1
|
Yang Y, Chen Z, Pan Y, Zhang Y, Le T. Interactions of metal-based nanozymes with aptamers, from the design of nanozyme to its application in aptasensor: Advances and perspectives. Talanta 2025; 286:127450. [PMID: 39724857 DOI: 10.1016/j.talanta.2024.127450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Nanozymes, characterized by enzyme-like activity, have been extensively used in quantitative analysis and rapid detection due to their small size, batch fabrication, and ease of modification. Researchers have combined aptamers, an emerging molecular probe, with nanozymes for biosensing to address the limited reaction specificity of nanozymes. Nanozyme aptasensors are currently experiencing significant growth, offering a promising solution to the lack of rapid detection methods across various fields. Unlike traditional nanozyme research, the development of nanozyme aptasensors is challenging as it requires the design of highly active nanozymes as well as the establishment of efficient and agile interactions between aptamers and nanozymes. Therefore, this review summarizes the active species and catalytic mechanisms of various nanozymes along with classical design options, discussing the future development of nanozyme aptasensors. It is anticipated that this review will inspire researchers in this domain, leading to the design of more enzymatically active nanozymes and advanced nanozyme aptasensors.
Collapse
Affiliation(s)
- Ying Yang
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, Chongqing Normal University, College of Life Sciences, Chongqing, 401331, China
| | - Zhuoer Chen
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, Chongqing Normal University, College of Life Sciences, Chongqing, 401331, China
| | - Yangwei Pan
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, Chongqing Normal University, College of Life Sciences, Chongqing, 401331, China
| | - Yongkang Zhang
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, Chongqing Normal University, College of Life Sciences, Chongqing, 401331, China
| | - Tao Le
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, Chongqing Normal University, College of Life Sciences, Chongqing, 401331, China.
| |
Collapse
|
2
|
Shen Q, Zhu X, Huo M, Lin Y, Zhang W, Yang M, Zhang Y, Zhang L, Gai Y. A hollow nanozyme-based multifunctional platform enhances sonodynamic-chemodynamic-induced ferroptosis for cancer therapy. RSC Adv 2025; 15:9408-9419. [PMID: 40151533 PMCID: PMC11948307 DOI: 10.1039/d5ra00032g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Ferroptosis, a novel form of cell death driven by lipid peroxides (LPO) accumulation, holds promise for personalized cancer therapy. However, its efficacy is constrained by the tumor microenvironment (TME), which is characterized by hypoxia, insufficient endogenous hydrogen peroxide (H2O2), and glutathione (GSH) overabundance. To address these limitations, we developed a multifunctional nanoplatform, HMnO2-VC@mPEG-Ce6 (HMVC), which integrates sono-chemodynamic strategies to induce synergistic ferroptosis in prostate cancer. The therapeutic superiority of HMVC stems from three coordinated mechanisms. Firstly, HMnO2 catalyze H2O2 decomposition to generate oxygen (O2), alleviating tumor hypoxia and amplifying the sonodynamic effect of chlorin e6 (Ce6). Secondly, vitamin C (VC) sustains H2O2 production via chemodynamic therapy (CDT), driving a burst of reactive oxygen species (ROS). Thirdly, GSH-triggered reduction of Mn4+ to Mn2+ depletes GSH reserves and suppresses glutathione peroxidase 4 (GPX4) activity. These cascading actions disrupt the ROS-GPX4 equilibrium, leading to irreversible LPO accumulation and subsequent ferroptosis. Our work establishes a generalizable nanotechnology paradigm to overcome TME barriers and achieve precise ferroptosis regulation, offering a transformative strategy for cancer treatment.
Collapse
Affiliation(s)
- Qi Shen
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan Shandong 250021 P. R. China
| | - Xi Zhu
- Institute of Biomedical Engineering, Kunming Medical University Kunming Yunnan 650500 P. R. China
| | - Mengping Huo
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan Shandong 250021 P. R. China
| | - Yafei Lin
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan Shandong 250021 P. R. China
| | - Wenting Zhang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan Shandong 250021 P. R. China
| | - Ming Yang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan Shandong 250021 P. R. China
| | - Yang Zhang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan Shandong 250021 P. R. China
| | - Long Zhang
- Department of Orthopedics, The 80th Group Army Hospital of PLA Weifang Shandong 261000 P. R. China
| | - Yonghao Gai
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan Shandong 250021 P. R. China
| |
Collapse
|
3
|
Yang Y, Yao Z, Sun Y, Nie Y, Zhang Y, Li Z, Luo Z, Zhang W, Wang X, Du Y, Zhang W, Qin L, Sang H, Lai Y. 3D-printed manganese dioxide incorporated scaffold promotes osteogenic-angiogenic coupling for refractory bone defect by remodeling osteo-regenerative microenvironment. Bioact Mater 2025; 44:354-370. [PMID: 39539517 PMCID: PMC11558641 DOI: 10.1016/j.bioactmat.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The treatment of refractory bone defects is a major clinical challenge, especially in steroid-associated osteonecrosis (SAON), which is characterized by insufficient osteogenesis and angiogenesis. Herin, a microenvironment responsiveness scaffold composed of poly-L-lactide (PLLA), and manganese dioxide (MnO2) nanoparticles is designed to enhance bone regeneration by scavenging endogenous reactive oxygen species (ROS) and modulating immune microenvironment in situ. A catalase-like catalytic reaction between MnO2 and endogenous hydrogen peroxide (H2O2) generated at the bone defect area, which typically becomes acidic and ROS-rich, triggers on-demand release of oxygen and Mn2+, significantly ameliorating inflammatory response by promoting M2-type polarization of macrophages, reprograming osteoimmune microenvironment conducive to angiogenesis and osteogenesis. Furthermore, the fundamental mechanisms were explored through transcriptome sequencing analysis, revealing that PLLA/MnO2 scaffolds (PMns) promote osteogenic differentiation by upregulating the TGF-β/Smad signaling pathway in human bone marrow mesenchymal stem cells (hBMSCs). Overall, the PMns exhibit superior immunomodulatory, excellent osteogenic-angiogenic properties and promising candidates as bone graft substitutes for therapy clinical refractory bone defects.
Collapse
Affiliation(s)
- Yipei Yang
- Department of Orthopedic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510500, China
| | - Zhenyu Yao
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yuanyi Sun
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yangyi Nie
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yuanchi Zhang
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ziyue Li
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, 510500, China
| | - Zhiheng Luo
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wenjing Zhang
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiao Wang
- Department of Orthopedic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510500, China
| | - Yuhan Du
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wei Zhang
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ling Qin
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
- CAS-HK Joint Lab of Biomaterials, Shenzhen, 518055, China
| | - Hongxun Sang
- Department of Orthopedic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510500, China
| | - Yuxiao Lai
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS-HK Joint Lab of Biomaterials, Shenzhen, 518055, China
| |
Collapse
|
4
|
Li Y, Liu H, Wang S, Zhang S, Li W, Zhang G, Zhao Y. Rapid screening of xanthine oxidase inhibitors from Ligusticum wallichii by using xanthine oxidase functionalized magnetic metal-organic framework. Anal Bioanal Chem 2024; 416:6651-6662. [PMID: 39347815 DOI: 10.1007/s00216-024-05570-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
In this study, xanthine oxidase was immobilized for the first time using a novel magnetic metal-organic framework material (Fe3O4-SiO2-NH2@MnO2@ZIF-8-NH2). A ligand fishing method was established to rapidly screen XOD inhibitors from Ligusticum wallichii based on the immobilized XOD. Characterization and properties of the immobilized enzyme revealed its excellent stability and reusability. A ligand was screened from Ligusticum wallichii and identified as ligustilide by ultra-high performance liquid chromatography tandem mass spectrometry. The IC50 value of ligustilide was determined to be 27.70 ± 0.13 μM through in vitro inhibition testing. Furthermore, molecular docking verified that ligustilide could bind to amino acid residues at the active site of XOD. This study provides a rapid and effective method for the preliminary screening of XOD inhibitors from complex natural products and has great potential for further discovery of anti-hyperuricemic compounds.
Collapse
Affiliation(s)
- Yue Li
- School of Science, Xihua University, Chengdu, 610039, China
| | - Hongmei Liu
- School of Science, Xihua University, Chengdu, 610039, China
| | - Sikai Wang
- School of Science, Xihua University, Chengdu, 610039, China
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Sisi Zhang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Wen Li
- School of Science, Xihua University, Chengdu, 610039, China
| | - Guoqi Zhang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Yan Zhao
- School of Science, Xihua University, Chengdu, 610039, China.
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
5
|
Cheng Y, Liu X, Rutkowski S, Badaraev AD, Kozelskaya AI, Tverdokhlebov SI, Frueh J. Investigation of the Antibacterial Properties of Janus Micromotors Catalytic Propelled by Manganese Dioxide and Hydrogen Peroxide to Reduce Bacterial Density. ACS APPLIED BIO MATERIALS 2024; 7:6529-6541. [PMID: 39357930 DOI: 10.1021/acsabm.4c00690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Between 2015 and 2017, 90% of Chinese adults were reported to have periodontitis of varying degrees, highlighting the importance of novel, inexpensive, and affordable treatments for the public. The fact that more and more pathogens are becoming resistant to antibiotics further highlights this prevalence. This article addresses a novel micromotor capable of generating reactive oxygen species, as proven by a Fenton-like reaction. Such reactions allow the targeting of Gram-negative bacteria such as Escherichia coli, which are eliminated order of magnitude more effectively than by pure hydrogen peroxide, thereby addressing pathogens relevant in oral infections. The basis of the micromotors, which generate reactive oxygen species on site, reduces the likelihood of resistance developing in these types of bacteria. Catalytically reducing hydrogen peroxide in this process, these micromotors propel themselves forward. This proof of principle study paves the way for the utilization of micromotors in the field of skin disinfection utilizing hydrogen peroxide concentrations which were in previous works proven noncytotoxic.
Collapse
Affiliation(s)
- Yanfang Cheng
- Faculty of Medicine and Health, Harbin Institute of Technology, 150080 Harbin, P. R. China
| | - Xiaolan Liu
- Faculty of Medicine and Health, Harbin Institute of Technology, 150080 Harbin, P. R. China
| | - Sven Rutkowski
- Weinberg Research Center, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, I-634050 Tomsk, Russian Federation
| | - Arsalan D Badaraev
- Weinberg Research Center, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, I-634050 Tomsk, Russian Federation
| | - Anna I Kozelskaya
- Weinberg Research Center, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, I-634050 Tomsk, Russian Federation
| | - Sergei I Tverdokhlebov
- Weinberg Research Center, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, I-634050 Tomsk, Russian Federation
| | - Johannes Frueh
- Faculty of Medicine and Health, Harbin Institute of Technology, 150080 Harbin, P. R. China
- Weinberg Research Center, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, I-634050 Tomsk, Russian Federation
- Institute of Environmental Engineering, ETH Eidgenössische Technische Hochschule Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
6
|
Liang L, Jia M, Zhao M, Deng Y, Tang J, He X, Liu Y, Yan K, Yu X, Yang H, Li C, Li Y, Li T. Progress of Nanomaterials Based on Manganese Dioxide in the Field of Tumor Diagnosis and Therapy. Int J Nanomedicine 2024; 19:8883-8900. [PMID: 39224196 PMCID: PMC11368147 DOI: 10.2147/ijn.s477026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
As a pivotal transition metal oxide, manganese dioxide (MnO2) has garnered significant attention owing to its abundant reserves, diverse crystal structures and exceptional performance. Nanosizing MnO2 results in smaller particle sizes, larger specific surface areas, optimized material characteristics, and expanded application possibilities. With the burgeoning research efforts in this field, MnO2 has emerged as a promising nanomaterial for tumor diagnosis and therapy. The distinctive properties of MnO2 in regulating the tumor microenvironment (TME) have attracted considerable interest, leading to a rapid growth in research on MnO2-based nanomaterials for tumor diagnosis and treatment. Additionally, MnO2 nanomaterials are also gradually showing up in the regulation of chronic inflammatory diseases. In this review, we mainly summarized the recent advancements in various MnO2 nanomaterials for tumor diagnosis and therapy. Furthermore, we discuss the current challenges and future directions in the development of MnO2 nanomaterials, while also envisaging their potential for clinical translation.
Collapse
Grants
- This work was supported by the Sichuan Science and Technology Program (grant numbers 2023NSFSC0620, 2022YFS0614, 2022YFS0622, 2022YFS0627), the Luzhou Municipal People’s Government-Southwest Medical University Joint Scientific Research Project (grant number 2023LZXNYDHZ003), the Open fund for Key Laboratory of Medical Electrophysiology of Ministry of Education (grant numbers KeyME-2023-07), the Youth Science Foundation Project of Southwest Medical University (grant numbers 2023QN075, 2022QN025), the Southwest Medical University Science and Technology Project (No.2021ZKMS034), the Hejiang County People’s Hospital-Southwest Medical University Joint Scientific Research Project (grant numbers 2023HJXNYD03, 2022HJXNYD03, 2022HJXNYD14), Chinese student innovation and entrepreneurship project (202310632027)
Collapse
Affiliation(s)
- Lijuan Liang
- Department of Pharmacy, Hejiang County People’s Hospital, Luzhou, Sichuan, People’s Republic of China
| | - Ming Jia
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Nanchong Institute for Food and Drug Control, Nanchong, Sichuan, People’s Republic of China
| | - Min Zhao
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yiping Deng
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jun Tang
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Xinghui He
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yilin Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Kexin Yan
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Xin Yu
- Chinese Pharmacy Laboratory, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Hong Yang
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yao Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Science and Technology department, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
7
|
Huang P, Tang Q, Li M, Yang Q, Zhang Y, Lei L, Li S. Manganese-derived biomaterials for tumor diagnosis and therapy. J Nanobiotechnology 2024; 22:335. [PMID: 38879519 PMCID: PMC11179396 DOI: 10.1186/s12951-024-02629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/06/2024] [Indexed: 06/19/2024] Open
Abstract
Manganese (Mn) is widely recognized owing to its low cost, non-toxic nature, and versatile oxidation states, leading to the emergence of various Mn-based nanomaterials with applications across diverse fields, particularly in tumor diagnosis and therapy. Systematic reviews specifically addressing the tumor diagnosis and therapy aspects of Mn-derived biomaterials are lacking. This review comprehensively explores the physicochemical characteristics and synthesis methods of Mn-derived biomaterials, emphasizing their role in tumor diagnostics, including magnetic resonance imaging, photoacoustic and photothermal imaging, ultrasound imaging, multimodal imaging, and biodetection. Moreover, the advantages of Mn-based materials in tumor treatment applications are discussed, including drug delivery, tumor microenvironment regulation, synergistic photothermal, photodynamic, and chemodynamic therapies, tumor immunotherapy, and imaging-guided therapy. The review concludes by providing insights into the current landscape and future directions for Mn-driven advancements in the field, serving as a comprehensive resource for researchers and clinicians.
Collapse
Affiliation(s)
- Peiying Huang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China.
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
8
|
Jiang Y, Zhao J, Zhang D. Manganese Dioxide-Based Nanomaterials for Medical Applications. ACS Biomater Sci Eng 2024; 10:2680-2702. [PMID: 38588342 DOI: 10.1021/acsbiomaterials.3c01852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Manganese dioxide (MnO2) nanomaterials can react with trace hydrogen peroxide (H2O2) to produce paramagnetic manganese (Mn2+) and oxygen (O2), which can be used for magnetic resonance imaging and alleviate the hypoxic environment of tumors, respectively. MnO2 nanomaterials also can oxidize glutathione (GSH) to produce oxidized glutathione (GSSG) to break the balance of intracellular redox reactions. As a consequence of the sensitivity of the tumor microenvironment to MnO2-based nanomaterials, these materials can be used as multifunctional diagnostic and therapeutic platforms for tumor imaging and treatment. Importantly, when MnO2 nanomaterials are implanted along with other therapeutics, synergetic tumor therapy can be achieved. In addition to tumor treatment, MnO2-based nanomaterials display promising prospects for tissue repair, organ protection, and the treatment of other diseases. Herein, we provide a thorough review of recent progress in the use of MnO2-based nanomaterials for biomedical applications, which may be helpful for the design and clinical translation of next-generation MnO2 nanomaterials.
Collapse
Affiliation(s)
- Yuting Jiang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jiayi Zhao
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
9
|
Wang X, Zhang M, Li Y, Cong H, Yu B, Shen Y. Research Status of Dendrimer Micelles in Tumor Therapy for Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304006. [PMID: 37635114 DOI: 10.1002/smll.202304006] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/16/2023] [Indexed: 08/29/2023]
Abstract
Dendrimers are a family of polymers with highly branched structure, well-defined composition, and extensive functional groups, which have attracted great attention in biomedical applications. Micelles formed by dendrimers are ideal nanocarriers for delivering anticancer agents due to the explicit study of their characteristics of particle size, charge, and biological properties such as toxicity, blood circulation time, biodistribution, and cellular internalization. Here, the classification, preparation, and structure of dendrimer micelles are reviewed, and the specific functional groups modified on the surface of dendrimers for tumor active targeting, stimuli-responsive drug release, reduced toxicity, and prolonged blood circulation time are discussed. In addition, their applications are summarized as various platforms for biomedical applications related to cancer therapy including drug delivery, gene transfection, nano-contrast for imaging, and combined therapy. Other applications such as tissue engineering and biosensor are also involved. Finally, the possible challenges and perspectives of dendrimer micelles for their further applications are discussed.
Collapse
Affiliation(s)
- Xijie Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of, Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
10
|
Mohammad F, Bwatanglang IB, Al-Lohedan HA, Shaik JP, Moosavi M, Dahan WM, Al-Tilasi HH, Aldhayan DM, Chavali M, Soleiman AA. Magnetically controlled drug delivery and hyperthermia effects of core-shell Cu@Mn 3O 4 nanoparticles towards cancer cells in vitro. Int J Biol Macromol 2023; 249:126071. [PMID: 37524291 DOI: 10.1016/j.ijbiomac.2023.126071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/28/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Recent increase in the integration of nanotechnology and nanosciences to the biomedical sector fetches the human wellness through the development of sustainable treatment methodologies for cancerous tumors at all stages of their initiation and progression. This involves the development of multifunctional theranostic probes that effectively support for the early cancer diagnosis, avoiding non-target cell toxicity, controlled and customized anticancer drug release etc. Therefore, to advance the field of nanotechnology-based sustainable cancer treatment, we fabricated and tested the efficacy of anticancer drug-loaded magnetic hybrid nanoparticles (NPs) towards in vitro cell culture systems. The developed conjugate of NPs was incorporated with the functions of both controlled drug delivery and heat-releasing ability using Mn3O4 (manganese oxide) magnetic core with Cu shell encapsulated within trimethyl chitosan (TMC) biopolymer. On characterization, the Cu@Mn3O4-TMC NPs were confirmed to have an approximate size of 130 nm with full agglomeration (as observed by the HRTEM) and crystal size of 92.95 ± 18.38 nm with tetragonal hausmannite phase for Mn3O4 spinel structure (XRD). Also, the UV-Vis and FTIR analysis provided the qualitative and quantitative effects of 5-fluororacil (5-Fu) anticancer drug loading (max 68 %) onto the Cu@Mn3O4-TMC NPs. The DLS analysis indicated for the occurrence of no significant changes to the particle size (around 100 nm) of Cu@Mn3O4-TMC due to the solution dispersion thereby confirming for the aqueous stability of developed NPs. In addition, the magnetization values of Cu@Mn3O4-TMC NPs were measured to be 34 emu/g and a blocking temperature of 42 K. Further tests of magnetic hyperthermia by the Cu@Mn3O4-TMC/5-Fu NPs provided that the heat-releasing capacity (% ΔT at 15 min) increases with that of increased frequency, i.e. 28 % (440 Hz) > 22.6 % (240 Hz) > 18 % (44 Hz), and the highest specific power loss (SPL) value observed to be 488 W/g for water. Moreover, the 5-Fu drug release studies indicate that the release is high at a pH of 5.2 and almost all the loaded drug is getting delivered under the influence of the external magnetic field (430 Hz) due to the influence of both Brownian-rotation and Néel relaxation heat-mediated mechanism. The pharmacokinetic drug release studies have suggested for the occurrence of more than one model, i.e. First-order, Higuchi (diffusion), and Korsemeyer-Peppas (non-Fickian), in addition to hyperthermia. Finally, the in vitro cell culture systems (MCF-7 cancer and MCF-10 non-cancer) helped to differentiate the physiological changes due to the effects of hyperthermia and 5-Fu drug individually and as a combination of both. The observed differences of cell viability losses among both cell types are measured and discussed with the expression of heat shock proteins (HSPs) by the MCF-10 cells as against the MCF-7 cancer cells. We believe that the results generated in this project can be helpful for the designing of new cancer therapeutic models with nominal adverse effects on healthy normal cells and thus paving a way for the treatment of cancer and other deadly diseases in a sustainable manner.
Collapse
Affiliation(s)
- Faruq Mohammad
- Surfactants Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ibrahim Birma Bwatanglang
- Department of Pure and Applied Chemistry, Faculty of Science, Adamawa State University, Mubi P.M.B. 25, Nigeria
| | - Hamad A Al-Lohedan
- Surfactants Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Jilani P Shaik
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Maryam Moosavi
- Nanotechnology Engineering, Faculty of Advance Technology and Multidiscipline, Universitas Airlangga, Jawa Timur 60115, Indonesia
| | - Wasmia Mohammed Dahan
- Surfactants Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Hissah Hamad Al-Tilasi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Daifallah M Aldhayan
- Surfactants Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Murthy Chavali
- Office of the Dean (Research & Development), Dr. Vishwanath Karad MIT World Peace University (MIT-WPU), Kothrud, Pune, Maharashtra 411038, India
| | - Ahmed A Soleiman
- College of Sciences & Engineering, Southern University and A&M College, Baton Rouge, LA 70813, USA
| |
Collapse
|
11
|
Sisakhtnezhad S, Rahimi M, Mohammadi S. Biomedical applications of MnO 2 nanomaterials as nanozyme-based theranostics. Biomed Pharmacother 2023; 163:114833. [PMID: 37150035 DOI: 10.1016/j.biopha.2023.114833] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023] Open
Abstract
Manganese dioxide (MnO2) nanoenzymes/nanozymes (MnO2-NEs) are 1-100 nm nanomaterials that mimic catalytic, oxidative, peroxidase, and superoxide dismutase activities. The oxidative-like activity of MnO2-NEs makes them suitable for developing effective and low-cost colorimetric detection assays of biomolecules. Interestingly, MnO2-NEs also demonstrate scavenging properties against reactive oxygen species (ROS) in various pathological conditions. In addition, due to the decomposition of MnO2-NEs in the tumor microenvironment (TME) and the production of Mn2+, they can act as a contrast agent for improving clinical imaging diagnostics. MnO2-NEs also can use as an in situ oxygen production system in TME, thereby overcoming hypoxic conditions and their consequences in the progression of cancer. Furthermore, MnO2-NEs as a shell and coating make the nanosystems smart and, therefore, in combination with other nanomaterials, the MnO2-NEs can be used as an intelligent nanocarrier for delivering drugs, photosensitizers, and sonosensitizers in vivo. Moreover, these capabilities make MnO2-NEs a promising candidate for the detection and treatment of different human diseases such as cancer, metabolic, infectious, and inflammatory pathological conditions. MnO2-NEs also have ROS-scavenging and anti-bacterial properties against Gram-positive and Gram-negative bacterial strains, which make them suitable for wound healing applications. Given the importance of nanomaterials and their potential applications in biomedicine, this review aimed to discuss the biochemical properties and the theranostic roles of MnO2-NEs and recent advances in their use in colorimetric detection assays of biomolecules, diagnostic imaging, drug delivery, and combinatorial therapy applications. Finally, the challenges of MnO2-NEs applications in biomedicine will be discussed.
Collapse
Affiliation(s)
| | - Matin Rahimi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
12
|
Li B, Ye X, Fu Y, Feng L, Xu J, Niu X, Ye H, You Z. Hollow MnO 2-Based Nanoprobes for Enhanced Photothermal/Photodynamic /Chemodynamic Co-Therapy of Hepatocellular Carcinoma. Pharm Res 2023; 40:1271-1282. [PMID: 36991228 DOI: 10.1007/s11095-023-03501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023]
Abstract
PURPOSE The effect of monotherapy in cancer is frequently influenced by the tumor's unique hypoxic microenvironment, insufficient drug concentration at the treatment site, and tumour cells' increased drug tolerance. In this work, we expect to design a novel therapeutic nanoprobe with the ability to solve these problems and improve the efficacy of antitumor therapy. METHODS We have prepared a hollow manganese dioxide nanoprobes loaded with photosensitive drug IR780 for the photothermal/photodynamic/chemodynamic co-therapy of liver cancer. RESULTS The nanoprobe demonstrates efficient thermal transformation ability under a single laser irradiation, and under the synergistic influence of photo heat, accelerates the Fenton/ Fenton-like reaction efficiency based on Mn2+ ions to produce more ·OH under the synergistic effect of photo heat. Moreover, the oxygen released under the degradation of manganese dioxide further promotes the ability of photosensitive drugs to produce singlet oxygen (ROS). The nanoprobe has been found to efficiently destroy tumour cells in vivo and in vitro experiments when used in combination with photothermal/photodynamic/ chemodynamic modes of treatment under laser irradiation. CONCLUSION In all, this research shows that a therapeutic strategy based on this nanoprobe could be a viable alternative for cancer treatment in the near future.
Collapse
Affiliation(s)
- Bei Li
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiwen Ye
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Lei Feng
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
| | - Jianrong Xu
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoya Niu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
| | - Hui Ye
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
| | - Zhen You
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu, 610041, China.
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Tang M, Zhang Z, Sun T, Li B, Wu Z. Manganese-Based Nanozymes: Preparation, Catalytic Mechanisms, and Biomedical Applications. Adv Healthc Mater 2022; 11:e2201733. [PMID: 36050895 DOI: 10.1002/adhm.202201733] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/09/2022] [Indexed: 01/28/2023]
Abstract
Manganese (Mn) has attracted widespread attention due to its low-cost, nontoxicity, and valence-rich transition. Various Mn-based nanomaterials have sprung up and are employed in diverse fields, particularly Mn-based nanozymes, which combine the physicochemical properties of Mn-based nanomaterials with the catalytic activity of natural enzymes, and are attracting a surge of research, especially in the field of biomedical research. In this review, the typical preparation strategies, catalytic mechanisms, advances and perspectives of Mn-based nanozymes for biomedical applications are systematically summarized. The application of Mn-based nanozymes in tumor therapy and sensing detection, together with an overview of their mechanism of action is highlighted. Finally, the prospective directions of Mn-based nanozymes from five perspectives: innovation, activity enhancement, selectivity, biocompatibility, and application broadening are discussed.
Collapse
Affiliation(s)
- Minglu Tang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Zhaocong Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Tiedong Sun
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Bin Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Zhiguang Wu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
14
|
Lin J, Song T, Liu Z, Yang D, Xiang R, Hua W, Wan H. Effects of biodegradable biomedical porous MnO 2 nanoparticles on blood components and functions. Colloids Surf B Biointerfaces 2022; 217:112667. [PMID: 35816881 DOI: 10.1016/j.colsurfb.2022.112667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/21/2022] [Accepted: 06/26/2022] [Indexed: 10/17/2022]
Abstract
In recent years, manganese dioxide (MnO2) nanoparticles with unique physicochemical properties have been widely used in many biomedical fields, such as biosensors, contrast agents, tumor therapy, and drug delivery. From these applications, MnO2 nanoparticles have great clinical translation potential. However, by contrast, the in vitro and in vivo biosafety of MnO2 nanoparticles have been deeply and thoroughly clarified for the clinical translation, which hinders their clinical applications. In this work, we deeply investigated the blood safety of MnO2 nanoparticles by conducting a series of in vitro and in vivo experiments. These included the effects of MnO2 nanoparticles on morphology of red blood cells, activation of platelets, coagulation functions, and toxicity of key organs. The obtained results show that these effects displayed a concentration-dependent manner of MnO2 nanoparticles. Different safe concentration ranges could be found in the different experimental index. This study provides important guidance for the specific biomedical applications of MnO2 nanoparticles, greatly accelerating their laboratory development and clinical translation.
Collapse
Affiliation(s)
- Jiansheng Lin
- Department of Anatomy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ting Song
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Zonghua Liu
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Deguang Yang
- Department of Cardiology, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517475, China
| | - Rong Xiang
- Pediatrics Department of Changsha Hospital for Maternal & Child Health Care, Changsha 410007, China.
| | - Wenxi Hua
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University/Institute of Oncology, Fuzhou 350004, China.
| | - Huaibin Wan
- Department of Cardiology, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517475, China.
| |
Collapse
|
15
|
Gao R, Gu Y, Yang Y, He Y, Huang W, Sun T, Tang Z, Wang Y, Yang W. Robust radiosensitization of hemoglobin-curcumin nanoparticles suppresses hypoxic hepatocellular carcinoma. J Nanobiotechnology 2022; 20:115. [PMID: 35248069 PMCID: PMC8898525 DOI: 10.1186/s12951-022-01316-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/17/2022] [Indexed: 12/24/2022] Open
Abstract
Background Radioresistance inducing by hypoxic microenvironment of hepatocellular carcinoma is a major obstacle to clinical radiotherapy. Advanced nanomedicine provides an alternative to alleviate the hypoxia extent of solid tumor, even to achieve effective synergistic treatment when combined with chemotherapy or radiotherapy. Results Herein, we developed a self-assembled nanoparticle based on hemoglobin and curcumin for photoacoustic imaging and radiotherapy of hypoxic hepatocellular carcinoma. The fabricated nanoparticles inhibited hepatoma migration and vascular mimics, and enhanced the radiosensitivity of hypoxic hepatoma cells in vitro via repressing cell proliferation and DNA damage repair, as well as inducing apoptosis. Benefit from oxygen-carrying hemoglobin combined with polyphenolic curcumin, the nanoparticles also effectively enhanced the photoacoustic contrast and the efficacy of radiotherapy for hepatocellular carcinoma in vivo. Conclusions Together, the current study offered a radiosensitization platform for optimizing the efficacy of nanomedicines on hypoxic radioresistant tumor. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01316-w.
Collapse
|
16
|
Revuri V, Rajendrakumar SK, Park M, Mohapatra A, Uthaman S, Mondal J, Bae WK, Park I, Lee Y. Heat-Confined Tumor-Docking Reversible Thermogel Potentiates Systemic Antitumor Immune Response During Near-Infrared Photothermal Ablation in Triple-Negative Breast Cancer. Adv Healthc Mater 2021; 10:e2100907. [PMID: 34541833 DOI: 10.1002/adhm.202100907] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/30/2021] [Indexed: 12/19/2022]
Abstract
Triple-negative breast cancer (TNBC) features immunologically "cold" tumor microenvironments with limited cytotoxic T lymphocyte (CTL) infiltration. Although ablation therapies have demonstrated modulation of "cold" TNBC tumors to inflamed "hot" tumors, recruitment of myeloid derived suppressor cells (MDSCs) at the tumors post ablation therapies prevents the infiltration of CTLs and challenge the antitumor potentials of T-cell therapies. Here, a thermal ablation immunotherapy strategy is developed to prevent the immune suppressive effects of MDSCs during photothermal ablation and induce a durable systemic antitumor immunity to eradicate TNBC tumors. An injectable pluronic F127/hyaluronic acid (HA)-based hydrogel embedded with manganese dioxide (BM) nanoparticles and TLR7 agonist resiquimod (R848) (BAGEL-R848), is synthesized to induce in situ laser-assisted gelation of the hydrogel and achieve desired ablation temperatures at a low laser-exposure time. Upon 808-nm laser irradiation, a significant reduction in the tumor burden is observed in BAGEL-R848-injected 4T1 tumor-bearing mice. The ablation induced immunogenic cell death and sustained release of R848 from BAGEL-R848 promotes dendritic cell maturation and reduced MDSCs localization in tumors. In addition, inflammatory M1 macrophages and CD8+IFN+ CTL are enriched in distant tumors in bilateral 4T1 tumor model, preventing metastatic tumor growth and signifying the potential of BAGEL-R848 to treat TNBC.
Collapse
Affiliation(s)
- Vishnu Revuri
- Department of Green Bioengineering Korea National University of Transportation Chungju 27469 Republic of Korea
| | - Santhosh Kalash Rajendrakumar
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University Chonnam National University Medical School Gwangju 61469 Republic of Korea
| | - Myong‐Suk Park
- Department of Hematology‐Oncology Chonnam National University Medical School Gwangju 61469 South Korea
| | - Adityanarayan Mohapatra
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University Chonnam National University Medical School Gwangju 61469 Republic of Korea
| | - Saji Uthaman
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University Chonnam National University Medical School Gwangju 61469 Republic of Korea
| | - Jagannath Mondal
- Department of Green Bioengineering Korea National University of Transportation Chungju 27469 Republic of Korea
| | - Woo Kyun Bae
- Department of Hematology‐Oncology Chonnam National University Medical School Gwangju 61469 South Korea
| | - In‐Kyu Park
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University Chonnam National University Medical School Gwangju 61469 Republic of Korea
| | - Yong‐Kyu Lee
- Department of Green Bioengineering Korea National University of Transportation Chungju 27469 Republic of Korea
| |
Collapse
|
17
|
Haque S, Tripathy S, Patra CR. Manganese-based advanced nanoparticles for biomedical applications: future opportunity and challenges. NANOSCALE 2021; 13:16405-16426. [PMID: 34586121 DOI: 10.1039/d1nr04964j] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanotechnology is the most promising technology to evolve in the last decade. Recent research has shown that transition metal nanoparticles especially manganese (Mn)-based nanoparticles have great potential for various biomedical applications due to their unique fundamental properties. Therefore, globally, scientists are concentrating on the development of various new manganese-based nanoparticles (size and shape dependent) due to their indispensable utilities. Although numerous reports are available regarding the use of manganese nanoparticles, there is no comprehensive review highlighting the recent development of manganese-based nanomaterials and their potential applications in the area of biomedical sciences. The present review article provides an overall survey on the recent advancement of manganese nanomaterials in biomedical nanotechnology and other fields. Further, the future perspectives and challenges are also discussed to explore the wider application of manganese nanoparticles in the near future. Overall, this review presents a fundamental understanding and the role of manganese in various fields, which will attract a wider spectrum of the scientific community.
Collapse
Affiliation(s)
- Shagufta Haque
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Sanchita Tripathy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| |
Collapse
|
18
|
Simonenko TL, Simonenko NP, Gorobtsov PY, Pozharnitskaya VM, Simonenko EP, Glumov OV, Melnikova NA, Sevastyanov VG, Kuznetsov NT. Pen Plotter Printing of MnOx Thin Films Using Manganese Alkoxoacetylacetonate. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621090138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Atomic Resolution Electron Microscopy: A Key Tool for Understanding the Activity of Nano-Oxides for Biomedical Applications. NANOMATERIALS 2021; 11:nano11082073. [PMID: 34443904 PMCID: PMC8400361 DOI: 10.3390/nano11082073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 01/09/2023]
Abstract
Transition metal oxides constitute one of the most fruitful sources of materials with continuously increasing potential applications prompted by the expectations derived from the reduction of the particle size. The recent advances in transmission electron microscopy, because of the development of lenses, have made it possible to reach atomic resolution, which can provide answers regarding the performance of the transition metal nano-oxides. This critical information is related not only to the ability to study their microstructural characteristics but also their local composition and the oxidation state of the transition metal. Exploring these features is a well-known task in nano-oxides for energy and electronic technologies, but they are not so commonly used for elucidating the activity of these oxides for biomedical applications. Nevertheless, the identification at the atomic level of a certain dopant or the unambiguous determination of the oxidation state of a transition metal in a nano-oxide can be important questions to be answered in a certain biomedical application. In this work, we provide several examples in transition metal nano-oxides to show how atomic-resolution electron microscopy can be a key tool for its understanding.
Collapse
|
20
|
Zheng X, Fan H, Liu Y, Wei Z, Li X, Wang A, Chen W, Lu Y. Hypoxia boosts aerobic glycolysis of carcinoma:a complex process for tumor development. Curr Mol Pharmacol 2021; 15:487-501. [PMID: 34382521 DOI: 10.2174/1874467214666210811145752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/04/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022]
Abstract
Hypoxia, a common feature in malignant tumors, is mainly caused by insufficient oxygen supply. Hypoxia is closely related to cancer development, affecting cancer invasion and metastasis, energy metabolism and other pathological processes, and is not conducive to cancer treatment and prognosis. Tumor cells exacerbate metabolic abnormalities to adapt to the hypoxic microenvironment, especially to enhance aerobic glycolysis. Glycolysis leads to an acidic microenvironment in cancer tissues, enhancing cancer metastasis, deterioration and drug resistance. Therefore, hypoxia is a therapeutic target that cannot be ignored in cancer treatment. The adaptation of tumor cells to hypoxia is mainly regulated by hypoxia inducible factors (HIFs), and the stability of HIFs is improved under hypoxic conditions. HIFs can promote the glycolysis of tumors by regulating glycolytic enzymes, transporters, and participates in regulating the TCA (tricarboxylic acid) cycle. In addition, HIFs indirectly affect glycolysis through its interaction with non-coding RNAs. Therefore, targeting hypoxia and HIFs are important tumor therapies.
Collapse
Affiliation(s)
- Xiuqin Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023. China
| | - Hui Fan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023. China
| | - Yang Liu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023. China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023. China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023. China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023. China
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023. China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023. China
| |
Collapse
|
21
|
Wu W, Pu Y, Lu X, Lin H, Shi J. Transitional Metal-Based Noncatalytic Medicine for Tumor Therapy. Adv Healthc Mater 2021; 10:e2001819. [PMID: 33857353 DOI: 10.1002/adhm.202001819] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/30/2020] [Indexed: 12/24/2022]
Abstract
Nanocatalytic medicine has been emerging as a highly promising strategy for cancer therapeutics since it enables tumor suppression by in situ generating toxic agents within tumors through catalytic reactions without using conventional highly toxic and nonselective chemodrugs. In the last several years, a number of nanocatalytic medicines have been used to steer catalytic reactions in endogenous or exogenous stimuli-activated cancer therapy, such as chemodynamic therapy, photodynamic therapy, and sonodynamic therapy. In particular, transitional metal-based nanocatalytic medicines with excellent catalytic activity and selectivity show significant clinical potentials, and significant progress has been achieved very recently. In this review, three types of typical transitional metal (Fe, Mn, and Cu)-based nanocatalytic medicines are summarized, followed by detailed discussions on their catalytic mechanisms. Of note, the obstacles and challenges that will be encountered in the design and further clinical conversion of transitional metal-based nanocatalytic medicine in the future are also outlooked.
Collapse
Affiliation(s)
- Wencheng Wu
- The State Key Lab of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yinying Pu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Xiangyu Lu
- The State Key Lab of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Han Lin
- The State Key Lab of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianlin Shi
- The State Key Lab of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
22
|
Zhou X, He C, Liu M, Chen Q, Zhang L, Xu X, Xu H, Qian Y, Yu F, Wu Y, Han Y, Xiao B, Tang J, Hu H. Self-assembly of hyaluronic acid-mediated tumor-targeting theranostic nanoparticles. Biomater Sci 2021; 9:2221-2229. [PMID: 33507179 DOI: 10.1039/d0bm01855d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Theranostic nanoparticles (NPs) have emerged as promising candidates for cancer diagnosis and treatment. Manganese dioxide (MnO2)-based NPs are potential contrast agents with excellent paramagnetic property and biocompatibility, exhibiting satisfactory magnetic resonance imaging (MRI) effects and biological safety. Recently, hyaluronic acid (HA) has gained increasing interest due to its tumor-targeting ability, which can improve the tumor affinity of manganese dioxide (MnO2)-based NPs. In this study, HA-coated and albumin (BSA)-templated MnO2 and polydopamine hybrid nanoparticles (HMDNs) with tumor-targeting and superior imaging capability were fabricated via modifying the nanoparticles prepared by integrating dopamine polymerization and MnO2 biomineralization. The modification was found to enhance the cellular uptake of HMDNs by cancer cells. The prepared HMDN had high MRI contrasting capability with a longitudinal relaxivity of 22.2 mM-1 s-1 and strong photothermal therapy (PTT) effects with nearly complete tumor ablation under laser irradiation in vivo. HMDNs also showed effective clearance through kidneys, with no toxicity to important tissues. Therefore, HMDNs with superior imaging and PTT capability presented a new method to prepare tumor-targeting multifunctional nanotheranostics.
Collapse
Affiliation(s)
- Xiaoxuan Zhou
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mohapatra A, Uthaman S, Park IK. External and Internal Stimuli-Responsive Metallic Nanotherapeutics for Enhanced Anticancer Therapy. Front Mol Biosci 2021; 7:597634. [PMID: 33505987 PMCID: PMC7831291 DOI: 10.3389/fmolb.2020.597634] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Therapeutic, diagnostic, and imaging approaches based on nanotechnology offer distinct advantages in cancer treatment. Various nanotherapeutics have been presented as potential alternatives to traditional anticancer therapies such as chemotherapy, radiotherapy, and surgical intervention. Notably, the advantage of nanotherapeutics is mainly attributable to their accumulation and targeting ability toward cancer cells, multiple drug-carrying abilities, combined therapies, and imaging approaches. To date, numerous nanoparticle formulations have been developed for anticancer therapy and among them, metallic nanotherapeutics reportedly demonstrate promising cancer therapeutic and diagnostic efficiencies owing to their dense surface functionalization ability, uniform size distribution, and shape-dependent optical responses, easy and cost-effective synthesis procedure, and multiple anti-cancer effects. Metallic nanotherapeutics can remodel the tumor microenvironment by changing unfavorable therapeutic conditions into therapeutically accessible ones with the help of different stimuli, including light, heat, ultrasound, an alternative magnetic field, redox, and reactive oxygen species. The combination of metallic nanotherapeutics with both external and internal stimuli can be used to trigger the on-demand release of therapeutic molecules, augmenting the therapeutic efficacies of anticancer therapies such as photothermal therapy, photodynamic therapy, magnetic hyperthermia, sonodynamic therapy, chemodynamic therapy, and immunotherapy. In this review, we have summarized the role of different metallic nanotherapeutics in anti-cancer therapy, as well as their combinational effects with multiple stimuli for enhanced anticancer therapy.
Collapse
Affiliation(s)
- Adityanarayan Mohapatra
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeollanam-do, South Korea
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon, South Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeollanam-do, South Korea
| |
Collapse
|
24
|
Antibacterial Activity of Manganese Dioxide Nanosheets by ROS-Mediated Pathways and Destroying Membrane Integrity. NANOMATERIALS 2020; 10:nano10081545. [PMID: 32784527 PMCID: PMC7466589 DOI: 10.3390/nano10081545] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 01/19/2023]
Abstract
Manganese dioxide (MnO2) nanosheets have shown exciting potential in nanomedicine because of their ultrathin thickness, large surface area, high near-infrared (NIR) absorbance and good biocompatibility. However, the effect of MnO2 nanosheets on bacteria is still unclear. In this study, MnO2 nanosheets were shown for the first time to possess highly efficient antibacterial activity by using Salmonella as a model pathogen. The growth curve and surface plate assay uncovered that 125 μg/mL MnO2 nanosheets could kill 99.2% of Salmonella, which was further verified by fluorescence-based live/dead staining measurement. Mechanism analysis indicated that MnO2 nanosheet treatment could dramatically induce reactive oxygen species production, increase ATPase activity and cause the leakage of electrolytes and protein contents, leading to bacterial death. These results uncover the previously undefined role of MnO2 nanosheets and provide novel strategies for developing antimicrobial agents.
Collapse
|
25
|
Ding X, Li D, Jiang J. Gold-based Inorganic Nanohybrids for Nanomedicine Applications. Theranostics 2020; 10:8061-8079. [PMID: 32724458 PMCID: PMC7381751 DOI: 10.7150/thno.42284] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Noble metal Au nanoparticles have attracted extensive interests in the past decades, due to their size and morphology dependent localized surface plasmon resonances. Their unique optical property, high chemical stability, good biocompatibility, and easy functionalization make them promising candidates for a variety of biomedical applications, including bioimaging, biosensing, and cancer therapy. With the intention of enhancing their optical response in the near infrared window and endowing them with additional magnetic properties, Au nanoparticles have been integrated with other functional nanomaterials that possess complementary attributes, such as copper chalcogenides and magnetic metal oxides. The as constructed hybrid nanostructures are expected to exhibit unconventional properties compared to their separate building units, due to nanoscale interactions between materials with different physicochemical properties, thus broadening the application scope and enhancing the overall performance of the hybrid nanostructures. In this review, we summarize some recent progresses in the design and synthesis of noble metal Au-based hybrid inorganic nanostructures for nanomedicine applications, and the potential and challenges for their clinical translations.
Collapse
|
26
|
Li Y, Cong H, Wang S, Yu B, Shen Y. Liposomes modified with bio-substances for cancer treatment. Biomater Sci 2020; 8:6442-6468. [DOI: 10.1039/d0bm01531h] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, liposomes have been used in the field of biomedicine and have achieved many significant results.
Collapse
Affiliation(s)
- Yanan Li
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Song Wang
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Bing Yu
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| |
Collapse
|