1
|
Wiens JJ, Emberts Z. How life became colourful: colour vision, aposematism, sexual selection, flowers, and fruits. Biol Rev Camb Philos Soc 2025; 100:308-326. [PMID: 39279365 DOI: 10.1111/brv.13141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/18/2024]
Abstract
Plants and animals are often adorned with potentially conspicuous colours (e.g. red, yellow, orange, blue, purple). These include the dazzling colours of fruits and flowers, the brilliant warning colours of frogs, snakes, and invertebrates, and the spectacular sexually selected colours of insects, fish, birds, and lizards. Such signals are often thought to utilize pre-existing sensitivities in the receiver's visual systems. This raises the question: what was the initial function of conspicuous colouration and colour vision? Here, we review the origins of colour vision, fruit, flowers, and aposematic and sexually selected colouration. We find that aposematic colouration is widely distributed across animals but relatively young, evolving only in the last ~150 million years (Myr). Sexually selected colouration in animals appears confined to arthropods and chordates, and is also relatively young (generally <100 Myr). Colourful flowers likely evolved ~200 million years ago (Mya), whereas colourful fruits/seeds likely evolved ~300 Mya. Colour vision (sensu lato) appears to be substantially older, and likely originated ~400-500 Mya in both arthropods and chordates. Thus, colour vision may have evolved long before extant lineages with fruit, flowers, aposematism, and sexual colour signals. We also find that there appears to have been an explosion of colour within the last ~100 Myr, including >200 origins of aposematic colouration across nine animal phyla and >100 origins of sexually selected colouration among arthropods and chordates.
Collapse
Affiliation(s)
- John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721-0088, USA
| | - Zachary Emberts
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| |
Collapse
|
2
|
Dharmaraaj B, Kunte K. Natural and sexual selection and functional roles influence colouration but not the amount of variation in butterfly wing colour patterns. BMC Ecol Evol 2025; 25:11. [PMID: 39825244 PMCID: PMC11740640 DOI: 10.1186/s12862-024-02346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/27/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Trait variation is shaped by functional roles of traits and the strength and direction of selection acting on the traits. We hypothesized that in butterflies, sexually selected colouration is more variable owing to condition-dependent nature and directional selection on sexual ornaments, whereas naturally selected colouration may be less variable because of stabilising selection. We measured reflectance spectra, and extracted colour parameters, to compare the amount of variation in sexually versus naturally selected colour patches across wing surfaces and sexes of 20 butterfly species across 4 families (Nymphalidae, Papilionidae, Pieridae, Lycaenidae). RESULTS We found that: (a) males had more conspicuous, i.e., brighter and more saturated colour patches compared with females (as expected of sexually selected traits but not necessarily of naturally selected traits), and (b) dorsal surfaces in both sexes had more conspicuous sexual ornaments as well as protective (aposematic/mimetic) colour patches on darker wing backgrounds, compared with ventral surfaces. However, colour patches did not differ in the amount of variation either in selection (ecological/sexual functions), sex or wing surface-specific manner. CONCLUSIONS These findings show that functional roles and selection influence colour parameters but not the amount of variation in butterfly wing colour patterns.
Collapse
Affiliation(s)
- Bhavya Dharmaraaj
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, 560065, India
| | - Krushnamegh Kunte
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, 560065, India.
| |
Collapse
|
3
|
Kunte K, Basu DN. Two new taxa of brush-footed butterflies (Lepidoptera: Nymphalidae) from the Western Ghats biodiversity hotspot, southern India. Zootaxa 2024; 5543:343-367. [PMID: 39646101 DOI: 10.11646/zootaxa.5543.3.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Indexed: 12/10/2024]
Abstract
A new species, Amathusia travancorica sp. nov. (Nymphalidae: Satyrinae: Amathusiini), and a new subspecies, Athyma inara sahyadriensis ssp. nov. (Nymphalidae: Limenitidinae: Limenitidini), are described from the Western Ghats biodiversity hotspot, India, based on multiple male and female specimens. The new taxa are compared with type specimens of related species and subspecies, revealing consistent differences that distinguish the new taxa. Genitalia dissections are also provided as comparative materials. Additional information is provided on historical records, distributional ranges, habits and habitat, phenology, larval host plants, and early stages. Finally, the type locality and synonymy of Pantoporia mera Swinhoe, 1917 are discussed based on comparison of type specimens (Pantoporia mera Swinhoe, 1917 syn. nov.=Athyma inara Westwood, 1850).
Collapse
Affiliation(s)
- Krushnamegh Kunte
- National Centre for Biological Sciences; Tata Institute of Fundamental Research; GKVK Campus; Bellary Road; Bengaluru 560 065; India.
| | - Dipendra Nath Basu
- National Centre for Biological Sciences; Tata Institute of Fundamental Research; GKVK Campus; Bellary Road; Bengaluru 560 065; India; Ashoka University; Rajiv Gandhi Education City; Sonipat; Haryana 131029; India.
| |
Collapse
|
4
|
Liang W, Nunes R, Leong JV, Carvalho APS, Müller CJ, Braby MF, Pequin O, Hoshizaki S, Morinaka S, Peggie D, Badon JAT, Mohagan AB, Beaver E, Hsu YF, Inayoshi Y, Monastyrskii A, Vlasanek P, Toussaint EFA, Benítez HA, Kawahara AY, Pierce NE, Lohman DJ. To and fro in the archipelago: Repeated inter-island dispersal and New Guinea's orogeny affect diversification of Delias, the world's largest butterfly genus. Mol Phylogenet Evol 2024; 194:108022. [PMID: 38325534 DOI: 10.1016/j.ympev.2024.108022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/20/2024] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
The world's largest butterfly genus Delias, commonly known as Jezebels, comprises ca. 251 species found throughout Asia, Australia, and Melanesia. Most species are endemic to islands in the Indo-Australian Archipelago or to New Guinea and nearby islands in Melanesia, and many species are restricted to montane habitats over 1200 m. We inferred an extensively sampled and well-supported molecular phylogeny of the group to better understand the spatial and temporal dimensions of its diversification. The remarkable diversity of Delias evolved in just ca. 15-16 Myr (crown age). The most recent common ancestor of a clade with most of the species dispersed out of New Guinea ca. 14 Mya, but at least six subsequently diverging lineages dispersed back to the island. Diversification was associated with frequent dispersal of lineages among the islands of the Indo-Australian Archipelago, and the divergence of sister taxa on a single landmass was rare and occurred only on the largest islands, most notably on New Guinea. We conclude that frequent inter-island dispersal during the Neogene-likely facilitated by frequent sea level change-sparked much diversification during that period. Many extant New Guinea lineages started diversifying 5 Mya, suggesting that orogeny facilitated their diversification. Our results largely agree with the most recently proposed species group classification system, and we use our large taxon sample to extend this system to all described species. Finally, we summarize recent insights to speculate how wing pattern evolution, mimicry, and sexual selection might also contribute to these butterflies' rapid speciation and diversification.
Collapse
Affiliation(s)
- Weijun Liang
- Department of Biology, City College of New York, City University of New York, USA
| | - Renato Nunes
- Department of Biology, City College of New York, City University of New York, USA; PhD Program in Biology, Graduate Center, City University of New York, New York, NY, USA
| | - Jing V Leong
- Department of Biology, City College of New York, City University of New York, USA; Biology Centre of the Czech Academy of Sciences, Branisovska 31, Ceske Budejovice, Czech Republic; Faculty of Science, Department of Zoology, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Ana Paula S Carvalho
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | | | - Michael F Braby
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia; Australian National Insect Collection, Canberra, ACT, Australia
| | | | - Sugihiko Hoshizaki
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | | | - Djunijanti Peggie
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency, Cibinong-Bogor, Indonesia
| | - Jade Aster T Badon
- Animal Biology Division, Institute of Biological Sciences, University of the Philippines Los Baños, Laguna, Philippines
| | - Alma B Mohagan
- Department of Biology, College of Arts and Sciences, and Center for Biodiversity Research & Extension in Mindanao, Central Mindanao University, Musuan, Maramag, Bukidnon, Philippines
| | - Ethan Beaver
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia; Australian National Insect Collection, Canberra, ACT, Australia
| | - Yu-Feng Hsu
- College of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yutaka Inayoshi
- Sritana Condominium 2, 96/173, Huay Kaeo Rd. T. Suthep, A. Muang, Chiang Mai, Thailand
| | - Alexander Monastyrskii
- Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Viet Nam
| | - Petr Vlasanek
- T.G. Masaryk Water Research Institute, Prague, Czech Republic
| | | | - Hugo A Benítez
- Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
| | - Akito Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA; Entomology & Nematology Department and Department of Biology, University of Florida, Gainesville, FL, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - David J Lohman
- Department of Biology, City College of New York, City University of New York, USA; PhD Program in Biology, Graduate Center, City University of New York, New York, NY, USA; Entomology Section, National Museum of Natural History, Manila, Philippines.
| |
Collapse
|
5
|
Krishnan A. The global butterfly effect of wing pattern convergence. Proc Natl Acad Sci U S A 2023; 120:e2314443120. [PMID: 37729172 PMCID: PMC10556623 DOI: 10.1073/pnas.2314443120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Affiliation(s)
- Anand Krishnan
- Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru560064, India
| |
Collapse
|
6
|
Anti-bat ultrasound production in moths is globally and phylogenetically widespread. Proc Natl Acad Sci U S A 2022; 119:e2117485119. [PMID: 35704762 DOI: 10.1073/pnas.2117485119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Warning signals are well known in the visual system, but rare in other modalities. Some moths produce ultrasonic sounds to warn bats of noxious taste or to mimic unpalatable models. Here, we report results from a long-term study across the globe, assaying moth response to playback of bat echolocation. We tested 252 genera, spanning most families of large-bodied moths, and document anti-bat ultrasound production in 52 genera, with eight subfamily origins described. Based on acoustic analysis of ultrasonic emissions and palatability experiments with bats, it seems that acoustic warning and mimicry are the raison d'être for sound production in most moths. However, some moths use high-duty-cycle ultrasound capable of jamming bat sonar. In fact, we find preliminary evidence of independent origins of sonar jamming in at least six subfamilies. Palatability data indicate that jamming and warning are not mutually exclusive strategies. To explore the possible organization of anti-bat warning sounds into acoustic mimicry rings, we intensively studied a community of moths in Ecuador and, using machine-learning approaches, found five distinct acoustic clusters. While these data represent an early understanding of acoustic aposematism and mimicry across this megadiverse insect order, it is likely that ultrasonically signaling moths comprise one of the largest mimicry complexes on earth.
Collapse
|
7
|
Tea YK, Soong JW, Beaver EP, Lohman DJ. Kleptopharmacophagy: Milkweed butterflies scratch and imbibe from Apocynaceae-feeding caterpillars. Ecology 2021; 102:e03532. [PMID: 34496059 DOI: 10.1002/ecy.3532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/15/2021] [Accepted: 07/08/2021] [Indexed: 01/05/2023]
Affiliation(s)
- Yi-Kai Tea
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia.,Department of Ichthyology, Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, New South Wales, 2010, Australia
| | | | - Ethan P Beaver
- Biological and Earth Sciences, South Australian Museum, Adelaide, South Australia, 5000, Australia
| | - David J Lohman
- Biology Department, City College of New York, City University of New York, New York, New York, 10031, USA.,Ph.D. Program in Biology, Graduate Center, City University of New York, New York, New York, 10016, USA.,Entomology Section, National Museum of Natural History, 1000, Manila, Philippines
| |
Collapse
|
8
|
Habitat generalist species constrain the diversity of mimicry rings in heterogeneous habitats. Sci Rep 2021; 11:5072. [PMID: 33658554 PMCID: PMC7930205 DOI: 10.1038/s41598-021-83867-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/05/2021] [Indexed: 11/08/2022] Open
Abstract
How evolution creates and maintains trait patterns in species-rich communities is still an unsolved topic in evolutionary ecology. One classical example of community-level pattern is the unexpected coexistence of different mimicry rings, each of which is a group of mimetic species with the same warning signal. The coexistence of different mimicry rings in a community seems paradoxical because selection among unpalatable species should favor convergence to a single warning pattern. We combined mathematical modeling based on network theory and numerical simulations to explore how different types of selection, such as mimetic and environmental selections, and habitat use by mimetic species influence the formation of coexisting rings. We show that when habitat and mimicry are strong sources of selection, the formation of multiple rings takes longer due to conflicting selective pressures. Moreover, habitat generalist species decrease the distinctiveness of different mimicry rings’ patterns and a few habitat generalist species can generate a “small-world effect”, preventing the formation of multiple mimicry rings. These results may explain why the coexistence of mimicry rings is more common in groups of animals that tend towards habitat specialism, such as butterflies.
Collapse
|
9
|
de Solan T, Renoult JP, Geniez P, David P, Crochet PA. Looking for Mimicry in a Snake Assemblage Using Deep Learning. Am Nat 2020; 196:74-86. [DOI: 10.1086/708763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Kikuchi DW, Waldron SJ, Valkonen JK, Dobler S, Mappes J. Biased predation could promote convergence yet maintain diversity within Müllerian mimicry rings of Oreina leaf beetles. J Evol Biol 2020; 33:887-898. [PMID: 32202678 DOI: 10.1111/jeb.13620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/10/2020] [Accepted: 03/15/2020] [Indexed: 12/01/2022]
Abstract
Müllerian mimicry is a classic example of adaptation, yet Müller's original theory does not account for the diversity often observed in mimicry rings. Here, we aimed to assess how well classical Müllerian mimicry can account for the colour polymorphism found in chemically defended Oreina leaf beetles by using field data and laboratory assays of predator behaviour. We also evaluated the hypothesis that thermoregulation can explain diversity between Oreina mimicry rings. We found that frequencies of each colour morph were positively correlated among species, a critical prediction of Müllerian mimicry. Predators learned to associate colour with chemical defences. Learned avoidance of the green morph of one species protected green morphs of another species. Avoidance of blue morphs was completely generalized to green morphs, but surprisingly, avoidance of green morphs was less generalized to blue morphs. This asymmetrical generalization should favour green morphs: indeed, green morphs persist in blue communities, whereas blue morphs are entirely excluded from green communities. We did not find a correlation between elevation and coloration, rejecting thermoregulation as an explanation for diversity between mimicry rings. Biased predation could explain within-community diversity in warning coloration, providing a solution to a long-standing puzzle. We propose testable hypotheses for why asymmetric generalization occurs, and how predators maintain the predominance of blue morphs in a community, despite asymmetric generalization.
Collapse
Affiliation(s)
- David W Kikuchi
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.,Department of Biological and Environmental Sciences, Centre of Excellence in Evolutionary Research, University of Jyväskylä, Jyväskylä, Finland.,Wissenschaftskolleg zu Berlin, Berlin, Germany
| | - Samuel J Waldron
- Department of Biological and Environmental Sciences, Centre of Excellence in Evolutionary Research, University of Jyväskylä, Jyväskylä, Finland.,Molecular Evolutionary Biology, Department of Biology, Universität Hamburg, Hamburg, Germany
| | - Janne K Valkonen
- Department of Biological and Environmental Sciences, Centre of Excellence in Evolutionary Research, University of Jyväskylä, Jyväskylä, Finland
| | - Susanne Dobler
- Molecular Evolutionary Biology, Department of Biology, Universität Hamburg, Hamburg, Germany
| | - Johanna Mappes
- Department of Biological and Environmental Sciences, Centre of Excellence in Evolutionary Research, University of Jyväskylä, Jyväskylä, Finland.,Wissenschaftskolleg zu Berlin, Berlin, Germany
| |
Collapse
|
11
|
Tan EJ, Wilts BD, Tan BTK, Monteiro A. What's in a band? The function of the color and banding pattern of the Banded Swallowtail. Ecol Evol 2020; 10:2021-2029. [PMID: 32128134 PMCID: PMC7042747 DOI: 10.1002/ece3.6034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 11/24/2022] Open
Abstract
Butterflies have evolved a diversity of color patterns, but the ecological functions for most of these patterns are still poorly understood. The Banded Swallowtail butterfly, Papilio demolion demolion, is a mostly black butterfly with a greenish-blue band that traverses the wings. The function of this wing pattern remains unknown. Here, we examined the morphology of black and green-blue colored scales, and how the color and banding pattern affects predation risk in the wild. The protective benefits of the transversal band and of its green-blue color were tested via the use of paper model replicas of the Banded Swallowtail with variations in band shape and band color in a full factorial design. A variant model where the continuous transversal green-blue band was shifted and made discontinuous tested the protective benefit of the transversal band, while grayscale variants of the wildtype and distorted band models assessed the protective benefit of the green-blue color. Paper models of the variants and the wildtype were placed simultaneously in the field with live baits. Wildtype models were the least preyed upon compared with all other variants, while gray models with distorted bands suffered the greatest predation. The color and the continuous band of the Banded Swallowtail hence confer antipredator qualities. We propose that the shape of the band hinders detection of the butterfly's true shape through coincident disruptive coloration; while the green color of the band prevents detection of the butterfly from its background via differential blending. Differential blending is aided by the green-blue color being due to pigments rather than via structural coloration. Both green and black scales have identical structures, and the scales follow the Bauplan of pigmented scales documented in other Papilio butterflies.
Collapse
Affiliation(s)
| | - Bodo D. Wilts
- Adolphe Merkle InstituteUniversity of FribourgFribourgSwitzerland
| | - Brent T. K. Tan
- Department of Biological SciencesNational University of SingaporeSingapore CitySingapore
| | - Antónia Monteiro
- Yale‐NUS CollegeSingapore CitySingapore
- Department of Biological SciencesNational University of SingaporeSingapore CitySingapore
| |
Collapse
|
12
|
Khan MK, Herberstein ME. Sexually dimorphic blue bands are intrasexual aposematic signals in nonterritorial damselflies. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Hu P, Wang R. The complete mitochondrial genome of Parantica sita sita (Lepidoptera: Nymphalidae: Danainae) revealing substantial genetic divergence from its sibling subspecies P. s. niphonica. Gene 2018; 686:76-84. [PMID: 30391439 DOI: 10.1016/j.gene.2018.10.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/08/2018] [Accepted: 10/30/2018] [Indexed: 10/28/2022]
Abstract
Currently, there are two subspecies of the chestnut tiger butterfly (Parantica sita) recognized in China. P. s. sita is widely distributed in southwest China and P. s. niphonica in Taiwan. Periodically, Taiwan Island and the Chinese mainland have been connected and separated because of sea level changes caused by Pleistocene glaciations, most likely influencing the genetic structure among P. sita populations on both sides of the Taiwan Strait. Also, P. s. niphonica's well-documented long-distance migration may have influenced genetic differentiation within this species as well. So, investigation of the genetic differentiation of these two subspecies is well warranted. In this study, we sequenced the complete mitogenome (15,156 bp in length) of P. s. sita and its general characteristics agreed with general butterfly mitogenomic characteristics. However, when compared genetically with P. s. niphonica, P. s. sita diverged substantially. First, there were 4.1% variable sites between these two subspecies, with 5.3% at COI and 3.8% at COII, differences much greater than those expected of general interspecific divergences in butterflies. Second, there was a 59 bp fragment deletion in the A + T rich region of P. s. sita and, third, the relationships of these two subspecies and P. luzonensis could not be distinguished using Bayesian inference and P. s. niphonica first clustered with P. luzonensis, rather than P. s. sita, using maximum likelihood. Based on these results, we propose that P. s. sita and P. s. niphonica are independent species instead of subspecies. This proposal should be clarified through further research.
Collapse
Affiliation(s)
- Ping Hu
- School of Life Sciences, Peking University, Beijing 100871, PR China
| | - Rongjiang Wang
- School of Life Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
14
|
Gaitonde N, Joshi J, Kunte K. Evolution of ontogenic change in color defenses of swallowtail butterflies. Ecol Evol 2018; 8:9751-9763. [PMID: 30386572 PMCID: PMC6202720 DOI: 10.1002/ece3.4426] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 11/27/2022] Open
Abstract
Natural selection by visually hunting predators has led to the evolution of color defense strategies such as masquerade, crypsis, and aposematism that reduce the risk of predation in prey species. These color defenses are not mutually exclusive, and switches between strategies with ontogenic development are widespread across taxa. However, the evolutionary dynamics of ontogenic color change are poorly understood. Using comparative phylogenetics, we studied the evolution of color defenses in the complex life cycles of swallowtail butterflies (family Papilionidae). We also tested the relative importance of life history traits, chemical and visual backgrounds, and ancestry on the evolution of protective coloration. We found that vulnerable early- and late-instar caterpillars of species that feed on sparsely vegetated, toxic plants were aposematic, whereas species that feed on densely vegetated, nontoxic plants had masquerading and cryptic caterpillars. Masquerading caterpillars resembled bird droppings at early instars and transitioned to crypsis with an increase in body size at late instars. The immobile pupae-safe from motion-detecting, visually hunting predators-retained the ancestral cryptic coloration in all lineages, irrespective of the toxic nature of the host plant. Thus, color defense strategy (masquerade, crypsis, or aposematism) at a particular lifestage in the life cycle of swallowtail butterflies was determined by the interaction between life history traits such as body size and motion levels, phytochemical and visual backgrounds, and ancestry. We show that ontogenic color change in swallowtail butterflies is an adaptive response to age-dependent vulnerability to predation.
Collapse
Affiliation(s)
- Nikhil Gaitonde
- National Center for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
- Manipal Academy of Higher Education (MAHE)ManipalIndia
| | - Jahnavi Joshi
- National Center for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
| | - Krushnamegh Kunte
- National Center for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
| |
Collapse
|
15
|
Panettieri S, Gjinaj E, John G, Lohman DJ. Different ommochrome pigment mixtures enable sexually dimorphic Batesian mimicry in disjunct populations of the common palmfly butterfly, Elymnias hypermnestra. PLoS One 2018; 13:e0202465. [PMID: 30208047 PMCID: PMC6135364 DOI: 10.1371/journal.pone.0202465] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/04/2018] [Indexed: 11/18/2022] Open
Abstract
With varied, brightly patterned wings, butterflies have been the focus of much work on the evolution and development of phenotypic novelty. However, the chemical structures of wing pigments from few butterfly species have been identified. We characterized the orange wing pigments of female Elymnias hypermnestra butterflies (Lepidoptera: Nymphalidae: Satyrinae) from two Southeast Asian populations. This species is a sexually dimorphic Batesian mimic of several model species. Females are polymorphic: in some populations, females are dark, resemble conspecific males, and mimic Euploea spp. In other populations, females differ from males and mimic orange Danaus spp. Using LC-MS/MS, we identified nine ommochrome pigments: six from a population in Chiang Mai, Thailand, and five compounds from a population in Bali, Indonesia. Two ommochromes were found in both populations, and only two of the nine compounds have been previously reported. The sexually dimorphic Thai and Balinese populations are separated spatially by monomorphic populations in peninsular Malaysia, Singapore, and Sumatra, suggesting independent evolution of mimetic female wing pigments in these disjunct populations. These results indicate that other butterfly wing pigments remain to be discovered.
Collapse
Affiliation(s)
- Silvio Panettieri
- Department of Chemistry and Biochemistry, City College of New York, City University of New York, New York, NY, United States of America
- Ph.D. Program in Chemistry, Graduate Center, City University of New York, New York, NY, United States of America
| | - Erisa Gjinaj
- Department of Chemistry and Biochemistry, City College of New York, City University of New York, New York, NY, United States of America
| | - George John
- Department of Chemistry and Biochemistry, City College of New York, City University of New York, New York, NY, United States of America
- Ph.D. Program in Chemistry, Graduate Center, City University of New York, New York, NY, United States of America
- * E-mail: (DJL); (GJ)
| | - David J. Lohman
- Biology Department, City College of New York, City University of New York, New York, NY, United States of America
- Ph.D. Program in Biology, Graduate Center, City University of New York, New York, NY, United States of America
- Entomology Section, National Museum of the Philippines, Manila, Philippines
- * E-mail: (DJL); (GJ)
| |
Collapse
|
16
|
Deshmukh R, Baral S, Gandhimathi A, Kuwalekar M, Kunte K. Mimicry in butterflies: co-option and a bag of magnificent developmental genetic tricks. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 28913870 DOI: 10.1002/wdev.291] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 07/04/2017] [Accepted: 07/20/2017] [Indexed: 01/05/2023]
Abstract
Butterfly wing patterns are key adaptations that are controlled by remarkable developmental and genetic mechanisms that facilitate rapid evolutionary change. With swift advancements in the fields of genomics and genetic manipulations, identifying the regulators of wing development and mimetic wing patterns has become feasible even in nonmodel organisms such as butterflies. Recent mapping and gene expression studies have identified single switch loci of major effects such as transcription factors and supergenes as the main drivers of adaptive evolution of mimetic and polymorphic butterfly wing patterns. We highlight several of these examples, with emphasis on doublesex, optix, WntA and other dynamic, yet essential, master regulators that control critical color variation and sex-specific traits. Co-option emerges as a predominant theme, where typically embryonic and other early-stage developmental genes and networks have been rewired to regulate polymorphic and sex-limited mimetic wing patterns in iconic butterfly adaptations. Drawing comparisons from our knowledge of wing development in Drosophila, we illustrate the functional space of genes that have been recruited to regulate butterfly wing patterns. We also propose a developmental pathway that potentially results in dorsoventral mismatch in butterfly wing patterns. Such dorsoventrally mismatched color patterns modulate signal components of butterfly wings that are used in intra- and inter-specific communication. Recent advances-fuelled by RNAi-mediated knockdowns and CRISPR/Cas9-based genomic edits-in the developmental genetics of butterfly wing patterns, and the underlying biological diversity and complexity of wing coloration, are pushing butterflies as an emerging model system in ecological genetics and evolutionary developmental biology. WIREs Dev Biol 2018, 7:e291. doi: 10.1002/wdev.291 This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Comparative Development and Evolution > Regulation of Organ Diversity Comparative Development and Evolution > Evolutionary Novelties.
Collapse
Affiliation(s)
| | - Saurav Baral
- National Centre for Biological Sciences, Bengaluru, India
| | - A Gandhimathi
- National Centre for Biological Sciences, Bengaluru, India
| | | | | |
Collapse
|