1
|
Su H, Ma D, Fan J, Zhong Z, Tian Y, Zhu H. A TMT-Based Proteomic Analysis of Osmoregulation in the Gills of Oreochromis mossambicus Exposed to Three Osmotic Stresses. Int J Mol Sci 2025; 26:2791. [PMID: 40141432 PMCID: PMC11943422 DOI: 10.3390/ijms26062791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Salinity and alkalinity are critical environmental factors that affect fish physiology and ability to survive. Oreochromis mossambicus is a euryhaline species that can endure a wide range of salinities and has the potential to serve as a valuable model animal for environmental science. In order to detect the histomorphological changes, antioxidant enzymes, and proteomic responses of O. mossambicus to different osmotic stresses, O. mossambicus was subjected to salinity stress (25 g/L, S_S), alkalinity stress (4 g/L, A_S), saline-alkalinity stress (salinity: 25 g/L, alkalinity: 4 g/L, SA_S), and freshwater (the control group; C_S). The histomorphological and antioxidant enzyme results indicated that salinity, alkalinity, and saline-alkalinity stresses have different degrees of damage and effects on the gills and liver of O. mossambicus. Compared with the control, 83, 187, and 177 differentially expressed proteins (DEPs) were identified in the salinity, alkalinity, and saline-alkalinity stresses, respectively. The obtained DEPs can be summarized into four categories: ion transport channels or proteins, energy synthesis and metabolism, immunity, and apoptosis. The KEGG enrichment results indicated that DNA replication and repair were significantly enriched in the salinity stress group. Lysosomes and oxidative phosphorylation were considerably enriched in the alkalinity stress group. Comparatively, the three most important enriched pathways in the saline-alkalinity stress group were Parkinson's disease, Alzheimer's disease, and Huntington's disease. The findings of this investigation yield robust empirical evidence elucidating osmoregulatory mechanisms and adaptive biological responses in euryhaline teleost, thereby establishing a scientific foundation for the cultivation and genomic exploration of high-salinity-tolerant teleost species. This advancement facilitates the sustainable exploitation of saline-alkaline aquatic ecosystems while contributing to the optimization of piscicultural practices in hypersaline environments.
Collapse
Affiliation(s)
- Huanhuan Su
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, No. 1, Xingyu Road, Liwan District, Guangzhou 510380, China; (H.S.); (D.M.); (J.F.); (Z.Z.); (Y.T.)
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China
| | - Dongmei Ma
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, No. 1, Xingyu Road, Liwan District, Guangzhou 510380, China; (H.S.); (D.M.); (J.F.); (Z.Z.); (Y.T.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China
| | - Jiajia Fan
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, No. 1, Xingyu Road, Liwan District, Guangzhou 510380, China; (H.S.); (D.M.); (J.F.); (Z.Z.); (Y.T.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China
| | - Zaixuan Zhong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, No. 1, Xingyu Road, Liwan District, Guangzhou 510380, China; (H.S.); (D.M.); (J.F.); (Z.Z.); (Y.T.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China
| | - Yuanyuan Tian
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, No. 1, Xingyu Road, Liwan District, Guangzhou 510380, China; (H.S.); (D.M.); (J.F.); (Z.Z.); (Y.T.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China
| | - Huaping Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, No. 1, Xingyu Road, Liwan District, Guangzhou 510380, China; (H.S.); (D.M.); (J.F.); (Z.Z.); (Y.T.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China
| |
Collapse
|
2
|
Wang C, Jiang Z, Du M, Cong R, Wang W, Zhang T, Chen J, Zhang G, Li L. Novel Ser74 of NF-κB/IκBα phosphorylated by MAPK/ERK regulates temperature adaptation in oysters. Cell Commun Signal 2024; 22:539. [PMID: 39529137 PMCID: PMC11552224 DOI: 10.1186/s12964-024-01923-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Phosphorylation of Ser32 and Ser36 controls the degradation of IκBα is the conserved cascade mechanisms of immune core signaling pathway, NF-κB pathway in metazoans, but it's response to abiotic stress and the presence of novel phosphorylation mechanisms in other species remain unclear. Herein, we reported a novel heat-induced phosphorylation site (Ser74) at oysters' major IκBα, which independently regulated ubiquitination-proteasome degradation without the requirement of phosphorylation at S32 and S36. And this site was phosphorylated by ERK/MAPK pathway, which then promoted REL nuclear translocation to activate cell survival related genes to defend heat-stress. The MAPK-NF-κB cascade exhibited divergent thermal responses and adaptation patterns between two congeneric oyster species with differential habitat temperatures, indicating its involvement in shaping temperature adaptation. This study demonstrated that the existence of complex and unique phosphorylation-mediated signaling transduction mechanism in marine invertebrates, and expanded our understanding of the evolution and function of established classical pathway crosstalk mechanisms.
Collapse
Affiliation(s)
- Chaogang Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture(CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
| | - Zhuxiang Jiang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingyang Du
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rihao Cong
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Wei Wang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
| | - Taiping Zhang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jincheng Chen
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guofan Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture(CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Li Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture(CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China.
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China.
| |
Collapse
|
3
|
Wang C, Du M, Jiang Z, Cong R, Wang W, Zhang T, Chen J, Zhang G, Li L. MAPK/ERK-PK(Ser11) pathway regulates divergent thermal metabolism of two congeneric oyster species. iScience 2024; 27:110321. [PMID: 39055946 PMCID: PMC11269933 DOI: 10.1016/j.isci.2024.110321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/25/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Pyruvate kinase (PK), as a key rate-limiting enzyme in glycolysis, has been widely used to assess the stress tolerance and sensitivity of organisms. However, its phosphorylation regulatory mechanisms mainly focused on human cancer research, with no reports in marine organisms. In this study, we firstly reported a conserved PK Ser11 phosphorylation site in mollusks, which enhanced enzyme activity by promoting substrate binding, thereby regulating divergent thermal metabolism of two allopatric congeneric oyster species with differential habitat temperature. It was phosphorylated by ERK kinase, and regulated by the classical MAPK pathway. The MAPK/ERK-PK signaling cascade responded to increased environmental temperature and exhibited stronger activation pattern in the relatively thermotolerant species (Crassostrea angulata), indicating its involvement in shaping temperature adaptation. These findings highlight the presence of complex and unique phosphorylation-mediated signaling transduction mechanisms in marine organisms, and provide new insights into the evolution and function of the crosstalk between classical pathways.
Collapse
Affiliation(s)
- Chaogang Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingyang Du
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhuxiang Jiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rihao Cong
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Wei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Taiping Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jincheng Chen
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| |
Collapse
|
4
|
Wang C, Du M, Jiang Z, Cong R, Wang W, Zhang G, Li L. Comparative proteomic and phosphoproteomic analysis reveals differential heat response mechanism in two congeneric oyster species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115197. [PMID: 37451098 DOI: 10.1016/j.ecoenv.2023.115197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
High-temperature stress caused by global climate change poses a significant threat to marine ectotherms. This study investigated the role of protein phosphorylation modifications in the molecular regulation network under heat stress in oysters, which are representative intertidal organisms that experience considerable temperature changes. Firstly, the study compared the extent of thermal damage between two congeneric oyster species, the relative heat-tolerant Crassostrea angulata (C. angulata) and heat-sensitive Crassostrea gigas (C. gigas), under sublethal temperature (37 °C) for 12 h, using various physiological and biochemical methods. Subsequently, the comparative proteomic and phosphoproteomic analyses revealed that high-temperature considerably regulated signal transduction, energy metabolism, protein synthesis, cell survival and apoptosis, and cytoskeleton remodeling through phosphorylation modifications of related receptors and kinases. Furthermore, the protein kinase A, mitogen-activated protein kinase 1, tyrosine-protein kinase Src, and serine/threonine kinase AKT, exhibiting differential phosphorylation modification patterns, were identified as hub regulators that may enhance glycolysis and TCA cycle to increase the energy supply, distribute protein synthesis, inhibit Caspase-dependent apoptosis activated by endogenous mitochondrial cytochrome release and maintain cytoskeletal stability, ultimately shaping the higher thermal resistance of C. angulata. This study represents the first investigation of protein phosphorylation dynamics in marine invertebrates under heat stress, reveals the molecular mechanisms underlying the differential thermal responses between two Crassostrea oysters at the phosphorylation level, and provides new insights into understanding phosphorylation-mediated molecular responses in marine organisms during environmental changes and predicting the adaptive potential in the context of global warming.
Collapse
Affiliation(s)
- Chaogang Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Mingyang Du
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhuxiang Jiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Rihao Cong
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
| | - Wei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China.
| |
Collapse
|
5
|
Hamilton JS, Piria M, Gavrilović A, Mrkonjić Fuka M, Svečnjak L, Nikolić S, Bakiu R, Gardner JPA. Limited population genetic variation but pronounced seascape genetic structuring in populations of the Mediterranean mussel ( Mytilus galloprovincialis) from the eastern Adriatic Sea. Ecol Evol 2023; 13:e9729. [PMID: 36713489 PMCID: PMC9873513 DOI: 10.1002/ece3.9729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 01/26/2023] Open
Abstract
Population genetic analysis of variation at five neutral microsatellite loci for Mediterranean mussels (Mytilus galloprovincialis) from 18 sites along the eastern Adriatic Sea revealed little or no spatial variation. In contrast, seascape genetics analysis revealed a pronounced locus-specific gradient in allelic and genotypic frequencies across the study region. At a sixth locus, MGE7, the frequencies of two alleles, MGE7243 and MGE7249, were strongly associated, negatively and positively, respectively, with a single environmental variable - minimum salinity (minSAL). The frequency of the MGE7243/243 homozygous genotype was strongly negatively associated with minSAL, whereas the frequencies of the MGE7246/249 and the MGE7249/249 genotypes were strongly positively correlated with minSAL. Interpretation of these pronounced gradients is confounded by the fact that minSAL and another environmental variable, maximum sea surface temperature (maxSST), are highly correlated (R = -.911) and are therefore not necessarily acting independently. BLAST searches of the MGE7 locus against M. galloprovincialis whole genome shotgun sequence returned an alignment with contig mg10_S01094 (accession UYJE01010330.1) and 7 predicted M. galloprovincialis proteins VDI82194.1 - VDI82200.1. Conserved domain searches revealed a similar structure to the transcriptional regulator Msx2-interacting protein. The BLASTp search also returned significant alignments to Msx2-interacting proteins in Mytilus coruscus, Crassostrea virginica, and Haliotis rubra. The existence of the MGE7 gradient highlights the role that environmental variation may play in retarding gene flow among wild M. galloprovincialis populations, and also how the success of collection of young mussels (spat) from one site and their transfer to another site (the farm) may be influenced by a single factor such as minSAL or maxSST on a localized scale.
Collapse
Affiliation(s)
- Joanna S. Hamilton
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | - Marina Piria
- Department of Fisheries, Apiculture, Faculty of Agriculture, Wildlife Management and Special ZoologyUniversity of ZagrebZagrebCroatia
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental ProtectionUniversity of ŁódźŁódźPoland
| | - Ana Gavrilović
- Department of Fisheries, Apiculture, Faculty of Agriculture, Wildlife Management and Special ZoologyUniversity of ZagrebZagrebCroatia
| | - Mirna Mrkonjić Fuka
- Department of Microbiology, Faculty of AgricultureUniversity of ZagrebZagrebCroatia
| | - Lidija Svečnjak
- Department of Fisheries, Apiculture, Faculty of Agriculture, Wildlife Management and Special ZoologyUniversity of ZagrebZagrebCroatia
| | - Slađana Nikolić
- Institute of Marine BiologyUniversity of MontenegroKotorMontenegro
| | - Rigers Bakiu
- Department of Aquaculture and Fisheries, Faculty of Agriculture and EnvironmentAgricultural University of TiranaTiranaAlbania
- Albanian Center for Environmental Protection and Sustainable DevelopmentTiranaAlbania
| | | |
Collapse
|
6
|
Metabolomics and biochemical assays reveal the metabolic responses to hypo-salinity stress and osmoregulatory role of cAMP-PKA pathway in Mercenaria mercenaria. Comput Struct Biotechnol J 2022; 20:4110-4121. [PMID: 36016713 PMCID: PMC9385449 DOI: 10.1016/j.csbj.2022.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 01/13/2023] Open
Abstract
Metabolomics reveals the metabolic responses of hard clam to hypo-salinity stress. cAMP-PKA pathway and NKA play osmoregulatory roles in hard clams. Activated antioxidant responses and reorganized membrane lipids occurred at 5 d. Alaine and lactate accumulation suggest the onset of anaerobic metabolism at 1 d. Fatty acids β-oxidation is promoted to provide energy for osmoregulation.
Hypo-salinity events frequently occur in marine ecosystem due to persistent rainfall and freshwater inflow, reducing the cytosol osmolarity and triggering cellular stress responses in aquatic organisms. Euryhaline bivalves have developed sophisticated regulatory mechanisms to adapt to salinity fluctuations over a long period of evolution. In this study, we performed multiple biochemical assays, widely targeted metabolomics, and gene expression analysis to investigate the comprehensive metabolic responses to hypo-salinity stress and osmoregulation mechanisms in hard clam Mercenaria mercenaria, which is a euryhaline bivalve species widely cultured in China. During hypo-salinity stress, increased vacuoles appeared in gill filaments. The Na+ and Cl- concentrations in gills significantly decreased because of the up-regulation of Na+/K+-ATPase (NKA) activity. The cAMP content dramatically decreased at 5 d post hypo-salinity stress. Meanwhile, the gene expression levels of adenylate cyclase, proteinkinase A, and sodium and calcium channel proteins were evidently down-regulated, suggesting that cAMP-PKA pathway was inhibited to prevent ambient inorganic ions from entering the gill cells. Antioxidant metabolites, such as serine and Tyr-containing dipeptides, were significantly up-regulated to resist oxidative stress. Glycerolipid metabolism was strengthened to stabilize membrane structure when hypo-salinity stress was prolonged to 5 days. At 1 d post hypo-salinity stress, an increase in alanine and lactate contents marked the initiation of anaerobic metabolism. Acylcarnitines accumulation indicated that fatty acids β-oxidation was promoted to provide energy for osmoregulation. The potential biomarkers of hypo-salinity stress were identified in hard clams. This study provides novel insights into the metabolic regulatory mechanisms to hypo-salinity stress in euryhaline bivalves.
Collapse
|
7
|
Dong YW, Liao ML, Han GD, Somero GN. An integrated, multi-level analysis of thermal effects on intertidal molluscs for understanding species distribution patterns. Biol Rev Camb Philos Soc 2021; 97:554-581. [PMID: 34713568 DOI: 10.1111/brv.12811] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022]
Abstract
Elucidating the physiological mechanisms that underlie thermal stress and discovering how species differ in capacities for phenotypic acclimatization and evolutionary adaptation to this stress is critical for understanding current latitudinal and vertical distribution patterns of species and for predicting their future state in a warming world. Such mechanistic analyses require careful choice of study systems (species and temperature-sensitive traits) and design of laboratory experiments that reflect the complexities of in situ conditions. Here, we critically review a wide range of studies of intertidal molluscs that provide mechanistic accounts of thermal effects across all levels of biological organization - behavioural, organismal, organ level, cellular, molecular, and genomic - and show how temperature-sensitive traits govern distribution patterns and capacities for coping with thermal stress. Comparisons of congeners from different thermal habitats are especially effective means for identifying adaptive variation. We employ these mechanistic analyses to illustrate how species differ in the severity of threats posed by rising temperature. Counterintuitively, we show that some of the most heat-tolerant species may be most threatened by increases in temperatures because of their small thermal safety margins and minimal abilities to acclimatize to higher temperatures. We discuss recent molecular biological and genomic studies that provide critical foundations for understanding the types of evolutionary changes in protein structure, RNA secondary structure, genome content, and gene expression capacities that underlie adaptation to temperature. Duplication of stress-related genes, as found in heat-tolerant molluscs, may provide enhanced capacity for coping with higher temperatures. We propose that the anatomical, behavioural, physiological, and genomic diversity found among intertidal molluscs, which commonly are of critical importance and high abundance in these ecosystems, makes this group of animals a highly appropriate study system for addressing questions about the mechanistic determinants of current and future distribution patterns of intertidal organisms.
Collapse
Affiliation(s)
- Yun-Wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, 266003, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Ming-Ling Liao
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Guo-Dong Han
- College of Life Science, Yantai University, Yantai, 264005, China
| | - George N Somero
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California, 93950, U.S.A
| |
Collapse
|
8
|
Pechenik JA, Chaparro OR, Lazarus ZM, Tellado GV, Ostapovich EM, Clark D. Impact of short-term elevated temperature stress on winter-acclimated individuals of the marine gastropod Crepidula fornicata. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105180. [PMID: 33126112 DOI: 10.1016/j.marenvres.2020.105180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
The intertidal zone is an especially stressful thermal habitat, typically exposing residents to air temperatures for up to 6 h at a time, twice daily. Tolerance to elevated temperatures has been particularly well-studied for a variety of intertidal species, especially with regard to upper thermal limits during summers. However, in recent years, as climates have been changing around the world, temperate zone intertidal organisms have sometimes been exposed to periods of unusually high air temperatures during the winter. The present study sought to examine the impact of elevated temperatures on survival and clearance rates of winter-acclimated intertidal individuals of the sedentary marine suspension-feeding gastropod Crepidula fornicata. Individuals were collected intertidally from Nahant, Massachusetts from late January to early April each year for 5 years, maintained in the laboratory at the acclimation temperature of 6 °C, and exposed in the laboratory for 3 h to temperatures as high as 37 °C in seawater either once or twice, 24 h apart. Although mean clearance rates were substantially reduced for at least the next 12-24 h after individuals were returned to the 6 °C control condition following exposures to elevated temperatures as low as 21-26 °C, we saw little mortality even following two 3 h exposures to 35 °C, or single exposures to 37 °C. Mortality was substantial, however, in one experiment following a double exposure to 37 °C. Smaller individuals (~5-12 mm in shell length) were somewhat more sensitive to the thermal stress than adults were. Intertidal members of C. fornicata in Massachusetts seem well-prepared to deal with the increasing range of winter air temperatures associated with the global climate confusion predicted for future years. Additional studies will be required to understand the physiological and biochemical mechanisms used by winter-acclimated individuals of this species to tolerate such periodic substantial temperature increases of 29-31 °C.
Collapse
Affiliation(s)
- Jan A Pechenik
- Biology Department, Tufts University, 200 College Ave., Medford, MA, 02155, USA.
| | | | - Zoe M Lazarus
- Biology Department, Tufts University, 200 College Ave., Medford, MA, 02155, USA
| | - Grace V Tellado
- Biology Department, Tufts University, 200 College Ave., Medford, MA, 02155, USA
| | - Emma M Ostapovich
- Biology Department, Tufts University, 200 College Ave., Medford, MA, 02155, USA
| | - Daria Clark
- Biology Department, Tufts University, 200 College Ave., Medford, MA, 02155, USA
| |
Collapse
|
9
|
Li A, Li L, Wang W, Zhang G. Acetylome Analysis Reveals Population Differentiation of the Pacific Oyster Crassostrea gigas in Response to Heat Stress. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:233-245. [PMID: 31997089 DOI: 10.1007/s10126-020-09947-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Lysine acetylation of proteins is a highly conserved post-translational modification that plays an important regulatory role in almost every aspect of metabolic processes in both terrestrial and aquatic species. Pacific oyster, Crassostrea gigas, a model marine species, is distributed worldwide and is economically and ecologically important. However, little is known about the role of acetylation in the adaptive response of oyster to heterogeneous intertidal environments. Here, we conducted the first-ever lysine acetylome analysis in two genetically and physiologically differentiated oyster populations, using a highly sensitive immune-affinity purification and high-resolution mass spectrometry. Overall, we identified 1054 lysine acetylation sites in 664 proteins, which account for 2.37% of the oyster proteome analysed in the current study. The modified proteins are involved in a wide range of biological processes and are localised in multiple cellular compartments. Motif analysis revealed that hydrophilic and polar amino acids histidine, lysine and arginine were the most enriched residues in the positions + 1 and + 2 of the acetylated sites. Further, the two oyster populations exhibited divergent acetylomic regulations of several biological pathways, particularly energy metabolism and glycine and serine amino acid metabolism, in response to thermal stress and differentiated acetylation patters of candidate heat-responsive proteins, e.g. molecular chaperone and myosin. These observations suggest that lysine acetylation plays a critical role in different thermal responses of these two oyster populations. These findings provide an important resource for in-depth exploration of the physiological role of lysine acetylation in adaptive evolution of marine invertebrates.
Collapse
Affiliation(s)
- Ao Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Beijing, China.
- National & Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Wei Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Beijing, China
- National & Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Guofan Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Beijing, China
- National & Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
10
|
Irvine SQ. Embryonic canalization and its limits-A view from temperature. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:128-144. [PMID: 32011096 DOI: 10.1002/jez.b.22930] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Many animals are able to produce similar offspring over a range of environmental conditions. This property of the developmental process has been termed canalization-the channeling of developmental pathways to generate a stable outcome despite varying conditions. Temperature is one environmental parameter that has fundamental effects on cell physiology and biochemistry, yet developmental programs generally result in a stable phenotype under a range of temperatures. On the other hand, there are typically upper and lower temperature limits beyond which the developmental program is unable to produce normal offspring. This review summarizes data on how development is affected by temperature, particularly high temperature, in various animal species. It also brings together information on potential cell biological and developmental genetic factors that may be responsible for developmental stability in varying temperatures, and likely critical mechanisms that break down at high temperature. Also reviewed are possible means for studying temperature effects on embryogenesis and how to determine which factors are most critical at the high-temperature limits for normal development. Increased knowledge of these critical factors will point to the targets of selection under climate change, and more generally, how developmental robustness in varying environments is maintained.
Collapse
Affiliation(s)
- Steven Q Irvine
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island
| |
Collapse
|
11
|
Somero GN. The cellular stress response and temperature: Function, regulation, and evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:379-397. [PMID: 31944627 DOI: 10.1002/jez.2344] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/11/2019] [Accepted: 01/02/2020] [Indexed: 01/18/2023]
Abstract
The cellular stress response (CSR) is critical for enabling organisms to cope with thermal damage to proteins, nucleic acids, and membranes. It is a graded response whose properties vary with the degree of cellular damage. Molecular damage has positive, as well as negative, function-perturbing effects. Positive effects include crucial regulatory interactions that orchestrate involvement of the different components of the CSR. Thermally unfolded proteins signal for rapid initiation of transcription of genes encoding heat shock proteins (HSPs), central elements of the heat shock response (HSR). Thermal disruption of messenger RNA (mRNA) secondary structures in untranslated regions leads to the culling of the mRNA pool: thermally labile mRNAs for housekeeping proteins are degraded by exonucleases; heat-resistant mRNAs for stress proteins like HSPs then can monopolize the translational apparatus. Thus, proteins and RNA function as "cellular thermometers," and evolved differences in their thermal stabilities enable rapid initiation of the CSR whenever cell temperature rises significantly above the normal thermal range of a species. Covalent DNA damage, which may result from increased production of reactive oxygen species, is temperature-dependent; its extent may determine cellular survival. High levels of stress that exceed capacities for molecular repair can lead to proteolysis, inhibition of cell division, and programmed cell death (apoptosis). Onset of these processes may occur later in the stress period, after initiation of the HSR, to allow HSPs opportunity to restore protein homeostasis. Delay of these energy costly processes may also result from shortfalls in availability of adenosine triphosphate and reducing power during times of peak stress.
Collapse
Affiliation(s)
- George N Somero
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California
| |
Collapse
|
12
|
Bible JM, Evans TG, Sanford E. Differences in induced thermotolerance among populations of Olympia oysters. Comp Biochem Physiol A Mol Integr Physiol 2019; 239:110563. [PMID: 31493552 DOI: 10.1016/j.cbpa.2019.110563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/25/2019] [Accepted: 08/29/2019] [Indexed: 01/24/2023]
Abstract
An organism's ability to cope with thermal stress is an important predictor of survival in a changing climate. One way in which organisms may acclimatize to thermal stress in the short-term is through induced thermotolerance, whereby exposure to a sublethal heat shock enables the organism to subsequently survive what might otherwise be a lethal event. Whether induced thermotolerance is related to basal thermotolerance is not well understood for marine organisms. Furthermore, whether populations often differ in their capacity for induced thermotolerance is also unclear. Here, we tested for differences in basal thermotolerance and induced thermotolerance among six populations of Olympia oysters (Ostrea lurida) from three California estuaries. Oysters were raised under common-garden laboratory conditions for a generation and then exposed to two treatments (control or sublethal heat shock) followed by a spectrum of temperatures that bound the upper critical temperature in order to determine LT50 (temperature at which 50% of the population dies). All populations exhibited induced thermotolerance by increasing their LT50 to a similar maximum temperature when extreme thermal stress was preceded by a sublethal heat shock. However, populations differed in their basal thermotolerance and their plasticity in thermotolerance. Populations with the highest basal thermotolerance were least able to modify upper critical temperature, while the population with the lowest basal thermotolerance exhibited the greatest plasticity in the upper critical temperature. Our results highlight that populations with high basal thermotolerance may be most vulnerable to climate warming because they lack the plasticity required to adjust their upper thermal limits.
Collapse
Affiliation(s)
- Jillian M Bible
- Bodega Marine Laboratory, 2099 Westshore Road, Bodega Bay, CA 94923, USA; Department of Evolution and Ecology, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Tyler G Evans
- Department of Biological Sciences, California State University East Bay, 25800 Carlos Bee Boulevard, Hayward, CA 94542, USA
| | - Eric Sanford
- Bodega Marine Laboratory, 2099 Westshore Road, Bodega Bay, CA 94923, USA; Department of Evolution and Ecology, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
13
|
Vasquez MC, Beam M, Blackwell S, Zuzow MJ, Tomanek L. Sirtuins regulate proteomic responses near thermal tolerance limits in the blue mussels Mytilus galloprovincialis and Mytilus trossulus. J Exp Biol 2017; 220:4515-4534. [DOI: 10.1242/jeb.160325] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/09/2017] [Indexed: 12/25/2022]
Abstract
The blue mussels Mytilus galloprovincialis and M. trossulus are competing species with biogeographical ranges set in part by environmental exposure to heat and hyposalinity. The underlying cellular mechanisms influencing interspecific differences in stress tolerance are unknown, but are believed to be under regulation by sirtuins, NAD-dependent deacylases that play a critical role in the cellular stress response. A comparison of the proteomic responses of M. galloprovincialis and M. trossulus to an acute heat shock in the presence and absence of the sirtuin inhibitor suramin (SIRT1, 2 and 5), showed that sirtuins affected molecular chaperones, oxidative stress proteins, metabolic enzymes, cytoskeletal and signaling proteins more in the heat-sensitive M. trossulus than in the heat-tolerant M. galloprovincialis. Interactions between sirtuin inhibition and changes in the abundance of proteins of β-oxidation and oxidative stress in M. trossulus suggest a greater role of sirtuins in shifting metabolism to reduce the production of reactive oxygen species near thermal limits. Furthermore, RNA-binding proteins initiating and inhibiting translation were affected by suramin in M. galloprovincialis and in M. trossulus, respectively. Western blot analysis showed that the levels of mitochondrial sirtuin 5 (SIRT5) were generally three times higher and increased with acute heat stress in response to sirtuin inhibition in M. trossulus but not in M. galloprovincialis, suggesting a possible feedback response in the former species and a greater reliance on SIRT5 for its stress response. Our findings suggest that SIRT5 plays an important role in setting interspecific differences in stress tolerance in Mytilus by affecting the stress proteome.
Collapse
Affiliation(s)
- M. Christina Vasquez
- California Polytechnic State University, Department of Biological Sciences, Center for Coastal Marine Sciences, Environmental Proteomics Laboratory, 1 Grand Ave., San Luis Obispo, CA 93407-0401, USA
| | - Michelle Beam
- California Polytechnic State University, Department of Biological Sciences, Center for Coastal Marine Sciences, Environmental Proteomics Laboratory, 1 Grand Ave., San Luis Obispo, CA 93407-0401, USA
| | - Shelley Blackwell
- California Polytechnic State University, Department of Biological Sciences, Center for Coastal Marine Sciences, Environmental Proteomics Laboratory, 1 Grand Ave., San Luis Obispo, CA 93407-0401, USA
| | - Marcus J. Zuzow
- California Polytechnic State University, Department of Biological Sciences, Center for Coastal Marine Sciences, Environmental Proteomics Laboratory, 1 Grand Ave., San Luis Obispo, CA 93407-0401, USA
| | - Lars Tomanek
- California Polytechnic State University, Department of Biological Sciences, Center for Coastal Marine Sciences, Environmental Proteomics Laboratory, 1 Grand Ave., San Luis Obispo, CA 93407-0401, USA
| |
Collapse
|
14
|
Transcriptomic response to low salinity stress in gills of the Pacific white shrimp, Litopenaeus vannamei. Mar Genomics 2015. [DOI: 10.1016/j.margen.2015.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Lockwood BL, Connor KM, Gracey AY. The environmentally tuned transcriptomes of Mytilus mussels. J Exp Biol 2015; 218:1822-33. [DOI: 10.1242/jeb.118190] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ABSTRACT
Transcriptomics is a powerful tool for elucidating the molecular mechanisms that underlie the ability of organisms to survive and thrive in dynamic and changing environments. Here, we review the major contributions in this field, and we focus on studies of mussels in the genus Mytilus, which are well-established models for the study of ecological physiology in fluctuating environments. Our review is organized into four main sections. First, we illustrate how the abiotic forces of the intertidal environment drive the rhythmic coupling of gene expression to diel and tidal cycles in Mytilus californianus. Second, we discuss the challenges and pitfalls of conducting transcriptomic studies in field-acclimatized animals. Third, we examine the link between transcriptomic responses to environmental stress and biogeographic distributions in blue mussels, Mytilus trossulus and Mytilus galloprovincialis. Fourth, we present a comparison of transcriptomic datasets and identify 175 genes that share common responses to heat stress across Mytilus species. Taken together, these studies demonstrate that transcriptomics can provide an informative snapshot of the physiological state of an organism within an environmental context. In a comparative framework, transcriptomics can reveal how natural selection has shaped patterns of transcriptional regulation that may ultimately influence biogeography.
Collapse
Affiliation(s)
- Brent L. Lockwood
- Department of Biology, University of Vermont, 120 Marsh Life Science, 109 Carrigan Drive, Burlington, VT 05405, USA
| | - Kwasi M. Connor
- Marine Environmental Biology, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Andrew Y. Gracey
- Marine Environmental Biology, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| |
Collapse
|
16
|
Mu X, Su M, Gui L, Liang X, Zhang P, Hu P, Liu Z, Zhang J. Comparative renal gene expression in response to abrupt hypoosmotic shock in spotted scat (Scatophagus argus). Gen Comp Endocrinol 2015; 215:25-35. [PMID: 25304824 DOI: 10.1016/j.ygcen.2014.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 09/17/2014] [Accepted: 09/20/2014] [Indexed: 11/18/2022]
Abstract
Scatophagus argus, a euryhaline fish, is notable for its ability to tolerate a wide range of environmental salinities and especially for its tolerance to a rapid, marked reduction in salinity. Therefore, S. argus is a good model for studying the molecular mechanisms mediating abrupt hyperosmoregulation. The serum osmotic pressure decreased steeply within one hour after transferring S. argus from seawater (SW) to freshwater (FW) and remained at new balance throughout the duration of one week. To explain this phenomenon and understand the molecular responses to an abrupt hypoosmotic shock, hypoosmotic stress responsive genes were identified by constructing two suppression subtractive hybridization (SSH) cDNA libraries from the kidneys of S. argus that had been transferred from SW to FW. After trimming and blasting, 52 ESTs were picked out from the subtractive library. Among them, 11 genes were significantly up-regulated (p < 0.05). The kinetics studies of gene expression levels were conducted for 1 week after the transfer using quantitative real-time PCR. A significant variation in the expression of these genes occurred within 12h after the hypoosmotic shock, except for growth hormone (GH) and polyadenylate binding protein 1 (PBP1), which were significantly up-regulated 2 days post-transfer. Our results suggest different functional roles for these genes in response to hypoosmotic stress during the stress response phase (1 hpt-12 hpt) and stable phase (12 hpt-7 dpt). Furthermore, the plasma growth hormone level was detected to be significantly elevated at 1 hpt and 24 hpt following abrupt hypoosmotic shock. Meanwhile, several hematological parameters, hemoglobin (HGB), red blood cell (RBC) and mean cellular hemoglobin concentration (MCHC), were observed to be significantly increased at 12 hpt and 2 dpt compared with that of control group. Our results provide a solid basis from which to conduct future studies on the osmoregulatory mechanisms in the euryhaline fish.
Collapse
Affiliation(s)
- Xingjiang Mu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Maoliang Su
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Lang Gui
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xuemei Liang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Peipei Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Pan Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zhenhao Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Junbin Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
17
|
2-DE Mapping of the Blue Mussel Gill Proteome: The Usual Suspects Revisited. Proteomes 2015; 3:3-41. [PMID: 28248261 PMCID: PMC5302490 DOI: 10.3390/proteomes3010003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/04/2014] [Indexed: 11/17/2022] Open
Abstract
The Blue Mussel (Mytilus edulis, L. 1758) is an ecologically important and commercially relevant bivalve. Because of its ability to bioconcentrate xenobiotics, it is also a widespread sentinel species for environmental pollution, which has been used in ecotoxicological studies for biomarker assessment. Consequently, numerous proteomics studies have been carried out in various research contexts using mussels of the genus Mytilus, which intended to improve our understanding of complex physiological processes related to reproduction, adaptation to physical stressors or shell formation and for biomarker discovery. Differential-display 2-DE proteomics relies on an extensive knowledge of the proteome with as many proteoforms identified as possible. To this end, extensive characterization of proteins was performed in order to increase our knowledge of the Mytilus gill proteome. On average, 700 spots were detected on 2-DE gels by colloidal blue staining, of which 122 different, non-redundant proteins comprising 203 proteoforms could be identified by tandem mass spectrometry. These proteins could be attributed to four major categories: (i) “metabolism”, including antioxidant defence and degradation of xenobiotics; (ii) “genetic information processing”, comprising transcription and translation as well as folding, sorting, repair and degradation; (iii) “cellular processes”, such as cell motility, transport and catabolism; (iv) “environmental information processing”, including signal transduction and signalling molecules and interaction. The role of cytoskeleton proteins, energetic metabolism, chaperones/stress proteins, protein trafficking and the proteasome are discussed in the light of the exigencies of the intertidal environment, leading to an enhanced stress response, as well as the structural and physiological particularities of the bivalve gill tissue.
Collapse
|
18
|
Dong YW, Han GD, Huang XW. Stress modulation of cellular metabolic sensors: interaction of stress from temperature and rainfall on the intertidal limpet Cellana toreuma. Mol Ecol 2014; 23:4541-54. [PMID: 25130589 DOI: 10.1111/mec.12882] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 12/23/2022]
Abstract
In the natural environment, organisms are exposed to large variations in physical conditions. Quantifying such physiological responses is, however, often performed in laboratory acclimation studies, in which usually only a single factor is varied. In contrast, field acclimatization may expose organisms to concurrent changes in several environmental variables. The interactions of these factors may have strong effects on organismal function. In particular, rare events that occur stochastically and have relatively short duration may have strong effects. The present experiments studied levels of expression of several genes associated with cellular stress and metabolic regulation in a field population of limpet Cellana toreuma that encountered a wide range of temperatures plus periodic rain events. Physiological responses to these variable conditions were quantified by measuring levels of mRNA of genes encoding heat-shock proteins (Hsps) and metabolic sensors (AMPKs and Sirtuin 1). Our results reveal high ratios of individuals in upregulation group of stress-related gene expression at high temperature and rainy days, indicating the occurrence of stress from both prevailing high summer temperatures and occasional rainfall during periods of emersion. At high temperature, stress due to exposure to rainfall may be more challenging than heat stress alone. The highly variable physiological performances of limpets in their natural habitats indicate the possible differences in capability for physiological regulation among individuals. Our results emphasize the importance of studies of field acclimatization in unravelling the effects of environmental change on organisms, notably in the context of multiple changes in abiotic factors that are accompanying global change.
Collapse
Affiliation(s)
- Yun-Wei Dong
- State Key Laboratory of Marine Environmental Science, College of Marine and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | | | | |
Collapse
|
19
|
Thermal stress and cellular signaling processes in hemocytes of native (Mytilus californianus) and invasive (M. galloprovincialis) mussels: Cell cycle regulation and DNA repair. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:159-68. [DOI: 10.1016/j.cbpa.2013.02.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 02/17/2013] [Accepted: 02/21/2013] [Indexed: 01/05/2023]
|
20
|
Storey KB, Lant B, Anozie OO, Storey JM. Metabolic mechanisms for anoxia tolerance and freezing survival in the intertidal gastropod, Littorina littorea. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:448-59. [PMID: 23507570 DOI: 10.1016/j.cbpa.2013.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/07/2013] [Accepted: 03/08/2013] [Indexed: 12/20/2022]
Abstract
The gastropod mollusk, Littorina littorea L., is a common inhabitant of the intertidal zone along rocky coastlines of the north Atlantic. This species has well-developed anoxia tolerance and freeze tolerance and is extensively used as a model for exploring the biochemical adaptations that support these tolerances as well as for toxicological studies aimed at identifying effective biomarkers of aquatic pollution. This article highlights our current understanding of the molecular mechanisms involved in anaerobiosis and freezing survival of periwinkles, particularly with respect to anoxia-induced metabolic rate depression. Analysis of foot muscle and hepatopancreas metabolism includes anoxia-responsive changes in enzyme regulation, signal transduction, gene expression, post-transcriptional regulation of mRNA, control of translation, and cytoprotective strategies including chaperones and antioxidant defenses. New studies describe the regulation of glucose-6-phosphate dehydrogenase by reversible protein phosphorylation, the role of microRNAs in suppressing mRNA translation in the hypometabolic state, modulation of glutathione S-transferase isozyme patterns, and the regulation of the unfolded protein response.
Collapse
Affiliation(s)
- Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
| | | | | | | |
Collapse
|
21
|
|
22
|
Abstract
Organisms exposed to altered salinity must be able to perceive osmolality change because metabolism has evolved to function optimally at specific intracellular ionic strength and composition. Such osmosensing comprises a complex physiological process involving many elements at organismal and cellular levels of organization. Input from numerous osmosensors is integrated to encode magnitude, direction, and ionic basis of osmolality change. This combinatorial nature of osmosensing is discussed with emphasis on fishes.
Collapse
Affiliation(s)
- Dietmar Kültz
- Department of Animal Science, Physiological Genomics Group, University of California, Davis, Davis, California
| |
Collapse
|
23
|
Sokolova IM, Frederich M, Bagwe R, Lannig G, Sukhotin AA. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. MARINE ENVIRONMENTAL RESEARCH 2012; 79:1-15. [PMID: 22622075 DOI: 10.1016/j.marenvres.2012.04.003] [Citation(s) in RCA: 756] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/06/2012] [Accepted: 04/10/2012] [Indexed: 05/22/2023]
Abstract
Energy balance is a fundamental requirement of stress adaptation and tolerance. We explore the links between metabolism, energy balance and stress tolerance using aquatic invertebrates as an example and demonstrate that using key parameters of energy balance (aerobic scope for growth, reproduction and activity; tissue energy status; metabolic rate depression; and compensatory onset of anaerobiosis) can assist in integrating the effects of multiple stressors and their interactions and in predicting the whole-organism and population-level consequences of environmental stress. We argue that limitations of both the amount of available energy and the rates of its acquisition and metabolic conversions result in trade-offs between basal maintenance of a stressed organism and energy costs of fitness-related functions such as reproduction, development and growth and can set limit to the tolerance of a broad range of environmental stressors. The degree of stress-induced disturbance of energy balance delineates transition from moderate stress compatible with population persistence (pejus range) to extreme stress where only time-limited existence is possible (pessimum range). It also determines the predominant adaptive strategy of metabolic responses (energy compensation vs. conservation) that allows an organism to survive the disturbance. We propose that energy-related biomarkers can be used to determine the conditions when these metabolic transitions occur and thus predict ecological consequences of stress exposures. Bioenergetic considerations can also provide common denominator for integrating stress responses and predicting tolerance limits under the environmentally realistic scenarios when multiple and often variable stressors act simultaneously on an organism. Determination of bioenergetic sustainability at the organism's level (or lack thereof) has practical implications. It can help identify the habitats and/or conditions where a population can survive (even if at the cost of reduced reproduction and growth) and those that are incapable of supporting viable populations. Such an approach will assist in explaining and predicting the species' distribution limits in the face of the environmental change and informing the conservation efforts and resource management practices.
Collapse
Affiliation(s)
- Inna M Sokolova
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | | | | | | | | |
Collapse
|
24
|
Dowd WW. Challenges for Biological Interpretation of Environmental Proteomics Data in Non-model Organisms. Integr Comp Biol 2012; 52:705-20. [DOI: 10.1093/icb/ics093] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
25
|
Fields PA, Zuzow MJ, Tomanek L. Proteomic responses of blue mussel (Mytilus) congeners to temperature acclimation. J Exp Biol 2012; 215:1106-16. [DOI: 10.1242/jeb.062273] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SUMMARY
The ability to acclimate to variable environmental conditions affects the biogeographic range of species, their success at colonizing new habitats, and their likelihood of surviving rapid anthropogenic climate change. Here we compared responses to temperature acclimation (4 weeks at 7, 13 and 19°C) in gill tissue of the warm-adapted intertidal blue mussel Mytilus galloprovincialis, an invasive species in the northeastern Pacific, and the cold-adapted M. trossulus, the native congener in the region, to better understand the physiological differences underlying the ongoing competition. Using two-dimensional gel electrophoresis and tandem mass spectrometry, we showed that warm acclimation caused changes in cytoskeletal composition and proteins of energy metabolism in both species, consistent with increasing rates of filtration and respiration due to increased ciliary activity. During cold acclimation, changes in cytoskeletal proteins were accompanied by increasing abundances of oxidative stress proteins and molecular chaperones, possibly because of the increased production of aldehydes as indicated by the upregulation of aldehyde dehydrogenase. The cold-adapted M. trossulus showed increased abundances of molecular chaperones at 19°C, but M. galloprovincialis did not, suggesting that the two species differ in their long-term upper thermal limits. In contrast, the warm-adapted M. galloprovincialis showed a stronger response to cold acclimation than M. trossulus, including changes in abundance in more proteins and differing protein expression profiles between 7 and 13°C, a pattern absent in M. trossulus. In general, increasing levels of oxidative stress proteins inversely correlate with modifications in Krebs cycle and electron transport chain proteins, indicating a trade-off between oxidative stress resistance and energy production. Overall, our results help explain why M. galloprovincialis has replaced M. trossulus in southern California over the last century, but also suggest that M. trossulus may maintain a competitive advantage at colder temperatures. Anthropogenic global warming may reinforce the advantage M. galloprovincialis has over M. trossulus in the warmer parts of the latter’s historical range.
Collapse
Affiliation(s)
- Peter A. Fields
- Franklin & Marshall College, Biology Department, PO Box 3003, Lancaster, PA 17604-3003, USA
| | - Marcus J. Zuzow
- California Polytechnic State University, Department of Biological Sciences, Center for Coastal Marine Sciences, Environmental Proteomics Laboratory, 1 Grand Avenue, San Luis Obispo, CA 93407-0401, USA
| | - Lars Tomanek
- California Polytechnic State University, Department of Biological Sciences, Center for Coastal Marine Sciences, Environmental Proteomics Laboratory, 1 Grand Avenue, San Luis Obispo, CA 93407-0401, USA
| |
Collapse
|
26
|
Yao CL, Somero GN. The impact of acute temperature stress on hemocytes of invasive and native mussels (Mytilus galloprovincialis and M. californianus): DNA damage, membrane integrity, apoptosis and signalling pathways. J Exp Biol 2012; 215:4267-77. [DOI: 10.1242/jeb.073577] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Summary
We investigated effects of acute heat- and cold stress on cell viability, lysosome membrane stability, double- and single-stranded DNA breakage, and signalling mechanisms involved in cellular homeostasis and apoptosis in hemocytes of native and invasive mussels, Mytilus californianus and M. galloprovincialis, respectively. Both heat stress (28ºC, 32ºC) and cold stress (2ºC, 6ºC) led to significant double- and single-stranded breaks in DNA. The types and extents of DNA damage were temperature- and time-dependent, as was caspase-3 activation, an indicator of apoptosis, which may occur in response to DNA damage. Hemocyte viability and lysosomal membrane stability decreased significantly under heat stress. Western blot analyses of hemocyte extracts with antibodies for proteins associated with cell signalling and stress responses [including members of the phospho-specific Mitogen Activated Protein Kinase (MAPK) family (c-JUN NH(2)-terminal kinase (JNK) and p38-MAPK) and apoptosis executor caspase-3] revealed that heat- and cold stress induced a time-dependent activation of JNK, p38-MAPK and caspase-3 and that these signalling and stress responses differed between species. Thermal limits for activation of cell signalling processes linked to repair of stress-induced damage may help determine cellular thermal tolerance limits. Our results show similarities in responses to cold- and heat stress and suggest causal linkages between levels of DNA damage at both extremes of temperature and downstream regulatory responses, including induction of apoptosis. Compared to M. californianus, M. galloprovincialis might have a wider temperature tolerance due to a lower amount of double-stranded DNA damage, faster signalling activation and transduction, and stronger repair ability against temperature stress.
Collapse
|
27
|
Abstract
Global change includes alterations in ocean temperature, oxygen availability, salinity, and pH, abiotic variables with strong and interacting influences on the physiology of all taxa. Physiological stresses resulting from changes in these four variables may cause broad biogeographic shifts as well as localized changes in distribution in mosaic habitats. To elucidate these causal linkages, I address the following questions: What types of physiological limitations can alter species' distributions and, in cases of extreme stress, cause extinctions? Which species are most threatened by these physiological challenges--and why? How do contents of genomes establish capacities to respond to global change, notably in the case of species that have evolved in highly stable habitats? How fully can phenotypic acclimatization offset abiotic stress? Can physiological measurements, including new molecular ("-omic") approaches, provide indices of the degree of sublethal stress an organism experiences? And can physiological evolution keep pace with global change?
Collapse
Affiliation(s)
- George N Somero
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, USA.
| |
Collapse
|
28
|
Tomanek L, Zuzow MJ, Hitt L, Serafini L, Valenzuela JJ. Proteomics of hyposaline stress in blue mussel congeners (genus Mytilus): implications for biogeographic range limits in response to climate change. J Exp Biol 2012; 215:3905-16. [DOI: 10.1242/jeb.076448] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Summary
Climate change is affecting species' physiology, pushing environmental tolerance limits and shifting distribution ranges. In addition to temperature and ocean acidification, increasing levels of hyposaline stress due to extreme precipitation events and freshwater runoff may be driving some of the reported recent range shifts in marine organisms. Using 2D gel electrophoresis and tandem mass spectrometry, we characterized the proteomic responses of the cold-adapted blue mussel species Mytilus trossulus, a native to the Pacific coast of North America, and the warm-adapted M. galloprovincialis, a Mediterranean invader that has replaced the native from the southern part of its range, but may be limited from expanding north due to hyposaline stress. After exposing laboratory-acclimated mussels for 4 h to two different experimental treatments of hyposaline conditions and one control treatment (24.5 and 29.8 and 35.0 psu, respectively) followed by a 0 and 24 h recovery at ambient salinity (35 psu), we detected changes in the abundance of molecular chaperones of the endoplasmic reticulum (ER), indicating protein unfolding, during stress exposure. Other common responses included changes in small GTPases of the Ras-superfamily during recovery, which suggest a role for vesicle transport, and cytoskeletal adjustments associated with cell volume, as indicated by cytoskeletal elements such as actin, tubulin, intermediate filaments and several actin-binding regulatory proteins. Changes of proteins involved in energy metabolism and scavenging of reactive oxygen species (ROS) suggest a reduction in overall energy metabolism during recovery. Principal component analyses of protein abundances suggest that M. trossulus is able to respond to a greater hyposaline challenge (24.5 psu) than M. galloprovincialis (29.8 psu), as shown by changing abundances of proteins involved in protein chaperoning, vesicle transport, cytoskeletal adjustments by actin-regulatory proteins, energy metabolism and oxidative stress. While proteins involved in energy metabolism were lower in M. trossulus during recovery from hyposaline stress, M. galloprovincialis showed higher abundances of those proteins at 29.8 psu, suggesting an energetic constraint in the invader but not the native congener. Both species showed lower levels of oxidative stress proteins during recovery. In addition, oxidative stress proteins associated with protein synthesis and folding in the ER, showed lower levels during recovery in M. galloprovincialis, in parallel with ER chaperones, indicating a reduction in protein synthesis. These differences may enable the native M. trossulus to cope with greater hyposaline stress in the northern part of its range. Furthermore, these differences may help M. trossulus to outcompete M. galloprovincialis in the southern part of M. trossulus' current range, thereby preventing M. galloprovincialis from expanding further north.
Collapse
|
29
|
Hardege J, Rotchell J, Terschak J, Greenway G. Analytical challenges and the development of biomarkers to measure and to monitor the effects of ocean acidification. Trends Analyt Chem 2011. [DOI: 10.1016/j.trac.2011.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Somero GN. Comparative physiology: a "crystal ball" for predicting consequences of global change. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1-14. [PMID: 21430078 DOI: 10.1152/ajpregu.00719.2010] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Comparative physiology offers powerful approaches for developing causal, mechanistic explanations of shifts in biogeographic patterning occurring in concert with global change. These analyses can identify the cellular loci and intensities of stress-induced perturbation and generate predictions about ecosystem alterations in a changing world. Congeneric species adapted to different abiotic conditions offer excellent study systems for these purposes. Several findings have emerged from such comparative studies: 1) In aquatic and terrestrial habitats, the most heat-tolerant ectotherms may be most threatened by further increases in temperature, due to proximity of these species' thermal optima and tolerance limits to current maximal ambient temperatures and limited capacities for acclimatization to higher temperatures. 2) Cardiac function is a "weak link" in acute thermal tolerance. 3) Stress-induced changes in gene expression comprise a graded response involving genes linked to damage repair, lysis of irreversibly damaged molecules, and downregulation of cell proliferation. Transcriptomic and proteomic analyses provide "biomarkers" for diagnosing degrees of stress. 4) Different abiotic stresses may have synergistic or opposing effects on gene expression, a complexity needing consideration when developing integrated pictures of effects of global change. 5) Adaptation of proteins can result from one to a few amino acid substitutions, which can occur at many sites in a protein, a discovery with implications for rates of adaptive evolution. 6) Greater thermal tolerance of invasive species may favor their replacement of natives. 7) Losses of protein-coding genes and temperature-responsive gene regulatory abilities in stenothermal ectotherms of the Southern Ocean may lead to broad extinctions.
Collapse
Affiliation(s)
- George N Somero
- Hopkins Marine Station, Dept. of Biology, Stanford University, Pacific Grove, CA 93950-3094, USA.
| |
Collapse
|
31
|
LOCKWOOD BRENTL, SOMERO GEORGEN. Transcriptomic responses to salinity stress in invasive and native blue mussels (genus Mytilus). Mol Ecol 2010; 20:517-29. [DOI: 10.1111/j.1365-294x.2010.04973.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|