1
|
Peller T, Gounand I, Altermatt F. Resource Flow Network Structure Drives Metaecosystem Function. Am Nat 2024; 204:546-560. [PMID: 39556878 DOI: 10.1086/732812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
AbstractNonliving resources frequently flow across ecosystem boundaries, which can yield networks of spatially coupled ecosystems. Yet the significance of resource flows for ecosystem function has predominantly been understood by studying two or a few coupled ecosystems, overlooking the broader resource flow network and its spatial structure. Here, we investigate how the spatial structure of larger resource flow networks influences ecosystem function at metaecosystem scales by analyzing metaecosystem models with homogeneously versus heterogeneously distributed resource flow networks but otherwise identical characteristics. We show that metaecosystem function can differ strongly between metaecosystems with contrasting resource flow networks. Differences in function generally arise through the scaling up of nonlinear local processes interacting with spatial variation in local dynamics, the latter of which is influenced by network structure. However, we find that neither network structure guarantees the greatest metaecosystem function. Rather, biotic (organism traits) and abiotic (resource flow rates) properties interact with network structure to determine which yields greater metaecosystem function. Our findings suggest that the spatial structure of resource flow networks coupling ecosystems can be a driver of ecosystem function at landscape scales. Furthermore, our study demonstrates how modifications to the structural, biotic, or abiotic properties of metaecosystem networks can have nontrivial large-scale effects on ecosystem function.
Collapse
|
2
|
Negrín Dastis JO, McGuinness B, Tadiri CP, Yargeau V, Gonzalez A. Connectivity mediates the spatial ecological impacts of a glyphosate-based herbicide in experimental metaecosystems. Oecologia 2024; 205:709-723. [PMID: 39133237 PMCID: PMC11358246 DOI: 10.1007/s00442-024-05601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
Metacommunity ecology has shown that connectivity is important for the persistence of a species locally and across connected ecosystems, however we do not know if ecological effects in freshwater ecosystems exposed to biocides leaking from agriculture depend on metaecosystem connectivity. We experimentally replicated metaecosystems in the laboratory using gradostats as a model system. We tested the effects of connectivity, in terms of node distance from the pollutant-source, flow rate, and a glyphosate-based herbicide, on phytoplankton productivity, diversity and stability. Gradostats were composed of interconnected equally spaced nodes where resources and phytoplankton move directionally along a gradient of increasing distance from the source of the polluting herbicide. We hypothesised that ecological effects would be stronger in the node situated closer to the point of herbicide input, but that flow would suppress phytoplankton populations in distant nodes. Overall, RoundUp impacted phytoplankton productivity and stability by reducing algal biomass and abundances. This occurred especially in the node closest to the diluted herbicide point-source and under high flow, where species abundances were heavily suppressed by the effects of the rapidly flowing herbicide. At low flow on the other hand, distant nodes where buffered from the effects of the slow-moving herbicide. No differences in beta and gamma diversity among replicate metaecosystems was found; however, a significant loss of alpha diversity in all metaecosystems occurred through time until the end of the experiment. Together, these results point to the importance of considering aquatic connectivity in management plans for monitoring and mitigating unintended ecological consequences of agrochemical runoff.
Collapse
Affiliation(s)
- Jorge Octavio Negrín Dastis
- Department of Biology, McGill University, 1205 Avenue Doctor Penfield, Montreal, QC, H3A 1B1, Canada.
- Quebec Center for Biodiversity Research Science (QCBS), Montreal, Canada.
- Fisheries and Oceans Canada, 200 Kent Street, Ottawa, ON, K1A 0E6, Canada.
| | - Brendon McGuinness
- Department of Biology, McGill University, 1205 Avenue Doctor Penfield, Montreal, QC, H3A 1B1, Canada
- Quebec Center for Biodiversity Research Science (QCBS), Montreal, Canada
| | - Christina P Tadiri
- Department of Biology, McGill University, 1205 Avenue Doctor Penfield, Montreal, QC, H3A 1B1, Canada
- Quebec Center for Biodiversity Research Science (QCBS), Montreal, Canada
- Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4058, Basel, Switzerland
| | - Viviane Yargeau
- Department of Biochemistry, McGill University, 3649 Promenade Sir-William-Osler, Montreal, QC, H3A 1A3, Canada
| | - Andrew Gonzalez
- Department of Biology, McGill University, 1205 Avenue Doctor Penfield, Montreal, QC, H3A 1B1, Canada.
- Quebec Center for Biodiversity Research Science (QCBS), Montreal, Canada.
| |
Collapse
|
3
|
Monk JD, Donadio E, Gregorio PF, Schmitz OJ. Vicuña antipredator diel movement drives spatial nutrient subsidies in a high Andean ecosystem. Ecology 2024; 105:e4262. [PMID: 38351587 DOI: 10.1002/ecy.4262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/13/2023] [Accepted: 12/22/2023] [Indexed: 03/02/2024]
Abstract
Large animals could be important drivers of spatial nutrient subsidies when they ingest resources in some habitats and release them in others, even moving nutrients against elevational gradients. In high Andean deserts, vicuñas (Vicugna vicugna) move daily between nutrient-rich wet meadows, where there is abundant water and forage but high risk of predation by pumas (Puma concolor), and nutrient-poor open plains with lower risk of predation. In all habitats, vicuñas defecate and urinate in communal latrines. We investigated how these latrines impacted soil and plant nutrient concentrations across three habitats in the Andean ecosystem (meadows, plains, and canyons) and used stable isotope analysis to explore the source of fecal nutrients in latrines. Latrine soils had higher concentrations of nitrogen, carbon, and other nutrients than did nonlatrine soils across all habitats. These inputs corresponded with an increase in plant quality (lower C:N) at latrine sites in plains and canyons, but not in meadows. Stable isotope mixing models suggest that ~7% of nutrients in plains latrines originated from vegetation in meadows, which is disproportionately higher than the relative proportion of meadow habitat (2.6%) in the study area. In contrast, ~68% of nutrients in meadow latrines appear to originate from plains and canyon vegetation, though these habitats made up nearly 98% of the study area. Vicuña diel movements thus appear to concentrate nutrients in latrines within habitats and to drive cross-habitat nutrient subsidies, with disproportionate transport from low-lying, nutrient-rich meadows to more elevated, nutrient-poor plains. When these results are scaled up to the landscape scale, the amount of nitrogen and phosphorus subsidized in soil at plains latrines was of the same order of magnitude as estimates of annual atmospheric nitrogen and phosphorus deposition for this region (albeit far more localized and patchy). Thus, vicuña-mediated nutrient redistribution and deposition appears to be an important process impacting ecosystem functioning in arid Andean environments, on par with other major inputs of nutrients to the system.
Collapse
Affiliation(s)
- Julia D Monk
- School of the Environment, Yale University, New Haven, Connecticut, USA
- Fundación Rewilding Argentina, Buenos Aires, Argentina
| | | | - Pablo F Gregorio
- Grupo de Investigaciones en Ecofisiología de Fauna Silvestre, INIBIOMA (Universidad Nacional del Comahue-CONICET), San Martín de los Andes, Argentina
| | - Oswald J Schmitz
- School of the Environment, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Pichon B, Thébault E, Lacroix G, Gounand I. Quality matters: Stoichiometry of resources modulates spatial feedbacks in aquatic-terrestrial meta-ecosystems. Ecol Lett 2023; 26:1700-1713. [PMID: 37458203 DOI: 10.1111/ele.14284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
Species dispersal and resource spatial flows greatly affect the dynamics of connected ecosystems. So far, research on meta-ecosystems has mainly focused on the quantitative effect of subsidy flows. Yet, resource exchanges at heterotrophic-autotrophic (e.g. aquatic-terrestrial) ecotones display a stoichiometric asymmetry that likely matters for functioning. Here, we joined ecological stoichiometry and the meta-ecosystem framework to understand how subsidy stoichiometry mediates the response of the meta-ecosystem to subsidy flows. Our model results demonstrate that resource flows between ecosystems can induce a positive spatial feedback loop, leading to higher production at the meta-ecosystem scale by relaxing local ecosystem limitations ('spatial complementarity'). Furthermore, we show that spatial flows can also have an unexpected negative impact on production when accentuating the stoichiometric mismatch between local resources and basal species needs. This study paves the way for studies on the interdependency of ecosystems at the landscape extent.
Collapse
Affiliation(s)
- Benoît Pichon
- Institut d'écologie et des sciences de l'environnement (iEES Paris), Sorbonne Université, CNRS, UPEC, CNRS, IRD, INRA, Paris, France
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Elisa Thébault
- Institut d'écologie et des sciences de l'environnement (iEES Paris), Sorbonne Université, CNRS, UPEC, CNRS, IRD, INRA, Paris, France
| | - Gérard Lacroix
- Institut d'écologie et des sciences de l'environnement (iEES Paris), Sorbonne Université, CNRS, UPEC, CNRS, IRD, INRA, Paris, France
- CNRS, UAR 3194 (ENS, CNRS), CEREEP-Ecotron IleDeFrance, Ecole Normale Supérieure, Paris, France
| | - Isabelle Gounand
- Institut d'écologie et des sciences de l'environnement (iEES Paris), Sorbonne Université, CNRS, UPEC, CNRS, IRD, INRA, Paris, France
| |
Collapse
|
5
|
Awender S, Wackerbauer R, Breed GA. Combining generalized modeling and specific modeling in the analysis of ecological networks. CHAOS (WOODBURY, N.Y.) 2023; 33:033130. [PMID: 37003835 DOI: 10.1063/5.0131352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
The complexity of real food webs involves uncertainty in data and in underlying ecological processes, and modeling approaches deal with these challenges differently. Generalized modeling provides a linear stability analysis without narrow specification of all processes, and conventional dynamical systems models approximate functional forms to discuss trajectories in phase space. This study compares results and ecological interpretations from both methods in four-species ecological networks at steady state. We find that a specific (dynamical systems) model only provides a subset of stability data from the generalized model, which spans many plausible dynamic scenarios, allowing for conflicting results. Nevertheless, both approaches reveal that fixed points become stable when nutrient flows to predators are fettered and even more when the basal growth rate approaches a maximum. The specific model identifies a distinct ecosystem response to bottom-up forcing, the enrichment of lower trophic levels. Enrichment stabilizes a fixed point when basal species are in a resource-deprived environment but destabilizes it if resources become more abundant. The generalized model provides less specific information since infinitely many paths of enrichment are hypothetical. Nevertheless, generalized modeling of ecological systems is a powerful technique that enables a meta analysis of these uncertain complex systems.
Collapse
Affiliation(s)
- Stefan Awender
- Department of Physics, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA
| | - Renate Wackerbauer
- Department of Physics, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA
| | - Greg A Breed
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA
| |
Collapse
|
6
|
Peller T, Guichard F, Altermatt F. The significance of partial migration for food web and ecosystem dynamics. Ecol Lett 2023; 26:3-22. [PMID: 36443028 DOI: 10.1111/ele.14143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/09/2022] [Accepted: 10/30/2022] [Indexed: 11/30/2022]
Abstract
Migration is ubiquitous and can strongly shape food webs and ecosystems. Less familiar, however, is that the majority of life cycle, seasonal and diel migrations in nature are partial migrations: only a fraction of the population migrates while the other individuals remain in their resident ecosystem. Here, we demonstrate different impacts of partial migration rendering it fundamental to our understanding of the significance of migration for food web and ecosystem dynamics. First, partial migration affects the spatiotemporal distribution of individuals and the food web and ecosystem-level processes they drive differently than expected under full migration. Second, whether an individual migrates or not is regularly correlated with morphological, physiological, and/or behavioural traits that shape its food-web and ecosystem-level impacts. Third, food web and ecosystem dynamics can drive the fraction of the population migrating, enabling the potential for feedbacks between the causes and consequences of migration within and across ecosystems. These impacts, individually and in combination, can yield unintuitive effects of migration and drive the dynamics, diversity and functions of ecosystems. By presenting the first full integration of partial migration and trophic (meta-)community and (meta-)ecosystem ecology, we provide a roadmap for studying how migration affects and is affected by ecosystem dynamics in a changing world.
Collapse
Affiliation(s)
- Tianna Peller
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Eawag: Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | | | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Eawag: Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
7
|
Quévreux P, Loreau M. Synchrony and Stability in Trophic Metacommunities: When Top Predators Navigate in a Heterogeneous World. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.865398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ecosystem stability strongly depends on spatial aspects since localized perturbations spread across an entire region through species dispersal. Assessing the synchrony of the response of connected populations is fundamental to understand stability at different scales because if populations fluctuate asynchronously, the risk of their simultaneous extinction is low, thus reducing the species' regional extinction risk. Here, we consider a metacommunity model consisting of two food chains connected by dispersal and we review the various mechanisms governing the transmission of small perturbations affecting populations in the vicinity of equilibrium. First, we describe how perturbations propagate vertically (i.e., within food chains through trophic interactions) and horizontally (i.e., between food chains through dispersal) in metacommunities. Then, we discuss the mechanisms susceptible to alter synchrony patterns such as density-depend dispersal or spatial heterogeneity. Density-dependent dispersal, which is the influence of prey or predator abundance on dispersal, has a major impact because the species with the highest coefficient of variation of biomass governs the dispersal rate of the dispersing species and determines the synchrony of its populations, thus bypassing the classic vertical transmission of perturbations. Spatial heterogeneity, which is a disparity between patches of the attack rate of predators on prey in our model, alters the vertical transmission of perturbations in each patch, thus making synchrony dependent on which patch is perturbed. Finally, by combining our understanding of the impact of each of these mechanisms on synchrony, we are able to full explain the response of realistic metacommunities such as the model developed by Rooney et al. (2006). By disentangling the main mechanisms governing synchrony, our metacommunity model provides a broad insight into the consequences of spacial aspects on food web stability.
Collapse
|
8
|
Little CJ, Rizzuto M, Luhring TM, Monk JD, Nowicki RJ, Paseka RE, Stegen JC, Symons CC, Taub FB, Yen JDL. Movement with meaning: integrating information into meta‐ecology. OIKOS 2022. [DOI: 10.1111/oik.08892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chelsea J. Little
- Biodiversity Research Centre, Univ. of British Columbia Vancouver BC Canada
- School of Environmental Science, Simon Fraser Univ. Burnaby BC Canada
| | - Matteo Rizzuto
- Dept of Biology, Memorial Univ. of Newfoundland St. John's NL Canada
| | | | - Julia D. Monk
- School of the Environment, Yale Univ. New Haven CT USA
| | - Robert J. Nowicki
- Elizabeth Moore International Center for Coral Reef Research and Restoration, Mote Marine Laboratory Summerland Key FL USA
| | - Rachel E. Paseka
- Dept of Ecology, Evolution and Behavior, Univ. of Minnesota Saint Paul MN USA
| | | | - Celia C. Symons
- Dept of Ecology and Evolutionary Biology, Univ. of California Irvine CA USA
| | - Frieda B. Taub
- School of Aquatic and Fishery Sciences, Univ. of Washington Seattle WA USA
| | - Jian D. L. Yen
- School of BioSciences, Univ. of Melbourne, Melbourne, Australia, and Arthur Rylah Inst. for Environmental Reserach Heidelberg Victoria Australia
| |
Collapse
|
9
|
Chowdhury SR, Arumugam R, Zou W, Chandrasekar VK, Senthilkumar DV. Role of limiting dispersal on metacommunity stability and persistence. Phys Rev E 2022; 105:034309. [PMID: 35428060 DOI: 10.1103/physreve.105.034309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/01/2022] [Indexed: 11/07/2022]
Abstract
The role of dispersal on the stability and synchrony of a metacommunity is a topic of considerable interest in theoretical ecology. Dispersal is known to promote both synchrony, which enhances the likelihood of extinction, and spatial heterogeneity, which favors the persistence of the population. Several efforts have been made to understand the effect of diverse variants of dispersal in the spatially distributed ecological community. Despite that environmental change strongly affects the dispersal, the effects of controlled dispersal on the metacommunity stability and their persistence remain unknown. We study the influence of limiting the immigration using two-patch prey-predator metacommunity at both local and spatial scales. We find that the spread of the inhomogeneous stable steady states (asynchronous states) decreases monotonically upon limiting the predator dispersal. Nevertheless, at the local scale, the spread of the inhomogeneous steady states increases up to a critical value of the limiting factor, favoring the metacommunity persistence, and then starts decreasing for a further decrease in the limiting factor with varying local interaction. Interestingly, limiting the prey dispersal promotes inhomogeneous steady states in a large region of the parameter space, thereby increasing the metacommunity persistence at both spatial and local scales. Further, we show similar qualitative dynamics in an entire class of complex networks consisting of a large number of patches. We also deduce various bifurcation curves and stability conditions for the inhomogeneous steady states, which we find to agree well with the simulation results. Thus, our findings on the effect of the limiting dispersal can help to develop conservation measures for ecological communities.
Collapse
Affiliation(s)
- Snehasish Roy Chowdhury
- School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, Kerala, India
| | - Ramesh Arumugam
- School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, Kerala, India
| | - Wei Zou
- School of Mathematical Sciences, South China Normal University, Guangzhou 510631, People's Republic of China
| | - V K Chandrasekar
- Department of Physics, Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, Tamilnadu, India
| | - D V Senthilkumar
- School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, Kerala, India
| |
Collapse
|
10
|
Peller T, Marleau JN, Guichard F. Traits affecting nutrient recycling by mobile consumers can explain coexistence and spatially heterogeneous trophic regulation across a meta-ecosystem. Ecol Lett 2021; 25:440-452. [PMID: 34971478 DOI: 10.1111/ele.13941] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/27/2021] [Accepted: 11/07/2021] [Indexed: 11/29/2022]
Abstract
Ecosystems are linked through spatial flows of organisms and nutrients that impact their biodiversity and regulation. Theory has predominantly studied passive nutrient flows that occur independently of organism movement. Mobile organisms, however, commonly drive nutrient flows across ecosystems through nutrient recycling. Using a meta-ecosystem model where consumers move between ecosystems, we study how consumer recycling and traits related to feeding and sheltering preferences affect species diversity and trophic regulation. We show local effects of recycling can cascade across space, yielding spatially heterogeneous top-down and bottom-up effects. Consumer traits impact the direction and magnitude of these effects by enabling recycling to favour a single ecosystem. Recycling further modifies outcomes of competition between consumer species by creating a positive feedback on the production of one competitor. Our findings suggest spatial interactions between feeding and recycling activities of organisms are key to predicting biodiversity and ecosystem functioning across spatial scales.
Collapse
Affiliation(s)
- Tianna Peller
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Justin N Marleau
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
11
|
Raffard A, Bestion E, Cote J, Haegeman B, Schtickzelle N, Jacob S. Dispersal syndromes can link intraspecific trait variability and meta-ecosystem functioning. Trends Ecol Evol 2021; 37:322-331. [PMID: 34952726 DOI: 10.1016/j.tree.2021.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
Dispersal mediates the flow of organisms in meta-communities and subsequently energy and material flows in meta-ecosystems. Individuals within species often vary in dispersal tendency depending on their phenotypic traits (i.e., dispersal syndromes), but the implications of dispersal syndromes for meta-ecosystems have been rarely studied. Using empirical examples on vertebrates, arthropods, and microbes, we highlight that key functional traits can be linked to dispersal. We argue that this coupling between dispersal and functional traits can have consequences for meta-ecosystem functioning, mediating flows of functional traits and thus the spatial heterogeneity of ecosystem functions. As dispersal syndromes may be genetically determined, the spatial heterogeneity of functional traits may be further carried over across generations and link meta-ecosystem functioning to evolutionary dynamics.
Collapse
Affiliation(s)
- Allan Raffard
- Université Catholique de Louvain, Earth and Life Institute, Biodiversity Research Centre, Louvain-la-Neuve, Belgium.
| | - Elvire Bestion
- Station d'Écologie Théorique et Expérimentale du CNRS à Moulis, Moulis, France
| | - Julien Cote
- CNRS, UPS, IRD, Laboratoire Évolution et Diversité Biologique, UAR 5174, 31062, Cedex 9 Toulouse, France
| | - Bart Haegeman
- Station d'Écologie Théorique et Expérimentale du CNRS à Moulis, Moulis, France
| | - Nicolas Schtickzelle
- Université Catholique de Louvain, Earth and Life Institute, Biodiversity Research Centre, Louvain-la-Neuve, Belgium
| | - Staffan Jacob
- Station d'Écologie Théorique et Expérimentale du CNRS à Moulis, Moulis, France
| |
Collapse
|
12
|
Theis K, Quévreux P, Loreau M. Nutrient cycling and self‐regulation determine food web stability. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Kevin Theis
- Theoretical and Experimental Ecology Station UPR 2001 CNRS Moulis France
| | - Pierre Quévreux
- Theoretical and Experimental Ecology Station UPR 2001 CNRS Moulis France
| | - Michel Loreau
- Theoretical and Experimental Ecology Station UPR 2001 CNRS Moulis France
| |
Collapse
|
13
|
Mini-review of process-based food web models and their application in aquatic-terrestrial meta-ecosystems. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Arumugam R, Chandrasekar VK, Senthilkumar DV. Metacommunity persistence to environmental change: Stabilizing and destabilizing effects of individual species dispersal. Phys Rev E 2021; 104:024202. [PMID: 34525631 DOI: 10.1103/physreve.104.024202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/19/2021] [Indexed: 01/03/2023]
Abstract
Ecological communities face a high risk of extinction to climate change which can destabilize ecological systems. In the face of accelerating environmental change, understanding the factors and the mechanisms that stabilize the ecological communities is a central focus in ecology. Although dispersal has been widely used as an important stabilizing process, it remains unclear how individual species dispersal affects the stability and persistence of an ecological community. In this study, using a spatially coupled predator-prey community, we address the effects of individual species dispersal and nutrient enrichment on metacommunity stability in constant and varying environments. We show two contrasting effects of dispersal on metacommunity persistence in temporally constant and varying environments. Specifically, predator dispersal in constant environments shows stronger stability through inhomogeneous (asynchronized) states, whereas prey dispersal shows an increasing extinction risk through a homogeneous (synchronized) state. On the contrary, the metacommunity dynamics in temporally varying environments reveal that predator dispersal causes a local extinction through tracking unstable states and also a delayed shift between dynamical states. Moreover, our results emphasize that metacommunity persistence depends on individual species dispersal and environmental variations. Thus, our findings of the individual species dispersal can help to develop conservation measures that are tailored to varying environmental conditions.
Collapse
Affiliation(s)
- Ramesh Arumugam
- School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram, 695551 Kerala, India
| | - V K Chandrasekar
- Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur, 613401 Tamilnadu, India
| | - D V Senthilkumar
- School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram, 695551 Kerala, India
| |
Collapse
|
15
|
Ryser R, Hirt MR, Häussler J, Gravel D, Brose U. Landscape heterogeneity buffers biodiversity of simulated meta-food-webs under global change through rescue and drainage effects. Nat Commun 2021; 12:4716. [PMID: 34354058 PMCID: PMC8342463 DOI: 10.1038/s41467-021-24877-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/12/2021] [Indexed: 11/27/2022] Open
Abstract
Habitat fragmentation and eutrophication have strong impacts on biodiversity. Metacommunity research demonstrated that reduction in landscape connectivity may cause biodiversity loss in fragmented landscapes. Food-web research addressed how eutrophication can cause local biodiversity declines. However, there is very limited understanding of their cumulative impacts as they could amplify or cancel each other. Our simulations of meta-food-webs show that dispersal and trophic processes interact through two complementary mechanisms. First, the 'rescue effect' maintains local biodiversity by rapid recolonization after a local crash in population densities. Second, the 'drainage effect' stabilizes biodiversity by preventing overshooting of population densities on eutrophic patches. In complex food webs on large spatial networks of habitat patches, these effects yield systematically higher biodiversity in heterogeneous than in homogeneous landscapes. Our meta-food-web approach reveals a strong interaction between habitat fragmentation and eutrophication and provides a mechanistic explanation of how landscape heterogeneity promotes biodiversity.
Collapse
Affiliation(s)
- Remo Ryser
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Myriam R Hirt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Johanna Häussler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Dominique Gravel
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
16
|
Quévreux P, Barbier M, Loreau M. Synchrony and Perturbation Transmission in Trophic Metacommunities. Am Nat 2021; 197:E188-E203. [PMID: 33989141 DOI: 10.1086/714131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractIn a world where natural habitats are ever more fragmented, the dynamics of metacommunities are essential to properly understand species responses to perturbations. If species' populations fluctuate asynchronously, the risk of their simultaneous extinction is low, thus reducing the species' regional extinction risk. However, identifying synchronizing or desynchronizing mechanisms in systems containing several species and when perturbations affect multiple species is challenging. We propose a metacommunity model consisting of two food chains connected by dispersal to study the transmission of small perturbations affecting populations in the vicinity of an equilibrium. In spite of the complex responses produced by such a system, two elements enable us to understand the key processes that rule the synchrony between populations: (1) knowing which species have the strongest response to perturbations and (2) the relative importance of dispersal processes compared with local dynamics for each species. We show that perturbing a species in one patch can lead to asynchrony between patches if the perturbed species is not the most affected by dispersal. The synchrony patterns of rare species are the most sensitive to the relative strength of dispersal to demographic processes, thus making biomass distribution critical to understanding the response of trophic metacommunities to perturbations. We further partition the effect of each perturbation on species synchrony when perturbations affect multiple trophic levels. Our approach allows disentangling and predicting the responses of simple trophic metacommunities to perturbations, thus providing a theoretical foundation for future studies considering more complex spatial ecological systems.
Collapse
|
17
|
Arumugam R, Lutscher F, Guichard F. Tracking unstable states: ecosystem dynamics in a changing world. OIKOS 2021. [DOI: 10.1111/oik.08051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Frithjof Lutscher
- Dept of Mathematics and Statistics, Dept of Biology, Univ. of Ottawa Ottawa ON Canada
| | | |
Collapse
|
18
|
McCann KS, Cazelles K, MacDougall AS, Fussmann GF, Bieg C, Cristescu M, Fryxell JM, Gellner G, Lapointe B, Gonzalez A. Landscape modification and nutrient-driven instability at a distance. Ecol Lett 2020; 24:398-414. [PMID: 33222413 DOI: 10.1111/ele.13644] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 11/30/2022]
Abstract
Almost 50 years ago, Michael Rosenzweig pointed out that nutrient addition can destabilise food webs, leading to loss of species and reduced ecosystem function through the paradox of enrichment. Around the same time, David Tilman demonstrated that increased nutrient loading would also be expected to cause competitive exclusion leading to deleterious changes in food web diversity. While both concepts have greatly illuminated general diversity-stability theory, we currently lack a coherent framework to predict how nutrients influence food web stability across a landscape. This is a vitally important gap in our understanding, given mounting evidence of serious ecological disruption arising from anthropogenic displacement of resources and organisms. Here, we combine contemporary theory on food webs and meta-ecosystems to show that nutrient additions are indeed expected to drive loss in stability and function in human-impacted regions. Our models suggest that destabilisation is more likely to be caused by the complete loss of an equilibrium due to edible plant species being competitively excluded. In highly modified landscapes, spatial nutrient transport theory suggests that such instabilities can be amplified over vast distances from the sites of nutrient addition. Consistent with this theoretical synthesis, the empirical frequency of these distant propagating ecosystem imbalances appears to be growing. This synthesis of theory and empirical data suggests that human modification of the Earth is strongly connecting distantly separated ecosystems, causing rapid, expansive and costly nutrient-driven instabilities over vast areas of the planet. Similar to existing food web theory, the corollary to this spatial nutrient theory is that slowing down spatial nutrient pathways can be a potent means of stabilising degraded ecosystems.
Collapse
Affiliation(s)
- Kevin S McCann
- University of Guelph, 50 Stone Road, Guelph Ontario, N1G 2W1, Canada
| | - Kevin Cazelles
- University of Guelph, 50 Stone Road, Guelph Ontario, N1G 2W1, Canada.,McGill University, 1205 Dr-Penfield Ave, Montreal, Quebec, H3A 1B1, Canada
| | | | - Gregor F Fussmann
- McGill University, 1205 Dr-Penfield Ave, Montreal, Quebec, H3A 1B1, Canada
| | - Carling Bieg
- University of Guelph, 50 Stone Road, Guelph Ontario, N1G 2W1, Canada
| | - Melania Cristescu
- McGill University, 1205 Dr-Penfield Ave, Montreal, Quebec, H3A 1B1, Canada
| | - John M Fryxell
- University of Guelph, 50 Stone Road, Guelph Ontario, N1G 2W1, Canada
| | - Gabriel Gellner
- University of Guelph, 50 Stone Road, Guelph Ontario, N1G 2W1, Canada
| | - Brian Lapointe
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| | - Andrew Gonzalez
- McGill University, 1205 Dr-Penfield Ave, Montreal, Quebec, H3A 1B1, Canada
| |
Collapse
|
19
|
From Marine Metacommunities to Meta-ecosystems: Examining the Nature, Scale and Significance of Resource Flows in Benthic Marine Environments. Ecosystems 2020. [DOI: 10.1007/s10021-020-00580-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Quévreux P, Barot S, Thébault É. Interplay between the paradox of enrichment and nutrient cycling in food webs. OIKOS 2020. [DOI: 10.1111/oik.07937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Pierre Quévreux
- Sorbonne Univ., Sorbonne Paris Cité, Paris Diderot Univ. Paris 07, CNRS, INRA, IRD, UPEC, Inst. d'Écologie et des Sciences de l'Environnement – Paris, iEES‐Paris Paris France
| | - Sébastien Barot
- Sorbonne Univ., Sorbonne Paris Cité, Paris Diderot Univ. Paris 07, CNRS, INRA, IRD, UPEC, Inst. d'Écologie et des Sciences de l'Environnement – Paris, iEES‐Paris Paris France
| | - Élisa Thébault
- Sorbonne Univ., Sorbonne Paris Cité, Paris Diderot Univ. Paris 07, CNRS, INRA, IRD, UPEC, Inst. d'Écologie et des Sciences de l'Environnement – Paris, iEES‐Paris Paris France
| |
Collapse
|
21
|
Mougi A. Coupling of green and brown food webs and ecosystem stability. Ecol Evol 2020; 10:9192-9199. [PMID: 32953054 PMCID: PMC7487232 DOI: 10.1002/ece3.6586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 01/02/2023] Open
Abstract
Ecosystems comprise living organisms and organic matter or detritus. In earlier community ecology theories, ecosystem dynamics were normally understood in terms of aboveground, green-world trophic interaction networks, or food webs. Recently, there has been growing interest in the role played in ecosystem dynamics by detritus in underground, brown-world interactions. However, the role of decomposers in the consumption of detritus to produce nutrients in ecosystem dynamics remains unclear. Here, an ecosystem model of trophic food chains, detritus, decomposers, and decomposer predators demonstrated that decomposers play a totally different role than that previously predicted, with regard to their relationship between nutrient cycling and ecosystem stability. The high flux of nutrients due to efficient decomposition by decomposers increases ecosystem stability. However, moderate levels of ecosystem openness (with movement of materials) can either greatly increase or decrease ecosystem stability. Furthermore, the stability of an ecosystem peaks at intermediate openness because open systems are less stable than closed systems. These findings suggest that decomposers and the food-web dynamics of brown-world interactions are crucial for ecosystem stability, and that the properties of decomposition rate and openness are important in predicting changes in ecosystem stability in response to changes in decomposition efficiency driven by climate change.
Collapse
Affiliation(s)
- Akihiko Mougi
- Institute of Agricultural and Life SciencesAcademic AssemblyShimane UniversityMatsueJapan
| |
Collapse
|
22
|
Klemmer AJ, Galatowitsch ML, McIntosh AR. Cross-ecosystem bottlenecks alter reciprocal subsidies within meta-ecosystems. Proc Biol Sci 2020; 287:20200550. [PMID: 32546092 DOI: 10.1098/rspb.2020.0550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reciprocal subsidies link ecosystems into meta-ecosystems, but energy transfer to organisms that do not cross boundaries may create sinks, reducing reciprocal subsidy transfer. We investigated how the type of subsidy and top predator presence influenced reciprocal flows of energy, by manipulating the addition of terrestrial leaf and terrestrial insect subsidies to experimental freshwater pond mesocosms with and without predatory fish. Over 18 months, fortnightly addition of subsidies (terrestrial beetle larvae) to top-predators was crossed with monthly addition of subsidies (willow leaves) to primary consumers in mesocosms with and without top predators (upland bullies) in a 2 × 2 × 2 factorial design in four replicate blocks. Terrestrial insect subsidies increased reciprocal flows, measured as the emergence of aquatic insects out of mesocosms, but leaf subsidies dampened those effects. However, the presence of fish and snails, consumers with no terrestrial life stage, usurped and retained the energy within in the aquatic ecosystem, creating a cross-ecosystem bottleneck to energy flow. Thus, changes in species composition of donor or recipient food webs within a meta-ecosystems can alter reciprocal subsidies through cross-ecosystem bottlenecks.
Collapse
Affiliation(s)
- Amanda J Klemmer
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.,School of Biology and Ecology, University of Maine, 5722 Deering Hall, Orono, ME 04469, USA
| | - Mark L Galatowitsch
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.,Department of Biology, Centre College, 600 West Walnut Street, Danville, KY 40422, USA
| | - Angus R McIntosh
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| |
Collapse
|
23
|
Tsakalakis I, Blasius B, Ryabov A. Resource competition and species coexistence in a two-patch metaecosystem model. THEOR ECOL-NETH 2019. [DOI: 10.1007/s12080-019-00442-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Laan E, Fox JW. An experimental test of the effects of dispersal and the paradox of enrichment on metapopulation persistence. OIKOS 2019. [DOI: 10.1111/oik.06552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Erin Laan
- Dept of Biological Sciences, Univ. of Calgary 2500 University Dr. NW Calgary AB T2N 1N4 Canada
| | - Jeremy W. Fox
- Dept of Biological Sciences, Univ. of Calgary 2500 University Dr. NW Calgary AB T2N 1N4 Canada
| |
Collapse
|
25
|
Massé Jodoin J, Guichard F. Non‐resource effects of foundation species on meta‐ecosystem stability and function. OIKOS 2019. [DOI: 10.1111/oik.06506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julien Massé Jodoin
- Dept of Biology, McGill Univ., 1205 Avenue du Docteur Penfield Montreal QC H3A 1B1 Canada
| | - Frédéric Guichard
- Dept of Biology, McGill Univ., 1205 Avenue du Docteur Penfield Montreal QC H3A 1B1 Canada
| |
Collapse
|
26
|
Marleau JN, Guichard F. Meta-ecosystem processes alter ecosystem function and can promote herbivore-mediated coexistence. Ecology 2019; 100:e02699. [PMID: 30932180 DOI: 10.1002/ecy.2699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/11/2019] [Accepted: 02/21/2019] [Indexed: 11/11/2022]
Abstract
Herbivory and dispersal play roles in the coexistence of primary producers with shared resource limitation by imposing trade-offs either through apparent competition or dispersal limitation. These mechanisms of coexistence can further interact with meta-ecosystem effects, which results in spatial heterogeneity through the movement of herbivores and nutrients. Here, we investigate how herbivores influence autotroph coexistence through a meta-ecosystem effect, and how this effect couples mechanisms of coexistence to ecosystem structure and functioning. We articulate this framework through a parameterized one resource-k producer-one herbivore meta-ecosystem model. The results show that herbivore movement with nutrient recycling can generate spatial heterogeneity to allow coexistence where the well-mixed system predicts competitive exclusion. Furthermore, the presence of movement alters local and regional ecosystem functioning even when coexistence would occur without movement. These results highlight how meta-ecosystem theory can provide a mechanistic context for the observed complexity of biodiversity-ecosystem function relationships.
Collapse
Affiliation(s)
- Justin N Marleau
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada
| | - Frederic Guichard
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada
| |
Collapse
|
27
|
Montoya D, Haegeman B, Gaba S, de Mazancourt C, Bretagnolle V, Loreau M. Trade-offs in the provisioning and stability of ecosystem services in agroecosystems. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01853. [PMID: 30779460 PMCID: PMC6407690 DOI: 10.1002/eap.1853] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 10/02/2018] [Accepted: 12/19/2018] [Indexed: 05/03/2023]
Abstract
Changes in land use generate trade-offs in the delivery of ecosystem services in agricultural landscapes. However, we know little about how the stability of ecosystem services responds to landscape composition, and what ecological mechanisms underlie these trade-offs. Here, we develop a model to investigate the dynamics of three ecosystem services in intensively managed agroecosystems, i.e., pollination-independent crop yield, crop pollination, and biodiversity. Our model reveals trade-offs and synergies imposed by landscape composition that affect not only the magnitude but also the stability of ecosystem service delivery. Trade-offs involving crop pollination are strongly affected by the degree to which crops depend on pollination and by their relative requirement for pollinator densities. We show conditions for crop production to increase with biodiversity and decreasing crop area, reconciling farmers' profitability and biodiversity conservation. Our results further suggest that, for pollination-dependent crops, management strategies that focus on maximizing yield will often overlook its stability. Given that agriculture has become more pollination-dependent over time, it is essential to understand the mechanisms driving these trade-offs to ensure food security.
Collapse
Affiliation(s)
- Daniel Montoya
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200 Moulis, France
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
- UMR Agroécologie, Centre INRA Dijon, 17 Rue Sully, F-21065 Dijon Cedex, France
| | - Bart Haegeman
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200 Moulis, France
| | - Sabrina Gaba
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Claire de Mazancourt
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200 Moulis, France
| | - Vincent Bretagnolle
- Centre d’Etudes Biologiques de Chizé, UMR 7372, CNRS & Université de La Rochelle, 79360 Villiers en Bois, France
- LTSER «Zone Atelier Plaine & Val de Sèvre», CNRS, 79360 Beauvoir sur Niort, France
| | - Michel Loreau
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200 Moulis, France
| |
Collapse
|
28
|
Gülzow N, Wahlen Y, Hillebrand H. Metaecosystem Dynamics of Marine Phytoplankton Alters Resource Use Efficiency along Stoichiometric Gradients. Am Nat 2018; 193:35-50. [PMID: 30562039 DOI: 10.1086/700835] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Metaecosystem theory addresses the link between local (within habitats) and regional (between habitats) dynamics by simultaneously analyzing spatial community ecology and abiotic matter flow. Here we experimentally address how spatial resource gradients and connectivity affect resource use efficiency (RUE) and stoichiometry in marine phytoplankton as well as the community composition at local and regional scales. We created gradostat metaecosystems consisting of five linearly interconnected patches, which were arranged either in countercurrent gradients of nitrogen (N) and phosphorus (P) supply or with a uniform spatial distribution of nutrients and which had either low or high connectivity. Gradient metaecosystems were characterized by higher remaining N and P concentrations (and N∶P ratios) than uniform ones, a difference reduced by higher connectivity. The position of the patch in the gradient strongly constrained elemental stoichiometry, local biovolume production, and RUE. As expected, algal carbon (C)∶N, biovolume, and N-specific RUE decreased toward the N-rich end of the gradient metaecosystem, whereas the opposite was observed for most of the gradient for C∶P, N∶P, and P-specific RUE. However, at highest N∶P supply, unexpectedly low C∶P, N∶P, and P-specific RUE values were found, indicating that the low availability of P inhibited efficient use of N and biovolume production. Consequently, gradient metaecosystems had lower overall biovolume at the regional scale. Whereas treatment effects on local richness were weak, gradients were characterized by higher dissimilarity in species composition. Thus, the stoichiometry of resource supply and spatial connectivity between patches appeared as decisive elements constraining phytoplankton composition and functioning in metaecosystems.
Collapse
|
29
|
Cross-ecosystem carbon flows connecting ecosystems worldwide. Nat Commun 2018; 9:4825. [PMID: 30446663 PMCID: PMC6240079 DOI: 10.1038/s41467-018-07238-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/18/2018] [Indexed: 11/23/2022] Open
Abstract
Ecosystems are widely interconnected by spatial flows of material, but the overall importance of these flows relative to local ecosystem functioning remains unclear. Here we provide a quantitative synthesis on spatial flows of carbon connecting ecosystems worldwide. Cross-ecosystem flows range over eight orders of magnitude, bringing between 10−3 and 105 gC m−2 year−1 to recipient ecosystems. Magnitudes are similar to local fluxes in freshwater and benthic ecosystems, but two to three orders of magnitude lower in terrestrial systems, demonstrating different dependencies on spatial flows among ecosystem types. The strong spatial couplings also indicate that ecosystems are vulnerable to alterations of cross-ecosystem flows. Thus, a reconsideration of ecosystem functioning, including a spatial perspective, is urgently needed. Material flows between ecosystems, though the degree to which ecosystems are coupled is under investigation. Here Gounand et al. analyze cross-ecosystem carbon flows and relate them to in situ functions, and report different dependencies on spatial flows across numerous ecosystems.
Collapse
|
30
|
Guzman LM, Germain RM, Forbes C, Straus S, O'Connor MI, Gravel D, Srivastava DS, Thompson PL. Towards a multi-trophic extension of metacommunity ecology. Ecol Lett 2018; 22:19-33. [PMID: 30370702 DOI: 10.1111/ele.13162] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/10/2018] [Accepted: 08/27/2018] [Indexed: 12/24/2022]
Abstract
Metacommunity theory provides an understanding of how spatial processes determine the structure and function of communities at local and regional scales. Although metacommunity theory has considered trophic dynamics in the past, it has been performed idiosyncratically with a wide selection of possible dynamics. Trophic metacommunity theory needs a synthesis of a few influential axis to simplify future predictions and tests. We propose an extension of metacommunity ecology that addresses these shortcomings by incorporating variability among trophic levels in 'spatial use properties'. We define 'spatial use properties' as a set of traits (dispersal, migration, foraging and spatial information processing) that set the spatial and temporal scales of organismal movement, and thus scales of interspecific interactions. Progress towards a synthetic predictive framework can be made by (1) documenting patterns of spatial use properties in natural food webs and (2) using theory and experiments to test how trophic structure in spatial use properties affects metacommunity dynamics.
Collapse
Affiliation(s)
- Laura Melissa Guzman
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rachel M Germain
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Coreen Forbes
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Samantha Straus
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mary I O'Connor
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dominique Gravel
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Diane S Srivastava
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick L Thompson
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
31
|
|
32
|
Yang H, Chen J. Integrating landscape system and meta-ecosystem frameworks to advance the understanding of ecosystem function in heterogeneous landscapes: An analysis on the carbon fluxes in the Northern Highlands Lake District (NHLD) of Wisconsin and Michigan. PLoS One 2018; 13:e0192569. [PMID: 29415066 PMCID: PMC5802935 DOI: 10.1371/journal.pone.0192569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/25/2018] [Indexed: 11/28/2022] Open
Abstract
The successful integration of ecosystem ecology with landscape ecology would be conducive to understanding how landscapes function. There have been several attempts at this, with two main approaches: (1) an ecosystem-based approach, such as the meta-ecosystem framework and (2) a landscape-based approach, such as the landscape system framework. These two frameworks are currently disconnected. To integrate these two frameworks, we introduce a protocol, and then demonstrate application of the protocol using a case study. The protocol includes four steps: 1) delineating landscape systems; 2) classifying landscape systems; 3) adjusting landscape systems to meta-ecosystems and 4) integrating landscape system and meta-ecosystem frameworks through meta-ecosystems. The case study is the analyzing of the carbon fluxes in the Northern Highlands Lake District (NHLD) of Wisconsin and Michigan using this protocol. The application of this protocol revealed that one could follow this protocol to construct a meta-ecosystem and analyze it using the integrative framework of landscape system and meta-ecosystem frameworks. That is, one could (1) appropriately describe and analyze the spatial heterogeneity of the meta-ecosystem; (2) understand the emergent properties arising from spatial coupling of local ecosystems in the meta-ecosystem. In conclusion, this protocol is a useful approach for integrating the meta-ecosystem framework and the landscape system framework, which advances the describing and analyzing of the spatial heterogeneity and ecosystem function of interconnected ecosystems.
Collapse
Affiliation(s)
- Haile Yang
- Institute of Biodiversity Science, Fudan University, Shanghai, People's Republic of China
- Department of Ecology and Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jiakuan Chen
- Institute of Biodiversity Science, Fudan University, Shanghai, People's Republic of China
- Department of Ecology and Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
- Centre for Watershed Ecology, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, People's Republic of China
- * E-mail:
| |
Collapse
|
33
|
Gounand I, Harvey E, Little CJ, Altermatt F. Meta-Ecosystems 2.0: Rooting the Theory into the Field. Trends Ecol Evol 2018; 33:36-46. [DOI: 10.1016/j.tree.2017.10.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/06/2017] [Accepted: 10/11/2017] [Indexed: 11/26/2022]
|
34
|
Biomonitoring for the 21st Century: Integrating Next-Generation Sequencing Into Ecological Network Analysis. ADV ECOL RES 2018. [DOI: 10.1016/bs.aecr.2017.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
35
|
Harvey E, Gounand I, Ganesanandamoorthy P, Altermatt F. Spatially cascading effect of perturbations in experimental meta-ecosystems. Proc Biol Sci 2017; 283:rspb.2016.1496. [PMID: 27629038 DOI: 10.1098/rspb.2016.1496] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/24/2016] [Indexed: 11/12/2022] Open
Abstract
Ecosystems are linked to neighbouring ecosystems not only by dispersal, but also by the movement of subsidy. Such subsidy couplings between ecosystems have important landscape-scale implications because perturbations in one ecosystem may affect community structure and functioning in neighbouring ecosystems via increased/decreased subsidies. Here, we combine a general theoretical approach based on harvesting theory and a two-patch protist meta-ecosystem experiment to test the effect of regional perturbations on local community dynamics. We first characterized the relationship between the perturbation regime and local population demography on detritus production using a mathematical model. We then experimentally simulated a perturbation gradient affecting connected ecosystems simultaneously, thus altering cross-ecosystem subsidy exchanges. We demonstrate that the perturbation regime can interact with local population dynamics to trigger unexpected temporal variations in subsidy pulses from one ecosystem to another. High perturbation intensity initially led to the highest level of subsidy flows; however, the level of perturbation interacted with population dynamics to generate a crash in subsidy exchange over time. Both theoretical and experimental results show that a perturbation regime interacting with local community dynamics can induce a collapse in population levels for recipient ecosystems. These results call for integrative management of human-altered landscapes that takes into account regional dynamics of both species and resource flows.
Collapse
Affiliation(s)
- Eric Harvey
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Isabelle Gounand
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Pravin Ganesanandamoorthy
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| |
Collapse
|
36
|
Ward CL, McCann KS. A mechanistic theory for aquatic food chain length. Nat Commun 2017; 8:2028. [PMID: 29229910 PMCID: PMC5725575 DOI: 10.1038/s41467-017-02157-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/08/2017] [Indexed: 11/10/2022] Open
Abstract
Multiple hypotheses propose an ostensibly disparate array of drivers of food chain length (FCL), with contradictory support from natural settings. Here we posit that the magnitude of vertical energy flux in food webs underlies several drivers of FCL. We show that rising energy flux fuels top-heavy biomass pyramids, promoting omnivory, thereby reducing FCL. We link this theory to commonly evaluated hypotheses for environmental drivers of FCL (productivity, ecosystem size) and demonstrate that effects of these drivers should be context-dependent. We evaluate support for this theory in lake and marine ecosystems and demonstrate that ecosystem size is the most important driver of FCL in low-productivity ecosystems (positive relationship) while productivity is most important in large and high-productivity ecosystems (negative relationship). This work stands in contrast to classical hypotheses, which predict a positive effect of productivity on FCL, and may help reconcile the contradictory nature of published results for drivers of FCL.
Collapse
Affiliation(s)
- Colette L Ward
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, 735 State Street, Suite 300, Santa Barbara, CA, 93101-5504, USA.
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
| | - Kevin S McCann
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
37
|
Harvey E, Gounand I, Little CJ, Fronhofer EA, Altermatt F. Upstream trophic structure modulates downstream community dynamics via resource subsidies. Ecol Evol 2017; 7:5724-5731. [PMID: 29085622 PMCID: PMC5655794 DOI: 10.1002/ece3.3144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/27/2017] [Accepted: 05/17/2017] [Indexed: 02/06/2023] Open
Abstract
In many natural systems, the physical structure of the landscape dictates the flow of resources. Despite mounting evidence that communities' dynamics can be indirectly coupled by reciprocal among ecosystem resource flows, our understanding of how directional resource flows might indirectly link biological communities is limited. We here propose that differences in community structure upstream should lead to different downstream dynamics, even in the absence of dispersal of organisms. We report an experimental test of the effect of upstream community structure on downstream community dynamics in a simplified but highly controlled setting, using protist microcosms. We implemented directional flows of resources, without dispersal, from a standard resource pool into upstream communities of contrasting interaction structure and then to further downstream communities of either one or two trophic levels. Our results demonstrate that different types of species interactions in upstream habitats may lead to different population sizes and levels of biomass in these upstream habitats. This, in turn, leads to varying levels of detritus transfer (dead biomass) to the downstream communities, thus influencing their population densities and trophic interactions in predictable ways. Our results suggest that the structure of species interactions in directionally structured ecosystems can be a key mediator of alterations to downstream habitats. Alterations to upstream habitats can thus cascade down to downstream communities, even without dispersal.
Collapse
Affiliation(s)
- Eric Harvey
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland.,Department of Aquatic Ecology Eawag, Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
| | - Isabelle Gounand
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland.,Department of Aquatic Ecology Eawag, Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
| | - Chelsea J Little
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland.,Department of Aquatic Ecology Eawag, Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
| | - Emanuel A Fronhofer
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland.,Department of Aquatic Ecology Eawag, Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
| | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland.,Department of Aquatic Ecology Eawag, Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
| |
Collapse
|
38
|
Abstract
Metacommunity theory has provided many insights into the general problem of local versus regional control of species diversity and relative abundance. The metacommunity framework has been extended from competitive interactions to whole food webs that can be described as spatial networks of interaction networks. Trophic metacommunity theory greatly contributed to resolving the community complexity-stability debate by predicting its dependence on the regional spatial context. The meta-ecosystem framework has since been suggested as a useful simplification of complex ecosystems to apply this spatial context to spatial flows of both individuals and matter. Reviewing the recent literature on metacommunity and meta-ecosystem theories suggests the importance of unifying theories of interaction strength into a meta-ecosystem framework that captures how the strength of spatial, species, and ecosystem fluxes are distributed across location and trophic levels. Such integration predicts important feedback between local and regional processes that drive the assembly of species, the stability of community, and the emergence of ecosystem functions, from limited spatial fluxes of individuals and (in)organic matter. These predictions are often mediated by the maintenance of environmental or endogenous fluctuations from local to regional scales that create important challenges and opportunities for the validation of metacommunity and meta-ecosystem theories and their application to conservation.
Collapse
|
39
|
Massol F, Altermatt F, Gounand I, Gravel D, Leibold MA, Mouquet N. How life-history traits affect ecosystem properties: effects of dispersal in meta-ecosystems. OIKOS 2017. [DOI: 10.1111/oik.03893] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- François Massol
- CNRS, Univ. de Lille, UMR 8198 Evo-Eco-Paleo, SPICI group; FR-59000 Lille France
| | - Florian Altermatt
- Dept of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology; Dübendorf, Switzerland, and: Dept of Evolutionary Biology and Environmental Studies, Univ. of Zürich; Zürich Switzerland
| | - Isabelle Gounand
- Dept of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology; Dübendorf, Switzerland, and: Dept of Evolutionary Biology and Environmental Studies, Univ. of Zürich; Zürich Switzerland
| | - Dominique Gravel
- Dépt de biologie; Univ. de Sherbrooke, Sherbrooke, Canada, and: Québec Center for Biodiversity Science; Quebec Canada
| | - Mathew A. Leibold
- Dept of Integrative Biology; Univ. of Texas at Austin; Austin TX USA
| | - Nicolas Mouquet
- 7 UMR MARBEC (MARine Biodiversity, Exploitation and Conservation); Univ. de Montpellier; Montpellier France
| |
Collapse
|
40
|
|
41
|
Schulz R, Bundschuh M, Gergs R, Brühl CA, Diehl D, Entling MH, Fahse L, Frör O, Jungkunst HF, Lorke A, Schäfer RB, Schaumann GE, Schwenk K. Review on environmental alterations propagating from aquatic to terrestrial ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 538:246-61. [PMID: 26311581 DOI: 10.1016/j.scitotenv.2015.08.038] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/10/2015] [Accepted: 08/10/2015] [Indexed: 05/24/2023]
Abstract
Terrestrial inputs into freshwater ecosystems are a classical field of environmental science. Resource fluxes (subsidy) from aquatic to terrestrial systems have been less studied, although they are of high ecological relevance particularly for the receiving ecosystem. These fluxes may, however, be impacted by anthropogenically driven alterations modifying structure and functioning of aquatic ecosystems. In this context, we reviewed the peer-reviewed literature for studies addressing the subsidy of terrestrial by aquatic ecosystems with special emphasis on the role that anthropogenic alterations play in this water-land coupling. Our analysis revealed a continuously increasing interest in the coupling of aquatic to terrestrial ecosystems between 1990 and 2014 (total: 661 studies), while the research domains focusing on abiotic (502 studies) and biotic (159 studies) processes are strongly separated. Approximately 35% (abiotic) and 25% (biotic) of the studies focused on the propagation of anthropogenic alterations from the aquatic to the terrestrial system. Among these studies, hydromorphological and hydrological alterations were predominantly assessed, whereas water pollution and invasive species were less frequently investigated. Less than 5% of these studies considered indirect effects in the terrestrial system e.g. via food web responses, as a result of anthropogenic alterations in aquatic ecosystems. Nonetheless, these very few publications indicate far-reaching consequences in the receiving terrestrial ecosystem. For example, bottom-up mediated responses via soil quality can cascade over plant communities up to the level of herbivorous arthropods, while top-down mediated responses via predatory spiders can cascade down to herbivorous arthropods and even plants. Overall, the current state of knowledge calls for an integrated assessment on how these interactions within terrestrial ecosystems are affected by propagation of aquatic ecosystem alterations. To fill these gaps, we propose a scientific framework, which considers abiotic and biotic aspects based on an interdisciplinary approach.
Collapse
Affiliation(s)
- Ralf Schulz
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany.
| | - Mirco Bundschuh
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - René Gergs
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany; Federal Environment Agency, Berlin, Germany
| | - Carsten A Brühl
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Dörte Diehl
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Martin H Entling
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Lorenz Fahse
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Oliver Frör
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Hermann F Jungkunst
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Andreas Lorke
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Ralf B Schäfer
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Gabriele E Schaumann
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Klaus Schwenk
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| |
Collapse
|
42
|
Sitters J, Atkinson CL, Guelzow N, Kelly P, Sullivan LL. Spatial stoichiometry: cross-ecosystem material flows and their impact on recipient ecosystems and organisms. OIKOS 2015. [DOI: 10.1111/oik.02392] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Judith Sitters
- Dept of Ecology and Environmental Science; Umeå Univ.; SE-901 87 Umeå Sweden
| | - Carla L. Atkinson
- Dept of Ecology and Evolutionary Biology; Cornell Univ.; Ithaca NY 14853 USA
| | - Nils Guelzow
- Dept of Geography and Environment; Mount Allison Univ.; Sackville, New Brunswick NB E4L 1E2 Canada
| | - Patrick Kelly
- Dept of Biological Sciences; Univ. of Notre Dame; Notre Dame IN 46556 USA
| | - Lauren L. Sullivan
- Dept of Ecology, Evolution and Organismal Biology; Iowa State Univ.; Ames IA 50011-1020 USA
| |
Collapse
|