1
|
Alattas H, Glick BR, Murphy DV, Scott C. Harnessing Pseudomonas spp. for sustainable plant crop protection. Front Microbiol 2024; 15:1485197. [PMID: 39640850 PMCID: PMC11617545 DOI: 10.3389/fmicb.2024.1485197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
This review examines the role of Pseudomonas spp. bacteria as biocontrol agents against crop diseases, focusing on their mechanisms of action, efficacy, and potential applications in sustainable agriculture. Pseudomonas spp., ubiquitous in soil ecosystems and root microbiomes, have attracted attention for their ability to suppress phytopathogens and enhance plant health through various mechanisms. These include direct competition for nutrients, production of antimicrobial compounds and volatile organic compounds, competition using type VI secretion systems, and indirect induction of systemic resistance. Our review shows that Pseudomonas strains effectively control a wide range of diseases across diverse plant species, with some strains demonstrating efficacy comparable to chemical fungicides. However, the review also highlights challenges in achieving consistent performance when using Pseudomonas inoculants under field conditions due to various biotic and abiotic factors. Strategies to optimize biocontrol potential, such as formulation techniques, application methods, and integration with other management practices, are discussed. The advantages of Pseudomonas-based biocontrol for sustainable agriculture include reduced reliance on chemical pesticides, enhanced crop productivity, and improved environmental sustainability. Future research directions should focus on understanding the complex interactions within the plant microbiome, optimizing delivery systems, and addressing regulatory hurdles for commercial deployment. This review underscores the significant potential of Pseudomonas spp. in sustainable crop protection while acknowledging the need for further research to fully harness their capabilities in agricultural systems.
Collapse
Affiliation(s)
- Hussain Alattas
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
- School of Medical, Molecular, and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Daniel V. Murphy
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Colin Scott
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
2
|
Porter SS, Dupin SE, Denison RF, Kiers ET, Sachs JL. Host-imposed control mechanisms in legume-rhizobia symbiosis. Nat Microbiol 2024:10.1038/s41564-024-01762-2. [PMID: 39095495 DOI: 10.1038/s41564-024-01762-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/17/2024] [Indexed: 08/04/2024]
Abstract
Legumes are ecologically and economically important plants that contribute to nutrient cycling and agricultural sustainability, features tied to their intimate symbiosis with nitrogen-fixing rhizobia. Rhizobia vary dramatically in quality, ranging from highly growth-promoting to non-beneficial; therefore, legumes must optimize their symbiosis with rhizobia through host mechanisms that select for beneficial rhizobia and limit losses to non-beneficial strains. In this Perspective, we examine the considerable scientific progress made in decoding host control over rhizobia, empirically examining both molecular and cellular mechanisms and their effects on rhizobia symbiosis and its benefits. We consider pre-infection controls, which require the production and detection of precise molecular signals by the legume to attract and select for compatible rhizobia strains. We also discuss post-infection mechanisms that leverage the nodule-level and cell-level compartmentalization of symbionts to enable host control over rhizobia development and proliferation in planta. These layers of host control each contribute to legume fitness by directing host resources towards a narrowing subset of more-beneficial rhizobia.
Collapse
Affiliation(s)
- Stephanie S Porter
- School of Biological Sciences, Washington State University, Vancouver, WA, USA
| | - Simon E Dupin
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - R Ford Denison
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - E Toby Kiers
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joel L Sachs
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
3
|
Montoya AP, Wendlandt CE, Benedict AB, Roberts M, Piovia-Scott J, Griffitts JS, Porter SS. Hosts winnow symbionts with multiple layers of absolute and conditional discrimination mechanisms. Proc Biol Sci 2023; 290:20222153. [PMID: 36598018 PMCID: PMC9811631 DOI: 10.1098/rspb.2022.2153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In mutualism, hosts select symbionts via partner choice and preferentially direct more resources to symbionts that provide greater benefits via sanctions. At the initiation of symbiosis, prior to resource exchange, it is not known how the presence of multiple symbiont options (i.e. the symbiont social environment) impacts partner choice outcomes. Furthermore, little research addresses whether hosts primarily discriminate among symbionts via sanctions, partner choice or a combination. We inoculated the legume, Acmispon wrangelianus, with 28 pairs of fluorescently labelled Mesorhizobium strains that vary continuously in quality as nitrogen-fixing symbionts. We find that hosts exert robust partner choice, which enhances their fitness. This partner choice is conditional such that a strain's success in initiating nodules is impacted by other strains in the social environment. This social genetic effect is as important as a strain's own genotype in determining nodulation and has both transitive (consistent) and intransitive (idiosyncratic) effects on the probability that a symbiont will form a nodule. Furthermore, both absolute and conditional partner choice act in concert with sanctions, among and within nodules. Thus, multiple forms of host discrimination act as a series of sieves that optimize host benefits and select for costly symbiont cooperation in mixed symbiont populations.
Collapse
Affiliation(s)
- Angeliqua P. Montoya
- School of Biological Sciences, Washington State University, Vancouver, WA 98686, USA
| | - Camille E. Wendlandt
- School of Biological Sciences, Washington State University, Vancouver, WA 98686, USA
| | - Alex B. Benedict
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Miles Roberts
- School of Biological Sciences, Washington State University, Vancouver, WA 98686, USA
| | - Jonah Piovia-Scott
- School of Biological Sciences, Washington State University, Vancouver, WA 98686, USA
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Stephanie S. Porter
- School of Biological Sciences, Washington State University, Vancouver, WA 98686, USA
| |
Collapse
|
4
|
Abstract
A key challenge in microbiome science is the scale mismatch problem, which arises when the scale at which microbial communities are sampled, interrogated, and averaged is different from the scale at which individual microorganisms within those communities interact with each other and with their environment. Profiling the microbial communities in a teaspoon of soil, from a scoop of fecal matter, or along a plant leaf surface represents a scale mismatch of multiple orders of magnitude, which may limit our ability to interpret or predict species interactions and community assembly within such samples. In this Perspective, we explore how economists, who are historically and topically split along the lines of micro- and macroeconomics, deal with the scale mismatch problem, and how taking clues from (micro)economists could benefit the field of microbiomics.
Collapse
|
5
|
Worsley SF, Innocent TM, Holmes NA, Al-Bassam MM, Schiøtt M, Wilkinson B, Murrell JC, Boomsma JJ, Yu DW, Hutchings MI. Competition-based screening helps to secure the evolutionary stability of a defensive microbiome. BMC Biol 2021; 19:205. [PMID: 34526023 PMCID: PMC8444595 DOI: 10.1186/s12915-021-01142-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/03/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The cuticular microbiomes of Acromyrmex leaf-cutting ants pose a conundrum in microbiome biology because they are freely colonisable, and yet the prevalence of the vertically transmitted bacteria Pseudonocardia, which contributes to the control of Escovopsis fungus garden disease, is never compromised by the secondary acquisition of other bacterial strains. Game theory suggests that competition-based screening can allow the selective recruitment of antibiotic-producing bacteria from the environment, by providing abundant resources to foment interference competition between bacterial species and by using Pseudonocardia to bias the outcome of competition in favour of antibiotic producers. RESULTS Here, we use RNA-stable isotope probing (RNA-SIP) to confirm that Acromyrmex ants can maintain a range of microbial symbionts on their cuticle by supplying public resources. We then used RNA sequencing, bioassays, and competition experiments to show that vertically transmitted Pseudonocardia strains produce antibacterials that differentially reduce the growth rates of other microbes, ultimately biassing the bacterial competition to allow the selective establishment of secondary antibiotic-producing strains while excluding non-antibiotic-producing strains that would parasitise the symbiosis. CONCLUSIONS Our findings are consistent with the hypothesis that competition-based screening is a plausible mechanism for maintaining the integrity of the co-adapted mutualism between the leaf-cutting ant farming symbiosis and its defensive microbiome. Our results have broader implications for explaining the stability of other complex symbioses involving horizontal acquisition.
Collapse
Affiliation(s)
- Sarah F Worsley
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Tabitha M Innocent
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Neil A Holmes
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| | - Mahmoud M Al-Bassam
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Morten Schiøtt
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| | - J Colin Murrell
- School of Environmental Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Jacobus J Boomsma
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Douglas W Yu
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| | - Matthew I Hutchings
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK.
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK.
| |
Collapse
|
6
|
Beigel K, Matthews AE, Kellner K, Pawlik CV, Greenwold M, Seal JN. Cophylogenetic analyses of Trachymyrmex ant-fungal specificity: "One to one with some exceptions". Mol Ecol 2021; 30:5605-5620. [PMID: 34424571 DOI: 10.1111/mec.16140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 01/18/2023]
Abstract
Over the past few decades, large-scale phylogenetic analyses of fungus-gardening ants and their symbiotic fungi have depicted strong concordance among major clades of ants and their symbiotic fungi, yet within clades, fungus sharing is widespread among unrelated ant lineages. Sharing has been explained using a diffuse coevolution model within major clades. Understanding horizontal exchange within clades has been limited by conventional genetic markers that lack both interspecific and geographic variation. To examine whether reports of horizontal exchange were indeed due to symbiont sharing or the result of employing relatively uninformative molecular markers, samples of Trachymyrmex arizonensis and Trachymyrmex pomonae and their fungi were collected from native populations in Arizona and genotyped using conventional marker genes and genome-wide single nucleotide polymorphisms (SNPs). Conventional markers of the fungal symbionts generally exhibited cophylogenetic patterns that were consistent with some symbiont sharing, but most fungal clades had low support. SNP analysis, in contrast, indicated that each ant species exhibited fidelity to its own fungal subclade with only one instance of a colony growing a fungus that was otherwise associated with a different ant species. This evidence supports a pattern of codivergence between Trachymyrmex species and their fungi, and thus a diffuse coevolutionary model may not accurately predict symbiont exchange. These results suggest that fungal sharing across host species in these symbioses may be less extensive than previously thought.
Collapse
Affiliation(s)
- Katherine Beigel
- Department of Biology, The University of Texas at Tyler, Tyler, Texas, USA
| | - Alix E Matthews
- Department of Biology, The University of Texas at Tyler, Tyler, Texas, USA.,College of Sciences and Mathematics and Molecular Biosciences Program, Arkansas State University, Jonesboro, Arkansas, USA
| | - Katrin Kellner
- Department of Biology, The University of Texas at Tyler, Tyler, Texas, USA
| | - Christine V Pawlik
- Department of Biology, The University of Texas at Tyler, Tyler, Texas, USA
| | - Matthew Greenwold
- Department of Biology, The University of Texas at Tyler, Tyler, Texas, USA
| | - Jon N Seal
- Department of Biology, The University of Texas at Tyler, Tyler, Texas, USA
| |
Collapse
|
7
|
Tragust S, Herrmann C, Häfner J, Braasch R, Tilgen C, Hoock M, Milidakis MA, Gross R, Feldhaar H. Formicine ants swallow their highly acidic poison for gut microbial selection and control. eLife 2020; 9:e60287. [PMID: 33138912 PMCID: PMC7609056 DOI: 10.7554/elife.60287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/14/2020] [Indexed: 12/23/2022] Open
Abstract
Animals continuously encounter microorganisms that are essential for health or cause disease. They are thus challenged to control harmful microbes while allowing the acquisition of beneficial microbes. This challenge is likely especially important for social insects with respect to microbes in food, as they often store food and exchange food among colony members. Here we show that formicine ants actively swallow their antimicrobial, highly acidic poison gland secretion. The ensuing acidic environment in the stomach, the crop, can limit the establishment of pathogenic and opportunistic microbes ingested with food and improve the survival of ants when faced with pathogen contaminated food. At the same time, crop acidity selectively allows acquisition and colonization by Acetobacteraceae, known bacterial gut associates of formicine ants. This suggests that swallowing of the poison in formicine ants acts as a microbial filter and that antimicrobials have a potentially widespread but so far underappreciated dual role in host-microbe interactions.
Collapse
Affiliation(s)
- Simon Tragust
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| | - Claudia Herrmann
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| | - Jane Häfner
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| | - Ronja Braasch
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| | - Christina Tilgen
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| | - Maria Hoock
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| | - Margarita Artemis Milidakis
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| | - Roy Gross
- Microbiology, Biocenter, University of Würzburg, Am HublandWürzburgGermany
| | - Heike Feldhaar
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| |
Collapse
|
8
|
Palmer TM, Riginos C, Milligan PD, Hays BR, Pietrek AG, Maiyo NJ, Mutisya S, Gituku B, Musila S, Carpenter S, Goheen JR. Frenemy at the gate: Invasion by Pheidole megacephala facilitates a competitively subordinate plant ant in Kenya. Ecology 2020; 102:e03230. [PMID: 33098658 DOI: 10.1002/ecy.3230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/17/2020] [Accepted: 09/14/2020] [Indexed: 11/11/2022]
Abstract
Biological invasions can lead to the reassembly of communities and understanding and predicting the impacts of exotic species on community structure and functioning are a key challenge in ecology. We investigated the impact of a predatory species of invasive ant, Pheidole megacephala, on the structure and function of a foundational mutualism between Acacia drepanolobium and its associated acacia-ant community in an East African savanna. Invasion by P. megacephala was associated with the extirpation of three extrafloral nectar-dependent Crematogaster acacia ant species and strong increases in the abundance of a competitively subordinate and locally rare acacia ant species, Tetraponera penzigi, which does not depend on host plant nectar. Using a combination of long-term monitoring of invasion dynamics, observations and experiments, we demonstrate that P. megacephala directly and indirectly facilitates T. penzigi by reducing the abundance of T. penzigi's competitors (Crematogaster spp.), imposing recruitment limitation on these competitors, and generating a landscape of low-reward host plants that favor colonization and establishment by the strongly dispersing T. penzigi. Seasonal variation in use of host plants by P. megacephala may further increase the persistence of T. penzigi colonies in invaded habitat. The persistence of the T. penzigi-A. drepanolobium symbiosis in invaded areas afforded host plants some protection against herbivory by elephants (Loxodonta africana), a key browser that reduces tree cover. However, elephant damage on T. penzigi-occupied trees was higher in invaded than in uninvaded areas, likely owing to reduced T. penzigi colony size in invaded habitats. Our results reveal the mechanisms underlying the disruption of this mutualism and suggest that P. megacephala invasion may drive long-term declines in tree cover, despite the partial persistence of the ant-acacia symbiosis in invaded areas.
Collapse
Affiliation(s)
- Todd M Palmer
- Department of Biology, University of Florida, Gainesville, Florida, 32601, USA.,Mpala Research Centre, Box 555, Nanyuki, Kenya
| | - Corinna Riginos
- The Nature Conservancy, Lander, Wyoming, 82520, USA.,Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, 82071, USA
| | - Patrick D Milligan
- Department of Biology, University of Florida, Gainesville, Florida, 32601, USA.,Mpala Research Centre, Box 555, Nanyuki, Kenya
| | - Brandon R Hays
- Mpala Research Centre, Box 555, Nanyuki, Kenya.,Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, 82071, USA
| | - Alejandro G Pietrek
- Department of Biology, University of Florida, Gainesville, Florida, 32601, USA.,Mpala Research Centre, Box 555, Nanyuki, Kenya.,Instituto de Bio y Geociencias del NOA (IBIGEO), Salta, Argentina
| | - Nelly J Maiyo
- Conservation Department, Ol Pejeta Conservancy, Private Bag-10400, Nanyuki, Kenya
| | - Samuel Mutisya
- Conservation Department, Ol Pejeta Conservancy, Private Bag-10400, Nanyuki, Kenya
| | - Benard Gituku
- Conservation Department, Ol Pejeta Conservancy, Private Bag-10400, Nanyuki, Kenya
| | - Simon Musila
- Mammalogy Section, National Museums of Kenya, Nairobi, Kenya
| | - Scott Carpenter
- School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut, 06520, USA
| | - Jacob R Goheen
- Mpala Research Centre, Box 555, Nanyuki, Kenya.,Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, 82071, USA
| |
Collapse
|
9
|
Amador‐Vargas S. Plant killing by Neotropical acacia ants: ecology, decision‐making, and head morphology. Biotropica 2019. [DOI: 10.1111/btp.12695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sabrina Amador‐Vargas
- Escuela de Biología Universidad de Costa Rica San José Costa Rica
- Department of Ecology, Evolution and Behavior University of Texas at Austin Austin TX USA
| |
Collapse
|
10
|
Archetti M. Maintenance of variation in mutualism by screening. Evolution 2019; 73:2036-2043. [DOI: 10.1111/evo.13816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Marco Archetti
- Department of BiologyPennsylvania State University University Park Pennsylvania 18602
- Huck Institutes of the Life SciencesPennsylvania State University University Park Pennsylvania 18602
| |
Collapse
|
11
|
Newitt JT, Prudence SMM, Hutchings MI, Worsley SF. Biocontrol of Cereal Crop Diseases Using Streptomycetes. Pathogens 2019; 8:pathogens8020078. [PMID: 31200493 PMCID: PMC6630304 DOI: 10.3390/pathogens8020078] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/05/2019] [Accepted: 06/09/2019] [Indexed: 12/12/2022] Open
Abstract
A growing world population and an increasing demand for greater food production requires that crop losses caused by pests and diseases are dramatically reduced. Concurrently, sustainability targets mean that alternatives to chemical pesticides are becoming increasingly desirable. Bacteria in the plant root microbiome can protect their plant host against pests and pathogenic infection. In particular, Streptomyces species are well-known to produce a range of secondary metabolites that can inhibit the growth of phytopathogens. Streptomyces are abundant in soils and are also enriched in the root microbiomes of many different plant species, including those grown as economically and nutritionally valuable cereal crops. In this review we discuss the potential of Streptomyces to protect against some of the most damaging cereal crop diseases, particularly those caused by fungal pathogens. We also explore factors that may improve the efficacy of these strains as biocontrol agents in situ, as well as the possibility of exploiting plant mechanisms, such as root exudation, that enable the recruitment of microbial species from the soil to the root microbiome. We argue that a greater understanding of these mechanisms may enable the development of protective plant root microbiomes with a greater abundance of beneficial bacteria, such as Streptomyces species.
Collapse
Affiliation(s)
- Jake T Newitt
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| | - Samuel M M Prudence
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| | - Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| |
Collapse
|
12
|
Leftwich PT, Hutchings MI, Chapman T. Diet, Gut Microbes and Host Mate Choice: Understanding the significance of microbiome effects on host mate choice requires a case by case evaluation. Bioessays 2018; 40:e1800053. [PMID: 30311675 DOI: 10.1002/bies.201800053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 09/06/2018] [Indexed: 12/22/2022]
Abstract
All organisms live in close association with microbes. However, not all such associations are meaningful in an evolutionary context. Current debate concerns whether hosts and microbes are best described as communities of individuals or as holobionts (selective units of hosts plus their microbes). Recent reports that assortative mating of hosts by diet can be mediated by commensal gut microbes have attracted interest as a potential route to host reproductive isolation (RI). Here, the authors discuss logical problems with this line of argument. The authors briefly review how microbes can affect host mating preferences and evaluate recent findings from fruitflies. Endosymbionts can potentially influence host RI given stable and recurrent co-association of hosts and microbes over evolutionary time. However, observations of co-occurrence of microbes and hosts are ripe for misinterpretation and such associations will rarely represent a meaningful holobiont. A framework in which hosts and their microbes are independent evolutionary units provides the only satisfactory explanation for the observed range of effects and associations.
Collapse
Affiliation(s)
- Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
13
|
Batstone RT, Carscadden KA, Afkhami ME, Frederickson ME. Using niche breadth theory to explain generalization in mutualisms. Ecology 2018; 99:1039-1050. [PMID: 29453827 DOI: 10.1002/ecy.2188] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/12/2017] [Accepted: 01/22/2018] [Indexed: 02/02/2023]
Abstract
For a mutualism to remain evolutionarily stable, theory predicts that mutualists should limit their associations to high-quality partners. However, most mutualists either simultaneously or sequentially associate with multiple partners that confer the same type of reward. By viewing mutualisms through the lens of niche breadth evolution, we outline how the environment shapes partner availability and relative quality, and ultimately a focal mutualist's partner breadth. We argue that mutualists that associate with multiple partners may have a selective advantage compared to specialists for many reasons, including sampling, complementarity, and portfolio effects, as well as the possibility that broad partner breadth increases breadth along other niche axes. Furthermore, selection for narrow partner breadth is unlikely to be strong when the environment erodes variation in partner quality, reduces the costs of interacting with low-quality partners, spatially structures partner communities, or decreases the strength of mutualism. Thus, we should not be surprised that most mutualists have broad partner breadth, even if it allows for ineffective partners to persist.
Collapse
Affiliation(s)
- Rebecca T Batstone
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| | - Kelly A Carscadden
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada.,Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Michelle E Afkhami
- Department of Biology, University of Miami, Coral Gables, Florida, 33146, USA
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| |
Collapse
|
14
|
Palmer TM, Riginos C, Damiani RE, Morgan N, Lemboi JS, Lengingiro J, Ruiz-Guajardo JC, Pringle RM. Influence of neighboring plants on the dynamics of an ant-acacia protection mutualism. Ecology 2017; 98:3034-3043. [DOI: 10.1002/ecy.2008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/10/2017] [Accepted: 08/18/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Todd M. Palmer
- Department of Biology; University of Florida; Gainesville Florida USA
- Mpala Research Centre; Nanyuki Kenya
| | - Corinna Riginos
- Mpala Research Centre; Nanyuki Kenya
- Department of Zoology and Physiology; University of Wyoming; Laramie Wyoming USA
| | - Rachel E. Damiani
- Department of Biology; University of Florida; Gainesville Florida USA
- Mpala Research Centre; Nanyuki Kenya
| | - Natalya Morgan
- Department of Biology; University of Florida; Gainesville Florida USA
- Mpala Research Centre; Nanyuki Kenya
| | | | | | - Juan C. Ruiz-Guajardo
- Mpala Research Centre; Nanyuki Kenya
- Department of Evolution and Ecology; University of California at Davis; Davis California USA
| | - Robert M. Pringle
- Mpala Research Centre; Nanyuki Kenya
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton New Jersey USA
| |
Collapse
|
15
|
Yoder JB, Tiffin P. Sanctions, Partner Recognition, and Variation in Mutualism. Am Nat 2017; 190:491-505. [DOI: 10.1086/693472] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
16
|
Barker JL, Bronstein JL, Friesen ML, Jones EI, Reeve HK, Zink AG, Frederickson ME. Synthesizing perspectives on the evolution of cooperation within and between species. Evolution 2017; 71:814-825. [PMID: 28071790 DOI: 10.1111/evo.13174] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 12/24/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022]
Abstract
Cooperation is widespread both within and between species, but are intraspecific and interspecific cooperation fundamentally similar or qualitatively different phenomena? This review evaluates this question, necessary for a general understanding of the evolution of cooperation. First, we outline three advantages of cooperation relative to noncooperation (acquisition of otherwise inaccessible goods and services, more efficient acquisition of resources, and buffering against variability), and predict when individuals should cooperate with a conspecific versus a heterospecific partner to obtain these advantages. Second, we highlight five axes along which heterospecific and conspecific partners may differ: relatedness and fitness feedbacks, competition and resource use, resource-generation abilities, relative evolutionary rates, and asymmetric strategy sets and outside options. Along all of these axes, certain asymmetries between partners are more common in, but not exclusive to, cooperation between species, especially complementary resource use and production. We conclude that cooperation within and between species share many fundamental qualities, and that differences between the two systems are explained by the various asymmetries between partners. Consideration of the parallels between intra- and interspecific cooperation facilitates application of well-studied topics in one system to the other, such as direct benefits within species and kin-selected cooperation between species, generating promising directions for future research.
Collapse
Affiliation(s)
- Jessica L Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721.,Current Address: Aarhus Institute of Advanced Studies, Aarhus University, 8000, Aarhus C, Denmark
| | - Judith L Bronstein
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721
| | - Maren L Friesen
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824
| | - Emily I Jones
- Department of BioSciences, Rice University, Houston, Texas, 77005
| | - H Kern Reeve
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, 14853
| | - Andrew G Zink
- Department of Biology, San Francisco State University, San Francisco, California, 94132
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| |
Collapse
|
17
|
Yoder JB. Understanding the coevolutionary dynamics of mutualism with population genomics. AMERICAN JOURNAL OF BOTANY 2016; 103:1742-1752. [PMID: 27756732 DOI: 10.3732/ajb.1600154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
Decades of research on the evolution of mutualism has generated a wealth of possible ways whereby mutually beneficial interactions between species persist in spite of the apparent advantages to individuals that accept the benefits of mutualism without reciprocating - but identifying how any particular empirical system is stabilized against cheating remains challenging. Different hypothesized models of mutualism stability predict different forms of coevolutionary selection, and emerging high-throughput sequencing methods allow examination of the selective histories of mutualism genes and, thereby, the form of selection acting on those genes. Here, I review the evolutionary theory of mutualism stability and identify how differing models make contrasting predictions for the population genomic diversity and geographic differentiation of mutualism-related genes. As an example of the possibilities offered by genomic data, I analyze genes with roles in the symbiosis of Medicago truncatula and nitrogen-fixing rhizobial bacteria, the first classic mutualism in which extensive genomic resources have been developed for both partners. Medicago truncatula symbiosis genes, as a group, differ from the rest of the genome, but they vary in the form of selection indicated by their diversity and differentiation - some show signs of selection expected from roles in sanctioning noncooperative symbionts, while others show evidence of balancing selection expected from coevolution with symbiont signaling factors. I then assess the current state of development for similar resources in other mutualistic interactions and look ahead to identify ways in which modern sequencing technology can best inform our understanding of mutualists and mutualism.
Collapse
Affiliation(s)
- Jeremy B Yoder
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4 Canada
| |
Collapse
|
18
|
Balliet D, Tybur JM, Van Lange PAM. Functional Interdependence Theory: An Evolutionary Account of Social Situations. PERSONALITY AND SOCIAL PSYCHOLOGY REVIEW 2016; 21:361-388. [PMID: 27466269 DOI: 10.1177/1088868316657965] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Social interactions are characterized by distinct forms of interdependence, each of which has unique effects on how behavior unfolds within the interaction. Despite this, little is known about the psychological mechanisms that allow people to detect and respond to the nature of interdependence in any given interaction. We propose that interdependence theory provides clues regarding the structure of interdependence in the human ancestral past. In turn, evolutionary psychology offers a framework for understanding the types of information processing mechanisms that could have been shaped under these recurring conditions. We synthesize and extend these two perspectives to introduce a new theory: functional interdependence theory (FIT). FIT can generate testable hypotheses about the function and structure of the psychological mechanisms for inferring interdependence. This new perspective offers insight into how people initiate and maintain cooperative relationships, select social partners and allies, and identify opportunities to signal social motives.
Collapse
|
19
|
|
20
|
Abstract
Cooperation between organisms can often be understood, like trade between merchants, as a mutually beneficial exchange of services, resources or other 'commodities'. Mutual benefits alone, however, are not sufficient to explain the evolution of trade-based cooperation. First, organisms may reject a particular trade if another partner offers a better deal. Second, while human trade often entails binding contracts, non-human trade requires unwritten 'terms of contract' that 'self-stabilize' trade and prevent cheating even if all traders strive to maximize fitness. Whenever trading partners can be chosen, market-like situations arise in nature that biologists studying cooperation need to account for. The mere possibility of exerting partner choice stabilizes many forms of otherwise cheatable trade, induces competition, facilitates the evolution of specialization and often leads to intricate forms of cooperation. We discuss selected examples to illustrate these general points and review basic conceptual approaches that are important in the theory of biological trade and markets. Comparing these approaches with theory in economics, it turns out that conventional models-often called 'Walrasian' markets-are of limited relevance to biology. In contrast, early approaches to trade and markets, as found in the works of Ricardo and Cournot, contain elements of thought that have inspired useful models in biology. For example, the concept of comparative advantage has biological applications in trade, signalling and ecological competition. We also see convergence between post-Walrasian economics and biological markets. For example, both economists and biologists are studying 'principal-agent' problems with principals offering jobs to agents without being sure that the agents will do a proper job. Finally, we show that mating markets have many peculiarities not shared with conventional economic markets. Ideas from economics are useful for biologists studying cooperation but need to be taken with caution.
Collapse
Affiliation(s)
- Peter Hammerstein
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin 10115, Germany
| | - Ronald Noë
- Faculté Psychologie, Université de Strasbourg, Strasbourg 67000, France
| |
Collapse
|
21
|
Shou W. Acknowledging selection at sub-organismal levels resolves controversy on pro-cooperation mechanisms. eLife 2015; 4. [PMID: 26714105 PMCID: PMC4798966 DOI: 10.7554/elife.10106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/21/2015] [Indexed: 01/24/2023] Open
Abstract
Cooperators who pay a cost to produce publically-available benefits can be exploited by cheaters who do not contribute fairly. How might cooperation persist against cheaters? Two classes of mechanisms are known to promote cooperation: 'partner choice', where a cooperator preferentially interacts with cooperative over cheating partners; and 'partner fidelity feedback', where repeated interactions between individuals ensure that cheaters suffer as their cooperative partners languish (see, for example, Momeni et al., 2013). However when both mechanisms can act, differentiating them has generated controversy. Here, I resolve this controversy by noting that selection can operate on organismal and sub-organismal 'entities' such that partner fidelity feedback at sub-organismal level can appear as partner choice at organismal level. I also show that cooperation between multicellular eukaryotes and mitochondria is promoted by partner fidelity feedback and partner choice between sub-organismal entities, in addition to being promoted by partner fidelity feedback between hosts and symbionts, as was previously known.
Collapse
Affiliation(s)
- Wenying Shou
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
22
|
Ryan PA, Powers ST, Watson RA. Social niche construction and evolutionary transitions in individuality. BIOLOGY & PHILOSOPHY 2015; 31:59-79. [PMID: 26709324 PMCID: PMC4686542 DOI: 10.1007/s10539-015-9505-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 09/30/2015] [Indexed: 06/05/2023]
Abstract
Social evolution theory conventionally takes an externalist explanatory stance, treating observed cooperation as explanandum and the positive assortment of cooperative behaviour as explanans. We ask how the circumstances bringing about this positive assortment arose in the first place. Rather than merely push the explanatory problem back a step, we move from an externalist to an interactionist explanatory stance, in the spirit of Lewontin and the Niche Construction theorists. We develop a theory of 'social niche construction' in which we consider biological entities to be both the subject and object of their own social evolution. Some important cases of the evolution of cooperation have the side-effect of causing changes in the hierarchical level at which the evolutionary process acts. This is because the traits (e.g. life-history bottlenecks) that act to align the fitness interests of particles (e.g. cells) in a collective can also act to diminish the extent to which those particles are bearers of heritable fitness variance, while augmenting the extent to which collectives of such particles (e.g. multicellular organisms) are bearers of heritable fitness variance. In this way, we can explain upward transitions in the hierarchical level at which the Darwinian machine operates in terms of particle-level selection, even though the outcome of the process is a collective-level selection regime. Our theory avoids the logical and metaphysical paradoxes faced by other attempts to explain evolutionary transitions.
Collapse
Affiliation(s)
- P. A. Ryan
- />Institute for Life Sciences, Electronics and Computer Science, University of Southampton, Southampton, UK
| | - S. T. Powers
- />Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - R. A. Watson
- />Institute for Life Sciences, Electronics and Computer Science, University of Southampton, Southampton, UK
| |
Collapse
|
23
|
Mueller U, Sachs J. Engineering Microbiomes to Improve Plant and Animal Health. Trends Microbiol 2015; 23:606-617. [DOI: 10.1016/j.tim.2015.07.009] [Citation(s) in RCA: 304] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/08/2015] [Accepted: 07/22/2015] [Indexed: 12/22/2022]
|
24
|
Simonsen AK, Stinchcombe JR. Standing genetic variation in host preference for mutualist microbial symbionts. Proc Biol Sci 2015; 281:rspb.2014.2036. [PMID: 25355477 DOI: 10.1098/rspb.2014.2036] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many models of mutualisms show that mutualisms are unstable if hosts lack mechanisms enabling preferential associations with mutualistic symbiotic partners over exploitative partners. Despite the theoretical importance of mutualism-stabilizing mechanisms, we have little empirical evidence to infer their evolutionary dynamics in response to exploitation by non-beneficial partners. Using a model mutualism-the interaction between legumes and nitrogen-fixing soil symbionts-we tested for quantitative genetic variation in plant responses to mutualistic and exploitative symbiotic rhizobia in controlled greenhouse conditions. We found significant broad-sense heritability in a legume host's preferential association with mutualistic over exploitative symbionts and selection to reduce frequency of associations with exploitative partners. We failed to detect evidence that selection will favour the loss of mutualism-stabilizing mechanisms in the absence of exploitation, as we found no evidence for a fitness cost to the host trait or indirect selection on genetically correlated traits. Our results show that genetic variation in the ability to preferentially reduce associations with an exploitative partner exists within mutualisms and is under selection, indicating that micro-evolutionary responses in mutualism-stabilizing traits in the face of rapidly evolving mutualistic and exploitative symbiotic bacteria can occur in natural host populations.
Collapse
Affiliation(s)
- Anna K Simonsen
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Canada M5S 3B2
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology & Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, Canada M5S 3B2
| |
Collapse
|
25
|
|
26
|
Mayer VE, Frederickson ME, McKey D, Blatrix R. Current issues in the evolutionary ecology of ant-plant symbioses. THE NEW PHYTOLOGIST 2014; 202:749-764. [PMID: 24444030 DOI: 10.1111/nph.12690] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/16/2013] [Indexed: 05/08/2023]
Abstract
Ant-plant symbioses involve plants that provide hollow structures specialized for housing ants and often food to ants. In return, the inhabiting ants protect plants against herbivores and sometimes provide them with nutrients. Here, we review recent advances in ant-plant symbioses, focusing on three areas. First, the nutritional ecology of plant-ants, which is based not only on plant-derived food rewards, but also on inputs from other symbiotic partners, in particular fungi and possibly bacteria. Food and protection are the most important 'currencies' exchanged between partners and they drive the nature and evolution of the relationships. Secondly, studies of conflict and cooperation in ant-plant symbioses have contributed key insights into the evolution and maintenance of mutualism, particularly how partner-mediated feedbacks affect the specificity and stability of mutualisms. There is little evidence that mutualistic ants or plants are under selection to cheat, but the costs and benefits of ant-plant interactions do vary with environmental factors, making them vulnerable to natural or anthropogenic environmental change. Thus, thirdly, ant-plant symbioses should be considered good models for investigating the effects of global change on the outcome of mutualistic interactions.
Collapse
Affiliation(s)
- Veronika E Mayer
- Department of Structural and Functional Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, A-1030, Wien, Austria
| | - Megan E Frederickson
- Department of Ecology & Evolutionary Biology, University of Toronto, 25 Harbord Street, Toronto, M5S 3G5, Canada
| | - Doyle McKey
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CEFE, Université Montpellier 2, 1919 route de Mende, 34293, Montpellier Cedex 5, France
- Institut Universitaire de France, Université Montpellier 2, Montpellier Cedex 5, France
| | - Rumsaïs Blatrix
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CEFE, CNRS, 1919 route de Mende, 34293, Montpellier Cedex 5, France
| |
Collapse
|
27
|
Simonsen AK, Stinchcombe JR. Herbivory eliminates fitness costs of mutualism exploiters. THE NEW PHYTOLOGIST 2014; 202:651-661. [PMID: 24428169 DOI: 10.1111/nph.12668] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/28/2013] [Indexed: 05/07/2023]
Abstract
A common empirical observation in mutualistic interactions is the persistence of variation in partner quality and, in particular, the persistence of exploitative phenotypes. For mutualisms between hosts and symbionts, most mutualism theory assumes that exploiters always impose fitness costs on their host. We exposed legume hosts to mutualistic (nitrogen-fixing) and exploitative (non-nitrogen-fixing) symbiotic rhizobia in field conditions, and manipulated the presence or absence of insect herbivory to determine if the costly fitness effects of exploitative rhizobia are context-dependent. Exploitative rhizobia predictably reduced host fitness when herbivores were excluded. However, insects caused greater damage on hosts associating with mutualistic rhizobia, as a consequence of feeding preferences related to leaf nitrogen content, resulting in the elimination of fitness costs imposed on hosts by exploitative rhizobia. Our experiment shows that herbivory is potentially an important factor in influencing the evolutionary dynamic between legumes and rhizobia. Partner choice and host sanctioning are theoretically predicted to stabilize mutualisms by reducing the frequency of exploitative symbionts. We argue that herbivore pressure may actually weaken selection on choice and sanction mechanisms, thus providing one explanation of why host-based discrimination mechanisms may not be completely effective in eliminating nonbeneficial partners.
Collapse
Affiliation(s)
- Anna K Simonsen
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
28
|
Frederickson ME. Rethinking mutualism stability: cheaters and the evolution of sanctions. QUARTERLY REVIEW OF BIOLOGY 2014; 88:269-95. [PMID: 24552098 DOI: 10.1086/673757] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
How cooperation originates and persists in diverse species, from bacteria to multicellular organisms to human societies, is a major question in evolutionary biology. A large literature asks: what prevents selection for cheating within cooperative lineages? In mutualisms, or cooperative interactions between species, feedback between partners often aligns their fitness interests, such that cooperative symbionts receive more benefits from their hosts than uncooperative symbionts. But how do these feedbacks evolve? Cheaters might invade symbiont populations and select for hosts that preferentially reward or associate with cooperators (often termed sanctions or partner choice); hosts might adapt to variation in symbiont quality that does not amount to cheating (e.g., environmental variation); or conditional host responses might exist before cheaters do, making mutualisms stable from the outset. I review evidence from yucca-yucca moth, fig-fig wasp, and legume-rhizobium mutualisms, which are commonly cited as mutualisms stabilized by sanctions. Based on the empirical evidence, it is doubtful that cheaters select for host sanctions in these systems; cheaters are too uncommon. Recognizing that sanctions likely evolved for functions other than retaliation against cheaters offers many insights about mutualism coevolution, and about why mutualism evolves in only some lineages of potential hosts.
Collapse
Affiliation(s)
- Megan E Frederickson
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada.
| |
Collapse
|
29
|
Abucayon E, Ke N, Cornut R, Patelunas A, Miller D, Nishiguchi MK, Zoski CG. Investigating catalase activity through hydrogen peroxide decomposition by bacteria biofilms in real time using scanning electrochemical microscopy. Anal Chem 2013; 86:498-505. [PMID: 24328342 DOI: 10.1021/ac402475m] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Catalase activity through hydrogen peroxide decomposition in a 1 mM bulk solution above Vibrio fischeri (γ-Protebacteria-Vibrionaceae) bacterial biofilms of either symbiotic or free-living strains was studied in real time by scanning electrochemical microscopy (SECM). The catalase activity, in units of micromoles hydrogen peroxide decomposed per minute over a period of 348 s, was found to vary with incubation time of each biofilm in correlation with the corresponding growth curve of bacteria in liquid culture. Average catalase activity for the same incubation times ranging from 1 to 12 h was found to be 0.28 ± 0.07 μmol H2O2/min for the symbiotic biofilms and 0.31 ± 0.07 μmol H2O2/min for the free-living biofilms, suggesting similar catalase activity. Calculations based on Comsol Multiphysics simulations in fitting experimental biofilm data indicated that approximately (3 ± 1) × 10(6) molecules of hydrogen peroxide were decomposed by a single bacterium per second, signifying the presence of a highly active catalase. A 2-fold enhancement in catalase activity was found for both free-living and symbiotic biofilms in response to external hydrogen peroxide concentrations as low as 1 nM in the growth media, implying a similar mechanism in responding to oxidative stress.
Collapse
Affiliation(s)
- Erwin Abucayon
- Department of Chemistry and Biochemistry, New Mexico State University , Las Cruces, New Mexico 88003, United States
| | | | | | | | | | | | | |
Collapse
|
30
|
Heath KD, Stinchcombe JR. EXPLAINING MUTUALISM VARIATION: A NEW EVOLUTIONARY PARADOX? Evolution 2013; 68:309-17. [DOI: 10.1111/evo.12292] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/06/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Katy D. Heath
- Department of Plant Biology; University of Illinois Urbana-Champaign; 265 Morrill Hall, 505 S. Goodwin Avenue Urbana Illinois 61801
| | - John R. Stinchcombe
- Department of Ecology and Evolutionary Biology; University of Toronto; 25 Willcocks Street Toronto Ontario M5S 3B2 Canada
| |
Collapse
|
31
|
Heil M, Barajas-Barron A, Orona-Tamayo D, Wielsch N, Svatos A. Partner manipulation stabilises a horizontally transmitted mutualism. Ecol Lett 2013; 17:185-92. [PMID: 24188323 DOI: 10.1111/ele.12215] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/11/2013] [Accepted: 10/08/2013] [Indexed: 11/30/2022]
Abstract
Mutualisms require protection from non-reciprocating exploiters. Pseudomyrmex workers that engage in an obligate defensive mutualism with Acacia hosts feed exclusively on the sucrose-free extrafloral nectar (EFN) that is secreted by their hosts, a behaviour linking ant energy supply directly to host performance and thus favouring reciprocating behaviour. We tested the hypothesis that Acacia hosts manipulate this digestive specialisation of their ant mutualists. Invertase (sucrose hydrolytic) activity in the ant midguts was inhibited by chitinase, a dominant EFN protein. The inhibition occurred quickly in cell-free gut liquids and in native gels and thus likely results from an enzyme-enzyme interaction. Once a freshly eclosed worker ingests EFN as the first diet available, her invertase becomes inhibited and she, thus, continues feeding on host-derived EFN. Partner manipulation acts at the phenotypic level and means that one partner actively controls the phenotype of the other partner to enhance its dependency on host-derived rewards.
Collapse
Affiliation(s)
- Martin Heil
- Departamento de Ingeniería Genética, CINVESTAV-Irapuato, Irapuato, Guanajuato, México
| | | | | | | | | |
Collapse
|
32
|
May G, Nelson P. Defensive mutualisms: do microbial interactions within hosts drive the evolution of defensive traits? Funct Ecol 2013. [DOI: 10.1111/1365-2435.12166] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Georgiana May
- Department of Ecology; Evolution and Behavior; Saint Paul Minnesota 55108 USA
- Center for Community Genetics; Department of Ecology; Evolution and Behavior; University of Minnesota; Saint Paul Minnesota 55108 USA
| | - Paul Nelson
- Department of Ecology; Evolution and Behavior; Saint Paul Minnesota 55108 USA
- Center for Community Genetics; Department of Ecology; Evolution and Behavior; University of Minnesota; Saint Paul Minnesota 55108 USA
- Graduate program in Ecology; Evolution and Behavior; University of Minnesota; Saint Paul Minnesota 55108 USA
| |
Collapse
|
33
|
Orona-Tamayo D, Heil M. Stabilizing Mutualisms Threatened by Exploiters: New Insights from Ant-Plant Research. Biotropica 2013. [DOI: 10.1111/btp.12059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Domancar Orona-Tamayo
- Departamento de Ingeniería Genética; CINVESTAV-Irapuato; Irapuato Guanajuato Mexico
- Instituto de Investigaciones Químico-Biológicas; Universidad Michoacana de San Nicolás de Hidalgo (UMSNH); Edif. B3, Ciudad Universitaria 58060 Morelia Michoacán Mexico
| | - Martin Heil
- Departamento de Ingeniería Genética; CINVESTAV-Irapuato; Irapuato Guanajuato Mexico
| |
Collapse
|
34
|
Andersen SB, Hansen LH, Sapountzis P, Sørensen SJ, Boomsma JJ. Specificity and stability of the Acromyrmex-Pseudonocardia symbiosis. Mol Ecol 2013; 22:4307-4321. [PMID: 23899369 PMCID: PMC4228762 DOI: 10.1111/mec.12380] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 04/08/2013] [Accepted: 04/18/2013] [Indexed: 12/05/2022]
Abstract
The stability of mutualistic interactions is likely to be affected by the genetic diversity of symbionts that compete for the same functional niche. Fungus-growing (attine) ants have multiple complex symbioses and thus provide ample opportunities to address questions of symbiont specificity and diversity. Among the partners are Actinobacteria of the genus Pseudonocardia that are maintained on the ant cuticle to produce antibiotics, primarily against a fungal parasite of the mutualistic gardens. The symbiosis has been assumed to be a hallmark of evolutionary stability, but this notion has been challenged by culturing and sequencing data indicating an unpredictably high diversity. We used 454 pyrosequencing of 16S rRNA to estimate the diversity of the cuticular bacterial community of the leaf-cutting ant Acromyrmex echinatior and other fungus-growing ants from Gamboa, Panama. Both field and laboratory samples of the same colonies were collected, the latter after colonies had been kept under laboratory conditions for up to 10 years. We show that bacterial communities are highly colony-specific and stable over time. The majority of colonies (25/26) had a single dominant Pseudonocardia strain, and only two strains were found in the Gamboa population across 17 years, confirming an earlier study. The microbial community on newly hatched ants consisted almost exclusively of a single strain of Pseudonocardia while other Actinobacteria were identified on older, foraging ants in varying but usually much lower abundances. These findings are consistent with recent theory predicting that mixtures of antibiotic-producing bacteria can remain mutualistic when dominated by a single vertically transmitted and resource-demanding strain.
Collapse
Affiliation(s)
- S B Andersen
- Centre for Social Evolution, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - L H Hansen
- Molecular Microbial Ecology Group, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - P Sapountzis
- Centre for Social Evolution, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - S J Sørensen
- Molecular Microbial Ecology Group, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - J J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| |
Collapse
|
35
|
Scheuring I, Yu DW. How to assemble a beneficial microbiome in three easy steps. Ecol Lett 2012; 15:1300-1307. [PMID: 22913725 PMCID: PMC3507015 DOI: 10.1111/j.1461-0248.2012.01853.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/14/2012] [Accepted: 07/24/2012] [Indexed: 12/31/2022]
Abstract
There is great interest in explaining how beneficial microbiomes are assembled. Antibiotic-producing microbiomes are arguably the most abundant class of beneficial microbiome in nature, having been found on corals, arthropods, molluscs, vertebrates and plant rhizospheres. An exemplar is the attine ants, which cultivate a fungus for food and host a cuticular microbiome that releases antibiotics to defend the fungus from parasites. One explanation posits long-term vertical transmission of Pseudonocardia bacteria, which (somehow) evolve new compounds in arms-race fashion against parasites. Alternatively, attines (somehow) selectively recruit multiple, non-coevolved actinobacterial genera from the soil, enabling a 'multi-drug' strategy against parasites. We reconcile the models by showing that when hosts fuel interference competition by providing abundant resources, the interference competition favours the recruitment of antibiotic-producing (and -resistant) bacteria. This partner-choice mechanism is more effective when at least one actinobacterial symbiont is vertically transmitted or has a high immigration rate, as in disease-suppressive soils.
Collapse
Affiliation(s)
- István Scheuring
- Research Group in Theoretical Biology and Evolutionary Ecology, Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös University and HAS, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary
| | - Douglas W Yu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR47TJ, UK
| |
Collapse
|
36
|
Seal JN, Gus J, Mueller UG. Fungus-gardening ants prefer native fungal species: do ants control their crops? Behav Ecol 2012. [DOI: 10.1093/beheco/ars109] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
37
|
Jones EI, Bronstein JL, Ferrière R. The fundamental role of competition in the ecology and evolution of mutualisms. Ann N Y Acad Sci 2012; 1256:66-88. [PMID: 22583047 DOI: 10.1111/j.1749-6632.2012.06552.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mutualisms are interspecific interactions that yield reciprocal benefits. Here, by adopting a consumer-resource perspective, we show how considering competition is necessary in order to understand the evolutionary and ecological dynamics of mutualism. We first review the ways in which competition shapes the ecology of mutualisms, using a graphical framework based on resource flows rather than net effects to highlight the opportunities for competition. We then describe the known mechanisms of competition and show how it is a critical driver of the evolutionary dynamics, persistence, and diversification of mutualism. We argue that empirical and theoretical research on the ecology and evolution of mutualisms will jointly progress by addressing four key points: (i) the existence and shape of physiological trade-offs among cooperation, competition, and other life-history and functional traits; (ii) the capacity for individuals to express conditional responses to variation in their mutualistic and competitive environment; (iii) the existence of heritable variation for mutualistic and competitive traits and their potentially conditional expression; and (iv) the structure of the network of consumer-resource interactions in which individuals are embedded.
Collapse
Affiliation(s)
- Emily I Jones
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, USA.
| | | | | |
Collapse
|
38
|
Ivens ABF, Kronauer DJC, Pen I, Weissing FJ, Boomsma JJ. Ants farm subterranean aphids mostly in single clone groups--an example of prudent husbandry for carbohydrates and proteins? BMC Evol Biol 2012; 12:106. [PMID: 22747564 PMCID: PMC3499235 DOI: 10.1186/1471-2148-12-106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/16/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mutualistic interactions are wide-spread but the mechanisms underlying their evolutionary stability and ecological dynamics remain poorly understood. Cultivation mutualisms in which hosts consume symbionts occur in phylogenetically diverse groups, but often have symbiont monocultures for each host. This is consistent with the prediction that symbionts should avoid coexistence with other strains so that host services continue to benefit relatives, but it is less clear whether hosts should always favor monocultures and what mechanisms they might have to manipulate symbiont diversity. Few mutualisms have been studied in sufficient genetic detail to address these issues, so we decided to characterize symbiont diversity in the complex mutualism between multiple root aphid species and Lasius flavus ants. After showing elsewhere that three of these aphid species have low dispersal and mostly if not exclusively asexual reproduction, we here investigate aphid diversity within and between ant nest mounds. RESULTS The three focal species (Geoica utricularia, Forda marginata and Tetraneura ulmi) had considerable clonal diversity at the population level. Yet more than half of the ant mounds contained just a single aphid species, a significantly higher percentage than expected from a random distribution. Over 60% of these single-species mounds had a single aphid clone, and clones tended to persist across subsequent years. Whenever multiple species/clones co-occurred in the same mound, they were spatially separated with more than 95% of the aphid chambers containing individuals of a single clone. CONCLUSIONS L. flavus "husbandry" is characterized by low aphid "livestock" diversity per colony, especially at the nest-chamber level, but it lacks the exclusive monocultures known from other cultivation mutualisms. The ants appear to eat most of the early instar aphids, so that adult aphids are unlikely to face limited phloem resources and scramble competition with other aphids. We suggest that such culling of carbohydrate-providing symbionts for protein ingestion may maintain maximal host yield per aphid while also benefitting the domesticated aphids as long as their clone-mates reproduce successfully. The cost-benefit logic of this type of polyculture husbandry has striking analogies with human farming practices based on slaughtering young animals for meat to maximize milk-production by a carefully regulated adult livestock population.
Collapse
Affiliation(s)
- Aniek B F Ivens
- Theoretical Biology, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
39
|
Symbiont recruitment versus ant-symbiont co-evolution in the attine ant-microbe symbiosis. Curr Opin Microbiol 2012; 15:269-77. [PMID: 22445196 DOI: 10.1016/j.mib.2012.03.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/27/2012] [Accepted: 03/02/2012] [Indexed: 01/11/2023]
Abstract
The symbiosis between fungus-farming ants (Attini, Formicidae), their cultivated fungi, garden-infecting Escovopsis pathogens, and Pseudonocardia bacteria on the ant integument has been popularized as an example of ant-Escovopsis-Pseudonocardia co-evolution. Recent research could not verify earlier conclusions regarding antibiotic-secreting, integumental Pseudonocardia that co-evolve to specifically suppress Escovopsis disease in an ancient co-evolutionary arms-race. Rather than long-term association with a single, co-evolving Pseudonocardia strain, attine ants accumulate complex, dynamic biofilms on their integument and in their gardens. Emerging views are that the integumental biofilms protect the ants primarily against ant diseases, whereas garden biofilms protect primarily against garden diseases; attine ants selectively recruit ('screen in') microbes into their biofilms; and the biofilms of ants and gardens serve diverse functions beyond disease-suppression.
Collapse
|
40
|
Fayle TM, Edwards DP, Turner EC, Dumbrell AJ, Eggleton P, Foster WA. Public goods, public services and by-product mutualism in an ant-fern symbiosis. OIKOS 2011. [DOI: 10.1111/j.1600-0706.2011.20062.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
|
42
|
Archetti M, Scheuring I, Hoffman M, Frederickson ME, Pierce NE, Yu DW. Economic game theory for mutualism and cooperation. Ecol Lett 2011; 14:1300-12. [DOI: 10.1111/j.1461-0248.2011.01697.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Abstract
Diverse bacterial lineages form beneficial infections with eukaryotic hosts. The origins, evolution, and breakdown of these mutualisms represent important evolutionary transitions. To examine these key events, we synthesize data from diverse interactions between bacteria and eukaryote hosts. Five evolutionary transitions are investigated, including the origins of bacterial associations with eukaryotes, the origins and subsequent stable maintenance of bacterial mutualism with hosts, the capture of beneficial symbionts via the evolution of strict vertical transmission within host lineages, and the evolutionary breakdown of bacterial mutualism. Each of these transitions has occurred many times in the history of bacterial-eukaryote symbiosis. We investigate these evolutionary events across the bacterial domain and also among a focal set of well studied bacterial mutualist lineages. Subsequently, we generate a framework for examining evolutionary transitions in bacterial symbiosis and test hypotheses about the selective, ecological, and genomic forces that shape these events.
Collapse
|
44
|
Archetti M. Contract theory for the evolution of cooperation: The right incentives attract the right partners. J Theor Biol 2011; 269:201-7. [DOI: 10.1016/j.jtbi.2010.10.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 10/15/2010] [Accepted: 10/20/2010] [Indexed: 11/26/2022]
|
45
|
Barke J, Seipke RF, Yu DW, Hutchings MI. A mutualistic microbiome: How do fungus-growing ants select their antibiotic-producing bacteria? Commun Integr Biol 2011; 4:41-3. [PMID: 21509175 PMCID: PMC3073267 DOI: 10.4161/cib.4.1.13552] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 09/06/2010] [Indexed: 11/19/2022] Open
Abstract
We recently published a paper titled "A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus" showing that attine ants use multidrug therapy to maintain their fungal cultivars. This paper tested two theories that have been put forward to explain how attine ants establish mutualism with actinomycete symbionts: environmental acquisition versus co-evolution. We found good evidence for environmental acquisition, in agreement with other recent studies. We also found evidence that supports (but does not prove) co-evolution. Here we place the environmental acquisition and co-evolution arguments within the framework of general mutualism theory and discuss how this system provides insights into the mechanisms that assemble microbiomes. We conclude by discussing future directions for research into the attine ant-actinomycete mutualism.
Collapse
Affiliation(s)
- Jörg Barke
- School of Biological Sciences; University of East Anglia; Norwich, Norwich Research Park UK
| | | | | | | |
Collapse
|