1
|
Tuohetahong Y, Lu R, Guo R, Gan F, Zhao F, Ding S, Jin S, Cui H, Niu K, Wang C, Duan W, Ye X, Yu X. Climate and land use/land cover changes increasing habitat overlap among endangered crested ibis and sympatric egret/heron species. Sci Rep 2024; 14:20736. [PMID: 39237616 PMCID: PMC11377550 DOI: 10.1038/s41598-024-71782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024] Open
Abstract
Climate and land use/land cover (LULC) changes have far-reaching effects on various biological processes in wildlife, particularly interspecific interactions. Unfortunately, interspecific interactions are often overlooked when assessing the impacts of environmental changes on endangered species. In this study, we examined niche similarities and habitat overlaps between wild Crested Ibis and sympatric Egret and Heron species (EHs) in Shaanxi, China, using Ecological niche models (ENMs). We aimed to forecast potential alterations in habitat overlaps due to climate and LULC changes. The results showed that although EHs possess a broader niche breadth compared to the Crested Ibis, they still share certain niche similarities, as indicated by Schoener's D and Hellinger's I values exceeding 0.5, respectively. Notably, despite varying degrees of habitat reduction, the shared habitat area of all six species expands with the changes in climate and LULC. We suggest that with the climate and LULC changes, the habitats of sympatric EHs are likely to suffer varying degrees of destruction, forcing them to seek refuge and migrate to the remaining wild Ibis habitat. This is primarily due to the effective conservation efforts in the Crested Ibis habitat in Yangxian County and neighboring areas. Consequently, due to the niche similarity, they will share and compete for limited habitat resources, including food and space. Therefore, we recommend that conservation efforts extend beyond protecting the Crested Ibis habitat. It is crucial to control human activities that contribute to LULC changes to safeguard the habitats of both Crested Ibis and other sympatric birds.
Collapse
Affiliation(s)
| | - Ruyue Lu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Ruiyan Guo
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Feng Gan
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Fuyue Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Sheng Ding
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Saisai Jin
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Huifang Cui
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Kesheng Niu
- Shaanxi Hanzhong Crested Ibis National Nature Reserve, Hanzhong, 723300, China
| | - Chao Wang
- Shaanxi Hanzhong Crested Ibis National Nature Reserve, Hanzhong, 723300, China
| | - Wenbing Duan
- Shaanxi Hanzhong Crested Ibis National Nature Reserve, Hanzhong, 723300, China
| | - Xinping Ye
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
- Research Center for UAV Remote Sensing, Shaanxi Normal University, Xi'an, 710119, China.
- Changqing Teaching & Research Base of Ecology, Shaanxi Normal University, Xi'an, 710119, China.
| | - Xiaoping Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
- Research Center for UAV Remote Sensing, Shaanxi Normal University, Xi'an, 710119, China.
- Changqing Teaching & Research Base of Ecology, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
2
|
Zhao W, Gao J, Hall D, Andersson BA, Bruxaux J, Tomlinson KW, Drouzas AD, Suyama Y, Wang XR. Evolutionary radiation of the Eurasian Pinus species under pervasive gene flow. THE NEW PHYTOLOGIST 2024. [PMID: 38515228 DOI: 10.1111/nph.19694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Evolutionary radiation, a pivotal aspect of macroevolution, offers valuable insights into evolutionary processes. The genus Pinus is the largest genus in conifers withc . $$ c. $$ 90% of the extant species emerged in the Miocene, which signifies a case of rapid diversification. Despite this remarkable history, our understanding of the mechanisms driving radiation within this expansive genus has remained limited. Using exome capture sequencing and a fossil-calibrated phylogeny, we investigated the divergence history, niche diversification, and introgression among 13 closely related Eurasian species spanning climate zones from the tropics to the boreal Arctic. We detected complex introgression among lineages in subsection Pinus at all stages of the phylogeny. Despite this widespread gene exchange, each species maintained its genetic identity and showed clear niche differentiation. Demographic analysis unveiled distinct population histories among these species, which further influenced the nucleotide diversity and efficacy of purifying and positive selection in each species. Our findings suggest that radiation in the Eurasian pines was likely fueled by interspecific recombination and further reinforced by their adaptation to distinct environments. Our study highlights the constraints and opportunities for evolutionary change, and the expectations of future adaptation in response to environmental changes in different lineages.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, SE-90187, Sweden
| | - Jie Gao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - David Hall
- Forestry Research Institute of Sweden (Skogforsk), Sävar, SE-91833, Sweden
| | - Bea Angelica Andersson
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, SE-90187, Sweden
| | - Jade Bruxaux
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, SE-90187, Sweden
| | - Kyle W Tomlinson
- Center for Integrative Conservation & Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephant, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - Andreas D Drouzas
- Laboratory of Systematic Botany and Phytogeography, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Yoshihisa Suyama
- Graduate School of Agricultural Science, Tohoku University, Miyagi, 989-6711, Japan
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, SE-90187, Sweden
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
3
|
Carscadden KA, Batstone RT, Hauser FE. Origins and evolution of biological novelty. Biol Rev Camb Philos Soc 2023; 98:1472-1491. [PMID: 37056155 DOI: 10.1111/brv.12963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Understanding the origins and impacts of novel traits has been a perennial interest in many realms of ecology and evolutionary biology. Here, we build on previous evolutionary and philosophical treatments of this subject to encompass novelties across biological scales and eco-evolutionary perspectives. By defining novelties as new features at one biological scale that have emergent effects at other biological scales, we incorporate many forms of novelty that have previously been treated in isolation (such as novelty from genetic mutations, new developmental pathways, new morphological features, and new species). Our perspective is based on the fundamental idea that the emergence of a novelty, at any biological scale, depends on its environmental and genetic context. Through this lens, we outline a broad array of generative mechanisms underlying novelty and highlight how genomic tools are transforming our understanding of the origins of novelty. Lastly, we present several case studies to illustrate how novelties across biological scales and systems can be understood based on common mechanisms of change and their environmental and genetic contexts. Specifically, we highlight how gene duplication contributes to the evolution of new complex structures in visual systems; how genetic exchange in symbiosis alters functions of both host and symbiont, resulting in a novel organism; and how hybridisation between species can generate new species with new niches.
Collapse
Affiliation(s)
- Kelly A Carscadden
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1900 Pleasant St, Boulder, CO, 80309, USA
| | - Rebecca T Batstone
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
| | - Frances E Hauser
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| |
Collapse
|
4
|
Understanding opposing predictions of Prochlorococcus in a changing climate. Nat Commun 2023; 14:1445. [PMID: 36922531 PMCID: PMC10017810 DOI: 10.1038/s41467-023-36928-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
Statistically derived species distribution models (SDMs) are increasingly used to predict ecological changes on a warming planet. For Prochlorococcus, the most abundant phytoplankton, an established statistical prediction conflicts with dynamical models as they predict large, opposite, changes in abundance. We probe the SDM at various spatial-temporal scales, showing that light and temperature fail to explain both temporal fluctuations and sharp spatial transitions. Strong correlations between changes in temperature and population emerge only at very large spatial scales, as transects pass through transitions between regions of high and low abundance. Furthermore, a two-state model based on a temperature threshold matches the original SDM in the surface ocean. We conclude that the original SDM has little power to predict changes when Prochlorococcus is already abundant, which resolves the conflict with dynamical models. Our conclusion suggests that SDMs should prove efficacy across multiple spatial-temporal scales before being trusted in a changing ocean.
Collapse
|
5
|
Guo JF, Zhao W, Andersson B, Mao JF, Wang XR. Genomic clines across the species boundary between a hybrid pine and its progenitor in the eastern Tibetan Plateau. PLANT COMMUNICATIONS 2023:100574. [PMID: 36906801 PMCID: PMC10363505 DOI: 10.1016/j.xplc.2023.100574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/09/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Most species have clearly defined distribution ranges and ecological niches. The genetic and ecological causes of species differentiation and the mechanisms that maintain species boundaries between newly evolved taxa and their progenitors are, however, less clearly defined. This study investigated the genetic structure and clines in Pinus densata, a pine of hybrid origin on the southeastern Tibetan Plateau, to gain an understanding of the contemporary dynamics of species barriers. We analyzed genetic diversity in a range-wide collection of P. densata and representative populations of its progenitors, Pinus tabuliformis and Pinus yunnanensis, using exome capture sequencing. We detected four distinct genetic groups within P. densata that reflect its migration history and major gene-flow barriers across the landscape. The demographies of these genetic groups in the Pleistocene were associated with regional glaciation histories. Interestingly, population sizes rebounded rapidly during interglacial periods, suggesting persistence and resilience of the species during the Quaternary ice age. In the contact zone between P. densata and P. yunnanensis, 3.36% of the analyzed loci (57 849) showed exceptional patterns of introgression, suggesting their potential roles in either adaptive introgression or reproductive isolation. These outliers showed strong clines along critical climate gradients and enrichment in a number of biological processes relevant to high-altitude adaptation. This indicates that ecological selection played an important role in generating genomic heterogeneity and a genetic barrier across a zone of species transition. Our study highlights the forces that operate to maintain species boundaries and promote speciation in the Qinghai-Tibetan Plateau and other mountain systems.
Collapse
Affiliation(s)
- Jing-Fang Guo
- National Engineering Research Center of Tree Breeding and Ecological Restoration; State Key Laboratory of Tree Genetics and Breeding; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wei Zhao
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, 90187 Umeå, Sweden
| | - Bea Andersson
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, 90187 Umeå, Sweden
| | - Jian-Feng Mao
- National Engineering Research Center of Tree Breeding and Ecological Restoration; State Key Laboratory of Tree Genetics and Breeding; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, 90187 Umeå, Sweden.
| |
Collapse
|
6
|
Ji R, Yu X, Ren T, Chang Y, Li Z, Xia X, Yin W, Liu C. Genetic diversity and population structure of Caryopteris mongholica revealed by reduced representation sequencing. BMC PLANT BIOLOGY 2022; 22:297. [PMID: 35710341 PMCID: PMC9205053 DOI: 10.1186/s12870-022-03681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Caryopteris mongholica Bunge is a rare broad-leaved shrub distributed in the desert and arid regions of Mongol and North China. Due to land reclamation, natural habitat deterioration and anthropogenic activities in recent years, the wild resources have sharply reduced. To effectively protect and rationally use it, we investigated the genetic diversity and population structure from 18 populations across the range of C. mongholica in China by reduced representation sequencing technology. RESULTS We found the overall average values of observed heterozygosity (Ho), expected heterozygosity (He), and average nucleotide diversity (π) were 0.43, 0.35 and 0.135, respectively. Furthermore, the NM17 population exhibited higher genetic diversity than other populations. The phylogenetic tree, principal component analysis (PCA) and structure analysis showed the sampled individuals clustered into two main groups. The NM03 population, with individuals clustered in both groups, may be a transitional population located between the two groups. In addition, most genetic variation existed within populations (90.97%) compared to that among the populations (9.03%). Interestingly, geographic and environmental distances were almost equally important to the observed genetic differences. Redundancy analysis (RDA) identified optical radiation (OR), minimum temperature (MIT) and mean annual precipitation (MAP) related variables as the most important environment factors influencing genetic variation, and the importance of MIT was also confirmed in the latent factor mixed models (LFMM). CONCLUSIONS The results of this study facilitate research on the genetic diversity of C. mongholica. These genetic features provided vital information for conserving and sustainably developing the C. mongholica genetic resources.
Collapse
Affiliation(s)
- Ruoxuan Ji
- College of Biological Sciences and Biotechnology, National Engineering Research Center of Tree Breeding, Beijing Forestry University, Beijing, China
| | - Xiao Yu
- College of Biological Sciences and Biotechnology, National Engineering Research Center of Tree Breeding, Beijing Forestry University, Beijing, China
| | - Tianmeng Ren
- College of Biological Sciences and Biotechnology, National Engineering Research Center of Tree Breeding, Beijing Forestry University, Beijing, China
| | - Yuan Chang
- College of Biological Sciences and Biotechnology, National Engineering Research Center of Tree Breeding, Beijing Forestry University, Beijing, China
| | - Zheng Li
- College of Biological Sciences and Biotechnology, National Engineering Research Center of Tree Breeding, Beijing Forestry University, Beijing, China
| | - Xinli Xia
- College of Biological Sciences and Biotechnology, National Engineering Research Center of Tree Breeding, Beijing Forestry University, Beijing, China
| | - Weilun Yin
- College of Biological Sciences and Biotechnology, National Engineering Research Center of Tree Breeding, Beijing Forestry University, Beijing, China
| | - Chao Liu
- College of Biological Sciences and Biotechnology, National Engineering Research Center of Tree Breeding, Beijing Forestry University, Beijing, China.
| |
Collapse
|
7
|
Wang D, Xu X, Zhang H, Xi Z, Abbott RJ, Fu J, Liu JQ. Abiotic niche divergence of hybrid species from their progenitors. Am Nat 2022; 200:634-645. [DOI: 10.1086/721372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
|
9
|
Ma Y, Wariss HM, Liao R, Zhang R, Yun Q, Olmstead RG, Chau JH, Milne RI, Van de Peer Y, Sun W. Genome-wide analysis of butterfly bush (Buddleja alternifolia) in three uplands provides insights into biogeography, demography and speciation. THE NEW PHYTOLOGIST 2021; 232:1463-1476. [PMID: 34292587 PMCID: PMC9291457 DOI: 10.1111/nph.17637] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/19/2021] [Indexed: 05/06/2023]
Abstract
Understanding processes that generate and maintain large disjunctions within plant species can provide valuable insights into plant diversity and speciation. The butterfly bush Buddleja alternifolia has an unusual disjunct distribution, occurring in the Himalaya, Hengduan Mountains (HDM) and the Loess Plateau (LP) in China. We generated a high-quality, chromosome-level genome assembly of B. alternifolia, the first within the family Scrophulariaceae. Whole-genome re-sequencing data from 48 populations plus morphological and petal colour reflectance data covering its full distribution range were collected. Three distinct genetic lineages of B. alternifolia were uncovered, corresponding to Himalayan, HDM and LP populations, with the last also differentiated morphologically and phenologically, indicating occurrence of allopatric speciation likely to be facilitated by geographic isolation and divergent adaptation to distinct ecological niches. Moreover, speciation with gene flow between populations from either side of a mountain barrier could be under way within LP. The current disjunctions within B. alternifolia might result from vicariance of a once widespread distribution, followed by several past contraction and expansion events, possibly linked to climate fluctuations promoted by the Kunlun-Yellow river tectonic movement. Several adaptive genes are likely to be either uniformly or diversely selected among regions, providing a footprint of local adaptations. These findings provide new insights into plant biogeography, adaptation and different processes of allopatric speciation.
Collapse
Affiliation(s)
- Yong‐Peng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small PopulationsKunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Hafiz Muhammad Wariss
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small PopulationsKunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Rong‐Li Liao
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small PopulationsKunming Institute of BotanyChinese Academy of SciencesKunming650201China
- Fuzhou Botanical GardenFuzhou350012China
| | - Ren‐Gang Zhang
- Beijing Ori‐Gene Science and Technology Co. LtdBeijing102206China
| | - Quan‐Zheng Yun
- Beijing Ori‐Gene Science and Technology Co. LtdBeijing102206China
| | - Richard G. Olmstead
- Department of Biology and Burke MuseumUniversity of WashingtonBox 351800SeattleWA98195USA
| | - John H. Chau
- Centre for Ecological Genomics and Wildlife ConservationDepartment of ZoologyUniversity of JohannesburgPO Box 524Auckland Park2006South Africa
| | - Richard I. Milne
- Institute of Molecular Plant SciencesUniversity of EdinburghEdinburghEH9 3JHUK
| | - Yves Van de Peer
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentB‐9052Belgium
- VIB Center for Plant Systems BiologyGhentB‐9052Belgium
- College of HorticultureNanjing Agricultural UniversityNanjing210095China
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaArcadia0007South Africa
| | - Wei‐Bang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small PopulationsKunming Institute of BotanyChinese Academy of SciencesKunming650201China
| |
Collapse
|
10
|
Global distribution of soapberries (Sapindus L.) habitats under current and future climate scenarios. Sci Rep 2021; 11:19740. [PMID: 34611181 PMCID: PMC8492679 DOI: 10.1038/s41598-021-98389-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023] Open
Abstract
Sapindus (Sapindus L.) is a widely distributed economically important tree genus that provides biodiesel, biomedical and biochemical products. However, with climate change, deforestation, and economic development, the diversity of Sapindus germplasms may face the risk of destruction. Therefore, utilising historical environmental data and future climate projections from the BCC-CSM2-MR global climate database, we simulated the current and future global distributions of suitable habitats for Sapindus using a Maximum Entropy (MaxEnt) model. The estimated ecological thresholds for critical environmental factors were: a minimum temperature of 0-20 °C in the coldest month, soil moisture levels of 40-140 mm, a mean temperature of 2-25 °C in the driest quarter, a mean temperature of 19-28 °C in the wettest quarter, and a soil pH of 5.6-7.6. The total suitable habitat area was 6059.97 × 104 km2, which was unevenly distributed across six continents. As greenhouse gas emissions increased over time, the area of suitable habitats contracted in lower latitudes and expanded in higher latitudes. Consequently, surveys and conservation should be prioritised in southern hemisphere areas which are in danger of becoming unsuitable. In contrast, other areas in northern and central America, China, and India can be used for conservation and large-scale cultivation in the future.
Collapse
|
11
|
Xia H, Zhao W, Shi Y, Wang XR, Wang B. Microhomologies Are Associated with Tandem Duplications and Structural Variation in Plant Mitochondrial Genomes. Genome Biol Evol 2021; 12:1965-1974. [PMID: 32790831 PMCID: PMC7643612 DOI: 10.1093/gbe/evaa172] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2020] [Indexed: 12/15/2022] Open
Abstract
Short tandem repeats (STRs) contribute to structural variation in plant mitochondrial genomes, but the mechanisms underlying their formation and expansion are unclear. In this study, we detected high polymorphism in the nad7-1 region of the Pinus tabuliformis mitogenome caused by the rapid accumulation of STRs and rearrangements over a few million years ago. The STRs in nad7-1 have a 7-bp microhomology (TAG7) flanking the repeat array. We then scanned the mitogenomes of 136 seed plants to understand the role of microhomology in the formation of STR and mitogenome evolution. A total of 13,170 STRs were identified, and almost half of them were associated with microhomologies. A substantial amount (1,197) of microhomologies was long enough to mediate structural variation, and the length of microhomology is positively correlated with the length of tandem repeat unit. These results suggest that microhomology may be involved in the formation of tandem repeat via microhomology-mediated pathway, and the formation of longer duplicates required greater length of microhomology. We examined the abundance of these 1,197 microhomologies, and found 75% of them were enriched in the plant mitogenomes. Further analyses of the 400 prevalent microhomologies revealed that 175 of them showed differential enrichment between angiosperms and gymnosperms and 186 differed between angiosperms and conifers, indicating lineage-specific usage and expansion of microhomologies. Our study sheds light on the sources of structural variation in plant mitochondrial genomes and highlights the importance of microhomology in mitochondrial genome evolution.
Collapse
Affiliation(s)
- Hanhan Xia
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wei Zhao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Department of Ecology and Environmental Science, UPSC, Umeå University, Umeå, Sweden
| | - Yong Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xiao-Ru Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Department of Ecology and Environmental Science, UPSC, Umeå University, Umeå, Sweden
| | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Corresponding author: E-mail:
| |
Collapse
|
12
|
Zhao YJ, Yin GS, Pan YZ, Tian B, Gong X. Climatic Refugia and Geographical Isolation Contribute to the Speciation and Genetic Divergence in Himalayan-Hengduan Tree Peonies ( Paeonia delavayi and Paeonia ludlowii). Front Genet 2021; 11:595334. [PMID: 33584794 PMCID: PMC7874331 DOI: 10.3389/fgene.2020.595334] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Himalaya and Hengduan Mountains (HHM) is a biodiversity hotspot, and very rich in endemic species. Previous phylogeographical studies proposed different hypotheses (vicariance and climate-driven speciation) in explaining diversification and the observed pattern of extant biodiversity, but it is likely that taxa are forming in this area in species-specific ways. Here, we reexplored the phylogenetic relationship and tested the corresponding hypotheses within Paeonia subsect. Delavayanae composed of one widespread species (Paeonia delavayi) and the other geographically confined species (Paeonia ludlowii). We gathered genetic variation data at three chloroplast DNA fragments and one nuclear gene from 335 individuals of 34 populations sampled from HHM. We performed a combination of population genetic summary statistics, isolation-with-migration divergence models, isolation by environment, and demographic history analyses. We found evidence for the current taxonomic treatment that P. ludlowii and P. delavayi are two different species with significant genetic differentiation. The significant isolation by environment was revealed within all sampled populations but genetic distances only explained by geographical distances within P. delavayi populations. The results of population divergence models and demographic history analyses indicated a progenitor–derivative relationship and the Late Quaternary divergence without gene flow between them. The coalescence of all sampled cpDNA haplotypes could date to the Late Miocene, and P. delavayi populations probably underwent a severe bottleneck in population size during the last glacial period. Genetic variation in Paeonia subsect. Delavayanae is associated with geographical and environmental distances. These findings point to the importance of geological and climatic changes as causes of the speciation event and lineage diversification within Paeonia subsect. Delavayanae.
Collapse
Affiliation(s)
- Yu-Juan Zhao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China.,Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China
| | - Gen-Shen Yin
- College of Agriculture and Life Sciences, Kunming University, Chinese Academy of Sciences (CAS), Kunming, China
| | - Yue-Zhi Pan
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China
| | - Bo Tian
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Xun Gong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China.,Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China
| |
Collapse
|
13
|
The Role of Hybridisation in the Making of the Species-Rich Arctic-Alpine Genus Saxifraga (Saxifragaceae). DIVERSITY 2020. [DOI: 10.3390/d12110440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Evolutionary processes fuelling rapid species diversification are not yet fully understood, although their major contribution to overall patterns of plant biodiversity is well established. Hybridisation is among the least understood of these processes, despite its multifaceted role in speciation processes being widely accepted. Species of the large arctic-alpine genus Saxifraga are notorious for their ability to hybridise; however, the overall role of hybridisation and polyploidisation for the diversification of this genus remains unknown. Here, we provide a comprehensive genus-wide review of hybridisation accounts and ploidy levels. We find that the sections of Saxifraga vary greatly in their propensity to hybridise. The majority of natural hybridisation accounts are from recent localised events (n = 71). Hybridisation hotspots were located in the Pyrenees and the European Alps, thus contrasting with the overall distribution of species richness in the genus. Hybrids or hybrid populations are often short-lived in Saxifraga due to a multitude of reproductive barriers, most commonly low F1 hybrid fertility. However, these barriers are not always fully effective, allowing for backcrossing and the formation of hybrid swarms. In addition, we find that the incidence of polyploidy varies widely across different sections of Saxifraga, with species-rich sections Porphyrion and Saxifraga showing divergent polyploidy proportions. Overall, we show that hybridisation and polyploidisation played differential roles in the diversification of this large genus. Nevertheless, a significant proportion of species are yet to be scrutinised, particularly among the Asian Saxifraga species, illustrating the need for systematic further study to fully unravel the role of hybridisation during the evolution of Saxifraga.
Collapse
|
14
|
Zhao W, Sun YQ, Pan J, Sullivan AR, Arnold ML, Mao JF, Wang XR. Effects of landscapes and range expansion on population structure and local adaptation. THE NEW PHYTOLOGIST 2020; 228:330-343. [PMID: 32323335 DOI: 10.1111/nph.16619] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/15/2020] [Indexed: 05/25/2023]
Abstract
Understanding the origin and distribution of genetic diversity across landscapes is critical for predicting the future of organisms in changing climates. This study investigated how adaptive and demographic forces have shaped diversity and population structure in Pinus densata, a keystone species on Qinghai-Tibetan Plateau (QTP). We examined the distribution of genomic diversity across the range of P. densata using exome capture sequencing. We applied spatially explicit tests to dissect the impacts of allele surfing, geographic isolation and environmental gradients on population differentiation and forecasted how this genetic legacy may limit the persistence of P. densata in future climates. We found that allele surfing from range expansion could explain the distribution of 39% of the c. 48 000 genotyped single nucleotide polymorphisms (SNPs). Uncorrected, these allele frequency clines severely confounded inferences of selection. After controlling for demographic processes, isolation-by-environment explained 9.2-19.5% of the genetic structure, with c. 4.0% of loci being affected by selection. Allele surfing and genotype-environment associations resulted in genomic mismatch under projected climate scenarios. We illustrate that significant local adaptation, when coupled with reduced diversity as a result of demographic history, constrains potential evolutionary response to climate change. The strong signal of genomic vulnerability in P. densata may be representative for other QTP endemics.
Collapse
Affiliation(s)
- Wei Zhao
- Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China
- Department of Ecology and Environmental Science, UPSC, Umeå University, SE-901 87, Umeå, Sweden
| | - Yan-Qiang Sun
- Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China
| | - Jin Pan
- Department of Ecology and Environmental Science, UPSC, Umeå University, SE-901 87, Umeå, Sweden
| | - Alexis R Sullivan
- Department of Ecology and Environmental Science, UPSC, Umeå University, SE-901 87, Umeå, Sweden
| | - Michael L Arnold
- Department of Genetics, University of Georgia, Athens, GA, 30602-7223, USA
| | - Jian-Feng Mao
- Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China
| | - Xiao-Ru Wang
- Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China
- Department of Ecology and Environmental Science, UPSC, Umeå University, SE-901 87, Umeå, Sweden
| |
Collapse
|
15
|
Jia K, Zhao W, Maier PA, Hu X, Jin Y, Zhou S, Jiao S, El‐Kassaby YA, Wang T, Wang X, Mao J. Landscape genomics predicts climate change-related genetic offset for the widespread Platycladus orientalis (Cupressaceae). Evol Appl 2020; 13:665-676. [PMID: 32211059 PMCID: PMC7086053 DOI: 10.1111/eva.12891] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 10/30/2019] [Accepted: 11/03/2019] [Indexed: 12/22/2022] Open
Abstract
Understanding and quantifying populations' adaptive genetic variation and their response to climate change are critical to reforestation's seed source selection, forest management decisions, and gene conservation. Landscape genomics combined with geographic and environmental information provide an opportunity to interrogate forest populations' genome-wide variation for understanding the extent to which evolutionary forces shape past and contemporary populations' genetic structure, and identify those populations that may be most at risk under future climate change. Here, we used genotyping by sequencing to generate over 11,000 high-quality variants from Platycladus orientalis range-wide collection to evaluate its diversity and to predict genetic offset under future climate scenarios. Platycladus orientalis is a widespread conifer in China with significant ecological, timber, and medicinal values. We found population structure and evidences of isolation by environment, indicative of adaptation to local conditions. Gradient forest modeling identified temperature-related variables as the most important environmental factors influencing genetic variation and predicted areas with higher risk under future climate change. This study provides an important reference for forest resource management and conservation for P. orientalis.
Collapse
Affiliation(s)
- Kai‐Hua Jia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingKey Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Wei Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingKey Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | | | - Xian‐Ge Hu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingKey Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yuqing Jin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingKey Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Shan‐Shan Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingKey Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Si‐Qian Jiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingKey Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yousry A El‐Kassaby
- Department of Forest and Conservation SciencesFaculty of ForestryThe University of British ColumbiaVancouverBCCanada
| | - Tongli Wang
- Department of Forest and Conservation SciencesFaculty of ForestryThe University of British ColumbiaVancouverBCCanada
| | - Xiao‐Ru Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingKey Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Department of Ecology and Environmental ScienceUPSCUmeå UniversityUmeåSweden
| | - Jian‐Feng Mao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingKey Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
16
|
Sun YQ, Zhao W, Xu CQ, Xu Y, El-Kassaby YA, De La Torre AR, Mao JF. Genetic Variation Related to High Elevation Adaptation Revealed by Common Garden Experiments in Pinus yunnanensis. Front Genet 2020; 10:1405. [PMID: 32117429 PMCID: PMC7027398 DOI: 10.3389/fgene.2019.01405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/23/2019] [Indexed: 12/30/2022] Open
Abstract
Local adaptation, adaptation to specialized niches and environmental clines have been extensively reported for forest trees. Investigation of the adaptive genetic variation is crucial for forest resource management and breeding, especially in the context of global climate change. Here, we utilized a Pinus yunnanensis common garden experiments established at high and low elevation sites to assess the differences in growth and survival among populations and between the two common garden sites. The studied traits showed significant variation between the two test sites and among populations, suggesting adaptive divergence. To detect genetic variation related to environment, we captured 103,608 high quality SNPs based on RNA sequencing, and used them to assess the genetic diversity and population structure. We identified 321 outlier SNPs from 131 genes showing significant divergence in allelic frequency between survival populations of two sites. Functional categories associated with adaptation to high elevation were found to be related to flavonoid biosynthesis, response to UV, DNA repair, response to reactive oxygen species, and membrane lipid metabolic process. Further investigation of the outlier genes showed overrepresentation of the flavonoid biosynthesis pathway, suggesting that this pathway may play a key role in P. yunnanensis adaptation to high elevation environments. The outlier genes identified, and their variants, provide a basic reference for advanced investigations.
Collapse
Affiliation(s)
- Yan-Qiang Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wei Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Chao-Qun Xu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yulan Xu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University, Kunming, China
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | | | - Jian-Feng Mao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
17
|
Bolte CE, Eckert AJ. Determining the when, where and how of conifer speciation: a challenge arising from the study 'Evolutionary history of a relict conifer Pseudotaxus chienii'. ANNALS OF BOTANY 2020; 125:v-vii. [PMID: 31913458 PMCID: PMC6948208 DOI: 10.1093/aob/mcz201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Constance E Bolte
- Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrew J Eckert
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
18
|
Xu X, Cheng F, Peng L, Sun Y, Hu X, Li S, Xian H, Jia K, Abbott RJ, Mao J. Late Pleistocene speciation of three closely related tree peonies endemic to the Qinling-Daba Mountains, a major glacial refugium in Central China. Ecol Evol 2019; 9:7528-7548. [PMID: 31346420 PMCID: PMC6635923 DOI: 10.1002/ece3.5284] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/22/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
Determining the factors promoting speciation is a major task in ecological and evolutionary research and can be aided by phylogeographic analysis. The Qinling-Daba Mountains (QDM) located in central China form an important geographic barrier between southern subtropical and northern temperate regions, and exhibit complex topography, climatic, and ecological diversity. Surprisingly, few phylogeographic analyses and studies of plant speciation in this region have been conducted. To address this issue, we investigated the genetic divergence and evolutionary histories of three closely related tree peony species (Paeonia qiui, P. jishanensis, and P. rockii) endemic to the QDM. Forty populations of the three tree peony species were genotyped using 22 nuclear simple sequence repeat markers (nSSRs) and three chloroplast DNA sequences to assess genetic structure and phylogenetic relationships, supplemented by morphological characterization and ecological niche modeling (ENM). Morphological and molecular genetic analyses showed the three species to be clearly differentiated from each other. In addition, coalescent analyses using DIYABC conducted on nSSR variation indicated that the species diverged from each other in the late Pleistocene, while ecological niche modeling (ENM) suggested they occupied a larger area during the Last Glacial Maximum (LGM) than at present. The combined genetic evidence from nuclear and chloroplast DNA and the results of ENM indicate that each species persisted through the late Pleistocene in multiple refugia in the Qinling, Daba, and Taihang Mountains with divergence favored by restricted gene flow caused by geographic isolation, ecological divergence, and limited pollen and seed dispersal. Our study contributes to a growing understanding of the origin and population structure of tree peonies and provides insights into the high level of plant endemism present in the Qinling-Daba Mountains of Central China.
Collapse
Affiliation(s)
- Xing‐Xing Xu
- Peony International Research Institute, National Flower Engineering Research Centre, Key Laboratory for the Genetics and Breeding of Forest Trees and Ornamental Plants, College of Landscape ArchitectureBeijing Forestry UniversityBeijingChina
| | - Fang‐Yun Cheng
- Peony International Research Institute, National Flower Engineering Research Centre, Key Laboratory for the Genetics and Breeding of Forest Trees and Ornamental Plants, College of Landscape ArchitectureBeijing Forestry UniversityBeijingChina
| | - Li‐Ping Peng
- Peony International Research Institute, National Flower Engineering Research Centre, Key Laboratory for the Genetics and Breeding of Forest Trees and Ornamental Plants, College of Landscape ArchitectureBeijing Forestry UniversityBeijingChina
| | - Yan‐Qiang Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Xian‐Ge Hu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - San‐Yuan Li
- Forestry Department of Shaanxi ProvinceXi'anShaanxiChina
| | - Hong‐Li Xian
- Forestry Department of Shaanxi ProvinceXi'anShaanxiChina
| | - Kai‐Hua Jia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Richard J. Abbott
- School of Biology, Mitchell BuildingUniversity of St AndrewsSt AndrewsFifeUK
| | - Jian‐Feng Mao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
19
|
Peng LP, Cheng FY, Hu XG, Mao JF, Xu XX, Zhong Y, Li SY, Xian HL. Modelling environmentally suitable areas for the potential introduction and cultivation of the emerging oil crop Paeonia ostii in China. Sci Rep 2019; 9:3213. [PMID: 30824717 PMCID: PMC6397192 DOI: 10.1038/s41598-019-39449-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/09/2019] [Indexed: 11/18/2022] Open
Abstract
Paeonia ostii is a traditional ornamental and medicinal species that has attracted considerable interest for its high oil value. To facilitate the effective and rational cultivation and application of P. ostii in China, it is necessary to determine its potential spatial habitat distribution and environmental requirements. Using high-resolution environmental data for current and future climate scenarios, the potential suitable area and climatic requirements of P. ostii were modelled. Among the 11 environmental variables investigated, growing degree days, precipitation of the wettest month, mean temperature of the coldest quarter, global UV-B radiation, annual precipitation, and soil pH played major roles in determining the suitability of a habitat for the cultivation of P. ostii. Under the current environmental conditions in China, a total area of 20.31 × 105 km2 is suitable for growing P. ostii, accounting for 21.16% of the country's total land area. Under the two future climate scenario/year combinations (i.e., representative concentration pathways [RCPs], RCP2.6 and RCP8.5 in 2050), this species would increase its suitable area at high latitudes while decrease at low latitudes. These results present valuable information and a theoretical reference point for identifying the suitable cultivation areas of P. ostii.
Collapse
Affiliation(s)
- Li-Ping Peng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Fang-Yun Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| | - Xian-Ge Hu
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jian-Feng Mao
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Xing-Xing Xu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yuan Zhong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - San-Yuan Li
- Forestry Department of Shaanxi Province, Xi'an, Shaanxi, 710082, China
| | - Hong-Li Xian
- Forestry Department of Shaanxi Province, Xi'an, Shaanxi, 710082, China
| |
Collapse
|
20
|
Xia H, Wang B, Zhao W, Pan J, Mao J, Wang X. Combining mitochondrial and nuclear genome analyses to dissect the effects of colonization, environment, and geography on population structure in Pinus tabuliformis. Evol Appl 2018; 11:1931-1945. [PMID: 30459839 PMCID: PMC6231471 DOI: 10.1111/eva.12697] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/17/2018] [Accepted: 08/08/2018] [Indexed: 01/04/2023] Open
Abstract
The phylogeographic histories of plants in East Asia are complex and shaped by both past large-scale climatic oscillations and dramatic tectonic events. The impact of these historic events, as well as ecological adaptation, on the distribution of biodiversity remains to be elucidated. Pinus tabuliformis is the dominant coniferous tree in northern China, with a large distribution across wide environmental gradients. We examined genetic variation in this species using genotyping-by-sequencing and mitochondrial (mt) DNA markers. We found population structure on both nuclear and mt genomes with a geographic pattern that corresponds well with the landscape of northern China. To understand the contributions of environment, geography, and colonization history to the observed population structure, we performed ecological niche modeling and partitioned the among-population genomic variance into isolation by environment (IBE), isolation by distance (IBD), and isolation by colonization (IBC). We used mtDNA, which is transmitted by seeds in pine, to reflect colonization. We found little impact of IBE, IBD, and IBC on variation in neutral SNPs, but significant impact of IBE on a group of outlier loci. The lack of IBC illustrates that the maternal history can be quickly eroded from the nuclear genome by high rates of gene flow. Our results suggest that genomic variation in P. tabuliformis is largely affected by neutral and stochastic processes, and the signature of local adaptation is visible only at robust outlier loci. This study enriches our understanding on the complex evolutionary forces that shape the distribution of genetic variation in plant taxa in northern China, and guides breeding, conservation, and reforestation programs for P. tabuliformis.
Collapse
Affiliation(s)
- Hanhan Xia
- Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable UtilizationSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Wei Zhao
- Department of Ecology and Environmental ScienceUPSCUmeå UniversityUmeåSweden
| | - Jin Pan
- Department of Ecology and Environmental ScienceUPSCUmeå UniversityUmeåSweden
| | - Jian‐Feng Mao
- Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Xiao‐Ru Wang
- Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Department of Ecology and Environmental ScienceUPSCUmeå UniversityUmeåSweden
| |
Collapse
|
21
|
Ru D, Sun Y, Wang D, Chen Y, Wang T, Hu Q, Abbott RJ, Liu J. Population genomic analysis reveals that homoploid hybrid speciation can be a lengthy process. Mol Ecol 2018; 27:4875-4887. [PMID: 30357974 DOI: 10.1111/mec.14909] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/22/2018] [Accepted: 10/02/2018] [Indexed: 12/26/2022]
Abstract
An increasing number of species are thought to have originated by homoploid hybrid speciation (HHS), but in only a handful of cases are details of the process known. A previous study indicated that Picea purpurea, a conifer in the Qinghai-Tibet Plateau (QTP), originated through HHS from P. likiangensis and P. wilsonii. To investigate this origin in more detail, we analysed transcriptome data for 114 individuals collected from 34 populations of the three Picea species from their core distributions in the QTP. Phylogenetic, principal component and admixture analyses of nuclear SNPs showed the species to be delimited genetically and that P. purpurea was admixed with approximately 60% of its ancestry derived from P. wilsonii and 40% from P. likiangensis. Coalescent simulations revealed the best-fitting model of origin involved formation of an intermediate hybrid lineage between P. likiangensis and P. wilsonii approximately 6 million years ago (mya), which backcrossed to P. wilsonii to form P. purpurea approximately one mya. The intermediate hybrid lineage no longer exists and is referred to as a "ghost" lineage. Our study emphasizes the power of population genomic analysis combined with coalescent analysis for reconstructing the stages involved in the origin of a homoploid hybrid species over an extended period. In contrast to other studies, we show that these stages can in some instances span a relatively long period of evolutionary time.
Collapse
Affiliation(s)
- Dafu Ru
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Yongshuai Sun
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China.,CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, PR China
| | - Donglei Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Yang Chen
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Tianjing Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Quanjun Hu
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | | | - Jianquan Liu
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| |
Collapse
|
22
|
Wang Y, Yang C, Luo K, Zhang M, Qin Q, Huo Y, Song J, Tao M, Zhang C, Liu S. The Formation of the Goldfish-Like Fish Derived From Hybridization of Female Koi Carp × Male Blunt Snout Bream. Front Genet 2018; 9:437. [PMID: 30369942 PMCID: PMC6194320 DOI: 10.3389/fgene.2018.00437] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/14/2018] [Indexed: 01/21/2023] Open
Abstract
Goldfish (Carassius auratus var., GF; 2n = 100) is the most popular ornamental fish in the world. It is assumed that GF evolved from red crucian carp (C. auratus red var., RCC; 2n = 100). However, this hypothesis lacks direct evidence. Furthermore, our knowledge of the role of hybridization in the formation of new species is sparse. In this study, goldfish-like fish with twin tails (GF-L; 2n = 100) was produced by self-mating red crucian carp-like fish (RCC-L; 2n = 100) derived from the distant crossing of koi carp (Cyprinus carpio haematopterus, KOC; 2n = 100; ♀) with blunt snout bream (Megalobrama amblycephala, BSB; 2n = 48; ♂). The phenotypes and genotypes of GF-L and RCC-L were very similar to those of GF and RCC, respectively. Microsatellite DNA and 5S rDNA analyses revealed that GF-L and RCC-L were closely related to GF and RCC, respectively. The presence of a twin tail of GF-L was related to a base mutation in chordinA from G in RCC-L to T in GF-L, indicating that the lineage of RCC-L and GF-L can be used to study gene variation and function. The sequences of 5S rDNA in GF-L and RCC-L were mapped to the genomes of CC and BSB, which revealed that the average similarities of both GF-L and RCC-L to CC were obviously higher than those to BSB, supporting that the genomes of both RCC-L and GF-L were mainly inherited from KOC. GF-L and RCC-L were homodiploids that were mainly derived from the genome of KOC with some DNA fragments from BSB. The reproductive traits of GF-L and RCC-L were quite different from those of their parents, but were the same as those of GF and RCC. RCC-L easily diversified into GF-L, suggesting that RCC and GF evolved within the same period in their evolutionary pathway. This study provided direct evidence of the KOC-RCC-GF evolutionary pathway that was triggered by distant hybridization, which had important significance in evolutionary biology and genetic breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
23
|
Hernandez A, Escoriza D, Hou M. Patterns of niche diversification in south-east Asian crocodile newts. ZOOL ANZ 2018. [DOI: 10.1016/j.jcz.2018.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Response to climate change of montane herbaceous plants in the genus Rhodiola predicted by ecological niche modelling. Sci Rep 2018; 8:5879. [PMID: 29651147 PMCID: PMC5897335 DOI: 10.1038/s41598-018-24360-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 03/21/2018] [Indexed: 11/18/2022] Open
Abstract
Climate change profoundly influences species distributions. These effects are evident in poleward latitudinal range shifts for many taxa, and upward altitudinal range shifts for alpine species, that resulted from increased annual global temperatures since the Last Glacial Maximum (LGM, ca. 22,000 BP). For the latter, the ultimate consequence of upward shifts may be extinction as species in the highest alpine ecosystems can migrate no further, a phenomenon often characterized as “nowhere to go”. To predict responses to climate change of the alpine plants on the Qinghai-Tibetan Plateau (QTP), we used ecological niche modelling (ENM) to estimate the range shifts of 14 Rhodiola species, beginning with the Last Interglacial (ca. 120,000–140,000 BP) through to 2050. Distributions of Rhodiola species appear to be shaped by temperature-related variables. The southeastern QTP, and especially the Hengduan Mountains, were the origin and center of distribution for Rhodiola, and also served as refugia during the LGM. Under future climate scenario in 2050, Rhodiola species might have to migrate upward and northward, but many species would expand their ranges contra the prediction of the “nowhere to go” hypothesis, caused by the appearance of additional potential habitat concomitant with the reduction of permafrost with climate warming.
Collapse
|
25
|
Predicting Future Seed Sourcing of Platycladus orientalis (L.) for Future Climates Using Climate Niche Models. FORESTS 2017. [DOI: 10.3390/f8120471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Zhang R, Gong X, Folk R. Evidence for continual hybridization rather than hybrid speciation between Ligularia duciformis and L. paradoxa (Asteraceae). PeerJ 2017; 5:e3884. [PMID: 29038755 PMCID: PMC5640982 DOI: 10.7717/peerj.3884] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 09/13/2017] [Indexed: 11/20/2022] Open
Abstract
Background Hybrids possess phenotypic traits that are often intermediate between their parental taxa, which commonly serves as evidence of hybridization in morphological analyses. Natural hybridization has been shown to occur frequently in Ligularia (Asteraceae). In a previous study, Ligularia ×maoniushanensis was demonstrated as a natural hybrid species between L. duciformis and L. paradoxa based on morphological and reproductive traits. Methods We used three chloroplast (cpDNA) fragments (psbA-trnH, trnL-rpl32 and trnQ-5′rps16), the nuclear ribosomal internal transcribed spacer (nrITS), and co-dominant SSR and dominant ISSR markers to study natural hybridization between L. duciformis and L. paradoxa growing sympatrically in two locations. Parental taxa were inferred using network analyses of cpDNA and nrITS haplotypes. Admixture among individuals was examined using the Bayesian clustering programs STRUCTURE and NewHybrids based on the SSR and ISSR data; and potential introgression in the SSR loci was assessed using the INTROGRESS package. Results The putative parental species were clearly distinguished from other sympatric Ligularia species by nrITS data, and L. ×maoniushanensis individuals were confirmed to be the hybrid offspring of L. duciformis and L. paradoxa. Moreover, introgression was detected among several individuals morphologically identified as L. duciformis or L. paradoxa. Analyses of the cpDNA data revealed primarily unidirectional hybridization between L. duciformis and L. paradoxa, with L. paradoxa as the maternal parent in Mt. Maoniu, whereas bidirectional but asymmetrical hybridization was inferred to occur in Heihai Lake. The STRUCTURE analyses based on the SSR data detected two distinct clusters among the three taxa. The NewHybrids analyses showed that individuals circumscribed as L. ×maoniushanensis were dominated by early- and later-generation and backcrossing hybrids. The NewHybrids results based on the ISSR data were congruent with SSR results. In addition, introgression was detected in some SSR loci, and heterogeneity among loci was found in terms of detected patterns of introgression. Conclusions Our data provide strong evidence for hybridization and introgression between L. duciformis and L. paradoxa. Ligularia ×maoniushanensis was demonstrated to be of hybrid origin. Since no evident reproductive isolation was found between the two parental species, detected hybrids appear to be part of hybrid swarms resulting from frequent and ongoing gene flow, which might impede the formation of a new hybrid species.
Collapse
Affiliation(s)
- Rong Zhang
- Key Laboratory of Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xun Gong
- Key Laboratory of Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ryan Folk
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| |
Collapse
|
27
|
Wang S, Ye X, Wang Y, Chen Y, Lin B, Yi Z, Mao Z, Hu F, Zhao R, Wang J, Zhou R, Ren L, Yao Z, Tao M, Zhang C, Xiao J, Qin Q, Liu S. A new type of homodiploid fish derived from the interspecific hybridization of female common carp × male blunt snout bream. Sci Rep 2017. [PMID: 28646171 PMCID: PMC5482800 DOI: 10.1038/s41598-017-04582-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
It is commonly believed that hybridization might lead to the formation of new polyploidy species, but it is unclear whether hybridization can produce a new homodiploid species. Here, we report the spontaneous occurrence of a new crucian carp-like homodiploid fish (2n = 100) that originated from the interspecific hybridization of female common carp (Cyprinus carpio, Cyprininae, 2n = 100) × male blunt snout bream (Megalobrama amblycephala, Cultrinae, 2n = 48). The phenotype and reproductive traits of this new crucian carp-like homodiploid fish were found to be very similar to those of the existing diploid species (diploid crucian carp; Carassius auratus). FISH and 5S rDNA analyses revealed that the genotype of the crucian carp-like homodiploid fish differs from those of its parents but is closely related to that of diploid crucian carp. The results provide evidence of the existence of a possible route through which the distant hybridization of this cross can generate crucian carp. The new type of homodiploid fish is of great value in fish genetic breeding and for studying the early evolutionary process.
Collapse
Affiliation(s)
- Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Xiaolan Ye
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Yude Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Yuting Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Bowen Lin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Zhenfeng Yi
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Zhuangwen Mao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Fangzhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Rurong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Juan Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Rong Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Zhanzhou Yao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China. .,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.
| |
Collapse
|
28
|
Gao J, Lan T. Functional characterization of the late embryogenesis abundant (LEA) protein gene family from Pinus tabuliformis (Pinaceae) in Escherichia coli. Sci Rep 2016; 6:19467. [PMID: 26781930 PMCID: PMC4726009 DOI: 10.1038/srep19467] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/14/2015] [Indexed: 11/21/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins are a large and highly diverse gene family present in a wide range of plant species. LEAs are proposed to play a role in various stress tolerance responses. Our study represents the first-ever survey of LEA proteins and their encoding genes in a widely distributed pine (Pinus tabuliformis) in China. Twenty-three LEA genes were identified from the P. tabuliformis belonging to seven groups. Proteins with repeated motifs are an important feature specific to LEA groups. Ten of 23 pine LEA genes were selectively expressed in specific tissues, and showed expression divergence within each group. In addition, we selected 13 genes representing each group and introduced theses genes into Escherichia coli to assess the protective function of PtaLEA under heat and salt stresses. Compared with control cells, the E. coli cells expressing PtaLEA fusion protein exhibited enhanced salt and heat resistance and viability, indicating the protein may play a protective role in cells under stress conditions. Furthermore, among these enhanced tolerance genes, a certain extent of function divergence appeared within a gene group as well as between gene groups, suggesting potential functional diversity of this gene family in conifers.
Collapse
Affiliation(s)
- Jie Gao
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, China
| | - Ting Lan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 10093, China
| |
Collapse
|
29
|
Ortego J, Noguerales V, Gugger PF, Sork VL. Evolutionary and demographic history of the Californian scrub white oak species complex: an integrative approach. Mol Ecol 2015; 24:6188-208. [PMID: 26547661 DOI: 10.1111/mec.13457] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 01/17/2023]
Abstract
Understanding the factors promoting species formation is a major task in evolutionary research. Here, we employ an integrative approach to study the evolutionary history of the Californian scrub white oak species complex (genus Quercus). To infer the relative importance of geographical isolation and ecological divergence in driving the speciation process, we (i) analysed inter- and intraspecific patterns of genetic differentiation and employed an approximate Bayesian computation (ABC) framework to evaluate different plausible scenarios of species divergence. In a second step, we (ii) linked the inferred divergence pathways with current and past species distribution models (SDMs) and (iii) tested for niche differentiation and phylogenetic niche conservatism across taxa. ABC analyses showed that the most plausible scenario is the one considering the divergence of two main lineages followed by a more recent pulse of speciation. Genotypic data in conjunction with SDMs and niche differentiation analyses support that different factors (geography vs. environment) and modes of speciation (parapatry, allopatry and maybe sympatry) have played a role in the divergence process within this complex. We found no significant relationship between genetic differentiation and niche overlap, which probably reflects niche lability and/or that multiple factors, have contributed to speciation. Our study shows that different mechanisms can drive divergence even among closely related taxa representing early stages of species formation and exemplifies the importance of adopting integrative approaches to get a better understanding of the speciation process.
Collapse
Affiliation(s)
- Joaquín Ortego
- Department of Integrative Ecology, Estación Biológica de Doñana, EBD-CSIC, Avda. Américo Vespucio s/n, E-41092, Seville, Spain
| | - Víctor Noguerales
- Department of Integrative Ecology, Estación Biológica de Doñana, EBD-CSIC, Avda. Américo Vespucio s/n, E-41092, Seville, Spain
| | - Paul F Gugger
- Department of Ecology and Evolutionary Biology, University of California, Box 957239, Los Angeles, CA, 90095, USA
| | - Victoria L Sork
- Department of Ecology and Evolutionary Biology, University of California, Box 957239, Los Angeles, CA, 90095, USA.,Institute of the Environment and Sustainability, University of California, Box 951496, Los Angeles, CA, 90095-1496, USA
| |
Collapse
|
30
|
Takahashi Y, Iseki K, Kitazawa K, Muto C, Somta P, Irie K, Naito K, Tomooka N. A Homoploid Hybrid Between Wild Vigna Species Found in a Limestone Karst. FRONTIERS IN PLANT SCIENCE 2015; 6:1050. [PMID: 26648953 PMCID: PMC4664699 DOI: 10.3389/fpls.2015.01050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
Genus Vigna comprise several domesticated species including cowpea and mungbean, and diverse wild species. We found an introgressive hybrid population derived from two wild species, Vigna umbellata and Vigna exilis, in Ratchaburi district, Thailand. The hybrid was morphologically similar to V. umbellata but habituated in a limestone rock mountain, which is usually dominated by V. exilis. Analyzing simple sequence repeat loci indicated the hybrid has undergone at least one round of backcross by V. umbellata. We found the hybrid acquired vigorous growth from V. umbellata and drought tolerance plus early flowering from V. exilis, and thus has taken over some habitats of V. exilis in limestone karsts. Given the wide crossability of V. umbellata, the hybrid can be a valuable genetic resource to improve drought tolerance of some domesticated species.
Collapse
Affiliation(s)
- Yu Takahashi
- Genetic Resources Center, National Institute of Agrobiological SciencesTsukuba, Japan
| | - Kohtaro Iseki
- Genetic Resources Center, National Institute of Agrobiological SciencesTsukuba, Japan
| | - Kumiko Kitazawa
- Department of International Agricultural Development, Tokyo University of AgricultureTokyo, Japan
| | - Chiaki Muto
- Genetic Resources Center, National Institute of Agrobiological SciencesTsukuba, Japan
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart UniversityNakhon Pathom, Thailand
| | - Kenji Irie
- Department of International Agricultural Development, Tokyo University of AgricultureTokyo, Japan
| | - Ken Naito
- Genetic Resources Center, National Institute of Agrobiological SciencesTsukuba, Japan
| | - Norihiko Tomooka
- Genetic Resources Center, National Institute of Agrobiological SciencesTsukuba, Japan
| |
Collapse
|
31
|
Yang L, Liu ZL, Li J, Dyer RJ. Genetic structure of Pinus henryi and Pinus tabuliformis: Natural landscapes as significant barriers to gene flow among populations. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
32
|
Hu XG, Jin Y, Wang XR, Mao JF, Li Y. Predicting Impacts of Future Climate Change on the Distribution of the Widespread Conifer Platycladus orientalis. PLoS One 2015; 10:e0132326. [PMID: 26132163 PMCID: PMC4488561 DOI: 10.1371/journal.pone.0132326] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/14/2015] [Indexed: 11/27/2022] Open
Abstract
Chinese thuja (Platycladus orientalis) has a wide but fragmented distribution in China. It is an important conifer tree in reforestation and plays important roles in ecological restoration in the arid mountains of northern China. Based on high-resolution environmental data for current and future scenarios, we modeled the present and future suitable habitat for P. orientalis, evaluated the importance of environmental factors in shaping the species´ distribution, and identified regions of high risk under climate change scenarios. The niche models showed that P. orientalis has suitable habitat of ca. 4.2×106 km2 across most of eastern China and identified annual temperature, monthly minimum and maximum ultraviolet-B radiation and wet-day frequency as the critical factors shaping habitat availability for P. orientalis. Under the low concentration greenhouse gas emissions scenario, the range of the species may increase as global warming intensifies; however, under the higher concentrations of emissions scenario, we predicted a slight expansion followed by contraction in distribution. Overall, the range shift to higher latitudes and elevations would become gradually more significant. The information gained from this study should be an useful reference for implementing long-term conservation and management strategies for the species.
Collapse
Affiliation(s)
- Xian-Ge Hu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yuqing Jin
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiao-Ru Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Jian-Feng Mao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- * E-mail: (JFM); (YL)
| | - Yue Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- * E-mail: (JFM); (YL)
| |
Collapse
|
33
|
Guo YY, Luo YB, Liu ZJ, Wang XQ. Reticulate evolution and sea-level fluctuations together drove species diversification of slipper orchids (Paphiopedilum) in South-East Asia. Mol Ecol 2015; 24:2838-55. [PMID: 25847454 DOI: 10.1111/mec.13189] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 03/29/2015] [Accepted: 03/31/2015] [Indexed: 01/19/2023]
Abstract
South-East Asia covers four of the world's biodiversity hotspots, showing high species diversity and endemism. Owing to the successive expansion and contraction of distribution and the fragmentation by geographical barriers, the tropical flora greatly diversified in this region during the Tertiary, but the evolutionary tempo and mode of species diversity remain poorly investigated. Paphiopedilum, the largest genus of slipper orchids comprising nearly 100 species, is mainly distributed in South-East Asia, providing an ideal system for exploring how plant species diversity was shaped in this region. Here, we investigated the evolutionary history of this genus with eight cpDNA regions and four low-copy nuclear genes. Discordance between gene trees and network analysis indicates that reticulate evolution occurred in the genus. Ancestral area reconstruction suggests that vicariance and long-distance dispersal together led to its current distribution. Diversification rate variation was detected and strongly correlated with the species diversity in subg. Paphiopedilum (~80 species). The shift of speciation rate in subg. Paphiopedilum was coincident with sea-level fluctuations in the late Cenozoic, which could have provided ecological opportunities for speciation and created bridges or barriers for gene flow. Moreover, some other factors (e.g. sympatric distribution, incomplete reproductive barriers and clonal propagation) might also be advantageous for the formation and reproduction of hybrid species. In conclusion, our study suggests that the interplay of reticulate evolution and sea-level fluctuations has promoted the diversification of the genus Paphiopedilum and sheds light into the evolution of Orchidaceae and the historical processes of plant species diversification in South-East Asia.
Collapse
Affiliation(s)
- Yan-Yan Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China.,Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, No. 889, Wangtong Road, Shenzhen, 518114, China.,Center for Biotechnology and BioMedicine, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Yi-Bo Luo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| | - Zhong-Jian Liu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, No. 889, Wangtong Road, Shenzhen, 518114, China
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| |
Collapse
|
34
|
Meng J, Mao JF, Zhao W, Xing F, Chen X, Liu H, Xing Z, Wang XR, Li Y. Adaptive differentiation in seedling traits in a hybrid pine species complex, Pinus densata and its parental species, on the Tibetan Plateau. PLoS One 2015; 10:e0118501. [PMID: 25757072 PMCID: PMC4355066 DOI: 10.1371/journal.pone.0118501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 01/19/2015] [Indexed: 11/24/2022] Open
Abstract
Evidence from molecular genetics demonstrates that Pinus densata is a natural homoploid hybrid originating from the parent species Pinus tabuliformis and Pinus yunnanensis, and ecological selection may have played a role in the speciation of P. densata. However, data on differentiation in adaptive traits in the species complex are scarce. In this study, we performed a common garden test on 16 seedling traits to examine the differences between P. densata and its parental species in a high altitude environment. We found that among the 16 analyzed traits, 15 were significantly different among the species. Pinus tabuliformis had much earlier bud set and a relatively higher bud set ratio but poorer seedling growth, and P. yunnanensis had opposite responses for the same traits. P. densata had the greatest fitness with higher viability and growth rates than the parents. The relatively high genetic contribution of seedling traits among populations suggested that within each species the evolutionary background is complex. The correlations between the seedling traits of a population within a species and the environmental factors indicated different impacts of the environment on species evolution. The winter temperature is among the most important climate factors that affected the fitness of the three pine species. Our investigation provides empirical evidence on adaptive differentiation among this pine species complex at seedling stages.
Collapse
Affiliation(s)
- Jingxiang Meng
- State Engineering Laboratory of Forest Tree Breeding, Key Laboratory of Genetic and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
- College of Biology Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jian-Feng Mao
- State Engineering Laboratory of Forest Tree Breeding, Key Laboratory of Genetic and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
- College of Biology Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wei Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Fangqian Xing
- State Engineering Laboratory of Forest Tree Breeding, Key Laboratory of Genetic and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
- College of Biology Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xinyu Chen
- State Engineering Laboratory of Forest Tree Breeding, Key Laboratory of Genetic and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
- College of Biology Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hao Liu
- College of Resources and Environment, College of Agriculture and Animal Husbandry of Tibet University, Linzhi, Tibet, China
| | - Zhen Xing
- College of Resources and Environment, College of Agriculture and Animal Husbandry of Tibet University, Linzhi, Tibet, China
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Yue Li
- State Engineering Laboratory of Forest Tree Breeding, Key Laboratory of Genetic and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
- College of Biology Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
35
|
Zhao W, Meng J, Wang B, Zhang L, Xu Y, Zeng QY, Li Y, Mao JF, Wang XR. Weak crossability barrier but strong juvenile selection supports ecological speciation of the hybrid pine Pinus densata on the Tibetan plateau. Evolution 2014; 68:3120-33. [PMID: 25065387 PMCID: PMC4278550 DOI: 10.1111/evo.12496] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 07/10/2014] [Indexed: 12/16/2022]
Abstract
Determining how a new hybrid lineage can achieve reproductive isolation is a key to understanding the process and mechanisms of homoploid hybrid speciation. Here, we evaluated the degree and nature of reproductive isolation between the ecologically successful hybrid species Pinus densata and its parental species P. tabuliformis and P. yunnanensis. We performed interspecific crosses among the three species to assess their crossability. We then conducted reciprocal transplantation experiments to evaluate their fitness differentiation, and to examine how natural populations representing different directions of introgression differ in adaptation. The crossing experiments revealed weak genetic barriers among the species. The transplantation trials showed manifest evidence of local adaptation as the three species all performed best in their native habitats. Pinus densata populations from the western edge of its distribution have evolved a strong local adaptation to the specific habitat in that range; populations representing different directions of introgressants with the two parental species all showed fitness disadvantages in this P. densata habitat. These observations illustrate that premating isolation through selection against immigrants from other habitat types or postzygotic isolation through selection against backcrosses between the three species is strong. Thus, ecological selection in combination with endogenous components and geographic isolation has likely played a significant role in the speciation of P. densata.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abbott RJ, Brennan AC. Altitudinal gradients, plant hybrid zones and evolutionary novelty. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130346. [PMID: 24958920 PMCID: PMC4071520 DOI: 10.1098/rstb.2013.0346] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Altitudinal gradients are characterized by steep changes of the physical and biotic environment that present challenges to plant adaptation throughout large parts of the world. Hybrid zones may form where related species inhabit different neighbouring altitudes and can facilitate interspecific gene flow and potentially the breakdown of species barriers. Studies of such hybrid zones can reveal much about the genetic basis of adaptation to environmental differences stemming from changes in altitude and the maintenance of species divergence in the face of gene flow. Furthermore, owing to recombination and transgressive effects, such hybrid zones can be sources of evolutionary novelty. We document plant hybrid zones associated with altitudinal gradients and emphasize similarities and differences in their structure. We then focus on recent studies of a hybrid zone between two Senecio species that occur at high and low altitude on Mount Etna, Sicily, showing how adaptation to local environments and intrinsic selection against hybrids act to maintain it. Finally, we consider the potential of altitudinal hybrid zones for generating evolutionary novelty through adaptive introgression and hybrid speciation. Examples of homoploid hybrid species of Senecio and Pinus that originated from altitudinal hybrid zones are discussed.
Collapse
Affiliation(s)
- Richard J Abbott
- School of Biology, University of St Andrews, St Andrews, Fife KY16 9TH, UK
| | - Adrian C Brennan
- School of Biology, University of St Andrews, St Andrews, Fife KY16 9TH, UK School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| |
Collapse
|
37
|
Zhang D, Xia T, Yan M, Dai X, Xu J, Li S, Yin T. Genetic introgression and species boundary of two geographically overlapping pine species revealed by molecular markers. PLoS One 2014; 9:e101106. [PMID: 24977711 PMCID: PMC4076219 DOI: 10.1371/journal.pone.0101106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/02/2014] [Indexed: 12/04/2022] Open
Abstract
Gene introgression and hybrid barriers have long been a major focus of studies of geographically overlapping species. Two pine species, Pinus massoniana and P. hwangshanensis, are frequently observed growing adjacent to each other, where they overlap in a narrow hybrid zone. As a consequence, these species constitute an ideal system for studying genetic introgression and reproductive barriers between naturally hybridizing, adjacently distributed species. In this study, we sampled 270 pine trees along an elevation gradient in Anhui Province, China and analyzed these samples using EST-SSR markers. The molecular data revealed that direct gene flow between the two species was fairly low, and that the majority of gene introgression was intermediated by backcrossing. On the basis of empirical observation, the on-site distribution of pines was divided into a P. massoniana zone, a hybrid zone, and a P. hwangshanensis zone. STRUCTURE analysis revealed the existence of a distinct species boundary between the two pine species. The genetic boundary of the hybrid zone, on the other hand, was indistinct owing to intensive backcrossing with parental species. Compared with P. massoniana, P. hwangshanensis was found to backcross with the hybrids more intensively, consistent with the observation that morphological and anatomical characteristics of trees in the contact zone were biased towards P. hwangshanensis. The introgression ability of amplified alleles varied across species, with some being completely blocked from interspecific introgression. Our study has provided a living example to help explain the persistence of adjacently distributed species coexisting with their interfertile hybrids.
Collapse
Affiliation(s)
- Defang Zhang
- The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing, China
| | - Tao Xia
- The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing, China
| | - Maomao Yan
- The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing, China
| | - Xiaogang Dai
- The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing, China
| | - Jin Xu
- The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing, China
| | - Shuxian Li
- The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing, China
| | - Tongming Yin
- The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing, China
- * E-mail:
| |
Collapse
|
38
|
Liu B, Abbott RJ, Lu Z, Tian B, Liu J. Diploid hybrid origin ofOstryopsis intermedia(Betulaceae) in the Qinghai-Tibet Plateau triggered by Quaternary climate change. Mol Ecol 2014; 23:3013-27. [DOI: 10.1111/mec.12783] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/18/2014] [Accepted: 04/25/2014] [Indexed: 01/16/2023]
Affiliation(s)
- Bingbing Liu
- MOE Key Laboratory of Bio-Resources and Eco-Environment; College of Life Science; Sichuan University; Chengdu 610065 China
- State Key Laboratory of Grassland Agro-Ecosystem; College of Life Science; Lanzhou University; Lanzhou 730000 China
| | - Richard J. Abbott
- School of Biology; University of St Andrews; Mitchell Building St Andrews Fife KY16 9TH UK
| | - Zhiqiang Lu
- State Key Laboratory of Grassland Agro-Ecosystem; College of Life Science; Lanzhou University; Lanzhou 730000 China
| | - Bin Tian
- State Key Laboratory of Grassland Agro-Ecosystem; College of Life Science; Lanzhou University; Lanzhou 730000 China
| | - Jianquan Liu
- MOE Key Laboratory of Bio-Resources and Eco-Environment; College of Life Science; Sichuan University; Chengdu 610065 China
| |
Collapse
|
39
|
Xing F, Mao JF, Meng J, Dai J, Zhao W, Liu H, Xing Z, Zhang H, Wang XR, Li Y. Needle morphological evidence of the homoploid hybrid origin of Pinus densata based on analysis of artificial hybrids and the putative parents, Pinus tabuliformis and Pinus yunnanensis. Ecol Evol 2014; 4:1890-902. [PMID: 24963383 PMCID: PMC4063482 DOI: 10.1002/ece3.1062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 03/11/2014] [Accepted: 03/17/2014] [Indexed: 11/07/2022] Open
Abstract
Genetic analyses indicate that Pinus densata is a natural homoploid hybrid originating from Pinus tabuliformis and Pinus yunnanensis. Needle morphological and anatomical features show relative species stability and can be used to identify coniferous species. Comparative analyses of these needle characteristics and phenotypic differences between the artificial hybrids, P. densata, and parental species can be used to determine the genetic and phenotypic evolutionary consequences of natural hybridization. Twelve artificial hybrid families, the two parental species, and P. densata were seeded in a high-altitude habitat in Linzhi, Tibet. The needles of artificial hybrids and the three pine species were collected, and 24 needle morphological and anatomical traits were analyzed. Based on these results, variations in 10 needle traits among artificial hybrid families and 22 traits among species and artificial hybrids were predicted and found to be under moderate genetic control. Nineteen needle traits in artificial hybrids were similar to those in P. densata and between the two parental species, P. tabuliformis and P. yunnanensis. The ratio of plants with three needle clusters in artificial hybrids was 22.92%, which was very similar to P. densata. The eight needle traits (needle length, the mean number of stomata in sections 2 mm in length of the convex and flat sides of the needle, mean stomatal density, mesophyll/vascular bundle area ratio, mesophyll/resin canal area ratio, mesophyll/(resin canals and vascular bundles) area ratio, vascular bundle/resin canal area ratio) relative to physiological adaptability were similar to the artificial hybrids and P. densata. The similar needle features between the artificial hybrids and P. densata could be used to verify the homoploid hybrid origin of P. densata and helps to better understand of the hybridization roles in adaptation and speciation in plants.
Collapse
Affiliation(s)
- Fangqian Xing
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry UniversityBeijing, 100083, China
| | - Jian-Feng Mao
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry UniversityBeijing, 100083, China
| | - Jingxiang Meng
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry UniversityBeijing, 100083, China
| | - Jianfeng Dai
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry UniversityBeijing, 100083, China
| | - Wei Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, 100093, China
| | - Hao Liu
- College of Resources and Environment, College of agriculture and animal husbandry of Tibet UniversityLinzhi, 860000, China
| | - Zhen Xing
- College of Resources and Environment, College of agriculture and animal husbandry of Tibet UniversityLinzhi, 860000, China
| | - Hua Zhang
- College of Resources and Environment, College of agriculture and animal husbandry of Tibet UniversityLinzhi, 860000, China
| | - Xiao-Ru Wang
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry UniversityBeijing, 100083, China
- Department of Ecology and Environmental Science, Umeå UniversitySE-901 87, Umeå, Sweden
| | - Yue Li
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry UniversityBeijing, 100083, China
| |
Collapse
|
40
|
Li L, Abbott RJ, Liu B, Sun Y, Li L, Zou J, Wang X, Miehe G, Liu J. Pliocene intraspecific divergence and Plio-Pleistocene range expansions within Picea likiangensis (Lijiang spruce), a dominant forest tree of the Qinghai-Tibet Plateau. Mol Ecol 2014; 22:5237-55. [PMID: 24118118 DOI: 10.1111/mec.12466] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 07/04/2013] [Accepted: 07/17/2013] [Indexed: 11/30/2022]
Abstract
A knowledge of intraspecific divergence and range dynamics of dominant forest trees in response to past geological and climate change is of major importance to an understanding of their recent evolution and demography. Such knowledge is informative of how forests were affected by environmental factors in the past and may provide pointers to their response to future environmental change. However, genetic signatures of such historical events are often weak at individual loci due to large effective population sizes and long generation times of forest trees. This problem can be overcome by analysing genetic variation across multiple loci. We used this approach to examine intraspecific divergence and past range dynamics in the conifer Picea likiangensis, a dominant tree of forests occurring in eastern and southern areas of the Qinghai-Tibet Plateau (QTP). We sequenced 13 nuclear loci, two mitochondrial DNA regions and three plastid (chloroplast) DNA regions in 177 individuals sampled from 22 natural populations of this species, and tested the hypothesis that its evolutionary history was markedly affected by Pliocene QTP uplifts and Quaternary climatic oscillations. Consistent with the taxonomic delimitation of the three morphologically divergent varieties examined, all individuals clustered into three genetic groups with intervariety admixture detected in regions of geographical overlap. Divergence between varieties was estimated to have occurred within the Pliocene and ecological niche modelling based on 20 ecological variables suggested that niche differentiation was high. Furthermore, modelling of population-genetic data indicated that two of the varieties (var. rubescens and var. linzhiensis) expanded their population sizes after the largest Quaternary glaciation in the QTP, while expansion of the third variety (var. likiangensis) began prior to this, probably following the Pliocene QTP uplift. These findings point to the importance of geological and climatic changes during the Pliocene and Pleistocene as causes of intraspecific diversification and range shifts of dominant tree species in the QTP biodiversity hot spot region.
Collapse
Affiliation(s)
- Long Li
- State Key Laboratory of Grassland Agro-Ecosystem, College of Life Science, Lanzhou University, Lanzhou 730000, Gansu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sun Y, Abbott RJ, Li L, Li L, Zou J, Liu J. Evolutionary history of Purple cone spruce (Picea purpurea) in the Qinghai-Tibet Plateau: homoploid hybrid origin and Pleistocene expansion. Mol Ecol 2013; 23:343-59. [PMID: 26010556 DOI: 10.1111/mec.12599] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 01/29/2023]
Abstract
Hybridization and introgression can play an important role in speciation. Here, we examine their roles in the origin and evolution of Picea purpurea, a diploid spruce species occurring on the Qinghai-Tibet Plateau (QTP). Phylogenetic relationships and ecological differences between this species and its relatives, P. schrenkiana, P. likiangensis and P. wilsonii, are unclear. To clarify them, we surveyed sequence variation within and between them for 11 nuclear loci, three chloroplast (cp) and two mitochondrial (mt) DNA fragments, and examined their ecological requirements using ecological niche modelling. Initial analyses based on 11 nuclear loci rejected a close relationship between P. schrenkiana and P. purpurea. BP&P tests and ecological niche modelling indicated substantial divergence between the remaining three species and supported the species status of P. purpurea, which contained many private alleles as expected for a well-established species. Sequence variation for cpDNA and mtDNA suggested a close relationship between P. purpurea and P. wilsonii, while variation at the nuclear se1364 gene suggested P. purpurea was more closely related to P. likiangensis. Analyses of genetic divergence, Bayesian clustering and model comparison using approximate Bayesian computation (ABC) of nuclear (nr) DNA variation all supported the hypothesis that P. purpurea originated by homoploid hybrid speciation from P. wilsonii and P. likiangensis. The ABC analysis dated the origin of P. purpurea at the Pleistocene, and the estimated hybrid parameter indicated that 69% of its nuclear composition was contributed by P. likiangensis and 31% by P. wilsonii. Our results further suggested that during or immediately following its formation, P. purpurea was subject to organelle DNA introgression from P. wilsonii such that it came to possess both mtDNA and cpDNA of P. wilsonii. The estimated parameters indicated that following its origin, P. purpurea underwent an expansion during/after the largest Pleistocene glaciation recorded for the QTP.
Collapse
Affiliation(s)
- Yongshuai Sun
- State Key Laboratory of Grassland Agro-ecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China.,Key Laboratory for Bio-resources and Eco-environment, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Richard J Abbott
- School of Biology, University of St Andrews, Mitchell Building, St Andrews, Fife, KY16 9TH, UK
| | - Lili Li
- State Key Laboratory of Grassland Agro-ecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Long Li
- State Key Laboratory of Grassland Agro-ecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Jiabin Zou
- State Key Laboratory of Grassland Agro-ecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Jianquan Liu
- State Key Laboratory of Grassland Agro-ecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
42
|
Lan T, Wang XR, Zeng QY. Structural and functional evolution of positively selected sites in pine glutathione S-transferase enzyme family. J Biol Chem 2013; 288:24441-51. [PMID: 23846689 DOI: 10.1074/jbc.m113.456863] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phylogenetic analyses have identified positive selection as an important driver of protein evolution, both structural and functional. However, the lack of appropriate combined functional and structural assays has generally hindered attempts to elucidate patterns of positively selected sites and their effects on enzyme activity and substrate specificity. In this study we investigated the evolutionary divergence of the glutathione S-transferase (GST) family in Pinus tabuliformis, a pine that is widely distributed from northern to central China, including cold temperate and drought-stressed regions. GSTs play important roles in plant stress tolerance and detoxification. We cloned 44 GST genes from P. tabuliformis and found that 26 of the 44 belong to the largest (Tau) class of GSTs and are differentially expressed across tissues and developmental stages. Substitution models identified five positively selected sites in the Tau GSTs. To examine the functional significance of these positively selected sites, we applied protein structural modeling and site-directed mutagenesis. We found that four of the five positively selected sites significantly affect the enzyme activity and specificity; thus their variation broadens the GST family substrate spectrum. In addition, positive selection has mainly acted on secondary substrate binding sites or sites close to (but not directly at) the primary substrate binding site; thus their variation enables the acquisition of new catalytic functions without compromising the protein primary biochemical properties. Our study sheds light on selective aspects of the functional and structural divergence of the GST family in pine and other organisms.
Collapse
Affiliation(s)
- Ting Lan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | |
Collapse
|
43
|
Wang B, Mao JF, Zhao W, Wang XR. Impact of Geography and Climate on the Genetic Differentiation of the Subtropical Pine Pinus yunnanensis. PLoS One 2013; 8:e67345. [PMID: 23840668 PMCID: PMC3693954 DOI: 10.1371/journal.pone.0067345] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 05/16/2013] [Indexed: 12/22/2022] Open
Abstract
Southwest China is a biodiversity hotspot characterized by complex topography, heterogeneous regional climates and rich flora. The processes and driving factors underlying this hotspot remain to be explicitly tested across taxa to gain a general understanding of the evolution of biodiversity and speciation in the region. In this study, we examined the role played by historically neutral processes, geography and environment in producing the current genetic diversity of the subtropical pine Pinus yunnanensis. We used genetic and ecological methods to investigate the patterns of genetic differentiation and ecological niche divergence across the distribution range of this species. We found both continuous genetic differentiation over the majority of its range, and discrete isolated local clusters. The discrete differentiation between two genetic groups in the west and east peripheries is consistent with niche divergence and geographical isolation of these groups. In the central area of the species' range, population structure was shaped mainly by neutral processes and geography rather than by ecological selection. These results show that geographical and environmental factors together created stronger and more discrete genetic differentiation than isolation by distance alone, and illustrate the importance of ecological factors in forming or maintaining genetic divergence across a complex landscape. Our findings differ from other phylogenetic studies that identified the historical drainage system in the region as the primary factor shaping population structure, and highlight the heterogeneous contributions that geography and environment have made to genetic diversity among taxa in southwest China.
Collapse
Affiliation(s)
- Baosheng Wang
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Jian-Feng Mao
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, People’s Republic of China
| | - Wei Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
44
|
Gao J, Wang B, Mao JF, Ingvarsson P, Zeng QY, Wang XR. Demography and speciation history of the homoploid hybrid pine Pinus densata on the Tibetan Plateau. Mol Ecol 2012; 21:4811-27. [PMID: 22849551 DOI: 10.1111/j.1365-294x.2012.05712.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Pinus densata is an ecologically successful homoploid hybrid that inhabits vast areas of heterogeneous terrain on the south-eastern Tibetan Plateau as a result of multiple waves of colonization. Its region of origin, route of colonization onto the plateau and the directions of introgression with its parental species have previously been defined, but little is known about the isolation and divergence history of its populations. In this study, we surveyed nucleotide polymorphism over eight nuclear loci in 19 representative populations of P. densata and its parental species. Using this information and coalescence simulations, we assessed the historical changes in its population size, gene flow and divergence in time and space. The results indicate a late Miocene origin for P. densata associated with the recent uplift of south-eastern Tibet. The subsequent differentiation between geographical regions of this species began in the late Pliocene and was induced by regional topographical changes and Pleistocene glaciations. The ancestral P. densata population had a large effective population size but the central and western populations were established by limited founders, suggesting that there were severe bottlenecks during the westward migration out of the ancestral hybrid zone. After separating from their ancestral populations, population expansion occurred in all geographical regions especially in the western range. Gene flow in P. densata was restricted to geographically neighbouring populations, resulting in significant differentiation between regional groups. The new information on the divergence and demographic history of P. densata reported herein enhances our understanding of its speciation process on the Tibetan Plateau.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | |
Collapse
|
45
|
McKenzie-Gopsill A, Kirk H, Drunen WV, Freeland JR, Dorken ME. No evidence for niche segregation in a North American Cattail (Typha) species complex. Ecol Evol 2012; 2:952-61. [PMID: 22837840 PMCID: PMC3399161 DOI: 10.1002/ece3.225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/16/2012] [Accepted: 01/19/2012] [Indexed: 11/09/2022] Open
Abstract
Interspecific hybridization can lead to a breakdown of species boundaries, and is of particular concern in cases in which one of the parental species is invasive. Cattails (Typha spp.) have increased their abundance in the Great Lakes region of North America over the past 150 years. This increase in the distribution of cattails is associated with hybridization between broad-leaved (Typha latifolia) and narrow-leaved cattails (T. angustifolia). The resulting hybrids occur predominantly as F(1)s, which are known as T. × glauca, although later-generation hybrids have also been documented. It has been proposed that in sympatric populations, the parental species and hybrids are often spatially segregated according to growth in contrasting water depths, and that this should promote the maintenance of parental species. In this study, we tested the hypothesis that the two species and their hybrids segregate along a water-depth gradient at sites where they are sympatric. We identified the two parental species and their hybrids using molecular genetic markers (SSR), and measured shoot elevations (a proxy for water depth) at 18 sites in Southern Ontario, Canada. We found no evidence for niche segregation among species based on elevation. Our data indicate that all three lineages compete for similar habitat where they co-occur suggesting that there is potential for an overall loss of biodiversity in the species complex, particularly if the hybrid lineage is more vigorous compared to the parental species, as has been suggested by other authors.
Collapse
Affiliation(s)
- Andrew McKenzie-Gopsill
- Department of Biology, Trent University 1600 West Bank Drive, Peterborough, ON, K9J 7B8, Canada
| | | | | | | | | |
Collapse
|
46
|
Warren DL. In defense of 'niche modeling'. Trends Ecol Evol 2012; 27:497-500. [PMID: 22537668 DOI: 10.1016/j.tree.2012.03.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 03/23/2012] [Accepted: 03/27/2012] [Indexed: 10/28/2022]
Abstract
There is a growing awareness of problems with the estimation of the ecological tolerances of species through correlative modeling approaches. These problems have led some investigators to argue for abandoning terms such as 'ecological niche model' and 'environmental niche model' in favor of the ostensibly more value-neutral 'species distribution model', as the models are thought to frequently be poor estimators of the niche. Here, I argue that most applications to which these models are put require the assumption that they do estimate the niche, however imperfectly, and that obscuring this inescapable and potentially flawed assumption in the terminology may only serve to hinder the development of the field.
Collapse
Affiliation(s)
- Dan L Warren
- Section of Integrative Biology, University of Texas, Austin, 1 University Station #C0930, Austin, TX 78712, USA.
| |
Collapse
|
47
|
Lexer C, Stölting KN. Tracing the recombination and colonization history of hybrid species in space and time. Mol Ecol 2012; 20:3701-4. [PMID: 21902743 DOI: 10.1111/j.1365-294x.2011.05246.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hybrid speciation has long fascinated evolutionary biologists and laymen alike, presumably because it challenges our classical view of evolution as a 'one-way street' leading to strictly tree-like patterns of ancestry and descent. Homoploid hybrid speciation (HHS) has been a particularly interesting puzzle, as it appears to occur extremely rapidly, perhaps within less than 50 generations (McCarthy et al. 1995; Buerkle et al. 2000). Nevertheless, HHS may sometimes involve extended or repeated periods of recombination and gene exchange between populations subject to strong divergent natural selection (Buerkle & Rieseberg 2008). Thus, HHS provides a highly interesting setting for understanding the drivers and tempo of adaptive divergence and speciation in the face of gene flow (Arnold 2006; Rieseberg & Willis 2007; Nolte & Tautz 2009). In the present issue of Molecular Ecology, Wang et al. (2011) explore a particularly challenging issue connected to HHS: they attempt to trace the colonization and recombination history of an ancient (several MYA) hybrid species, from admixture and recombination in the ancestral hybrid zone to subsequent range shifts triggered by tectonic events (uplift of the Tibetan plateau) and climatic shifts (Pleistocene ice ages). This work is important because it addresses key issues related to the origin of the standing genetic variation available for adaptive responses (e.g. to climate change) and speciation in temperate species, which are topics of great current interest (Rieseberg et al. 2003; Barrett & Schluter 2008; de Carvalho et al. 2010).
Collapse
Affiliation(s)
- C Lexer
- Unit of Ecology & Evolution, Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland.
| | | |
Collapse
|
48
|
WOOTEN JA, GIBBS HL. Niche divergence and lineage diversification among closely related Sistrurus rattlesnakes. J Evol Biol 2011; 25:317-28. [DOI: 10.1111/j.1420-9101.2011.02426.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Wang B, Mao JF, Gao J, Zhao W, Wang XR. Colonization of the Tibetan Plateau by the homoploid hybrid pine Pinus densata. Mol Ecol 2011; 20:3796-811. [PMID: 21689188 DOI: 10.1111/j.1365-294x.2011.05157.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pinus densata is an intriguingly successful homoploid hybrid species that occupies vast areas of the southeastern Tibetan Plateau in which neither of its parental species are present, but the colonization processes involved are poorly understood. To shed light on how this species colonized and became established on the plateau, we surveyed paternally inherited chloroplast (cp) and maternally inherited mitochondrial (mt) DNA variation within and among 54 populations of P. densata and its putative parental species throughout their respective ranges. Strong spatial genetic structure of both cp and mtDNA were detected in P. densata populations. Mitotypes specific to P. densata were likely generated by complex recombination events. A putative ancestral hybrid zone in the northeastern periphery of P. densata was identified, and we propose that the species then colonized the plateau by migrating westwards. Along the colonization route, consecutive bottlenecks and surfing of rare alleles caused a significant reduction in genetic diversity and strong population differentiation. The direction and intensity of introgression from parental species varied among geographic regions. In western parts of its range, the species seems to have been isolated from seed and pollen flow from its parent species for a long time. The observed spatial distribution of genetic diversity in P. densata also appears to reflect the persistence of this species on the plateau during the last glaciation. Our results indicate that both ancient and contemporary population dynamics have contributed to the spatial distribution of genetic diversity in P. densata, which accordingly reflects its evolutionary history.
Collapse
Affiliation(s)
- Baosheng Wang
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | |
Collapse
|