1
|
Li X, Li Y, El-Kassaby YA, Fang Y. Spatial Distribution and Ecological Determinants of Coexisting Hybrid Oak Species: A Study in Yushan's Mixed Forest. PLANTS (BASEL, SWITZERLAND) 2024; 13:1000. [PMID: 38611529 PMCID: PMC11013232 DOI: 10.3390/plants13071000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
Ecological niche partitioning is crucial in reducing interspecific competition, fostering species coexistence, and preserving biodiversity. Our research, conducted in a hybrid mixed oak forest in Yushan, Jiangsu, China, focuses on Quercus acutissima, Q. variabilis, Q. fabri, and Q. serrata var. brevipetiolata. Using Point Pattern Analysis, we investigated the spatial relationships and ecological trait autocorrelation, including total carbon (TC), nitrogen (TN), phosphorus (TP), potassium (TK), and breast height diameter (DBH). Our findings show aggregated distribution patterns within the oak populations. The Inhomogeneous Poisson Point model highlights the impact of environmental heterogeneity on Q. variabilis, leading to distinct distribution patterns, while other species showed wider dispersion. This study reveals aggregated interspecific interactions, with a notable dispersal pattern between Q. acutissima and Q. variabilis. We observed significant variability in nutrient elements, indicating distinct nutrient dynamics and uptake processes. The variations in total carbon (TC), nitrogen (TN), phosphorus (TP), and potassium (TK) suggest distinct nutrient dynamics, with TK showing the highest variability. Despite variations in TC, TK, and TP, the species did not form distinct classes, suggesting overlapping nutritional strategies and environmental adaptations. Furthermore, spatial autocorrelation analysis indicates strong positive correlations for DBH, TC, and TP, whereas TK and TN correlations are non-significant. The results suggest habitat filtering as a key driver in intraspecific relationships, with a finer spatial scale of ecological niche division through TC and TP, which is crucial for maintaining coexistence among these oak species.
Collapse
Affiliation(s)
- Xuan Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Science, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China;
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Yongfu Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China;
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Science, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China;
| |
Collapse
|
2
|
Karimi N, Krieg CP, Spalink D, Lemmon AR, Lemmon EM, Eifler E, Hernández AI, Chan PW, Rodríguez A, Landis JB, Strickler SR, Specht CD, Givnish TJ. Chromosomal evolution, environmental heterogeneity, and migration drive spatial patterns of species richness in Calochortus (Liliaceae). Proc Natl Acad Sci U S A 2024; 121:e2305228121. [PMID: 38394215 PMCID: PMC10927571 DOI: 10.1073/pnas.2305228121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/20/2023] [Indexed: 02/25/2024] Open
Abstract
We used nuclear genomic data and statistical models to evaluate the ecological and evolutionary processes shaping spatial variation in species richness in Calochortus (Liliaceae, 74 spp.). Calochortus occupies diverse habitats in the western United States and Mexico and has a center of diversity in the California Floristic Province, marked by multiple orogenies, winter rainfall, and highly divergent climates and substrates (including serpentine). We used sequences of 294 low-copy nuclear loci to produce a time-calibrated phylogeny, estimate historical biogeography, and test hypotheses regarding drivers of present-day spatial patterns in species number. Speciation and species coexistence require reproductive isolation and ecological divergence, so we examined the roles of chromosome number, environmental heterogeneity, and migration in shaping local species richness. Six major clades-inhabiting different geographic/climatic areas, and often marked by different base chromosome numbers (n = 6 to 10)-began diverging from each other ~10.3 Mya. As predicted, local species number increased significantly with local heterogeneity in chromosome number, elevation, soil characteristics, and serpentine presence. Species richness is greatest in the Transverse/Peninsular Ranges where clades with different chromosome numbers overlap, topographic complexity provides diverse conditions over short distances, and several physiographic provinces meet allowing immigration by several clades. Recently diverged sister-species pairs generally have peri-patric distributions, and maximum geographic overlap between species increases over the first million years since divergence, suggesting that chromosomal evolution, genetic divergence leading to gametic isolation or hybrid inviability/sterility, and/or ecological divergence over small spatial scales may permit species co-occurrence.
Collapse
Affiliation(s)
- Nisa Karimi
- Science and Conservation Division, Missouri Botanical Garden, St. Louis, MO63110
- Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| | | | - Daniel Spalink
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX77845
| | - Alan R. Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL32306
| | | | - Evan Eifler
- Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| | - Adriana I. Hernández
- School of Integrative Plant Science, Cornell University, Ithaca, NY14853
- L. H. Bailey Hortorium, Cornell University, Ithaca, NY14853
| | - Patricia W. Chan
- Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| | - Aarón Rodríguez
- Departamento de Botánica y Zoología, Universidad de la Guadalajara, Zapopan, Jalisco45200, Mexico
| | - Jacob B. Landis
- School of Integrative Plant Science, Cornell University, Ithaca, NY14853
- Departamento de Botánica y Zoología, Universidad de la Guadalajara, Zapopan, Jalisco45200, Mexico
- Boyce Thompson Institute for Plant Research, Ithaca, NY14853
| | | | - Chelsea D. Specht
- School of Integrative Plant Science, Cornell University, Ithaca, NY14853
- L. H. Bailey Hortorium, Cornell University, Ithaca, NY14853
| | - Thomas J. Givnish
- Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| |
Collapse
|
3
|
McLay TGB, Fowler RM, Fahey PS, Murphy DJ, Udovicic F, Cantrill DJ, Bayly MJ. Phylogenomics reveals extreme gene tree discordance in a lineage of dominant trees: hybridization, introgression, and incomplete lineage sorting blur deep evolutionary relationships despite clear species groupings in Eucalyptus subgenus Eudesmia. Mol Phylogenet Evol 2023; 187:107869. [PMID: 37423562 DOI: 10.1016/j.ympev.2023.107869] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
Eucalypts are a large and ecologically important group of plants on the Australian continent, and understanding their evolution is important in understanding evolution of the unique Australian flora. Previous phylogenies using plastome DNA, nuclear-ribosomal DNA, or random genome-wide SNPs, have been confounded by limited genetic sampling or by idiosyncratic biological features of the eucalypts, including widespread plastome introgression. Here we present phylogenetic analyses of Eucalyptus subgenus Eudesmia (22 species from western, northern, central and eastern Australia), in the first study to apply a target-capture sequencing approach using custom, eucalypt-specific baits (of 568 genes) to a lineage of Eucalyptus. Multiple accessions of all species were included, and target-capture data were supplemented by separate analyses of plastome genes (average of 63 genes per sample). Analyses revealed a complex evolutionary history likely shaped by incomplete lineage sorting and hybridization. Gene tree discordance generally increased with phylogenetic depth. Species, or groups of species, toward the tips of the tree are mostly supported, and three major clades are identified, but the branching order of these clades cannot be confirmed with confidence. Multiple approaches to filtering the nuclear dataset, by removing genes or samples, could not reduce gene tree conflict or resolve these relationships. Despite inherent complexities in eucalypt evolution, the custom bait kit devised for this research will be a powerful tool for investigating the evolutionary history of eucalypts more broadly.
Collapse
Affiliation(s)
- Todd G B McLay
- Royal Botanic Gardens Victoria, Melbourne 3004, Vic, Australia; School of BioSciences, The University of Melbourne, Parkville 3010, Vic, Australia.
| | - Rachael M Fowler
- School of BioSciences, The University of Melbourne, Parkville 3010, Vic, Australia
| | - Patrick S Fahey
- Research Centre for Ecosystem Resilience, The Royal Botanic Garden Sydney, Sydney 2000, NSW, Australia; Qld Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4072, Qld, Australia
| | - Daniel J Murphy
- Royal Botanic Gardens Victoria, Melbourne 3004, Vic, Australia; School of BioSciences, The University of Melbourne, Parkville 3010, Vic, Australia
| | - Frank Udovicic
- Royal Botanic Gardens Victoria, Melbourne 3004, Vic, Australia
| | - David J Cantrill
- Royal Botanic Gardens Victoria, Melbourne 3004, Vic, Australia; School of BioSciences, The University of Melbourne, Parkville 3010, Vic, Australia
| | - Michael J Bayly
- School of BioSciences, The University of Melbourne, Parkville 3010, Vic, Australia
| |
Collapse
|
4
|
Powell‐Romero F, Fountain‐Jones NM, Norberg A, Clark NJ. Improving the predictability and interpretability of co‐occurrence modelling through feature‐based joint species distribution ensembles. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | | | - Anna Norberg
- Centre for Biodiversity Dynamics, Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Nicholas J. Clark
- School of Veterinary Science The University of Queensland Gatton Qld Australia
| |
Collapse
|
5
|
Pfeilsticker TR, Jones RC, Steane DA, Harrison PA, Vaillancourt RE, Potts BM. Expansion of the rare Eucalyptus risdonii under climate change through hybridization with a closely related species despite hybrid inferiority. ANNALS OF BOTANY 2022; 129:1-14. [PMID: 34351372 PMCID: PMC8752398 DOI: 10.1093/aob/mcab103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/04/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND AIMS Hybridization is increasingly recognized as an integral part of the dynamics of species range expansion and contraction. Thus, it is important to understand the reproductive barriers between co-occurring species. Extending previous studies that argued that the rare Eucalyptus risdonii was expanding into the range of the surrounding E. amygdalina by both seed and pollen dispersal, we here investigate the long-term fitness of both species and their hybrids and whether expansion is continuing. METHODS We assessed the survival of phenotypes representing a continuum between the two pure species in a natural hybrid swarm after 29 years, along with seedling recruitment. The performance of pure species as well as of artificial and natural hybrids was also assessed over 28 years in a common garden trial. KEY RESULTS In the hybrid zone, E. amygdalina adults showed greater mortality than E. risdonii, and the current seedling cohort is still dominated by E. risdonii phenotypes. Morphologically intermediate individuals appeared to be the least fit. Similar results were observed after growing artificial first-generation and natural hybrids alongside pure species families in a common garden trial. Here, the survival, reproduction, health and growth of the intermediate hybrids were significantly less than those of either pure species, consistent with hybrid inferiority, although this did not manifest until later reproductive ages. Among the variable progeny of natural intermediate hybrids, the most E. risdonii-like phenotypes were the most fit. CONCLUSIONS This study contributes to the increasing number of reports of hybrid inferiority in Eucalyptus, suggesting that post-zygotic barriers contribute to the maintenance of species integrity even between closely related species. However, with fitness rapidly recovered following backcrossing, it is argued that hybridization can still be an important evolutionary process, in the present case appearing to contribute to the range expansion of the rare E. risdonii in response to climate change.
Collapse
Affiliation(s)
- T R Pfeilsticker
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Australia
| | - R C Jones
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Australia
| | - D A Steane
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Australia
| | - P A Harrison
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Australia
| | - R E Vaillancourt
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Australia
| | - B M Potts
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Australia
| |
Collapse
|
6
|
Wei G, Li X, Fang Y. Sympatric genome size variation and hybridization of four oak species as determined by flow cytometry genome size variation and hybridization. Ecol Evol 2021; 11:1729-1740. [PMID: 33614000 PMCID: PMC7882991 DOI: 10.1002/ece3.7163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 01/31/2023] Open
Abstract
The Quercus species serve as a powerful model for studying introgression in relation to species boundaries and adaptive processes. Coexistence of distant relatives, or lack of coexistence of closely relative oak species, introgression may play a role. In the current study, four closely related oak species were found in Zijinshan, China. We generated a comprehensive genome size (GS) database for 120 individuals of four species using flow cytometry-based approaches. We examined GS variability within and among the species and hybridization events among the four species. The mean GSs of Q. acutissima, Q. variabilis, Q. fabri, and Q. serrata var. brevipetiolata were estimated to be 1.87, 1.92, 1.97, and 1.97 pg, respectively. The intraspecific and interspecific variations of GS observed among the four oak species indicated adaptation to the environment. Hybridization occurred both within and between the sections. A hybrid offspring was produced from Q. fabri and Q. variabilis, which belonged to different sections. The GS evolutionary pattern for hybrid species was expansion. Hybridization between the sections may be affected by habitat disturbance. This study increases our understanding of the evolution of GS in Quercus and will help establish guidelines for the ecological protection of oak trees.
Collapse
Affiliation(s)
- GaoMing Wei
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCo‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of Biology and the EnvironmentNanjing Forestry UniversityNanjingChina
- School of Physics, and Electronics Henan UniversityKaifengChina
| | - Xuan Li
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCo‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of Biology and the EnvironmentNanjing Forestry UniversityNanjingChina
| | - YanMing Fang
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCo‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of Biology and the EnvironmentNanjing Forestry UniversityNanjingChina
| |
Collapse
|
7
|
Ortego J, Knowles LL. Incorporating interspecific interactions into phylogeographic models: A case study with Californian oaks. Mol Ecol 2020; 29:4510-4524. [DOI: 10.1111/mec.15548] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/04/2020] [Accepted: 07/07/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Joaquín Ortego
- Department of Integrative Ecology Estación Biológica de DoñanaEBD‐CSIC Seville Spain
| | - L. Lacey Knowles
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor MI USA
| |
Collapse
|
8
|
Zhou Y, Li WW, Zhang YQ, Xing XC, Zhang JQ, Ren Y. Extensive reticulate evolution within Fargesia (s.l.) (Bambusoideae: Poaceae) and its allies: Evidence from multiple nuclear markers. Mol Phylogenet Evol 2020; 149:106842. [PMID: 32305509 DOI: 10.1016/j.ympev.2020.106842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 11/16/2022]
Abstract
Reticulate evolution resulting from hybridization and introgression has been recognized as a creative source of species and diversification in bamboos. Previous phylogenetic studies revealed that Fargesia (s.l.) (Fargesia and Yushania) was divided into the Fargesia spathe clade and the non-spathe clade. Interestingly, the Fargesia spathe clade may have originated from hybridization among other clades within Fargesia (s.l.). Understanding the hybrid origin of this clade requires a robust phylogenetic framework in which major clades within Fargesia (s.l.) are resolved. Here, we used three nuclear genes to reconstruct the evolutionary history of Fargesia (s.l.) and its allies to identify putative patterns in the origin of the Fargesia spathe clade and to examine the extent to which reticulate evolution has occurred at the interspecific level in bamboos. Bashania species form a clade with Fargesia (s.l.), which is further divided into Group I and Group II. The Fargesia spathe clade, the Alpine Bashania clade, and Fargesia yajiangensis comprise Group I, while the Bashania fargesii clade and the remaining Fargesia (s.l.) species form Group II. Incongruence between the current nuclear-based and previous plastid phylogenies demonstrate several possible hybridization events among Fargesia (s.l.) species and related taxa, which have given rise to the Fargesia spathe clade, the Phyllostachys clade, and the Ampelocalamus clade. We also detected several putative hybrid species of Fargesia (s.l.). Our results show that reticulate evolution has played a prominent role in Fargesia (s.l.) evolution, which could, in part, account for the taxonomic difficulty associated with Fargesia (s.l.) and the alpine bamboos. The study also underscores the importance of hybridization in the evolution of bamboos, at both intergeneric and intrageneric levels.
Collapse
Affiliation(s)
- Yun Zhou
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Wan-Wan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yu-Qu Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xiao-Cheng Xing
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Jian-Qiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Yi Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
9
|
|
10
|
Cavender-Bares J. Diversification, adaptation, and community assembly of the American oaks (Quercus), a model clade for integrating ecology and evolution. THE NEW PHYTOLOGIST 2019; 221:669-692. [PMID: 30368821 DOI: 10.1111/nph.15450] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/10/2018] [Indexed: 05/26/2023]
Abstract
Contents Summary 669 I. Model clades for the study and integration of ecology and evolution 670 II. Oaks: an important model clade 671 III. Insights from the history of the American oaks for understanding community assembly and ecosystem dominance 673 IV. Bridging the gap between micro- and macroevolutionary processes relevant to ecology 679 V. How do we reconcile evidence for adaptive evolution with niche conservatism and long-term stasis? 682 VI. High plasticity and within-population genetic variation contribute to population persistence 683 VII. Emerging technologies for tracking functional change 685 VIII. Conclusions 685 Acknowledgements 686 References 686 SUMMARY: Ecologists and evolutionary biologists are concerned with explaining the diversity and composition of the natural world and are aware of the inextricable linkages between ecological and evolutionary processes that maintain the Earth's life support systems. Yet examination of these linkages remains challenging due to the contrasting nature of focal systems and research approaches. Model clades provide a critical means to integrate ecology and evolution, as illustrated by the oaks (genus Quercus), an important model clade, given their ecological dominance, remarkable diversity, and growing phylogenetic, genomic, and ecological data resources. Studies of the clade reveal that their history of sympatric parallel adaptive radiation continues to influence community assembly today, highlighting questions on the nature and extent of coexistence mechanisms. Flexible phenology and hydraulic traits, despite evolutionary stasis, may have enabled adaptation to a wide range of environments within and across species, contributing to their high abundance and diversity. The oaks offer fundamental insights at the intersection of ecology and evolution on the role of diversification in community assembly processes, on the importance of flexibility in key functional traits in adapting to new environments, on factors contributing to persistence of long-lived organisms, and on evolutionary legacies that influence ecosystem function.
Collapse
Affiliation(s)
- Jeannine Cavender-Bares
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| |
Collapse
|
11
|
Schuster TM, Setaro SD, Tibbits JFG, Batty EL, Fowler RM, McLay TGB, Wilcox S, Ades PK, Bayly MJ. Chloroplast variation is incongruent with classification of the Australian bloodwood eucalypts (genus Corymbia, family Myrtaceae). PLoS One 2018; 13:e0195034. [PMID: 29668710 PMCID: PMC5905893 DOI: 10.1371/journal.pone.0195034] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 03/15/2018] [Indexed: 11/19/2022] Open
Abstract
Previous molecular phylogenetic analyses have resolved the Australian bloodwood eucalypt genus Corymbia (~100 species) as either monophyletic or paraphyletic with respect to Angophora (9-10 species). Here we assess relationships of Corymbia and Angophora using a large dataset of chloroplast DNA sequences (121,016 base pairs; from 90 accessions representing 55 Corymbia and 8 Angophora species, plus 33 accessions of related genera), skimmed from high throughput sequencing of genomic DNA, and compare results with new analyses of nuclear ITS sequences (119 accessions) from previous studies. Maximum likelihood and maximum parsimony analyses of cpDNA resolve well supported trees with most nodes having >95% bootstrap support. These trees strongly reject monophyly of Corymbia, its two subgenera (Corymbia and Blakella), most taxonomic sections (Abbreviatae, Maculatae, Naviculares, Septentrionales), and several species. ITS trees weakly indicate paraphyly of Corymbia (bootstrap support <50% for maximum likelihood, and 71% for parsimony), but are highly incongruent with the cpDNA analyses, in that they support monophyly of both subgenera and some taxonomic sections of Corymbia. The striking incongruence between cpDNA trees and both morphological taxonomy and ITS trees is attributed largely to chloroplast introgression between taxa, because of geographic sharing of chloroplast clades across taxonomic groups. Such introgression has been widely inferred in studies of the related genus Eucalyptus. This is the first report of its likely prevalence in Corymbia and Angophora, but this is consistent with previous morphological inferences of hybridisation between species. Our findings (based on continent-wide sampling) highlight a need for more focussed studies to assess the extent of hybridisation and introgression in the evolutionary history of these genera, and that critical testing of the classification of Corymbia and Angophora requires additional sequence data from nuclear genomes.
Collapse
Affiliation(s)
- Tanja M. Schuster
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- National Herbarium of Victoria, Royal Botanic Gardens Victoria, Birdwood Avenue, South Yarra, VIC, Australia
- * E-mail:
| | - Sabrina D. Setaro
- Department of Biology, Wake Forest University, Winston-Salem, NC,United States of America
| | - Josquin F. G. Tibbits
- Department of Economic Development, Jobs, Transport and Resources, AgriBiosciences Centre, La Trobe University, Bundoora, VIC, Australia
| | - Erin L. Batty
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Rachael M. Fowler
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Todd G. B. McLay
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Stephen Wilcox
- Genomics Hub, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, Australia
| | - Peter K. Ades
- School of Ecosystem and Forest Sciences, The University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Michael J. Bayly
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
12
|
Rutherford S, Rossetto M, Bragg JG, McPherson H, Benson D, Bonser SP, Wilson PG. Speciation in the presence of gene flow: population genomics of closely related and diverging Eucalyptus species. Heredity (Edinb) 2018; 121:126-141. [PMID: 29632325 DOI: 10.1038/s41437-018-0073-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 01/22/2023] Open
Abstract
Speciation is a complex process that is fundamental to the origins of biological diversity. While there has been considerable progress in our understanding of speciation, there are still many unanswered questions, especially regarding barriers to gene flow in diverging populations. Eucalyptus is an appropriate system for investigating speciation mechanisms since it comprises species that are rapidly evolving across heterogeneous environments. We examined patterns of genetic variation within and among six closely related Eucalyptus species in subgenus Eucalyptus section Eucalyptus in south-eastern Australia (commonly known as the "green ashes"). We used reduced representation genome sequencing to genotype samples from populations across altitudinal and latitudinal gradients. We found one species, Eucalyptus cunninghamii, to be highly genetically differentiated from the others, and a population of mallees from Mount Banks to be genetically distinct and therefore likely to be a new undescribed species. Only modest levels of differentiation were found between all other species in the study. There was population structure within some species (e.g., E. obstans) corresponding to geographical factors, indicating that vicariance may have played a role in the evolution of the group. Overall, we found that lineages within the green ashes are differentiated to varying extents, from strongly diverged to much earlier stages of the speciation continuum. Furthermore, our results suggest the green ashes represent a group where a range of mechanisms (e.g., reticulate evolution and vicariance) have been operating in concert. These findings not only offer insights into recent speciation mechanisms in Eucalyptus, but also other species complexes.
Collapse
Affiliation(s)
- Susan Rutherford
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW, Kensington, Sydney, Australia. .,National Herbarium of NSW, Royal Botanic Garden Sydney, Sydney, Australia.
| | - Maurizio Rossetto
- National Herbarium of NSW, Royal Botanic Garden Sydney, Sydney, Australia
| | - Jason G Bragg
- National Herbarium of NSW, Royal Botanic Garden Sydney, Sydney, Australia
| | - Hannah McPherson
- National Herbarium of NSW, Royal Botanic Garden Sydney, Sydney, Australia
| | - Doug Benson
- National Herbarium of NSW, Royal Botanic Garden Sydney, Sydney, Australia
| | - Stephen P Bonser
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW, Kensington, Sydney, Australia
| | - Peter G Wilson
- National Herbarium of NSW, Royal Botanic Garden Sydney, Sydney, Australia
| |
Collapse
|
13
|
Cavender-Bares J, Kothari S, Meireles JE, Kaproth MA, Manos PS, Hipp AL. The role of diversification in community assembly of the oaks (Quercus L.) across the continental U.S. AMERICAN JOURNAL OF BOTANY 2018; 105:565-586. [PMID: 29689630 DOI: 10.1002/ajb2.1049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/20/2017] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Evolutionary and biogeographic history, including past environmental change and diversification processes, are likely to have influenced the expansion, migration, and extinction of populations, creating evolutionary legacy effects that influence regional species pools and the composition of communities. We consider the consequences of the diversification process in shaping trait evolution and assembly of oak-dominated communities throughout the continental United States (U.S.). METHODS Within the U.S. oaks, we tested for phylogenetic and functional trait patterns at different spatial scales, taking advantage of a dated phylogenomic analysis of American oaks and the U.S. Forest Service (USFS) Forest Inventory and Analysis (FIA). KEY RESULTS We find (1) phylogenetic overdispersion at small grain sizes throughout the U.S. across all spatial extents and (2) a shift from overdispersion to clustering with increasing grain sizes. Leaf traits have evolved in a convergent manner, and these traits are clustered in communities at all spatial scales, except in the far west, where species with contrasting leaf types co-occur. CONCLUSIONS Our results support the hypotheses that (1) interspecific interactions were important in parallel adaptive radiation of the genus into a range of habitats across the continent and (2) that the diversification process is a critical driver of community assembly. Functional convergence of complementary species from distinct clades adapted to the same local habitats is a likely mechanism that allows distantly related species to coexist. Our findings contribute to an explanation of the long-term maintenance of high oak diversity and the dominance of the oak genus in North America.
Collapse
Affiliation(s)
- Jeannine Cavender-Bares
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Shan Kothari
- Department of Plant Biology, University of Minnesota, 1479 Gortner Ave, St. Paul, MN, 55108, USA
| | - José Eduardo Meireles
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Matthew A Kaproth
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
- Department of Biological Sciences, Minnesota State University, Mankato, MN, 56001, USA
| | - Paul S Manos
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Andrew L Hipp
- The Morton Arboretum, 4100 Illinois Route 53, Lisle, IL, 60532, USA
- The Field Museum, 1400 S Lake Shore Drive, Chicago, IL, 60605, USA
| |
Collapse
|
14
|
Bui EN, Thornhill AH, González-Orozco CE, Knerr N, Miller JT. Climate and geochemistry as drivers of eucalypt diversification in Australia. GEOBIOLOGY 2017; 15:427-440. [PMID: 28371135 DOI: 10.1111/gbi.12235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/27/2017] [Indexed: 06/07/2023]
Abstract
Eucalypts cover most of Australia. Here, we investigate the relative contribution of climate and geochemistry to the distribution and diversity of eucalypts. Using geostatistics, we estimate major element concentrations, pH, and electrical conductivity at sites where eucalypts have been recorded. We compare the median predicted geochemistry and reported substrate for individual species that appear associated with extreme conditions; this provides a partial evaluation of the predictions. We generate a site-by-species matrix by aggregating observations to the centroids of 100-km-wide grid cells, calculate diversity indices, and use numerical ecology methods (ordination, variation partitioning) to investigate the ecology of eucalypts and their response to climatic and geochemical gradients. We find that β-diversity coincides with variations in climatic and geochemical patterns. Climate and geochemistry together account for less than half of the variation in eucalypt species assemblages across Australia but for greater than 80% in areas of high species richness. Climate is more important than geochemistry in explaining eucalypts species distribution and change in assemblages across Australia as a whole but there are correlations between the two sets of environmental variables. Many individual eucalypt species and entire taxonomic sections (Aromatica, Longistylus of subgenus Eucalyptus, Dumaria, and Liberivalvae of subgenus Symphyomyrtus) have distributions affected strongly by geochemistry. We conclude that eucalypt diversity is driven by steep geochemical gradients that have arisen as climate patterns have fluctuated over Australia over the Cenozoic, generally aridifying since the Miocene. The diversification of eucalypts across Australia is thus an excellent example of co-evolution of landscapes and biota in space and time and challenges accepted notions of macroecology.
Collapse
Affiliation(s)
- E N Bui
- CSIRO Land and Water, Canberra, ACT, Australia
| | - A H Thornhill
- Centre for Australian National Biodiversity Research, CSIRO Plant Industry, Canberra, ACT, Australia
- Australian Tropical Herbarium, James Cook University, Cairns, Qld, Australia
| | - C E González-Orozco
- Centre for Australian National Biodiversity Research, CSIRO Plant Industry, Canberra, ACT, Australia
| | - N Knerr
- Centre for Australian National Biodiversity Research, CSIRO Plant Industry, Canberra, ACT, Australia
| | - J T Miller
- Centre for Australian National Biodiversity Research, CSIRO Plant Industry, Canberra, ACT, Australia
- Office of International Science and Engineering, National Science Foundation, Arlington, VA, USA
| |
Collapse
|
15
|
Flores-Rentería L, Rymer PD, Riegler M. Unpacking boxes: Integration of molecular, morphological and ecological approaches reveals extensive patterns of reticulate evolution in box eucalypts. Mol Phylogenet Evol 2017; 108:70-87. [DOI: 10.1016/j.ympev.2017.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 11/26/2022]
|