1
|
Jacobsson E, Strömstedt AA, Andersson HS, Avila C, Göransson U. Peptide Toxins from Antarctica: The Nemertean Predator and Scavenger Parborlasia corrugatus (McIntosh, 1876). Toxins (Basel) 2024; 16:209. [PMID: 38787061 PMCID: PMC11126048 DOI: 10.3390/toxins16050209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Peptide toxins from marine invertebrates have found use as drugs and in biotechnological applications. Many marine habitats, however, remain underexplored for natural products, and the Southern Ocean is among them. Here, we report toxins from one of the top predators in Antarctic waters: the nemertean worm Parborlasia corrugatus (McIntosh, 1876). Transcriptome mining revealed a total of ten putative toxins with a cysteine pattern similar to that of alpha nemertides, four nemertide-beta-type sequences, and two novel full-length parborlysins. Nemertean worms express toxins in the epidermal mucus. Here, the expression was determined by liquid chromatography combined with mass spectrometry. The findings include a new type of nemertide, 8750 Da, containing eight cysteines. In addition, we report the presence of six cysteine-containing peptides. The toxicity of tissue extracts and mucus fractions was tested in an Artemia assay. Notably, significant activity was observed both in tissue and the high-molecular-weight mucus fraction, as well as in a parborlysin fraction. Membrane permeabilization experiments display the membranolytic activity of some peptides, most prominently the parborlysin fraction, with an estimated EC50 of 70 nM.
Collapse
Affiliation(s)
- Erik Jacobsson
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 75123 Uppsala, Sweden; (E.J.); (A.A.S.)
| | - Adam A. Strömstedt
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 75123 Uppsala, Sweden; (E.J.); (A.A.S.)
| | - Håkan S. Andersson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Conxita Avila
- Department of Evolutionary Biology, and Ecology, Environmental Sciences, Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain;
| | - Ulf Göransson
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 75123 Uppsala, Sweden; (E.J.); (A.A.S.)
| |
Collapse
|
2
|
Liu X, Sigwart JD, Sun J. Phylogenomic analyses shed light on the relationships of chiton superfamilies and shell-eye evolution. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:525-537. [PMID: 38045544 PMCID: PMC10689665 DOI: 10.1007/s42995-023-00207-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 11/01/2023] [Indexed: 12/05/2023]
Abstract
Mollusca is the second-largest animal phylum with over 100,000 extant species representing eight classes. Across 1000 extant species in the class Polyplacophora, chitons have a relatively constrained morphology but with some notable deviations. Several genera possess "shell eyes", i.e., true eyes with a lens and retina that are embedded within the dorsal shells. The phylogeny of the major chiton clades is mostly well established, in a set of superfamily-level and higher level taxa supported by various approaches, including morphological studies, multiple gene markers, mitogenome-phylogeny, and phylotranscriptomic approaches. However, one critical lineage has remained unclear, namely Schizochiton which was controversially suggested as being the potential independent origin of chiton shell eyes. Here, with the draft genome sequencing of Schizochiton incisus (superfamily Schizochitonoidea) plus assemblies of transcriptome data from other polyplacophorans, we present phylogenetic reconstructions using both mitochondrial genomes and phylogenomic approaches with multiple methods. We found that phylogenetic trees from mitogenomic data are inconsistent, reflecting larger scale confounding factors in molluscan mitogenomes. However, a consistent and robust topology was generated with protein-coding genes using different models and methods. Our results support Schizochitonoidea as the sister group to other Chitonoidea in Chitonina, in agreement with the established classification. Combined with evidence from fossils, our phylogenetic results suggest that the earliest origin of shell eyes is in Schizochitonoidea, and that these structures were also gained secondarily in other genera in Chitonoidea. Our results have generated a holistic review of the internal relationship within Polyplacophora, and a better understanding of the evolution of Polyplacophora.
Collapse
Affiliation(s)
- Xu Liu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laoshan Laboratory, Qingdao, 266237 China
| | - Julia D. Sigwart
- Department of Marine Zoology, Senckenberg Research Institute and Natural History Museum Frankfurt, 60325 Frankfurt Am Main, Germany
| | - Jin Sun
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laoshan Laboratory, Qingdao, 266237 China
| |
Collapse
|
3
|
Stick R, Peter A. CaaX-less lamins: Lophotrochozoa provide a glance at the playground of evolution. PROTOPLASMA 2023; 260:741-756. [PMID: 36102949 PMCID: PMC10125929 DOI: 10.1007/s00709-022-01809-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/01/2022] [Indexed: 05/05/2023]
Abstract
Nuclear lamins are the main components of the nuclear lamina in many eukaryotes. They are members of the intermediate filament (IF) protein family. Lamins differ from cytoplasmic IF proteins by the presence of a nuclear localisation sequence (NLS) and a C-terminal tetrapeptide, the CaaX motif. The CaaX motif is target of post-translational modifications including isoprenylation, proteolytic processing, and carboxyl-methylation. These modifications, in conjunction with the NLS, direct lamins to the inner nuclear membrane where they assemble into filaments. Lamins lacking a CaaX motif are unable to associate independently with nuclear membranes and remain in the nucleoplasm. So far, three species have been reported to exclusively express CaaX-less lamins. All three belong to the lophotrochozoan lineage. To find out whether they represent rare exceptions, we analysed lamins of representatives of 17 lophotrochozoan phyla. Here we report that all four clades of Rotifera as well as individual taxa of Mollusca and Annelida lack CaaX-lamins, but express lamins with alternative C-termini. Of note, the respective mollusc and annelid groups occupy very different phylogenetic ranks. Most of these alternative C-termini are rich in aromatic residues. A possible function of these residues in membrane association is discussed. Alternative splicing of terebellid lamin transcripts gives rise to two lamin variants, one with a CaaX motif and one with an alternative C-terminus. A similar situation is found in Arenicolidae, Opheliidae, Capitellidae, and Echiura. This points a way, how the switch from lamins carrying a CaaX motif to lamins with alternative C-termini may have occurred.
Collapse
Affiliation(s)
- Reimer Stick
- Department of Cell Biology, University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.
| | - Annette Peter
- Department of Cell Biology, University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| |
Collapse
|
4
|
Saadi AJ, Bibermair J, Kocot KM, Roberts NG, Hirose M, Calcino A, Baranyi C, Chaichana R, Wood TS, Schwaha T. Phylogenomics reveals deep relationships and diversification within phylactolaemate bryozoans. Proc Biol Sci 2022; 289:20221504. [PMID: 36350215 PMCID: PMC9653232 DOI: 10.1098/rspb.2022.1504] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/12/2022] [Indexed: 11/02/2023] Open
Abstract
Bryozoans are mostly sessile colonial invertebrates that inhabit all kinds of aquatic ecosystems. Extant bryozoan species fall into two clades with one of them, Phylactolaemata, being the only exclusively freshwater clade. Phylogenetic relationships within the class Phylactolaemata have long been controversial owing to their limited distinguishable characteristics that reflect evolutionary relationships. Here, we present the first phylogenomic analysis of Phylactolaemata using transcriptomic data combined with dense taxon sampling of six families to better resolve the interrelationships and to estimate divergence time. Using maximum-likelihood and Bayesian inference approaches, we recovered a robust phylogeny for Phylactolaemata in which the interfamilial relationships are fully resolved. We show Stephanellidae is the sister taxon of all other phylactolaemates and confirm that Lophopodidae represents the second offshoot within the phylactolaemate tree. Plumatella fruticosa clearly falls outside Plumatellidae as previous investigations have suggested, and instead clusters with Pectinatellidae and Cristatellidae as the sister taxon of Fredericellidae. Our results demonstrate that cryptic speciation is very likely in F. sultana and in two species of Plumatella (P. repens and P. casmiana). Divergence time estimates show that Phylactolaemata appeared at the end of the Ediacaran and started to diverge in the Silurian, although confidence intervals were large for most nodes. The radiation of most extant phylactolaemate families occurred mainly in the Palaeogene and Neogene highlighting post-extinction diversification.
Collapse
Affiliation(s)
- Ahmed J. Saadi
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Julian Bibermair
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Kevin M. Kocot
- Department of Biological Sciences and Alabama Museum of Natural History, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Nickellaus G. Roberts
- Department of Biological Sciences and Alabama Museum of Natural History, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Masato Hirose
- School of Marine Biosciences, Kitasato University, Kitasato 1-15-1, Sagamihara-Minami, Kanagawa 252-0373, Japan
| | - Andrew Calcino
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Christian Baranyi
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Ratcha Chaichana
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, Thailand
| | - Timothy S. Wood
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA
| | - Thomas Schwaha
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| |
Collapse
|
5
|
Verdes A, Taboada S, Hamilton BR, Undheim EAB, Sonoda GG, Andrade SCS, Morato E, Isabel Marina A, Cárdenas CA, Riesgo A. Evolution, expression patterns and distribution of novel ribbon worm predatory and defensive toxins. Mol Biol Evol 2022; 39:6580756. [PMID: 35512366 PMCID: PMC9132205 DOI: 10.1093/molbev/msac096] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ribbon worms are active predators that use an eversible proboscis to inject venom into their prey and defend themselves with toxic epidermal secretions. Previous work on nemertean venom has largely focused on just a few species and has not investigated the different predatory and defensive secretions in detail. Consequently, our understanding of the composition and evolution of ribbon worm venoms is still very limited. Here, we present a comparative study of nemertean venom combining RNA-seq differential gene expression analyses of venom-producing tissues, tandem mass spectrometry-based proteomics of toxic secretions, and mass spectrometry imaging of proboscis sections, to shed light onto the composition and evolution of predatory and defensive toxic secretions in Antarctonemertes valida. Our analyses reveal a wide diversity of putative defensive and predatory toxins with tissue-specific gene expression patterns and restricted distributions to the mucus and proboscis proteomes respectively, suggesting that ribbon worms produce distinct toxin cocktails for predation and defense. Our results also highlight the presence of numerous lineage-specific toxins, indicating that venom evolution is highly divergent across nemerteans, producing toxin cocktails that might be finely tuned to subdue different prey. Our data also suggest that the hoplonemertean proboscis is a highly specialized predatory organ that seems to be involved in a variety of biological functions besides predation, including secretion and sensory perception. Overall, our results advance our knowledge into the diversity and evolution of nemertean venoms and highlight the importance of combining different types of data to characterize toxin composition in understudied venomous organisms.
Collapse
Affiliation(s)
- Aida Verdes
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN), CSIC, Madrid, Spain.,Department of Life Sciences, Natural History Museum, London, UK
| | - Sergi Taboada
- Department of Life Sciences, Natural History Museum, London, UK.,Departament of Biodiversity, Ecology and Evolution, Universidad Complutense de Madrid, Madrid, Spain
| | - Brett R Hamilton
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, Australia
| | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.,Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Gabriel G Sonoda
- Departmento de Genética e Biología Evolutiva, University of Sao Paulo, Sao Paulo, Brazil
| | - Sonia C S Andrade
- Departmento de Genética e Biología Evolutiva, University of Sao Paulo, Sao Paulo, Brazil
| | - Esperanza Morato
- CBMSO Protein Chemistry Facility, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Isabel Marina
- CBMSO Protein Chemistry Facility, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - César A Cárdenas
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile.,Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Ana Riesgo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN), CSIC, Madrid, Spain.,Department of Life Sciences, Natural History Museum, London, UK
| |
Collapse
|
6
|
Orús-Alcalde A, Lu TM, Børve A, Hejnol A. The evolution of the metazoan Toll receptor family and its expression during protostome development. BMC Ecol Evol 2021; 21:208. [PMID: 34809567 PMCID: PMC8609888 DOI: 10.1186/s12862-021-01927-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 10/21/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Toll-like receptors (TLRs) play a crucial role in immunity and development. They contain leucine-rich repeat domains, one transmembrane domain, and one Toll/IL-1 receptor domain. TLRs have been classified into V-type/scc and P-type/mcc TLRs, based on differences in the leucine-rich repeat domain region. Although TLRs are widespread in animals, detailed phylogenetic studies of this gene family are lacking. Here we aim to uncover TLR evolution by conducting a survey and a phylogenetic analysis in species across Bilateria. To discriminate between their role in development and immunity we furthermore analyzed stage-specific transcriptomes of the ecdysozoans Priapulus caudatus and Hypsibius exemplaris, and the spiralians Crassostrea gigas and Terebratalia transversa. RESULTS We detected a low number of TLRs in ecdysozoan species, and multiple independent radiations within the Spiralia. V-type/scc and P-type/mcc type-receptors are present in cnidarians, protostomes and deuterostomes, and therefore they emerged early in TLR evolution, followed by a loss in xenacoelomorphs. Our phylogenetic analysis shows that TLRs cluster into three major clades: clade α is present in cnidarians, ecdysozoans, and spiralians; clade β in deuterostomes, ecdysozoans, and spiralians; and clade γ is only found in spiralians. Our stage-specific transcriptome and in situ hybridization analyses show that TLRs are expressed during development in all species analyzed, which indicates a broad role of TLRs during animal development. CONCLUSIONS Our findings suggest that a clade α TLR gene (TLR-Ca) and a clade β/γ TLR gene (TLR-Cβ/γ) were already present in the cnidarian-bilaterian common ancestor. However, although TLR-Ca was conserved in cnidarians, TLR-Cβ/γ was lost during the early evolution of these taxa. Moreover, TLR-Cβ/γ duplicated to generate TLR-Cβ and TLR-Cγ in the lineage to the last common protostome-deuterostome ancestor. TLR-Ca, TLR-Cβ and TLR-Cγ further expanded generating the three major TLR clades. While all three clades radiated in several spiralian lineages, specific TLRs clades have been presumably lost in other lineages. Furthermore, the expression of the majority of these genes during protostome ontogeny suggests a likely role in development.
Collapse
Affiliation(s)
- Andrea Orús-Alcalde
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Tsai-Ming Lu
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Aina Børve
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
7
|
Tassia MG, David KT, Townsend JP, Halanych KM. TIAMMAt: Leveraging biodiversity to revise protein domain models, evidence from innate immunity. Mol Biol Evol 2021; 38:5806-5818. [PMID: 34459919 PMCID: PMC8662601 DOI: 10.1093/molbev/msab258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sequence annotation is fundamental for studying the evolution of protein families, particularly when working with nonmodel species. Given the rapid, ever-increasing number of species receiving high-quality genome sequencing, accurate domain modeling that is representative of species diversity is crucial for understanding protein family sequence evolution and their inferred function(s). Here, we describe a bioinformatic tool called Taxon-Informed Adjustment of Markov Model Attributes (TIAMMAt) which revises domain profile hidden Markov models (HMMs) by incorporating homologous domain sequences from underrepresented and nonmodel species. Using innate immunity pathways as a case study, we show that revising profile HMM parameters to directly account for variation in homologs among underrepresented species provides valuable insight into the evolution of protein families. Following adjustment by TIAMMAt, domain profile HMMs exhibit changes in their per-site amino acid state emission probabilities and insertion/deletion probabilities while maintaining the overall structure of the consensus sequence. Our results show that domain revision can heavily impact evolutionary interpretations for some families (i.e., NLR’s NACHT domain), whereas impact on other domains (e.g., rel homology domain and interferon regulatory factor domains) is minimal due to high levels of sequence conservation across the sampled phylogenetic depth (i.e., Metazoa). Importantly, TIAMMAt revises target domain models to reflect homologous sequence variation using the taxonomic distribution under consideration by the user. TIAMMAt’s flexibility to revise any subset of the Pfam database using a user-defined taxonomic pool will make it a valuable tool for future protein evolution studies, particularly when incorporating (or focusing) on nonmodel species.
Collapse
Affiliation(s)
- Michael G Tassia
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| | - Kyle T David
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| | - James P Townsend
- Whitman Center, Marine Biological Laboratory, Woods Hole, Massachusetts.,Department of Biology, Providence College, Providence, Rhode Island
| | | |
Collapse
|
8
|
The Tentacular Spectacular: Evolution of Regeneration in Sea Anemones. Genes (Basel) 2021; 12:genes12071072. [PMID: 34356088 PMCID: PMC8306839 DOI: 10.3390/genes12071072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Sea anemones vary immensely in life history strategies, environmental niches and their ability to regenerate. While the sea anemone Nematostella vectensis is the starlet of many key regeneration studies, recent work is emerging on the diverse regeneration strategies employed by other sea anemones. This manuscript will explore current molecular mechanisms of regeneration employed by non-model sea anemones Exaiptasia diaphana (an emerging model species for coral symbiosis studies) and Calliactis polypus (a less well-studied species) and examine how these species compare to the model sea anemone N. vectensis. We summarize the field of regeneration within sea anemones, within the greater context of phylum Cnidaria and in other invertebrate models of regeneration. We also address the current knowledge on two key systems that may be implemented in regeneration: the innate immune system and developmental pathways, including future aspects of work and current limitations.
Collapse
|
9
|
Santagata S. Genes with evidence of positive selection as potentially related to coloniality and the evolution of morphological features among the lophophorates and entoprocts. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:267-280. [PMID: 32638536 DOI: 10.1002/jez.b.22975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 05/14/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
Evolutionary mechanisms that underlie the origins of coloniality among organisms are diverse. Some animal colonies may be comprised strictly of clonal individuals formed from asexual budding or comprised of a chimera of clonal and sexually produced individuals that fuse secondarily. This investigation focuses on select members of the lophophorates and entoprocts whose evolutionary relationships remain enigmatic even in the age of genomics. Using transcriptomic data sets, two coloniality-based hypotheses are tested in a phylogenetic context to find candidate genes showing evidence of positive selection and potentially convergent molecular signatures among solitary species and taxa-forming colonies from aggregate groups or clonal budding. Approximately 22% of the 387 orthogroups tested showed evidence of positive selection in at least one of the three branch-site tests (CODEML, BUSTED, and aBSREL). Only 12 genes could be reliably associated with a developmental function related to traits linked with coloniality, neuroanatomy, or ciliary fields. Genes testing for both positive selection and convergent molecular characters include orthologues of Radial spoke head, Elongation translation initiation factors, SEC13, and Immediate early response gene5. Maximum likelihood analyses included here resulted in tree topologies typical of other phylogenetic investigations based on wider genomic information. Further genomic and experimental evidence will be needed to resolve whether a solitary ancestor with multiciliated cells that formed aggregate groups gave rise to colonial forms in bryozoans (and perhaps the entoprocts) or that the morphological differences exhibited by phoronids and brachiopods represent trait modifications from a colonial ancestor.
Collapse
Affiliation(s)
- Scott Santagata
- Department of Biological and Environmental Sciences, Long Island University, Greenvale, New York
| |
Collapse
|
10
|
Irisarri I, Uribe JE, Eernisse DJ, Zardoya R. A mitogenomic phylogeny of chitons (Mollusca: Polyplacophora). BMC Evol Biol 2020; 20:22. [PMID: 32024460 PMCID: PMC7003433 DOI: 10.1186/s12862-019-1573-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/30/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Polyplacophora, or chitons, have long fascinated malacologists for their distinct and rather conserved morphology and lifestyle compared to other mollusk classes. However, key aspects of their phylogeny and evolution remain unclear due to the few morphological, molecular, or combined phylogenetic analyses, particularly those addressing the relationships among the major chiton lineages. RESULTS Here, we present a mitogenomic phylogeny of chitons based on 13 newly sequenced mitochondrial genomes along with eight available ones and RNAseq-derived mitochondrial sequences from four additional species. Reconstructed phylogenies largely agreed with the latest advances in chiton systematics and integrative taxonomy but we identified some conflicts that call for taxonomic revisions. Despite an overall conserved gene order in chiton mitogenomes, we described three new rearrangements that might have taxonomic utility and reconstructed the most likely scenario of gene order change in this group. Our phylogeny was time-calibrated using various fossils and relaxed molecular clocks, and the robustness of these analyses was assessed with several sensitivity analyses. The inferred ages largely agreed with previous molecular clock estimates and the fossil record, but we also noted that the ambiguities inherent to the chiton fossil record might confound molecular clock analyses. CONCLUSIONS In light of the reconstructed time-calibrated framework, we discuss the evolution of key morphological features and call for a continued effort towards clarifying the phylogeny and evolution of chitons.
Collapse
Affiliation(s)
- Iker Irisarri
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), c/ José Gutiérrez Abascal 2, 28006, Madrid, Spain.
- Department of Organismal Biology (Systematic Biology Program), Evolutionary Biology Centre, Uppsala University, Norbyv. 18C, 75236, Uppsala, Sweden.
| | - Juan E Uribe
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), c/ José Gutiérrez Abascal 2, 28006, Madrid, Spain
- Department of Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th St. & Constitutional Ave. NW, Washington, DC, 20560, USA
| | - Douglas J Eernisse
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd, Fullerton, CA, 92831-3599, USA
| | - Rafael Zardoya
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), c/ José Gutiérrez Abascal 2, 28006, Madrid, Spain
| |
Collapse
|
11
|
Kamm K, Schierwater B, DeSalle R. Innate immunity in the simplest animals - placozoans. BMC Genomics 2019; 20:5. [PMID: 30611207 PMCID: PMC6321704 DOI: 10.1186/s12864-018-5377-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/16/2018] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Innate immunity provides the core recognition system in animals for preventing infection, but also plays an important role in managing the relationship between an animal host and its symbiont. Most of our knowledge about innate immunity stems from a few animal model systems, but substantial variation between metazoan phyla has been revealed by comparative genomic studies. The exploration of more taxa is still needed to better understand the evolution of immunity related mechanisms. Placozoans are morphologically the simplest organized metazoans and the association between these enigmatic animals and their rickettsial endosymbionts has recently been elucidated. Our analyses of the novel placozoan nuclear genome of Trichoplax sp. H2 and its associated rickettsial endosymbiont genome clearly pointed to a mutualistic and co-evolutionary relationship. This discovery raises the question of how the placozoan holobiont manages symbiosis and, conversely, how it defends against harmful microorganisms. In this study, we examined the annotated genome of Trichoplax sp. H2 for the presence of genes involved in innate immune recognition and downstream signaling. RESULTS A rich repertoire of genes belonging to the Toll-like and NOD-like receptor pathways, to scavenger receptors and to secreted fibrinogen-related domain genes was identified in the genome of Trichoplax sp. H2. Nevertheless, the innate immunity related pathways in placozoans deviate in several instances from well investigated vertebrates and invertebrates. While true Toll- and NOD-like receptors are absent, the presence of many genes of the downstream signaling cascade suggests at least primordial Toll-like receptor signaling in Placozoa. An abundance of scavenger receptors, fibrinogen-related domain genes and Apaf-1 genes clearly constitutes an expansion of the immunity related gene repertoire specific to Placozoa. CONCLUSIONS The found wealth of immunity related genes present in Placozoa is surprising and quite striking in light of the extremely simple placozoan body plan and their sparse cell type makeup. Research is warranted to reveal how Placozoa utilize this immune repertoire to manage and maintain their associated microbiota as well as to fend-off pathogens.
Collapse
Affiliation(s)
- Kai Kamm
- ITZ Ecology and Evolution, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17d, D-30559 Hannover, Germany
| | - Bernd Schierwater
- ITZ Ecology and Evolution, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17d, D-30559 Hannover, Germany
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, NY USA
- Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520 USA
| | - Rob DeSalle
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, NY USA
| |
Collapse
|
12
|
Xu M, Wu J, Ge D, Wu C, Lv Z, Liao Z, Liu H. A novel toll-like receptor from Mytilus coruscus is induced in response to stress. FISH & SHELLFISH IMMUNOLOGY 2018; 78:331-337. [PMID: 29709593 DOI: 10.1016/j.fsi.2018.04.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Toll-like receptor (TLR) is considered to be an evolutionarily conserved transmembrane protein which promotes the Toll signal pathway to active the expression of transcription factors in the innate immunity of the organism. In this study, a full length of TLR homologue of 2525bp in Mytilus coruscus (named as McTLR-a, GenBank accession no: KY940571) was characterized. Its ORF was 1815 bp with a 5'untranslated region (UTR) of 128 bp and a 3'UTR of 582 bp, encoding 602 amino acid residues with a calculated molecular weight of 70.870 kDa (pI = 6.10). BLASTn analysis and phylogenetic relationship strongly suggested that this cDNA sequence was a member of TLR family. Quantitative real time RT-PCR showed that constitutive expression of McTLR-a was occurred, with increasing order in hemocyte, gonad, mantle, adducter, gill and hepatopancreas. Bacterial infection and heavy metals stimulation up-regulated the expression of McTLR-a mRNA in hepatopancreas with time-dependent manners. The maximum expression appeared at 12 h after pathogenic bacteria injection, with approximately 22-fold in Aeromonas hydrophila and 17-fold in Vibrio parahemolyticus higher than that of the blank group. In heavy metals stress group, they all reached peaks at 3d, while the diverse concentration caused the maximum expression were different. The highest expression reached approximately 7-fold higher than the blank in low concentration of Pb2+ exposure. In Cu2+ treated group, it reached the peak (approximately 12-fold higher than the blank)in middle concentration. These results indicated that McTLR-a might be involved in the defense response and had a significant role in mediating the environmental stress.
Collapse
Affiliation(s)
- Mengshan Xu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Jiong Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Delong Ge
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Changwen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Zhenming Lv
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Zhi Liao
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Huihui Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
13
|
Gerdol M, Luo YJ, Satoh N, Pallavicini A. Genetic and molecular basis of the immune system in the brachiopod Lingula anatina. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 82:7-30. [PMID: 29278680 DOI: 10.1016/j.dci.2017.12.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
The extension of comparative immunology to non-model systems, such as mollusks and annelids, has revealed an unexpected diversity in the complement of immune receptors and effectors among evolutionary lineages. However, several lophotrochozoan phyla remain unexplored mainly due to the lack of genomic resources. The increasing accessibility of high-throughput sequencing technologies offers unique opportunities for extending genome-wide studies to non-model systems. As a result, the genome-based study of the immune system in brachiopods allows a better understanding of the alternative survival strategies developed by these immunologically neglected phyla. Here we present a detailed overview of the molecular components of the immune system identified in the genome of the brachiopod Lingula anatina. Our findings reveal conserved intracellular signaling pathways as well as unique strategies for pathogen detection and killing in brachiopods.
Collapse
Affiliation(s)
- Marco Gerdol
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy.
| | - Yi-Jyun Luo
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy; Anton Dohrn Zoological Station, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
14
|
Kocot KM, Struck TH, Merkel J, Waits DS, Todt C, Brannock PM, Weese DA, Cannon JT, Moroz LL, Lieb B, Halanych KM. Phylogenomics of Lophotrochozoa with Consideration of Systematic Error. Syst Biol 2018; 66:256-282. [PMID: 27664188 DOI: 10.1093/sysbio/syw079] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/24/2016] [Indexed: 01/13/2023] Open
Abstract
Phylogenomic studies have improved understanding of deep metazoan phylogeny and show promise for resolving incongruences among analyses based on limited numbers of loci. One region of the animal tree that has been especially difficult to resolve, even with phylogenomic approaches, is relationships within Lophotrochozoa (the animal clade that includes molluscs, annelids, and flatworms among others). Lack of resolution in phylogenomic analyses could be due to insufficient phylogenetic signal, limitations in taxon and/or gene sampling, or systematic error. Here, we investigated why lophotrochozoan phylogeny has been such a difficult question to answer by identifying and reducing sources of systematic error. We supplemented existing data with 32 new transcriptomes spanning the diversity of Lophotrochozoa and constructed a new set of Lophotrochozoa-specific core orthologs. Of these, 638 orthologous groups (OGs) passed strict screening for paralogy using a tree-based approach. In order to reduce possible sources of systematic error, we calculated branch-length heterogeneity, evolutionary rate, percent missing data, compositional bias, and saturation for each OG and analyzed increasingly stricter subsets of only the most stringent (best) OGs for these five variables. Principal component analysis of the values for each factor examined for each OG revealed that compositional heterogeneity and average patristic distance contributed most to the variance observed along the first principal component while branch-length heterogeneity and, to a lesser extent, saturation contributed most to the variance observed along the second. Missing data did not strongly contribute to either. Additional sensitivity analyses examined effects of removing taxa with heterogeneous branch lengths, large amounts of missing data, and compositional heterogeneity. Although our analyses do not unambiguously resolve lophotrochozoan phylogeny, we advance the field by reducing the list of viable hypotheses. Moreover, our systematic approach for dissection of phylogenomic data can be applied to explore sources of incongruence and poor support in any phylogenomic data set. [Annelida; Brachiopoda; Bryozoa; Entoprocta; Mollusca; Nemertea; Phoronida; Platyzoa; Polyzoa; Spiralia; Trochozoa.].
Collapse
Affiliation(s)
- Kevin M Kocot
- Department of Biological Sciences, 101 Rouse Life Sciences, Auburn University, Auburn, AL 36849, USA.,Department of Biological Sciences and Alabama Museum of Natural History, 307 Mary Harmon Bryant Hall, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Torsten H Struck
- Natural History Museum, Department of Research and Collections, University of Oslo, PO Box 1172 Blindern, N-0318 Oslo, Norway
| | - Julia Merkel
- Johannes Gutenberg University, Institute of Zoology, 55099 Mainz, Germany
| | - Damien S Waits
- Department of Biological Sciences, 101 Rouse Life Sciences, Auburn University, Auburn, AL 36849, USA
| | - Christiane Todt
- University Museum of Bergen, The Natural History Collections, University of Bergen, Allégaten 41, 5007 Bergen, Norway
| | - Pamela M Brannock
- Department of Biological Sciences, 101 Rouse Life Sciences, Auburn University, Auburn, AL 36849, USA
| | - David A Weese
- Department of Biological Sciences, 101 Rouse Life Sciences, Auburn University, Auburn, AL 36849, USA.,Department of Biological and Environmental Sciences, Georgia College and State University, Campus Box 81, Milledgeville, GA 31061 USA
| | - Johanna T Cannon
- Department of Biological Sciences, 101 Rouse Life Sciences, Auburn University, Auburn, AL 36849, USA.,Department of Zoology, Naturhistoriska riksmuseet, Box 50007, 104 05 Stockholm, Sweden
| | - Leonid L Moroz
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St Augustine, FL 32080, USA
| | - Bernhard Lieb
- Johannes Gutenberg University, Institute of Zoology, 55099 Mainz, Germany
| | - Kenneth M Halanych
- Department of Biological Sciences, 101 Rouse Life Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
15
|
Luo YJ, Kanda M, Koyanagi R, Hisata K, Akiyama T, Sakamoto H, Sakamoto T, Satoh N. Nemertean and phoronid genomes reveal lophotrochozoan evolution and the origin of bilaterian heads. Nat Ecol Evol 2017; 2:141-151. [PMID: 29203924 DOI: 10.1038/s41559-017-0389-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 10/20/2017] [Indexed: 01/29/2023]
Abstract
Nemerteans (ribbon worms) and phoronids (horseshoe worms) are closely related lophotrochozoans-a group of animals including leeches, snails and other invertebrates. Lophotrochozoans represent a superphylum that is crucial to our understanding of bilaterian evolution. However, given the inconsistency of molecular and morphological data for these groups, their origins have been unclear. Here, we present draft genomes of the nemertean Notospermus geniculatus and the phoronid Phoronis australis, together with transcriptomes along the adult bodies. Our genome-based phylogenetic analyses place Nemertea sister to the group containing Phoronida and Brachiopoda. We show that lophotrochozoans share many gene families with deuterostomes, suggesting that these two groups retain a core bilaterian gene repertoire that ecdysozoans (for example, flies and nematodes) and platyzoans (for example, flatworms and rotifers) do not. Comparative transcriptomics demonstrates that lophophores of phoronids and brachiopods are similar not only morphologically, but also at the molecular level. Despite dissimilar head structures, lophophores express vertebrate head and neuronal marker genes. This finding suggests a common origin of bilaterian head patterning, although different heads evolved independently in each lineage. Furthermore, we observe lineage-specific expansions of innate immunity and toxin-related genes. Together, our study reveals a dual nature of lophotrochozoans, where conserved and lineage-specific features shape their evolution.
Collapse
Affiliation(s)
- Yi-Jyun Luo
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan. .,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Miyuki Kanda
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Ryo Koyanagi
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Tadashi Akiyama
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, Setouchi, Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, Setouchi, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, Setouchi, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
| |
Collapse
|
16
|
Wippler J, Kleiner M, Lott C, Gruhl A, Abraham PE, Giannone RJ, Young JC, Hettich RL, Dubilier N. Transcriptomic and proteomic insights into innate immunity and adaptations to a symbiotic lifestyle in the gutless marine worm Olavius algarvensis. BMC Genomics 2016; 17:942. [PMID: 27871231 PMCID: PMC5117596 DOI: 10.1186/s12864-016-3293-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 11/15/2016] [Indexed: 02/07/2023] Open
Abstract
Background The gutless marine worm Olavius algarvensis has a completely reduced digestive and excretory system, and lives in an obligate nutritional symbiosis with bacterial symbionts. While considerable knowledge has been gained of the symbionts, the host has remained largely unstudied. Here, we generated transcriptomes and proteomes of O. algarvensis to better understand how this annelid worm gains nutrition from its symbionts, how it adapted physiologically to a symbiotic lifestyle, and how its innate immune system recognizes and responds to its symbiotic microbiota. Results Key adaptations to the symbiosis include (i) the expression of gut-specific digestive enzymes despite the absence of a gut, most likely for the digestion of symbionts in the host's epidermal cells; (ii) a modified hemoglobin that may bind hydrogen sulfide produced by two of the worm’s symbionts; and (iii) the expression of a very abundant protein for oxygen storage, hemerythrin, that could provide oxygen to the symbionts and the host under anoxic conditions. Additionally, we identified a large repertoire of proteins involved in interactions between the worm's innate immune system and its symbiotic microbiota, such as peptidoglycan recognition proteins, lectins, fibrinogen-related proteins, Toll and scavenger receptors, and antimicrobial proteins. Conclusions We show how this worm, over the course of evolutionary time, has modified widely-used proteins and changed their expression patterns in adaptation to its symbiotic lifestyle and describe expressed components of the innate immune system in a marine oligochaete. Our results provide further support for the recent realization that animals have evolved within the context of their associations with microbes and that their adaptive responses to symbiotic microbiota have led to biological innovations. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3293-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juliane Wippler
- Symbiosis Department, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany. .,Symbiosis Department, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany.
| | - Manuel Kleiner
- Symbiosis Department, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany. .,Energy Bioengineering and Geomicrobiology Research Group, University of Calgary, Calgary, T2N 1N4, AB, Canada.
| | - Christian Lott
- Symbiosis Department, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany.,HYDRA Institute for Marine Sciences, Elba Field Station, Via del Forno 80, 57034, Campo nell' Elba, (LI), Italy
| | - Alexander Gruhl
- Symbiosis Department, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
| | - Paul E Abraham
- Oak Ridge National Laboratory, Chemical Sciences Division, Oak Ridge, Tennessee, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA
| | - Richard J Giannone
- Oak Ridge National Laboratory, Chemical Sciences Division, Oak Ridge, Tennessee, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA
| | - Jacque C Young
- Oak Ridge National Laboratory, Chemical Sciences Division, Oak Ridge, Tennessee, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA.,Present Address: Saul Ewing LLP, 1500 Market Street, 37th Floor, Philadelphia, PA, 19102-2186, USA
| | - Robert L Hettich
- Oak Ridge National Laboratory, Chemical Sciences Division, Oak Ridge, Tennessee, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA
| | - Nicole Dubilier
- Symbiosis Department, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
| |
Collapse
|
17
|
Kang SW, Patnaik BB, Hwang HJ, Park SY, Chung JM, Song DK, Patnaik HH, Lee JB, Kim C, Kim S, Park HS, Park SH, Park YS, Han YS, Lee JS, Lee YS. Sequencing and de novo assembly of visceral mass transcriptome of the critically endangered land snail Satsuma myomphala: Annotation and SSR discovery. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 21:77-89. [PMID: 28107688 DOI: 10.1016/j.cbd.2016.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 12/12/2022]
Abstract
Satsuma myomphala is critically endangered through loss of natural habitats, predation by natural enemies, and indiscriminate collection. It is a protected species in Korea but lacks genomic resources for an understanding of varied functional processes attributable to evolutionary success under natural habitats. For assessing the genetic information of S. myomphala, we performed for the first time, de novo transcriptome sequencing and functional annotation of expressed sequences using Illumina Next-Generation Sequencing (NGS) platform and bioinformatics analysis. We identified 103,774 unigenes of which 37,959, 12,890, and 17,699 were annotated in the PANM (Protostome DB), Unigene, and COG (Clusters of Orthologous Groups) databases, respectively. In addition, 14,451 unigenes were predicted under Gene Ontology functional categories, with 4581 assigned to a single category. Furthermore, 3369 sequences with 646 having Enzyme Commission (EC) numbers were mapped to 122 pathways in the Kyoto Encyclopedia of Genes and Genomes Pathway database. The prominent protein domains included the Zinc finger (C2H2-like), Reverse Transcriptase, Thioredoxin-like fold, and RNA recognition motif domain. Many unigenes with homology to immunity, defense, and reproduction-related genes were screened in the transcriptome. We also detected 3120 putative simple sequence repeats (SSRs) encompassing dinucleotide to hexanucleotide repeat motifs from >1kb unigene sequences. A list of PCR primers of SSR loci have been identified to study the genetic polymorphisms. The transcriptome data represents a valuable resource for further investigations on the species genome structure and biology. The unigenes information and microsatellites would provide an indispensable tool for conservation of the species in natural and adaptive environments.
Collapse
Affiliation(s)
- Se Won Kang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Republic of Korea
| | - Bharat Bhusan Patnaik
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Republic of Korea; Trident School of Biotech Sciences, Trident Academy of Creative Technology (TACT), Bhubaneswar, Odisha, 751024, India
| | - Hee-Ju Hwang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Republic of Korea
| | - So Young Park
- Biodiversity Conservation & Change Research Division, Nakdonggang National Institute of Biological Resources, 137, Donam 2-gil, Sangju-si, Gyeongsangbuk-do, 37242, Republic of Korea
| | - Jong Min Chung
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Republic of Korea
| | - Dae Kwon Song
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Republic of Korea
| | - Hongray Howrelia Patnaik
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Republic of Korea
| | - Jae Bong Lee
- Korea Zoonosis Research Institute (KOZRI), Chonbuk National University, 820-120 Hana-ro, Iksan, Jeollabuk-do 54528, Republic of Korea
| | - Changmu Kim
- National Institute of Biological Resources, 42, Hwangyeong-ro, Seo-gu, Incheon 22689, Republic of Korea
| | - Soonok Kim
- National Institute of Biological Resources, 42, Hwangyeong-ro, Seo-gu, Incheon 22689, Republic of Korea
| | - Hong Seog Park
- Research Institute, GnC BIO Co., Ltd., 621-6 Banseok-dong, Yuseong-gu, Daejeon 34069, Republic of Korea
| | - Seung-Hwan Park
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil (Shinjeong0dong), Jungeup-si, Jeollabuk-do,56212, Republic of Korea
| | - Young-Su Park
- Department of Nursing, College of Medicine, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Republic of Korea
| | - Yeon Soo Han
- College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Jun Sang Lee
- Institute of Environmental Research, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do-si 243341, Republic of Korea
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Republic of Korea.
| |
Collapse
|
18
|
Hu X, Tian Y, Wang T, Zhang W, Wang W, Gao X, Qu S, Cao Y, Zhang N. TRAM-Derived Decoy Peptides inhibits the inflammatory response in mouse mammary epithelial cells and a mastitis model in mice. Eur J Pharmacol 2015; 764:607-612. [PMID: 26101068 DOI: 10.1016/j.ejphar.2015.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 06/09/2015] [Accepted: 06/15/2015] [Indexed: 12/13/2022]
Abstract
It has been proved that TRAM-Derived Decoy peptides have anti-inflammatory properties. In this study, we synthesized a TRAM-Derived decoy peptide (TM6), belongs to TRAM TIR domain, of which sequence is "N"-RQIKIWFQNRRMKWK, KENFLRDTWCNFQFY-"C" and evaluated the effects of TM6 on lipopolysaccharide-induced mastitis in mice. In vivo, LPS-induced mice mastitis model was established by injection of LPS through the duct of mammary gland. TM6 was injected 1h before or after LPS treatment. In vitro, primary mouse mammary epithelial cells were used to investigate the effects of TM6 on LPS-induced inflammatory responses. The results showed that TM6 inhibited LPS-induced mammary gland histopathologic changes, MPO activity, and TNF-α, IL-1β and IL-6 production in mice. In vitro, TM6 significantly inhibited LPS-induced TNF-α and IL-6 production, as well as NF-κB and MAPKs activation. In conclusion, this study demonstrated that TM6 had protective effects on LPS-mastitis and may be a promising therapeutic reagent for mastitis treatment.
Collapse
Affiliation(s)
- Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, Republic of China
| | - Yuan Tian
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, Republic of China
| | - Tiancheng Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, Republic of China
| | - Wenlong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, Republic of China
| | - Wei Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, Republic of China
| | - Xuejiao Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, Republic of China
| | - Shihui Qu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, Republic of China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, Republic of China.
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, Republic of China.
| |
Collapse
|