welman S, Jastroch M, Mzilikazi N. Obligatory homeothermy of mesic adapted African striped mice, Rhabdomys pumilio, is governed by seasonal basal metabolism and year-round "thermogenic readiness" of brown adipose tissue. J Exp Biol 2022; 225:275893. [PMID: 35694963 DOI: 10.1242/jeb.243860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/08/2022] [Indexed: 11/20/2022]
Abstract
Small mammals undergo thermoregulatory adjustments in response to changing environmental conditions. Whereas small heterothermic mammals can employ torpor to save energy in the cold, homeothermic species must increase heat production to defend normothermia through the recruitment of brown adipose tissue (BAT). Here, we studied thermoregulatory adaptation in an obligate homeotherm, the African striped mouse (Rhabdomys pumilio), captured from a subpopulation living in a mesic, temperate climate with marked seasonal differences. Basal metabolic rate (BMR), non-shivering thermogenesis (NST) and summit metabolic rate (MSUM) increased from summer to winter, with NST and MSUM already reaching maximal rates in autumn, suggesting seasonal preparation to the cold. Typical of rodents, cold-induced metabolic rates positively correlate with BAT mass. Analysis of cytochrome c oxidase (COX) activity and UCP1 content, however, demonstrate that thermogenic capacity declines with BAT mass. This resulted in seasonal differences in NST being driven by changes in BMR. The increase in BMR is supported by a comprehensive anatomical analysis of metabolically active organs, revealing increased mass proportions in the cold season. The thermoregulatory response of R. pumilio is associated with the maintenance of body weight throughout the year (48.3±1.4 g), contrasting large summer-winter mass reductions often observed in Holarctic rodents. Collectively, bioenergetic adaptation of this Afrotropical rodent involves seasonal organ adjustments influencing BMR, combined with a constant thermogenic capacity dictated by trade-offs in thermogenic properties of BAT. Arguably, this high degree of plasticity was a response to unpredictable cold spells throughout the year. Consequently, the reliance on such a resource intensive thermoregulatory strategy may expose more energetic vulnerability in changing environments of food scarcity and extreme weather conditions due to climate change, with major ramifications for survival of the species.
Collapse
Affiliation(s)
- Shaun Welman
- Department of Zoology, Nelson Mandela University, Gqeberha, South Africa
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | | |
Collapse
|
12
|
Bi W, Hou R, Owens JR, Spotila JR, Valitutto M, Yin G, Paladino FV, Wu F, Qi D, Zhang Z. Field metabolic rates of giant pandas reveal energetic adaptations. Sci Rep 2021; 11:22391. [PMID: 34789821 PMCID: PMC8599739 DOI: 10.1038/s41598-021-01872-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022] Open
Abstract
Knowledge of energy expenditure informs conservation managers for long term plans for endangered species health and habitat suitability. We measured field metabolic rate (FMR) of free-roaming giant pandas in large enclosures in a nature reserve using the doubly labeled water method. Giant pandas in zoo like enclosures had a similar FMR (14,182 kJ/day) to giant pandas in larger field enclosures (13,280 kJ/day). In winter, giant pandas raised their metabolic rates when living at - 2.4 °C (36,108 kJ/day) indicating that they were below their thermal neutral zone. The lower critical temperature for thermoregulation was about 8.0 °C and the upper critical temperature was about 28 °C. Giant panda FMRs were somewhat lower than active metabolic rates of sloth bears, lower than FMRs of grizzly bears and polar bears and 69 and 81% of predicted values based on a regression of FMR versus body mass of mammals. That is probably due to their lower levels of activity since other bears actively forage for food over a larger home range and pandas often sit in a patch of bamboo and eat bamboo for hours at a time. The low metabolic rates of giant pandas in summer, their inability to acquire fat stores to hibernate in winter, and their ability to raise their metabolic rate to thermoregulate in winter are energetic adaptations related to eating a diet composed almost exclusively of bamboo. Differences in FMR of giant pandas between our study and previous studies (one similar and one lower) appear to be due to differences in activity of the giant pandas in those studies.
Collapse
Affiliation(s)
- Wenlei Bi
- Department of Biodiversity, Earth and Environmental Science, Drexel University, 3145 Chestnut St, Philadelphia, PA, 19104, USA
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Rd, Chengdu, 610081, Sichuan Province, China
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Rd, Chengdu, 610081, Sichuan Province, China
| | - Jacob R Owens
- Department of Conservation, Los Angeles Zoo, Los Angeles, CA, 90027, USA
| | - James R Spotila
- Department of Biodiversity, Earth and Environmental Science, Drexel University, 3145 Chestnut St, Philadelphia, PA, 19104, USA.
| | - Marc Valitutto
- Smithsonian Conservation Biology Institute, EcoHealth Alliance, 520 Eighth Avenue, Ste. 1200, New York, NY, 10018, USA
| | - Guan Yin
- Department of Earth Sciences, Chengdu University of Technology, Chengdu, 610059, Sichuan Province, China
| | - Frank V Paladino
- Department of Biology, Purdue University at Fort Wayne, 2101 E. Coliseum Blvd, Fort Wayne, IN, 46805, USA
| | - Fanqi Wu
- Department of Biodiversity, Earth and Environmental Science, Drexel University, 3145 Chestnut St, Philadelphia, PA, 19104, USA
- Global Cause Foundation, 4031 University Drive #100, Fairfax, VA, 22030, USA
| | - Dunwu Qi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Rd, Chengdu, 610081, Sichuan Province, China
| | - Zhihe Zhang
- Sichuan Academy of Giant Panda, 1375 Panda RD, Chengdu, 610081, Sichuan Province, China
| |
Collapse
|
13
|
Belkaniya GS, Dilenyan LR, Konkov DG, Wsol A, Martusevich AK, Puchalska LG. An anthropogenic model of cardiovascular system adaptation to the Earth's gravity as the conceptual basis of pathological anthropology. J Physiol Anthropol 2021; 40:9. [PMID: 34452641 PMCID: PMC8394646 DOI: 10.1186/s40101-021-00260-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
Applying human biological evolution to solve topical problems of medicine and preventive cardiology was inspired by the realization of the need for clinical and experimental studies of biological (evolutionary) prerequisites in the occurrence of a pathology. Although it has been stated that there is a need to provide a full biological understanding of features, including those that increase an animal's vulnerability to diseases, unfortunately, in this regard, erectile and associated adaptations to the Earth's gravity in their physiological and pathological manifestations have not been considered. At the same time, it should be noted that humans, unlike other animal species, have the greatest vulnerability of the cardiovascular system (CVS). The latter is associated with fundamental differences in the functioning and regulation of the CVS by the influence of gravity on blood circulation in humans as upright creatures. Based on a review of comparative physiological, ontogenetic, and clinical studies from an evolutionary perspective, the idea of adaptation to the Earth's gravity when walking upright in humans is justified as an anthropogenic basis for the physiology and pathology of the cardiovascular system and hemodynamic support systems (physio-anthropology and pathological anthropology).
Collapse
Affiliation(s)
- G S Belkaniya
- Laboratory of Medical Expert Systems "Anthropos Systems Lab.", Vinnitsa, Ukraine
| | - L R Dilenyan
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - D G Konkov
- National Pirogow Memorial Medical University, Vinnitsa, Ukraine
| | - A Wsol
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, ul. Banacha 1b, 02-097, Warsaw, Poland.
| | - A K Martusevich
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - L G Puchalska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, ul. Banacha 1b, 02-097, Warsaw, Poland
| |
Collapse
|
14
|
Bowes HM, Burdon CA, Peoples GE, Notley SR, Taylor NAS. Scaling the peak and steady-state aerobic power of running and walking humans. Eur J Appl Physiol 2021; 121:2925-2938. [PMID: 34212218 DOI: 10.1007/s00421-021-04759-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE The first aim of this experiment was to evaluate the appropriateness of linear and non-linear (allometric) models to scale peak aerobic power (oxygen consumption) against body mass. The possibilities that oxygen consumption would scale allometrically across the complete metabolic range, and that the scaling exponents would differ significantly between basal and maximal-exercise states, were then evaluated. It was further hypothesised that the scaling exponent would increase in a stepwise manner with elevations in exercise intensity. Finally, the utility of applying the scaling exponent derived for peak aerobic power to another population sample was evaluated. METHODS Basal, steady-state walking and peak (treadmill) oxygen-consumption data were measured using 60 relatively homogeneous men (18-40 year; 56.0-117.1 kg), recruited across five mass classes. Linear and allometric regressions were applied, with the utility of each scaling method evaluated. RESULTS Oxygen consumption scaled allometrically with body mass across the complete metabolic range, and was always superior to both ratiometric analysis and linear regression. The scaling exponent increased significantly from rest (mass0.57) to maximal exercise (mass0.75; P < 0.05), but not between steady-state walking (mass0.87) and maximal exercise (P > 0.05). When used with an historical database, the maximal-exercise exponent successfully removed the mass bias. CONCLUSION It has been demonstrated that the oxygen consumption of healthy humans scales allometrically with body mass across the entire metabolic range. Moreover, only two scaling exponents (rest and exercise) were required to produce mass-independent outcomes from those data. Accordingly, ratiometric and linear regression analyses are not recommended as scaling methods.
Collapse
Affiliation(s)
- Heather M Bowes
- Centre for Medical and Exercise Physiology, School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.,Department of Environmental Physiology, School of Technology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Catriona A Burdon
- Centre for Medical and Exercise Physiology, School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Gregory E Peoples
- Centre for Medical and Exercise Physiology, School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Nigel A S Taylor
- Centre for Medical and Exercise Physiology, School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
15
|
Tollis M, Schneider-Utaka AK, Maley CC. The Evolution of Human Cancer Gene Duplications across Mammals. Mol Biol Evol 2021; 37:2875-2886. [PMID: 32421773 PMCID: PMC7530603 DOI: 10.1093/molbev/msaa125] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer is caused by genetic alterations that affect cellular fitness, and multicellular organisms have evolved mechanisms to suppress cancer such as cell cycle checkpoints and apoptosis. These pathways may be enhanced by the addition of tumor suppressor gene paralogs or deletion of oncogenes. To provide insights to the evolution of cancer suppression across the mammalian radiation, we estimated copy numbers for 548 human tumor suppressor gene and oncogene homologs in 63 mammalian genome assemblies. The naked mole rat contained the most cancer gene copies, consistent with the extremely low rates of cancer found in this species. We found a positive correlation between a species’ cancer gene copy number and its longevity, but not body size, contrary to predictions from Peto’s Paradox. Extremely long-lived mammals also contained more copies of caretaker genes in their genomes, suggesting that the maintenance of genome integrity is an essential form of cancer prevention in long-lived species. We found the strongest association between longevity and copy numbers of genes that are both germline and somatic tumor suppressor genes, suggesting that selection has acted to suppress both hereditary and sporadic cancers. We also found a strong relationship between the number of tumor suppressor genes and the number of oncogenes in mammalian genomes, suggesting that complex regulatory networks mediate the balance between cell proliferation and checks on tumor progression. This study is the first to investigate cancer gene expansions across the mammalian radiation and provides a springboard for potential human therapies based on evolutionary medicine.
Collapse
Affiliation(s)
- Marc Tollis
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ.,Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ
| | | | - Carlo C Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ.,School of Life Sciences, Arizona State University, Tempe, AZ
| |
Collapse
|
16
|
Bowes HM, Burdon CA, Taylor NAS. The scaling of human basal and resting metabolic rates. Eur J Appl Physiol 2020; 121:193-208. [PMID: 33011890 DOI: 10.1007/s00421-020-04515-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/23/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE In tachymetabolic species, metabolic rate increases disproportionately with body mass, and that inter-specific relationship is typically modelled allometrically. However, intra-specific analyses are less common, particularly for healthy humans, so the possibility that human metabolism would also scale allometrically was investigated. METHODS Basal metabolic rate was determined (respirometry) for 68 males (18-40 years; 56.0-117.1 kg), recruited across five body-mass classes. Data were collected during supine, normothermic rest from well-rested, well-hydrated and post-absorptive participants. Linear and allometric regressions were applied, and three scaling methods were assessed. Data from an historical database were also analysed (2.7-108.9 kg, 4811 males; 2.0-96.4 kg, 2364 females). RESULTS Both linear and allometric functions satisfied the statistical requirements, but not the biological pre-requisite of an origin intercept. Mass-independent basal metabolic data beyond the experimental mass range were not achieved using linear regression, which yielded biologically impossible predictions as body mass approached zero. Conversely, allometric regression provided a biologically valid, powerful and statistically significant model: metabolic rate = 0.739 * body mass0.547 (P < 0.05). Allometric analysis of the historical male data yielded an equivalent, and similarly powerful model: metabolic rate = 0.873 * body mass0.497 (P < 0.05). CONCLUSION It was established that basal and resting metabolic rates scale allometrically with body mass in humans from 10-117 kg, with an exponent of 0.50-0.55. It was also demonstrated that ratiometric scaling yielded invalid metabolic predictions, even within the relatively narrow experimental mass range. Those outcomes have significant physiological implications, with applications to exercising states, modelling, nutrition and metabolism-dependent pharmacological prescriptions.
Collapse
Affiliation(s)
- Heather M Bowes
- Centre for Medical and Exercise Physiology, School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Catriona A Burdon
- Centre for Medical and Exercise Physiology, School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Nigel A S Taylor
- Centre for Medical and Exercise Physiology, School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
17
|
Kozłowski J, Konarzewski M, Czarnoleski M. Coevolution of body size and metabolic rate in vertebrates: a life-history perspective. Biol Rev Camb Philos Soc 2020; 95:1393-1417. [PMID: 32524739 PMCID: PMC7540708 DOI: 10.1111/brv.12615] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022]
Abstract
Despite many decades of research, the allometric scaling of metabolic rates (MRs) remains poorly understood. Here, we argue that scaling exponents of these allometries do not themselves mirror one universal law of nature but instead statistically approximate the non-linearity of the relationship between MR and body mass. This 'statistical' view must be replaced with the life-history perspective that 'allows' organisms to evolve myriad different life strategies with distinct physiological features. We posit that the hypoallometric allometry of MRs (mass scaling with an exponent smaller than 1) is an indirect outcome of the selective pressure of ecological mortality on allocation 'decisions' that divide resources among growth, reproduction, and the basic metabolic costs of repair and maintenance reflected in the standard or basal metabolic rate (SMR or BMR), which are customarily subjected to allometric analyses. Those 'decisions' form a wealth of life-history variation that can be defined based on the axis dictated by ecological mortality and the axis governed by the efficiency of energy use. We link this variation as well as hypoallometric scaling to the mechanistic determinants of MR, such as metabolically inert component proportions, internal organ relative size and activity, cell size and cell membrane composition, and muscle contributions to dramatic metabolic shifts between the resting and active states. The multitude of mechanisms determining MR leads us to conclude that the quest for a single-cause explanation of the mass scaling of MRs is futile. We argue that an explanation based on the theory of life-history evolution is the best way forward.
Collapse
Affiliation(s)
- Jan Kozłowski
- Institute of Environmental SciencesJagiellonian UniversityGronostajowa7, 30‐387KrakówPoland
| | - Marek Konarzewski
- Institute of BiologyUniversity of BiałystokCiołkowskiego 1J, 15‐245, BiałystokPoland
| | - Marcin Czarnoleski
- Institute of Environmental SciencesJagiellonian UniversityGronostajowa7, 30‐387KrakówPoland
| |
Collapse
|
18
|
Alton LA, Kutz TC, Bywater CL, Beaman JE, Arnold PA, Mirth CK, Sgrò CM, White CR. Developmental nutrition modulates metabolic responses to projected climate change. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13663] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lesley A. Alton
- School of Biological Sciences Monash University Melbourne Vic Australia
| | - Teresa C. Kutz
- School of Biological Sciences Monash University Melbourne Vic Australia
| | | | - Julian E. Beaman
- School of Biological Sciences Monash University Melbourne Vic Australia
| | - Pieter A. Arnold
- School of Biological Sciences Monash University Melbourne Vic Australia
| | - Christen K. Mirth
- School of Biological Sciences Monash University Melbourne Vic Australia
| | - Carla M. Sgrò
- School of Biological Sciences Monash University Melbourne Vic Australia
| | - Craig R. White
- School of Biological Sciences Monash University Melbourne Vic Australia
- Centre for Geometric Biology Monash University Melbourne Vic Australia
| |
Collapse
|
19
|
Xu M. Parameterized maximum entropy models predict variability of metabolic scaling across tree communities and populations. Ecology 2020; 101:e03011. [PMID: 32065669 DOI: 10.1002/ecy.3011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/07/2019] [Accepted: 01/03/2020] [Indexed: 11/06/2022]
Abstract
The maximum entropy theory of ecology (METE) applies the concept of "entropy" from information theory to predict macroecological patterns. The energetic predictions of the METE rely on predetermined metabolic scaling from external theories, and this reliance diminishes the testability of the theory. In this work, I build parameterized METE models by treating the metabolic scaling exponent as a free parameter, and I use the maximum-likelihood method to obtain empirically plausible estimates of the exponent. I test the models using the individual tree data from an oak-dominated deciduous forest in the northeastern United States and from a tropical forest in central Panama. My analysis shows that the metabolic scaling exponents predicted from the parameterized METE models deviate from that of the metabolic theory of ecology and exhibit large variation, at both community and population levels. Assemblage and population abundance may act as ecological constraints that regulate the individual-level metabolic scaling behavior. This study provides a novel example of the use of the parameterized METE models to reveal the biological processes of individual organisms. The implication and possible extensions of the parameterized METE models are discussed.
Collapse
Affiliation(s)
- Meng Xu
- Department of Mathematics, Pace University, 41 Park Row, New York, New York, 10038, USA
| |
Collapse
|
20
|
Jimenez AG, O'Connor ES, Tobin KJ, Anderson KN, Winward JD, Fleming A, Winner C, Chinchilli E, Maya A, Carlson K, Downs CJ. Does Cellular Metabolism from Primary Fibroblasts and Oxidative Stress in Blood Differ between Mammals and Birds? The (Lack-thereof) Scaling of Oxidative Stress. Integr Comp Biol 2020; 59:953-969. [PMID: 30924869 DOI: 10.1093/icb/icz017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As part of mitonuclear communication, retrograde and anterograde signaling helps maintain homeostasis under basal conditions. Basal conditions, however, vary across phylogeny. At the cell-level, some mitonuclear retrograde responses can be quantified by measuring the constitutive components of oxidative stress, the balance between reactive oxygen species (ROS) and antioxidants. ROS are metabolic by-products produced by the mitochondria that can damage macromolecules by structurally altering proteins and inducing mutations in DNA, among other processes. To combat accumulating damage, organisms have evolved endogenous antioxidants and can consume exogenous antioxidants to sequester ROS before they cause cellular damage. ROS are also considered to be regulated through a retrograde signaling cascade from the mitochondria to the nucleus. These cellular pathways may have implications at the whole-animal level as well. For example, birds have higher basal metabolic rates, higher blood glucose concentration, and longer lifespans than similar sized mammals, however, the literature is divergent on whether oxidative stress is higher in birds compared with mammals. Herein, we collected literature values for whole-animal metabolism of birds and mammals. Then, we collected cellular metabolic rate data from primary fibroblast cells isolated from birds and mammals and we collected blood from a phylogenetically diverse group of birds and mammals housed at zoos and measured several parameters of oxidative stress. Additionally, we reviewed the literature on basal-level oxidative stress parameters between mammals and birds. We found that mass-specific metabolic rates were higher in birds compared with mammals. Our laboratory results suggest that cellular basal metabolism, total antioxidant capacity, circulating lipid damage, and catalase activity were significantly lower in birds compared with mammals. We found no body-size correlation on cellular metabolism or oxidative stress. We also found that most oxidative stress parameters significantly correlate with increasing age in mammals, but not in birds; and that correlations with reported maximum lifespans show different results compared with correlations with known aged birds. Our literature review revealed that basal levels of oxidative stress measurements for birds were rare, which made it difficult to draw conclusions.
Collapse
Affiliation(s)
- A G Jimenez
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - E S O'Connor
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - K J Tobin
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - K N Anderson
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - J D Winward
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - A Fleming
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - C Winner
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - E Chinchilli
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - A Maya
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - K Carlson
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - C J Downs
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| |
Collapse
|
21
|
Insect egg size and shape evolve with ecology but not developmental rate. Nature 2019; 571:58-62. [PMID: 31270484 DOI: 10.1038/s41586-019-1302-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/14/2019] [Indexed: 12/25/2022]
Abstract
Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape.
Collapse
|
22
|
Seymour RS, Hu Q, Snelling EP, White CR. Interspecific scaling of blood flow rates and arterial sizes in mammals. ACTA ACUST UNITED AC 2019; 222:jeb.199554. [PMID: 30877224 DOI: 10.1242/jeb.199554] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/07/2019] [Indexed: 01/16/2023]
Abstract
This meta-study investigated the relationships between blood flow rate (Q̇; cm3 s-1), wall shear stress (τw; dyn cm-2) and lumen radius (r i; cm) in 20 named systemic arteries of nine species of mammals, ranging in mass from 23 g mice to 652 kg cows, at rest. In the dataset, derived from 50 studies, lumen radius varied between 3.7 µm in a cremaster artery of a rat and 11.2 mm in the aorta of a human. The 92 logged data points of [Formula: see text] and r i are described by a single second-order polynomial curve with the equation: [Formula: see text] The slope of the curve increased from approximately 2 in the largest arteries to approximately 3 in the smallest ones. Thus, da Vinci's rule ([Formula: see text]) applies to the main arteries and Murray's law ([Formula: see text]) applies to the microcirculation. A subset of the data, comprising only cephalic arteries in which [Formula: see text] is fairly constant, yielded the allometric power equation: [Formula: see text] These empirical equations allow calculation of resting perfusion rates from arterial lumen size alone, without reliance on theoretical models or assumptions on the scaling of wall shear stress in relation to body mass. As expected, [Formula: see text] of individual named arteries is strongly affected by body mass; however, [Formula: see text] of the common carotid artery from six species (mouse to horse) is also sensitive to differences in whole-body basal metabolic rate, independent of the effect of body mass.
Collapse
Affiliation(s)
- Roger S Seymour
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Qiaohui Hu
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Edward P Snelling
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Gauteng 0110, South Africa.,Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng 2193, South Africa
| | - Craig R White
- Centre for Geometric Biology, School of Biological Sciences, Faculty of Science, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
23
|
Li L, Wang G. Enzymatic origin and various curvatures of metabolic scaling in microbes. Sci Rep 2019; 9:4082. [PMID: 30858543 PMCID: PMC6411939 DOI: 10.1038/s41598-019-40712-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/22/2019] [Indexed: 11/11/2022] Open
Abstract
The famous and controversial power law is a basal metabolic scaling model mainly derived from the “surface rule” or a fractal transport network. However, this law neglects biological mechanisms in the important active state. Here, we hypothesized that the relative metabolic rate and growth rate of actively growing microbes are driven by the changeable rate of their rate-limiting enzymes and concluded that natural logarithmic microbial metabolism (lnλ) and growth (or biomass) (lnM) are both dependent on limiting resources, and then developed novel models with interdependence between lnλ and lnM. We tested the models using the data obtained from the literature. We explain how and why the scaling is usually curved with the difference between microbial metabolic and growth (or biomass’s) half-saturation constants (KM, Kλ) in the active state and agree that the linear relationship of the power law is a particular case under the given condition: KM = Kλ, which means that the enzyme dynamics may drive active and basal metabolic scaling relationships. Our interdependent model is more general than the power law, which is important for integrating the ecology and biochemical processes.
Collapse
Affiliation(s)
- Liyan Li
- College of Life Sciences, Zhejiang University, Hangzhou, China.
| | - Genxuan Wang
- College of Life Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
24
|
Terrestrial locomotion energy costs vary considerably between species: no evidence that this is explained by rate of leg force production or ecology. Sci Rep 2019; 9:656. [PMID: 30679474 PMCID: PMC6345976 DOI: 10.1038/s41598-018-36565-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/14/2018] [Indexed: 12/28/2022] Open
Abstract
Inter-specifically, relative energy costs of terrestrial transport vary several-fold. Many pair-wise differences of locomotor costs between similarly-sized species are considerable, and are yet to be explained by morphology or gait kinematics. Foot contact time, a proxy for rate of force production, is a strong predictor of locomotor energy costs across species of different size and might predict variability between similarly sized species. We tested for a relationship between foot contact time and metabolic rate during locomotion from published data. We investigated the phylogenetic correlation between energy expenditure rate and foot contact time, conditioned on fixed effects of mass and speed. Foot contact time does not explain variance in rate of energy expenditure during locomotion, once speed and body size are accounted for. Thus, perhaps surprisingly, inter-specific differences in the mass-independent net cost of terrestrial transport (NCOT) are not explained by rates of force production. We also tested for relationships between locomotor energy costs and eco-physiological variables. NCOT did not relate to any of the tested eco-physiological variables; we thus conclude either that interspecific differences in transport cost have no influence on macroecological and macrophysiological patterns, or that NCOT is a poor indicator of animal energy expenditure beyond the treadmill.
Collapse
|
25
|
McNab BK. What determines the basal rate of metabolism? J Exp Biol 2019; 222:jeb.205591. [DOI: 10.1242/jeb.205591] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022]
Abstract
The basal rate of metabolism (BMR) is the most reported estimate of energy expenditure in endotherms. Its principal determinant is body mass, but it also correlates with a variety of behavioral not determine basal rate, they are byproducts of the mechanisms that are its determinate. In mammals, mass-independent basal rate increases with muscle mass when it is>40% of body mass. Then basal rates in mammals are≥100% of the values expected from mass. Mammals with muscle masses<30% of body mass have lower basal rates, a diminished capacity to regulate body temperature, and often a reduced level of activity. At muscle masses<42% of body mass, birds have body temperatures and basal rates higher than mammals with the same muscle mass. Their high basal rates derive from a high blood flow and mitochondrial density in their pectoral muscles. These factors also occur in the flight muscles of bats. Oxygen transport to the pectoral muscles of birds is facilitated by an increase in heart mass and hematocrit. This arrangement avoids transporting a large muscle mass to fuel flight, thereby reducing the cost of flight. Pectoral muscle masses<9% of body mass correlate with a flightless condition in kiwis, rails, and ducks. Some fruit pigeons have basal rates as low as kiwis, while remaining volant. The mass-independent basal rates of endotherms principally reflect changes of muscle activity and mass. An increase in muscle mass may have contributed to the evolution of endothermy.
Collapse
Affiliation(s)
- Brian K. McNab
- Department of Biology, University of Florida, Gainesville, Florida, 32611 USA
| |
Collapse
|
26
|
Johnson MA, Francis CD, Miller ET, Downs CJ, Vitousek MN. Detecting Bias in Large-Scale Comparative Analyses: Methods for Expanding the Scope of Hypothesis-Testing with HormoneBase. Integr Comp Biol 2018; 58:720-728. [DOI: 10.1093/icb/icy045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michele A Johnson
- Department of Biology, Trinity University, San Antonio, TX 78212, USA
| | - Clinton D Francis
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | | | - Cynthia J Downs
- Department of Biology, Hamilton College, Clinton, NY 13323, USA
| | - Maren N Vitousek
- Cornell Lab of Ornithology, Ithaca, NY 14850, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
27
|
Werner J, Griebeler EM. Was endothermy in amniotes induced by an early stop in growth during ontogeny? Naturwissenschaften 2017; 104:90. [PMID: 29022052 DOI: 10.1007/s00114-017-1513-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 01/19/2023]
Abstract
Endothermy and its evolution are still an unresolved issue. Here, we present a model which transforms an ectothermic amniote (ancestor) into a derived amniote (descendant) showing many characteristics seen in extant endothermic birds and mammals. Consistent with the fossil record within the ancestral lineages of birds and mammals, the model assumes that mutations in genes which get active during ontogeny and affect body growth resulted in a reduced asymptotic body size and an early growth stop of the descendant. We show that such a postulated early growth stop in the descendant simultaneously increases the growth rate and metabolic rate, and also changes six life history traits (offspring mass, annual clutch/litter mass, number of offspring per year, age and mass at which sexual maturity is reached, age at which the individual is fully grown) of the descendant compared to a similar-sized ancestor. All these changes coincide with known differences between recent ectothermic and endothermic amniotes. We also elaborate many other differences and similarities in biological characteristics supporting the early growth stop. An early stop in growth during ontogeny thus could have played a key role in the evolution of endothermy within the reptilia and therapsids. It generated variability in characteristics of ancestral ectotherms, which was subject to natural selection in the past and resulted in many adaptations linked to endothermy in today's birds and mammals.
Collapse
Affiliation(s)
- Jan Werner
- Institute of Organismic and Molecular Evolution, Evolutionary Ecology, Johannes Gutenberg-Universität Mainz, P.O. Box 3980, 55099, Mainz, Germany.
| | - Eva Maria Griebeler
- Institute of Organismic and Molecular Evolution, Evolutionary Ecology, Johannes Gutenberg-Universität Mainz, P.O. Box 3980, 55099, Mainz, Germany
| |
Collapse
|
28
|
Witting L. The natural selection of metabolism and mass selects allometric transitions from prokaryotes to mammals. Theor Popul Biol 2017; 117:23-42. [DOI: 10.1016/j.tpb.2017.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 07/31/2017] [Accepted: 08/21/2017] [Indexed: 11/30/2022]
|
29
|
Genoud M, Isler K, Martin RD. Comparative analyses of basal rate of metabolism in mammals: data selection does matter. Biol Rev Camb Philos Soc 2017; 93:404-438. [PMID: 28752629 DOI: 10.1111/brv.12350] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 05/29/2017] [Accepted: 06/05/2017] [Indexed: 12/21/2022]
Abstract
Basal rate of metabolism (BMR) is a physiological parameter that should be measured under strictly defined experimental conditions. In comparative analyses among mammals BMR is widely used as an index of the intensity of the metabolic machinery or as a proxy for energy expenditure. Many databases with BMR values for mammals are available, but the criteria used to select metabolic data as BMR estimates have often varied and the potential effect of this variability has rarely been questioned. We provide a new, expanded BMR database reflecting compliance with standard criteria (resting, postabsorptive state; thermal neutrality; adult, non-reproductive status for females) and examine potential effects of differential selectivity on the results of comparative analyses. The database includes 1739 different entries for 817 species of mammals, compiled from the original sources. It provides information permitting assessment of the validity of each estimate and presents the value closest to a proper BMR for each entry. Using different selection criteria, several alternative data sets were extracted and used in comparative analyses of (i) the scaling of BMR to body mass and (ii) the relationship between brain mass and BMR. It was expected that results would be especially dependent on selection criteria with small sample sizes and with relatively weak relationships. Phylogenetically informed regression (phylogenetic generalized least squares, PGLS) was applied to the alternative data sets for several different clades (Mammalia, Eutheria, Metatheria, or individual orders). For Mammalia, a 'subsampling procedure' was also applied, in which random subsamples of different sample sizes were taken from each original data set and successively analysed. In each case, two data sets with identical sample size and species, but comprising BMR data with different degrees of reliability, were compared. Selection criteria had minor effects on scaling equations computed for large clades (Mammalia, Eutheria, Metatheria), although less-reliable estimates of BMR were generally about 12-20% larger than more-reliable ones. Larger effects were found with more-limited clades, such as sciuromorph rodents. For the relationship between BMR and brain mass the results of comparative analyses were found to depend strongly on the data set used, especially with more-limited, order-level clades. In fact, with small sample sizes (e.g. <100) results often appeared erratic. Subsampling revealed that sample size has a non-linear effect on the probability of a zero slope for a given relationship. Depending on the species included, results could differ dramatically, especially with small sample sizes. Overall, our findings indicate a need for due diligence when selecting BMR estimates and caution regarding results (even if seemingly significant) with small sample sizes.
Collapse
Affiliation(s)
- Michel Genoud
- Department of Ecology and Evolution, University of Lausanne, CH-1015, Lausanne, Switzerland.,Division of Conservation Biology, Institute of Ecology and Evolution, Department of Biology, University of Bern, CH-3012, Bern, Switzerland
| | - Karin Isler
- Department of Anthropology, University of Zürich-Irchel, CH-8057, Zürich, Switzerland
| | - Robert D Martin
- Integrative Research Center, The Field Museum, Chicago, IL, 60605-2496, U.S.A.,Institute of Evolutionary Medicine, University of Zürich-Irchel, CH-8057, Zürich, Switzerland
| |
Collapse
|
30
|
Pedersen RØ, Faurby S, Svenning JC. Shallow size-density relations within mammal clades suggest greater intra-guild ecological impact of large-bodied species. J Anim Ecol 2017; 86:1205-1213. [DOI: 10.1111/1365-2656.12701] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/07/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Rasmus Østergaard Pedersen
- Section for Ecoinformatics & Biodiversity; Department of Bioscience; Aarhus University; Aarhus C Denmark
| | - Søren Faurby
- Section for Ecoinformatics & Biodiversity; Department of Bioscience; Aarhus University; Aarhus C Denmark
- Department of Biogeography and Global Change; Museo Nacional de Ciencias Naturales, CSIC; Madrid Spain
- Department of Biological and Environmental Sciences; University of Gothenburg; Göteborg Sweden
- Gothenburg Global Biodiversity Centre; Göteborg Sweden
| | - Jens-Christian Svenning
- Section for Ecoinformatics & Biodiversity; Department of Bioscience; Aarhus University; Aarhus C Denmark
| |
Collapse
|
31
|
Uyeda JC, Pennell MW, Miller ET, Maia R, McClain CR. The Evolution of Energetic Scaling across the Vertebrate Tree of Life. Am Nat 2017; 190:185-199. [PMID: 28731792 DOI: 10.1086/692326] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Metabolism is the link between ecology and physiology-it dictates the flow of energy through individuals and across trophic levels. Much of the predictive power of metabolic theories of ecology derives from the scaling relationship between organismal size and metabolic rate. There is growing evidence that this scaling relationship is not universal, but we have little knowledge of how it has evolved over macroevolutionary time. Here we develop a novel phylogenetic comparative method to investigate how often and in which clades the macroevolutionary dynamics of the metabolic scaling have changed. We find strong evidence that the metabolic scaling relationship has shifted multiple times across the vertebrate phylogeny. However, shifts are rare and otherwise strongly constrained. Importantly, both the estimated slope and intercept values vary widely across regimes, with slopes that spanned across theoretically predicted values such as 2/3 or 3/4. We further tested whether traits such as ecto-/endothermy, genome size, and quadratic curvature with body mass (i.e., energetic constraints at extreme body sizes) could explain the observed pattern of shifts. Though these factors help explain some of the variation in scaling parameters, much of the remaining variation remains elusive. Our results lay the groundwork for further exploration of the evolutionary and ecological drivers of major transitions in metabolic strategy and for harnessing this information to improve macroecological predictions.
Collapse
|
32
|
Abstract
In 1803, the French anatomist Étienne Geoffroy Saint-Hilaire decided that the newly described echidna and platypus should be placed in a separate order, the monotremes, intermediate between reptiles and mammals. The first physiological observations showed monotremes had low body temperatures and metabolic rates, and the consensus was that they were at a stage of physiological development intermediate between "higher mammals" and "lower vertebrates." Subsequent studies demonstrated that platypuses and echidnas are capable of close thermoregulation in the cold although less so under hot conditions. Because the short-beaked echidna Tachyglossus aculeatus, may show very large daily variations in body temperature, as well as seasonal hibernation, it has been suggested that it may provide a useful model of protoendotherm physiology. Such analysis is complicated by the very significant differences in thermal relations between echidnas from different climates. In all areas female echidnas regulate Tb within 1°C during egg incubation. The lactation period is considered to be the most energetically expensive time for most female mammals but lactating echidnas showed no measurable difference in field metabolic rate from non-lactating females, while the lactation period is more than 200 days for Kangaroo Island echidnas but only 150 days in Tasmania. In areas with mild winters echidnas show reduced activity and shallow torpor in autumn and early winter, but in areas with cold winters echidnas enter true hibernation with Tb falling as low as 4.5°C. Monotremes do not possess brown adipose tissue and maximum rates of rewarming from hibernation in echidnas were only half those of marmots of the same mass. Although echidnas show very large seasonal variations in fat stores associated with hibernation there is no relationship between plasma leptin and adiposity. Leptin levels are lowest during post-reproductive fattening, supporting suggestions that in evolutionary terms the anorectic effects of leptin preceded the adiposity signal. BMR of platypuses is twice that of echidnas although maximum metabolism is similar. High levels of thyroid hormones in platypuses may be driving metabolism limited by low body temperature. Monotremes show a mosaic of plesiomorphic and derived features but can still inform our understanding of the evolution of endothermy.
Collapse
Affiliation(s)
- Stewart C. Nicol
- Biological Sciences, University of TasmaniaHobart, TAS, Australia
| |
Collapse
|
33
|
Fei Y, Hou R, Spotila JR, Paladino FV, Qi D, Zhang Z. Metabolic rate of the red panda, Ailurus fulgens, a dietary bamboo specialist. PLoS One 2017; 12:e0173274. [PMID: 28306740 PMCID: PMC5356995 DOI: 10.1371/journal.pone.0173274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/17/2017] [Indexed: 11/22/2022] Open
Abstract
The red panda (Ailurus fulgens) has a similar diet, primarily bamboo, and shares the same habitat as the giant panda, Ailuropoda melanoleuca. There are considerable efforts underway to understand the ecology of the red panda and to increase its populations in natural reserves. Yet it is difficult to design an effective strategy for red panda reintroduction if we do not understand its basic biology. Here we report the resting metabolic rate of the red panda and find that it is higher than previously measured on animals from a zoo. The resting metabolic rate was 0.290 ml/g/h (range 0.204–0.342) in summer and 0.361 ml/g/h in winter (range 0.331–0.406), with a statistically significant difference due to season and test temperature. Temperatures in summer were probably within the thermal neutral zone for metabolism but winter temperatures were below the thermal neutral zone. There was no difference in metabolic rate between male and female red pandas and no difference due to mass. Our values for metabolic rate were much higher than those measured by McNab for 2 red pandas from a zoo. The larger sample size (17), more natural conditions at the Panda Base and improved accuracy of the metabolic instruments provided more accurate metabolism measurements. Contrary to our expectations based on their low quality bamboo diet, the metabolic rates of red pandas were similar to mammals of the same size. Based on their metabolic rates red pandas would not be limited by their food supply in natural reserves.
Collapse
Affiliation(s)
- Yuxiang Fei
- Department of Biodiversity, Earth and Environmental Science, Drexel University, Philadelphia, PA United States of America
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Northern Suburb, FuTou Shan, Chengdu, Sichuan Province, People’s Republic of China
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Northern Suburb, FuTou Shan, Chengdu, Sichuan Province, People’s Republic of China
| | - James R. Spotila
- Department of Biodiversity, Earth and Environmental Science, Drexel University, Philadelphia, PA United States of America
- * E-mail: (JRS); (ZZ)
| | - Frank V. Paladino
- Department of Biology, Indiana Purdue University at Fort Wayne, 2101 E. Coliseum Blvd, Fort Wayne, IN United States of America
| | - Dunwu Qi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Northern Suburb, FuTou Shan, Chengdu, Sichuan Province, People’s Republic of China
| | - Zhihe Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Northern Suburb, FuTou Shan, Chengdu, Sichuan Province, People’s Republic of China
- * E-mail: (JRS); (ZZ)
| |
Collapse
|
34
|
Jonsson T. Metabolic theory predicts animal self‐thinning. J Anim Ecol 2017; 86:645-653. [DOI: 10.1111/1365-2656.12638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/06/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Tomas Jonsson
- Department of Ecology Swedish University of Agricultural Sciences Box 7044 SE‐750 07 Uppsala Sweden
- Ecological Modeling Group School of Bioscience University of Skövde Box 408 SE‐541 28 Skövde Sweden
| |
Collapse
|
35
|
Griebeler EM, Werner J. Mass, phylogeny, and temperature are sufficient to explain differences in metabolic scaling across mammalian orders? Ecol Evol 2016; 6:8352-8365. [PMID: 28031788 PMCID: PMC5167101 DOI: 10.1002/ece3.2555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 11/10/2022] Open
Abstract
Whether basal metabolic rate-body mass scaling relationships have a single exponent is highly discussed, and also the correct statistical model to establish relationships. Here, we aimed (1) to identify statistically best scaling models for 17 mammalian orders, Marsupialia, Eutheria and all mammals, and (2) thereby to prove whether correcting for differences in species' body temperature and their shared evolutionary history improves models and their biological interpretability. We used the large dataset from Sieg et al. (The American Naturalist174, 2009, 720) providing species' body mass (BM), basal metabolic rate (BMR) and body temperature (T). We applied different statistical approaches to identify the best scaling model for each taxon: ordinary least squares regression analysis (OLS) and phylogenetically informed analysis (PGLS), both without and with controlling for T. Under each approach, we tested linear equations (log-log-transformed data) estimating scaling exponents and normalization constants, and such with a variable normalization constant and a fixed exponent of either ⅔ or ¾, and also a curvature. Only under temperature correction, an additional variable coefficient modeled the influence of T on BMR. Except for Pholidata and Carnivora, in all taxa studied linear models were clearly supported over a curvature by AICc. They indicated no single exponent at the level of orders or at higher taxonomic levels. The majority of all best models corrected for phylogeny, whereas only half of them included T. When correcting for T, the mathematically expected correlation between the exponent (b) and the normalization constant (a) in the standard scaling model y = a xb was removed, but the normalization constant and temperature coefficient still correlated strongly. In six taxa, T and BM correlated positively or negatively. All this hampers a disentangling of the effect of BM, T and other factors on BMR, and an interpretation of linear BMR-BM scaling relationships in the mammalian taxa studied.
Collapse
Affiliation(s)
- Eva Maria Griebeler
- Department of Evolutionary Ecology Institute of Zoology Johannes Gutenberg University Mainz Germany
| | - Jan Werner
- Department of Evolutionary Ecology Institute of Zoology Johannes Gutenberg University Mainz Germany
| |
Collapse
|
36
|
Fei Y, Hou R, Spotila JR, Paladino FV, Qi D, Zhang Z. Metabolic rates of giant pandas inform conservation strategies. Sci Rep 2016; 6:27248. [PMID: 27264109 PMCID: PMC4893702 DOI: 10.1038/srep27248] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 05/12/2016] [Indexed: 11/24/2022] Open
Abstract
The giant panda is an icon of conservation and survived a large-scale bamboo die off in the 1980s in China. Captive breeding programs have produced a large population in zoos and efforts continue to reintroduce those animals into the wild. However, we lack sufficient knowledge of their physiological ecology to determine requirements for survival now and in the face of climate change. We measured resting and active metabolic rates of giant pandas in order to determine if current bamboo resources were sufficient for adding additional animals to populations in natural reserves. Resting metabolic rates were somewhat below average for a panda sized mammal and active metabolic rates were in the normal range. Pandas do not have exceptionally low metabolic rates. Nevertheless, there is enough bamboo in natural reserves to support both natural populations and large numbers of reintroduced pandas. Bamboo will not be the limiting factor in successful reintroduction.
Collapse
Affiliation(s)
- Yuxiang Fei
- Department of Biodiversity, Earth and Environmental Science, Drexel University, 3145 Chestnut St, Philadelphia, PA 19104
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Rd, Northern Suburb, FuTou Shan, Chengdu, Sichuan Province 610081, People's Republic of China
| | - James R Spotila
- Department of Biodiversity, Earth and Environmental Science, Drexel University, 3145 Chestnut St, Philadelphia, PA 19104
| | - Frank V Paladino
- Department of Biology, Indiana Purdue University at Fort Wayne, 2101 E. Coliseum Blvd, Fort Wayne, IN 46805
| | - Dunwu Qi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Rd, Northern Suburb, FuTou Shan, Chengdu, Sichuan Province 610081, People's Republic of China
| | - Zhihe Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Rd, Northern Suburb, FuTou Shan, Chengdu, Sichuan Province 610081, People's Republic of China
| |
Collapse
|
37
|
Packard GC. Quantifying the curvilinear metabolic scaling in mammals. ACTA ACUST UNITED AC 2015; 323:540-6. [DOI: 10.1002/jez.1946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 05/05/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Gary C. Packard
- Department of Biology; Colorado State University; Fort Collins Colorado
| |
Collapse
|
38
|
Rezende EL, Bacigalupe LD. Thermoregulation in endotherms: physiological principles and ecological consequences. J Comp Physiol B 2015; 185:709-27. [PMID: 26025431 DOI: 10.1007/s00360-015-0909-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/18/2015] [Accepted: 04/27/2015] [Indexed: 01/01/2023]
Abstract
In a seminal study published nearly 70 years ago, Scholander et al. (Biol Bull 99:259-271, 1950) employed Newton's law of cooling to describe how metabolic rates (MR) in birds and mammals vary predictably with ambient temperature (T a). Here, we explore the theoretical consequences of Newton's law of cooling and show that a thermoregulatory polygon provides an intuitively simple and yet useful description of thermoregulatory responses in endothermic organisms. This polygon encapsulates the region in which heat production and dissipation are in equilibrium and, therefore, the range of conditions in which thermoregulation is possible. Whereas the typical U-shaped curve describes the relationship between T a and MR at rest, thermoregulatory polygons expand this framework to incorporate the impact of activity, other behaviors and environmental conditions on thermoregulation and energy balance. We discuss how this framework can be employed to study the limits to effective thermoregulation and their ecological repercussions, allometric effects and residual variation in MR and thermal insulation, and how thermoregulatory requirements might constrain locomotor or reproductive performance (as proposed, for instance, by the heat dissipation limit theory). In many systems the limited empirical knowledge on how organismal traits may respond to environmental changes prevents physiological ecology from becoming a fully developed predictive science. In endotherms, however, we contend that the lack of theoretical developments that translate current physiological understanding into formal mechanistic models remains the main impediment to study the ecological and evolutionary repercussions of thermoregulation. In spite of the inherent limitations of Newton's law of cooling as an oversimplified description of the mechanics of heat transfer, we argue that understanding how systems that obey this approximation work can be enlightening on conceptual grounds and relevant as an analytical and predictive tool to study ecological phenomena. As such, the proposed approach may constitute a powerful tool to study the impact of thermoregulatory constraints on variables related to fitness, such as survival and reproductive output, and help elucidating how species will be affected by ongoing climate change.
Collapse
Affiliation(s)
- Enrico L Rezende
- Department of Life Sciences, University of Roehampton, Holybourne Avenue, London, SW15 4JD, UK.
| | - Leonardo D Bacigalupe
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
39
|
Temporal patterns of energy equivalence in temperate soil invertebrates. Oecologia 2015; 179:271-80. [PMID: 25903389 PMCID: PMC4553154 DOI: 10.1007/s00442-015-3317-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/07/2015] [Indexed: 12/02/2022]
Abstract
The question whether total population energy use is invariant to species body size (the energy equivalence hypothesis) is central to metabolic ecology and continues to be controversial. While recent comparative field work and meta-analyses pointed to systematic deviations of the underlying allometric scaling laws from predictions of metabolic theory none of these studies included the variability of metabolic scaling in ecological time. Here we used extensive data on the invertebrate soil fauna of Kampinos National Park (Poland) obtained from six consecutive quantitative sampling seasons to show that phylogenetically corrected species density—body weight and population energy use—body weight relationships across all soil fauna species and within trophic groups and body weight classes were highly variable in time. On average, population energy use tended to increase with species body weight in decomposers and phytophages, but not in predators. Despite these trends, our data do not exclude the possibility that energy equivalence marks the central tendency of energy use in the edaphon. Our results highlight the need for long-term studies on energy use to unequivocally assess predictions of metabolic theory.
Collapse
|
40
|
Hagen KB, Tschudin A, Liesegang A, Hatt JM, Clauss M. Organic matter and macromineral digestibility in domestic rabbits (Oryctolagus cuniculus
) as compared to other hindgut fermenters. J Anim Physiol Anim Nutr (Berl) 2015; 99:1197-209. [DOI: 10.1111/jpn.12323] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/02/2015] [Indexed: 11/26/2022]
Affiliation(s)
- K. B. Hagen
- Clinic for Zoo Animals, Exotic Pets and Wildlife; Vetsuisse Faculty; University of Zurich; Zurich Switzerland
| | - A. Tschudin
- Clinic for Zoo Animals, Exotic Pets and Wildlife; Vetsuisse Faculty; University of Zurich; Zurich Switzerland
| | - A. Liesegang
- Institute of Animal Nutrition; Vetsuisse Faculty; University of Zurich; Zurich Switzerland
| | - J.-M. Hatt
- Clinic for Zoo Animals, Exotic Pets and Wildlife; Vetsuisse Faculty; University of Zurich; Zurich Switzerland
| | - M. Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife; Vetsuisse Faculty; University of Zurich; Zurich Switzerland
| |
Collapse
|
41
|
White CR, Kearney MR. Metabolic scaling in animals: methods, empirical results, and theoretical explanations. Compr Physiol 2014; 4:231-56. [PMID: 24692144 DOI: 10.1002/cphy.c110049] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Life on earth spans a size range of around 21 orders of magnitude across species and can span a range of more than 6 orders of magnitude within species of animal. The effect of size on physiology is, therefore, enormous and is typically expressed by how physiological phenomena scale with mass(b). When b ≠ 1 a trait does not vary in direct proportion to mass and is said to scale allometrically. The study of allometric scaling goes back to at least the time of Galileo Galilei, and published scaling relationships are now available for hundreds of traits. Here, the methods of scaling analysis are reviewed, using examples for a range of traits with an emphasis on those related to metabolism in animals. Where necessary, new relationships have been generated from published data using modern phylogenetically informed techniques. During recent decades one of the most controversial scaling relationships has been that between metabolic rate and body mass and a number of explanations have been proposed for the scaling of this trait. Examples of these mechanistic explanations for metabolic scaling are reviewed, and suggestions made for comparing between them. Finally, the conceptual links between metabolic scaling and ecological patterns are examined, emphasizing the distinction between (1) the hypothesis that size- and temperature-dependent variation among species and individuals in metabolic rate influences ecological processes at levels of organization from individuals to the biosphere and (2) mechanistic explanations for metabolic rate that may explain the size- and temperature-dependence of this trait.
Collapse
Affiliation(s)
- Craig R White
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | | |
Collapse
|
42
|
Abstract
Snout shape is a prominent aspect of herbivore feeding ecology, interacting with both forage selectivity and intake rate. Previous investigations have suggested ruminant feeding styles can be discriminated via snout shape, with grazing and browsing species characterised by ‘blunt’ and ‘pointed’ snouts respectively, often with specification of an ‘intermediate’ sub-grouping to represent ambiguous feeding styles and/or morphologies. Snout shape morphology is analysed here using a geometric morphometric approach to compare the two-dimensional profiles of the premaxilla in ventral aspect for a large sample of modern ruminant species, for which feeding modes are known from secondary criteria. Results suggest that, when browsing and grazing ruminants are classified ecologically based on a range of feeding style indicators, they cannot be discriminated unambiguously on the basis of snout profile shape alone. Profile shapes in our sample form a continuum with substantial overlap between groupings and a diverse range of morphologies. Nevertheless, we obtained an 83.8 percent ratio of correct post hoc feeding style categorisations based on the proximity of projected profile shapes to group centroids in the discriminant space. Accordingly, this procedure for identifying species whose feeding strategy is ‘unknown’ can be used with a reasonable degree of confidence, especially if backed-up by additional information. Based on these results we also refine the definitions of snout shape varieties, taking advantage of the descriptive power that geometric morphometrics offers to characterize the morphological disparities observed. The shape variance exhibited by both browsing and grazing ruminants corresponds strongly to body mass, providing further evidence for an interaction between snout shape, feeding style, and body size evolution. Finally, by exploring the role of phylogenetic similarity in snout shape, we find a slight increase in successful categorisation when repeating the analysis with phylogenetic control on the geometric profiles.
Collapse
Affiliation(s)
- Jonathan P. Tennant
- Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
- * E-mail:
| | - Norman MacLeod
- Earth Science Department, The Natural History Museum, London, United Kingdom
| |
Collapse
|
43
|
|
44
|
|
45
|
Gavrilov VM. Ecological and scaling analysis of the energy expenditure of rest, activity, flight, and evaporative water loss in Passeriformes and non-Passeriformes in relation to seasonal migrations and to the occupation of boreal stations in high and moderate latitudes. QUARTERLY REVIEW OF BIOLOGY 2014; 89:107-50. [PMID: 24984324 DOI: 10.1086/676046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A unified system of bioenergetic parameters that describe thermal regulation and energy metabolism in many passerine and non-passerine species has been developed. These parameters have been analyzed as functions of ambient temperature, and bioenergetic models for various species have been developed. The level of maximum food energy or maximal existence metabolism (MPE) is 1.3 times higher in passerines than in non-passerines, which is consistent with the ratio of their basal metabolic rates (BMR). The optimal ambient temperature for maximizing productive processes (e.g., reproduction, molting) is lower for passerines than for non passerines, which allows passerines to have higher production rates at moderate ambient temperatures. This difference in the optimal ambient temperature may explain the variation in bioenergetic parameters along latitudinal gradients, such as the well-known ecological rule of clutch size (or mass) increase in the more northerly passerine birds. The increased potential for productive energy output in the north may also allow birds to molt faster there. This phenomenon allows passerine birds to occupy a habitat that fluctuates widely in ambient temperature compared with non-passerine birds of similar size. Passerines have a more effective system for maintaining heat balance at both high and low temperatures. The high metabolism and small body sizes of passerines are consistent with omnivore development and with ecological plasticity. Among large passerines, the unfavorable ratio of MPE to BMR should decrease the energy that is available for productive processes. This consequence limits both the reproductive output and the development of long migration (particularly in Corvus corax). The hypothesis regarding BMR increase in passerines was suggested based on an aerodynamic analysis of the flight speed and the wing characteristics. This allometric analysis shows that the flight velocity is approximately 20% lower in Passeriformes than in non-Passeriformes, which is consistent with the inverted ratio of their BMR level. The regressions for the aerodynamic characteristics of wings show that passerines do not change the morphological characteristics of their wings to decrease velocity. Passerine birds prefer forest habitats. The size range of 5-150 g for birds in forest habitats is almost exclusively occupied by passerines because of their large energetic capability.
Collapse
|
46
|
Mathematical model for the contribution of individual organs to non-zero y-intercepts in single and multi-compartment linear models of whole-body energy expenditure. PLoS One 2014; 9:e103301. [PMID: 25068692 PMCID: PMC4113365 DOI: 10.1371/journal.pone.0103301] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/26/2014] [Indexed: 12/12/2022] Open
Abstract
Mathematical models for the dependence of energy expenditure (EE) on body mass and composition are essential tools in metabolic phenotyping. EE scales over broad ranges of body mass as a non-linear allometric function. When considered within restricted ranges of body mass, however, allometric EE curves exhibit ‘local linearity.’ Indeed, modern EE analysis makes extensive use of linear models. Such models typically involve one or two body mass compartments (e.g., fat free mass and fat mass). Importantly, linear EE models typically involve a non-zero (usually positive) y-intercept term of uncertain origin, a recurring theme in discussions of EE analysis and a source of confounding in traditional ratio-based EE normalization. Emerging linear model approaches quantify whole-body resting EE (REE) in terms of individual organ masses (e.g., liver, kidneys, heart, brain). Proponents of individual organ REE modeling hypothesize that multi-organ linear models may eliminate non-zero y-intercepts. This could have advantages in adjusting REE for body mass and composition. Studies reveal that individual organ REE is an allometric function of total body mass. I exploit first-order Taylor linearization of individual organ REEs to model the manner in which individual organs contribute to whole-body REE and to the non-zero y-intercept in linear REE models. The model predicts that REE analysis at the individual organ-tissue level will not eliminate intercept terms. I demonstrate that the parameters of a linear EE equation can be transformed into the parameters of the underlying ‘latent’ allometric equation. This permits estimates of the allometric scaling of EE in a diverse variety of physiological states that are not represented in the allometric EE literature but are well represented by published linear EE analyses.
Collapse
|
47
|
Genoud M. Thermal energetics of the New-Guinean moss-forest rat (Rattus niobe) in comparison with other tropical murid rodents. J Therm Biol 2014; 41:95-103. [DOI: 10.1016/j.jtherbio.2014.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/29/2013] [Accepted: 01/14/2014] [Indexed: 11/28/2022]
|
48
|
|
49
|
Werner J, Griebeler EM. Allometries of maximum growth rate versus body mass at maximum growth indicate that non-avian dinosaurs had growth rates typical of fast growing ectothermic sauropsids. PLoS One 2014; 9:e88834. [PMID: 24586409 PMCID: PMC3934860 DOI: 10.1371/journal.pone.0088834] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 01/17/2014] [Indexed: 11/18/2022] Open
Abstract
We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case's study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either of the two thermoregulation strategies for studied dinosaurs.
Collapse
Affiliation(s)
- Jan Werner
- Department of Ecology, Zoological Institute, University of Mainz, Mainz, Germany
- * E-mail:
| | - Eva Maria Griebeler
- Department of Ecology, Zoological Institute, University of Mainz, Mainz, Germany
| |
Collapse
|
50
|
Jiménez-Arenas JM, Pérez-Claros JA, Aledo JC, Palmqvist P. On the relationships of postcanine tooth size with dietary quality and brain volume in primates: implications for hominin evolution. BIOMED RESEARCH INTERNATIONAL 2014; 2014:406507. [PMID: 24592388 PMCID: PMC3925621 DOI: 10.1155/2014/406507] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 12/15/2013] [Accepted: 12/16/2013] [Indexed: 11/17/2022]
Abstract
Brain volume and cheek-tooth size have traditionally been considered as two traits that show opposite evolutionary trends during the evolution of Homo. As a result, differences in encephalization and molarization among hominins tend to be interpreted in paleobiological grounds, because both traits were presumably linked to the dietary quality of extinct species. Here we show that there is an essential difference between the genus Homo and the living primate species, because postcanine tooth size and brain volume are related to negative allometry in primates and show an inverse relationship in Homo. However, when size effects are removed, the negative relationship between encephalization and molarization holds only for platyrrhines and the genus Homo. In addition, there is no general trend for the relationship between postcanine tooth size and dietary quality among the living primates. If size and phylogeny effects are both removed, this relationship vanishes in many taxonomic groups. As a result, the suggestion that the presence of well-developed postcanine teeth in extinct hominins should be indicative of a poor-quality diet cannot be generalized to all extant and extinct primates.
Collapse
Affiliation(s)
- Juan Manuel Jiménez-Arenas
- Departamento de Prehistoria y Arqueología, Facultad de Filosofía y Letras, Campus de Cartuja S/N, 18071 Granada, Spain ; Edificio Centro de Documentación Científica, Instituto Universitario de la Paz y los Conflictos, Universidad de Granada, C/Rector López Argüeta, 10871 Granada, Spain ; Anthropological Institute & Museum, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Juan Antonio Pérez-Claros
- Departamento de Ecología y Geología (Área de Paleontología), Facultad de Ciencias, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - Juan Carlos Aledo
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - Paul Palmqvist
- Departamento de Ecología y Geología (Área de Paleontología), Facultad de Ciencias, Campus Universitario de Teatinos, 29071 Málaga, Spain
| |
Collapse
|