1
|
Lee Y, Kim K, Kim D, Lee JS. Organelle-Specific Quantum Thermometry Using Fluorescent Nanodiamonds: Insights into Cellular Metabolic Thermodynamics. J Am Chem Soc 2025; 147:13180-13189. [PMID: 40113448 DOI: 10.1021/jacs.4c16365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Intracellular thermometry is a powerful method for studying biological thermodynamics across various physiological contexts. In this study, we present an organelle-specific quantum thermometry utilizing nitrogen-vacancy (NV) centers in fluorescent nanodiamonds (FNDs) to obtain precise temperature measurements at the subcellular level. By conjugating antibodies, FNDs were selectively targeted to mitochondria, nuclei, and cell membranes in living fibroblasts, enabling real-time monitoring of temperature changes during adenosine triphosphate (ATP) synthesis and inhibition. The system integrates advanced bioconjugation and quantum sensing methodologies, thereby overcoming challenges, such as photobleaching and limited spatial resolution. Notably, mitochondria-targeted FNDs revealed significant temperature increases, revealing mitochondria as the primary site of thermogenesis during ATP inhibition. These findings establish a robust framework for investigating metabolic thermodynamics and offer a powerful tool for exploring the thermal regulation of cellular processes.
Collapse
Affiliation(s)
- Yoobeen Lee
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Kiho Kim
- Department of Physics & Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dohun Kim
- Department of Physics & Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Seok Lee
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
2
|
Yukawa H, Kono H, Ishiwata H, Igarashi R, Takakusagi Y, Arai S, Hirano Y, Suhara T, Baba Y. Quantum life science: biological nano quantum sensors, quantum technology-based hyperpolarized MRI/NMR, quantum biology, and quantum biotechnology. Chem Soc Rev 2025; 54:3293-3322. [PMID: 39874046 DOI: 10.1039/d4cs00650j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The emerging field of quantum life science combines principles from quantum physics and biology to study fundamental life processes at the molecular level. Quantum mechanics, which describes the properties of small particles, can help explain how quantum phenomena such as tunnelling, superposition, and entanglement may play a role in biological systems. However, capturing these effects in living systems is a formidable challenge, as it involves dealing with dissipation and decoherence caused by the surrounding environment. We overview the current status of the quantum life sciences from technologies and topics in quantum biology. Technologies such as biological nano quantum sensors, quantum technology-based hyperpolarized MRI/NMR, high-speed 2D electronic spectrometers, and computer simulations are being developed to address these challenges. These interdisciplinary fields have the potential to revolutionize our understanding of living organisms and lead to advancements in genetics, molecular biology, medicine, and bioengineering.
Collapse
Affiliation(s)
- Hiroshi Yukawa
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Hidetoshi Kono
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Hitoshi Ishiwata
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Ryuji Igarashi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Yoichi Takakusagi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Shigeki Arai
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Yu Hirano
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Tetsuya Suhara
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Yoshinobu Baba
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
3
|
Basu T, Patra A, Murali M, Saini M, Banerjee A, Som T. Diamond Color Center Based Quantum Metrology in Industries for Energy Applications. ACS OMEGA 2025; 10:2372-2392. [PMID: 39895700 PMCID: PMC11780468 DOI: 10.1021/acsomega.4c04406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 02/04/2025]
Abstract
Atomic scale defects in diamond are emerging as next-generation quantum sensors. One such defect is the nitrogen vacancy (NV) center which possesses artificial atom-like properties making it a strong contender for a room temperature solid state qubit. These spin defects are optically addressable by studying their optically detected magnetic resonance spectra (ODMR). The spin states can be initialized, controlled, and read out by a shining laser. The photoluminescence spectra contain information on the external magnetic field, electric field, temperature, etc. Thus, this type of multimodal sensor is exigent in various fields of research viz. chemistry, materials science, biology, and fundamental physics. In today's world where energy-related products are booming, deployment of quantum sensors can expedite the development. Based on existing works, this paper makes an attempt to identify the applications of color centers in diamond for energy sectors. We have highlighted the efficacy of quantum diamond sensors in the oil and gas industry, battery research, and photovoltaics. In addition, a summary of the structural and quantum properties of defects in diamond, synthesis of diamond, protocols for optical detection of spin states, different types of color centers, etc., is presented.
Collapse
Affiliation(s)
- Tanmoy Basu
- Centre
for Quantum Engineering, Research and Education, TCG CREST, Salt Lake, Kolkata 700091, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anupam Patra
- Centre
for Quantum Engineering, Research and Education, TCG CREST, Salt Lake, Kolkata 700091, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Midhun Murali
- Centre
for Quantum Engineering, Research and Education, TCG CREST, Salt Lake, Kolkata 700091, India
| | - Mahesh Saini
- SUNAG
Laboratory, Institute of Physics, Bhubaneswar 751005, Odisha, India
- Homi
Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Amit Banerjee
- Microsystem
Design-Integration Lab, Physics Department, Bidhan Chandra College, Asansol, West Bengal 713303, India
| | - Tapobrata Som
- SUNAG
Laboratory, Institute of Physics, Bhubaneswar 751005, Odisha, India
- Homi
Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| |
Collapse
|
4
|
Dou R, Li Z, Zhu G, Lin C, Liu FX, Wang B. Operando Decoding Ion-Conductive Switch in Stimuli-Responsive Hydrogel by Nanodiamond-Based Quantum Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406944. [PMID: 39312463 DOI: 10.1002/advs.202406944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/26/2024] [Indexed: 09/25/2024]
Abstract
Thermal-responsive hydrogels are developed as ion-conductive switchs for energy storage devices, however, the molecule mechanism of switch on/off remains unclear. Here, poly(N-isopropylacrylamide-co-acrylamide) hydrogel is synthesized as a model material and nanodiamond (ND) based quantum sensing for phase change study is developed. First, micro-scale phase separation with cross-linked mesh structure after sol-gel transition is visualized in situ and water molecules are trapped by polymer chains and on a chemically "frozen" state. Then, the nano-scale inhomogeneous distributions of viscosity, thermal conductivity and ionic mobility in hydrogel at high temperature are observed by measuring the rotation, translation and zero-field splitting of NDs. Besides, the ionic mobility of hydrogel is found to be dependent not only on temperature but also on polymer concentration. These observations suggested that the physical "wall" induced by inhomogeneous phase separation at microscopic scale blocked the ion conduction pathways, providing a potential intrinsic explanation for ion migration shut-down of ionic hydrogels at high temperature.
Collapse
Affiliation(s)
- Ruqiang Dou
- Research Institute of Interdisciplinary Sciences & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, 523808, China
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Zan Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Guoli Zhu
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Chao Lin
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Frank X Liu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Biao Wang
- Research Institute of Interdisciplinary Sciences & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, 523808, China
- School of Physics and Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
5
|
Hamoya T, Kaminaga K, Igarashi R, Nishimura Y, Yanagihara H, Morioka T, Suzuki C, Abe H, Ohshima T, Imaoka T. Intravital microscopic thermometry of rat mammary epithelium by fluorescent nanodiamond. NANOSCALE HORIZONS 2024; 9:1938-1947. [PMID: 39297440 DOI: 10.1039/d4nh00237g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Quantum sensing using the fluorescent nanodiamond (FND) nitrogen-vacancy center enables physical/chemical measurements of the microenvironment, although application of such measurements in living mammals poses significant challenges due to the unknown biodistribution and toxicity of FNDs, the limited penetration of visible light for quantum state manipulation/measurement, and interference from physiological motion. Here, we describe a microenvironmental thermometry technique using FNDs in rat mammary epithelium, an important model for mammary gland biology and breast cancer research. FNDs were injected directly into the mammary gland. Microscopic observation of mammary tissue sections showed that most FNDs remained in the mammary epithelium for at least 8 weeks. Pathological examination indicated no obvious change in tissue morphology, suggesting negligible toxicity. Optical excitation and detection were performed through a skin incision. Periodic movements due to respiration and heartbeat were mitigated by frequency filtering of the signal. Based on these methods, we successfully detected temperature elevation in the mammary epithelium associated with lipopolysaccharide-induced inflammation, demonstrating the sensitivity and relevance of the technique in biological contexts. This study lays the groundwork for expanding the applicability of quantum sensing in biomedical research, providing a tool for real-time monitoring of physiological and pathological processes.
Collapse
Affiliation(s)
- Takahiro Hamoya
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kiichi Kaminaga
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ryuji Igarashi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Okayama, Meguro-ku, Tokyo 152-8550, Japan
- Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho Inage-ku, Chiba 263-8522, Japan
- Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yukiko Nishimura
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Hiromi Yanagihara
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Takamitsu Morioka
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Chihiro Suzuki
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Hiroshi Abe
- Quantum Materials and Applications Research Center, Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki 370-1207, Japan
| | - Takeshi Ohshima
- Quantum Materials and Applications Research Center, Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki 370-1207, Japan
| | - Tatsuhiko Imaoka
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
6
|
Zeman M, Camus P, Chanelière T. Boltzmann optical thermometry for cryogenics. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:105116. [PMID: 39431886 DOI: 10.1063/5.0229775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
We propose and implement an optical technique to access the local temperature of an erbium doped crystal by probing the electron spin population under magnetic field. We reliably extract the sample temperature in the range 2-7 K. We additionally discuss the suitability of our method as a primary standard for cryogenic thermometry. By adding an auxiliary heating laser, we are able to measure the interface conductance between the dielectric crystal and the cold plate of the cryostat by exploring different cooling configurations.
Collapse
Affiliation(s)
- Marek Zeman
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
- Absolut System, 3 avenue Raymond Chanas, 38320 Eybens, France
| | - Philippe Camus
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Thierry Chanelière
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| |
Collapse
|
7
|
Ermakova A. Fluorescent Nanodiamonds for High-Resolution Thermometry in Biology. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1318. [PMID: 39120422 PMCID: PMC11313720 DOI: 10.3390/nano14151318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Optically active color centers in diamond and nanodiamonds can be utilized as quantum sensors for measuring various physical parameters, particularly magnetic and electric fields, as well as temperature. Due to their small size and possible surface functionalization, fluorescent nanodiamonds are extremely attractive systems for biological and medical applications since they can be used for intracellular experiments. This review focuses on fluorescent nanodiamonds for thermometry with high sensitivity and a nanoscale spatial resolution for the investigation of living systems. The current state of the art, possible further development, and potential limitations of fluorescent nanodiamonds as thermometers will be discussed here.
Collapse
Affiliation(s)
- Anna Ermakova
- Physics Department, Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium;
- Department of Magnetosphere-Ionosphere Coupling, Royal Belgian Institute for Space Aeronomy, 1180 Brussels, Belgium
| |
Collapse
|
8
|
Hu Z, He J, Ye R, Lin X, Zhou F, Xu N. Suppressing Thermal Noise to Sub-Millikelvin Level in a Single-Spin Quantum System Using Realtime Frequency Tracking. MICROMACHINES 2024; 15:911. [PMID: 39064422 PMCID: PMC11278624 DOI: 10.3390/mi15070911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
A single nitrogen-vacancy (NV) center in a diamond can be used as a nanoscale sensor for magnetic field, electric field or nuclear spins. Due to its low photon detection efficiency, such sensing processes often take a long time, suffering from an electron spin resonance (ESR) frequency fluctuation induced by the time-varying thermal perturbations noise. Thus, suppressing the thermal noise is the fundamental way to enhance single-sensor performance, which is typically achieved by utilizing a thermal control protocol with a complicated and highly costly apparatus if a millikelvin-level stabilization is required. Here, we analyze the real-time thermal drift and utilize an active way to alternately track the single-spin ESR frequency drift in the experiment. Using this method, we achieve a temperature stabilization effect equivalent to sub-millikelvin (0.8 mK) level with no extra environmental thermal control, and the spin-state readout contrast is significantly improved in long-lasting experiments. This method holds broad applicability for NV-based single-spin experiments and harbors the potential for prospective expansion into diverse nanoscale quantum sensing domains.
Collapse
Affiliation(s)
- Zhiyi Hu
- School of Microelectronics, Hefei University of Technology, Hefei 230009, China;
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China; (J.H.); (R.Y.); (X.L.)
| | - Jingyan He
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China; (J.H.); (R.Y.); (X.L.)
| | - Runchuan Ye
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China; (J.H.); (R.Y.); (X.L.)
| | - Xue Lin
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China; (J.H.); (R.Y.); (X.L.)
| | - Feifei Zhou
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China
| | - Nanyang Xu
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China; (J.H.); (R.Y.); (X.L.)
| |
Collapse
|
9
|
Tanaka Y. Recent advancements in physical and chemical MEMS sensors. Analyst 2024; 149:3498-3512. [PMID: 38847365 DOI: 10.1039/d4an00182f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Microelectromechanical systems (MEMSs) are microdevices fabricated using semiconductor-fabrication technology, especially those with moving components. This technology has become more widely used in daily life, e.g., in mobile phones, printers, and cars. In this review, MEMS sensors are largely classified as physical or chemical ones. Physical sensors include pressure, inertial force, acoustic, flow, temperature, optical, and magnetic ones. Chemical sensors include gas, odorant, ion, and biological ones. The fundamental principle of sensing is reading out either the movement or electrical-property change of microstructures caused by external stimuli. Here, sensing mechanisms of the sensors are explained using diagrams with equivalent circuits to show the similarity. Examples of multiple parameter measurement with single sensors (e.g. quantum sensors or resonant pressure and temperature sensors) and parallel sensor integration are also introduced.
Collapse
Affiliation(s)
- Yo Tanaka
- Samsung Device Solutions R&D Japan (DSRJ), Samsung Japan Corporation, 2-7 Sugasawa-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0027 Japan.
| |
Collapse
|
10
|
Hu Z, Jiang F, He J, Dai Y, Wang Y, Xu N, Du J. Four-Order Power Reduction in Nanoscale Electron-Nuclear Double Resonance with a Nitrogen-Vacancy Center in Diamonds. NANO LETTERS 2024; 24:2846-2852. [PMID: 38391130 DOI: 10.1021/acs.nanolett.3c04822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Detecting nuclear spins using single nitrogen-vacancy (NV) centers is of particular importance in nanoscale science and engineering but often suffers from the heating effect of microwave fields for spin manipulation, especially under high magnetic fields. Here, we realize an energy-efficient nanoscale nuclear-spin detection using a phase-modulation electron-nuclear double resonance scheme. The microwave field can be reduced to 1/250 of the previous requirements, and the corresponding power is over four orders lower. Meanwhile, the microwave-induced broadening to the line-width of the spectroscopy is significantly canceled, and we achieve a nuclear-spin spectrum with a resolution down to 2.1 kHz under a magnetic field at 1840 Gs. The spectral resolution can be further improved by upgrading the experimental control precision. This scheme can also be used in sensing microwave fields and can be extended to a wide range of applications in the future.
Collapse
Affiliation(s)
- Zhiyi Hu
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- School of Microelectronics, Hefei University of Technology, Hefei 230009, China
| | - Fengjian Jiang
- School of Information Engineering, Huangshan University, Huangshan 245041, China
| | - Jingyan He
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yulin Dai
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ya Wang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Nanyang Xu
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiangfeng Du
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
11
|
Harrington B, Ye Z, Signor L, Pickel AD. Luminescence Thermometry Beyond the Biological Realm. ACS NANOSCIENCE AU 2024; 4:30-61. [PMID: 38406316 PMCID: PMC10885336 DOI: 10.1021/acsnanoscienceau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 02/27/2024]
Abstract
As the field of luminescence thermometry has matured, practical applications of luminescence thermometry techniques have grown in both frequency and scope. Due to the biocompatibility of most luminescent thermometers, many of these applications fall within the realm of biology. However, luminescence thermometry is increasingly employed beyond the biological realm, with expanding applications in areas such as thermal characterization of microelectronics, catalysis, and plasmonics. Here, we review the motivations, methodologies, and advances linked to nonbiological applications of luminescence thermometry. We begin with a brief overview of luminescence thermometry probes and techniques, focusing on those most commonly used for nonbiological applications. We then address measurement capabilities that are particularly relevant for these applications and provide a detailed survey of results across various application categories. Throughout the review, we highlight measurement challenges and requirements that are distinct from those of biological applications. Finally, we discuss emerging areas and future directions that present opportunities for continued research.
Collapse
Affiliation(s)
- Benjamin Harrington
- Materials
Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Ziyang Ye
- Materials
Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Laura Signor
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Andrea D. Pickel
- Department
of Mechanical Engineering and Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
12
|
Du Z, Gupta M, Xu F, Zhang K, Zhang J, Zhou Y, Liu Y, Wang Z, Wrachtrup J, Wong N, Li C, Chu Z. Widefield Diamond Quantum Sensing with Neuromorphic Vision Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304355. [PMID: 37939304 PMCID: PMC10787069 DOI: 10.1002/advs.202304355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/04/2023] [Indexed: 11/10/2023]
Abstract
Despite increasing interest in developing ultrasensitive widefield diamond magnetometry for various applications, achieving high temporal resolution and sensitivity simultaneously remains a key challenge. This is largely due to the transfer and processing of massive amounts of data from the frame-based sensor to capture the widefield fluorescence intensity of spin defects in diamonds. In this study, a neuromorphic vision sensor to encode the changes of fluorescence intensity into spikes in the optically detected magnetic resonance (ODMR) measurements is adopted, closely resembling the operation of the human vision system, which leads to highly compressed data volume and reduced latency. It also results in a vast dynamic range, high temporal resolution, and exceptional signal-to-background ratio. After a thorough theoretical evaluation, the experiment with an off-the-shelf event camera demonstrated a 13× improvement in temporal resolution with comparable precision of detecting ODMR resonance frequencies compared with the state-of-the-art highly specialized frame-based approach. It is successfully deploy this technology in monitoring dynamically modulated laser heating of gold nanoparticles coated on a diamond surface, a recognizably difficult task using existing approaches. The current development provides new insights for high-precision and low-latency widefield quantum sensing, with possibilities for integration with emerging memory devices to realize more intelligent quantum sensors.
Collapse
Affiliation(s)
- Zhiyuan Du
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Madhav Gupta
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Feng Xu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Kai Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518000, China
| | - Jiahua Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yan Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518000, China
| | - Yiyao Liu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| | - Zhenyu Wang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
- Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Jörg Wrachtrup
- 3rd Institute of Physics, Research Center SCoPE and IQST, University of Stuttgart, 70569, Stuttgart, Germany
- Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
| | - Ngai Wong
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Can Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, 999077, P. R. China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong, 999077, P. R. China
| |
Collapse
|
13
|
Alessio A, Bernardi E, Moreva E, Degiovanni IP, Genovese M, Truccato M. Limitations of Bulk Diamond Sensors for Single-Cell Thermometry. SENSORS (BASEL, SWITZERLAND) 2023; 24:200. [PMID: 38203062 PMCID: PMC10781228 DOI: 10.3390/s24010200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024]
Abstract
The present paper reports on a Finite Element Method (FEM) analysis of the experimental situation corresponding to the measurement of the temperature variation in a single cell plated on bulk diamond by means of optical techniques. Starting from previous experimental results, we have determined-in a uniform power density approximation and under steady-state conditions-the total heat power that has to be dissipated by a single cell plated on a glassy substrate in order to induce the typical maximum temperature increase ΔTglass=1 K. While keeping all of the other parameters constant, the glassy substrate has been replaced by a diamond plate. The FEM analysis shows that, in this case, the maximum temperature increase is expected at the diamond/cell interface and is as small as ΔTdiam=4.6×10-4 K. We have also calculated the typical decay time in the transient scenario, which resulted in τ≈ 250 μs. By comparing these results with the state-of-the-art sensitivity values, we prove that the potential advantages of a longer coherence time, better spectral properties, and the use of special field alignments do not justify the use of diamond substrates in their bulk form.
Collapse
Affiliation(s)
- Andrea Alessio
- Physics Department, University of Turin, Via P. Giuria 1, 10125 Turin, Italy
| | - Ettore Bernardi
- Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Turin, Italy
| | - Ekaterina Moreva
- Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Turin, Italy
| | - Ivo Pietro Degiovanni
- Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Turin, Italy
| | - Marco Genovese
- Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Turin, Italy
| | - Marco Truccato
- Physics Department, University of Turin, Via P. Giuria 1, 10125 Turin, Italy
| |
Collapse
|
14
|
Đačanin Far L, Dramićanin MD. Luminescence Thermometry with Nanoparticles: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2904. [PMID: 37947749 PMCID: PMC10647651 DOI: 10.3390/nano13212904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Luminescence thermometry has emerged as a very versatile optical technique for remote temperature measurements, exhibiting a wide range of applicability spanning from cryogenic temperatures to 2000 K. This technology has found extensive utilization across many disciplines. In the last thirty years, there has been significant growth in the field of luminous thermometry. This growth has been accompanied by the development of temperature read-out procedures, the creation of luminescent materials for very sensitive temperature probes, and advancements in theoretical understanding. This review article primarily centers on luminescent nanoparticles employed in the field of luminescence thermometry. In this paper, we provide a comprehensive survey of the recent literature pertaining to the utilization of lanthanide and transition metal nanophosphors, semiconductor quantum dots, polymer nanoparticles, carbon dots, and nanodiamonds for luminescence thermometry. In addition, we engage in a discussion regarding the benefits and limitations of nanoparticles in comparison with conventional, microsized probes for their application in luminescent thermometry.
Collapse
Affiliation(s)
| | - Miroslav D. Dramićanin
- Centre of Excellence for Photoconversion, Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia;
| |
Collapse
|
15
|
Fujiwara M. Diamond quantum sensors in microfluidics technology. BIOMICROFLUIDICS 2023; 17:054107. [PMID: 37854889 PMCID: PMC10581739 DOI: 10.1063/5.0172795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023]
Abstract
Diamond quantum sensing is an emerging technology for probing multiple physico-chemical parameters in the nano- to micro-scale dimensions within diverse chemical and biological contexts. Integrating these sensors into microfluidic devices enables the precise quantification and analysis of small sample volumes in microscale channels. In this Perspective, we present recent advancements in the integration of diamond quantum sensors with microfluidic devices and explore their prospects with a focus on forthcoming technological developments.
Collapse
Affiliation(s)
- Masazumi Fujiwara
- Department of Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1, Tsushimanaka, Kita-ku, Okayama-shi, Okayama 700-8530, Japan
| |
Collapse
|
16
|
Bruckmaier F, Allert RD, Neuling NR, Amrein P, Littin S, Briegel KD, Schätzle P, Knittel P, Zaitsev M, Bucher DB. Imaging local diffusion in microstructures using NV-based pulsed field gradient NMR. SCIENCE ADVANCES 2023; 9:eadh3484. [PMID: 37595048 PMCID: PMC10438442 DOI: 10.1126/sciadv.adh3484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/20/2023] [Indexed: 08/20/2023]
Abstract
Understanding diffusion in microstructures plays a crucial role in many scientific fields, including neuroscience, medicine, or energy research. While magnetic resonance (MR) methods are the gold standard for diffusion measurements, spatial encoding in MR imaging has limitations. Here, we introduce nitrogen-vacancy (NV) center-based nuclear MR (NMR) spectroscopy as a powerful tool to probe diffusion within microscopic sample volumes. We have developed an experimental scheme that combines pulsed gradient spin echo (PGSE) with optically detected NV-NMR spectroscopy, allowing local quantification of molecular diffusion and flow. We demonstrate correlated optical imaging with spatially resolved PGSE NV-NMR experiments probing anisotropic water diffusion within an individual model microstructure. Our optically detected PGSE NV-NMR technique opens up prospects for extending the current capabilities of investigating diffusion processes with the future potential of probing single cells, tissue microstructures, or ion mobility in thin film materials for battery applications.
Collapse
Affiliation(s)
- Fleming Bruckmaier
- Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Robin D. Allert
- Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Nick R. Neuling
- Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Philipp Amrein
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Littin
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karl D. Briegel
- Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Philip Schätzle
- Department of Sustainable Systems Engineering (INATECH), University of Freiburg, Emmy-Noether-Str. 2, 79110 Freiburg, Germany
| | - Peter Knittel
- Fraunhofer Institute for Applied Solid State Physics, Tullastr. 72, 79108 Freiburg, Germany
| | - Maxim Zaitsev
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominik B. Bucher
- Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799 München, Germany
| |
Collapse
|
17
|
Gao Y, Luo Z, Guo H, Wen H, Li Z, Ma Z, Tang J, Liu J. Robustness improvement of a nitrogen-vacancy magnetometer by a double driving method. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:065015. [PMID: 37862530 DOI: 10.1063/5.0147094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/04/2023] [Indexed: 10/22/2023]
Abstract
The nitrogen vacancy (NV) color center in diamonds is an electron spin that can measure magnetic fields with high sensitivity and resolution. Furthermore, the robustness of an NV-based quantum system should be improved for further application in other sensing methods and in the exploration of basic physics. In this work, the robustness of an NV magnetometer is improved by the double driving method. The sensitivity of the NV magnetometer was improved 2.1 times by strengthening the pumping power from 100 to 600 mW. In this process, thermal drift was introduced, which affects the measurement accuracy. The temperature drift of a diamond matrix was measured using an infrared camera, and the temperature change of a diamond host drifted to ∼80 K under high laser and microwave power. To address the drift of temperature owing to sensitivity improvement by pumping enhancement, the double driving method was introduced, to suppress the drift of the resonance frequency, to improve the robustness of a continuous-wave NV magnetometer. The magnetic noise density was improved from 10 to 1.2 nT/Hz1/2. This study checked the source of temperature noise in the process of measuring with the NV color centers and proposes a double driving measurement method to track the resonant frequency change due to environmental temperature drift and improve sensitivity. The findings of this study are useful in applying complex pulse protocols in high-level sensing applications based on solid-state spin.
Collapse
Affiliation(s)
- Yanjie Gao
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
| | - Zhengjie Luo
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
| | - Hao Guo
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
| | - Huanfei Wen
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
| | - Zhonghao Li
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
| | - Zongmin Ma
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
| | - Jun Tang
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
| | - Jun Liu
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
| |
Collapse
|
18
|
Luo QY, Zhao S, Hu QC, Quan WK, Zhu ZQ, Li JJ, Wang JF. High-sensitivity silicon carbide divacancy-based temperature sensing. NANOSCALE 2023; 15:8432-8436. [PMID: 37093058 DOI: 10.1039/d3nr00430a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Color centers in silicon carbide have become potentially versatile quantum sensors. Particularly, wide temperature-range temperature sensing has been realized in recent years. However, the sensitivity is limited due to the short dephasing time of the color centers. In this work, we developed a high-sensitivity silicon carbide divacancy-based thermometer using the thermal Carr-Purcell-Meiboom-Gill (TCPMG) method. First, the zero-field splitting D of the PL6 divacancy as a function of temperature was measured with a linear slope of -99.7 kHz K-1. The coherence times of TCPMG pulses linearly increased with the pulse number and the longest coherence time was about 21 μs, which was ten times higher than . The corresponding temperature-sensing sensitivity was 13.4 mK Hz-1/2, which was about 15 times higher than previous results. Finally, we monitored the laboratory temperature variations for 24 hours using the TCMPG pulse. The experiments pave the way for the application of silicon carbide-based high-sensitivity thermometers in the semiconductor industry, biology, and materials sciences.
Collapse
Affiliation(s)
- Qin-Yue Luo
- College of Physics, Sichuan University, Chengdu 610065, People's Republic of China.
| | - Shuang Zhao
- College of Physics, Sichuan University, Chengdu 610065, People's Republic of China.
| | - Qi-Cheng Hu
- College of Physics, Sichuan University, Chengdu 610065, People's Republic of China.
| | - Wei-Ke Quan
- College of Physics, Sichuan University, Chengdu 610065, People's Republic of China.
| | - Zi-Qi Zhu
- College of Physics, Sichuan University, Chengdu 610065, People's Republic of China.
| | - Jia-Jun Li
- College of Physics, Sichuan University, Chengdu 610065, People's Republic of China.
| | - Jun-Feng Wang
- College of Physics, Sichuan University, Chengdu 610065, People's Republic of China.
| |
Collapse
|
19
|
Tang H, Barr AR, Wang G, Cappellaro P, Li J. First-Principles Calculation of the Temperature-Dependent Transition Energies in Spin Defects. J Phys Chem Lett 2023; 14:3266-3273. [PMID: 36977131 DOI: 10.1021/acs.jpclett.3c00314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Spin qubits associated with color centers are promising platforms for various quantum technologies. However, to be deployed in robust quantum devices, the variations of their intrinsic properties with the external conditions, in particular temperature and strain, should be known with high precision. Unfortunately, a predictive theory on the temperature dependence of the resonance frequency of electron and nuclear spin defects in solids remains lacking. In this work, we develop a first-principles method for the temperature dependence of the zero-field splitting, hyperfine interaction, and nuclear quadrupole interaction of color centers. As a testbed, we compare our ab initio calculations with experiments for the nitrogen-vacancy (NV-) center in diamond, finding good agreements. We identify the major origin of the temperature dependence as a second-order effect of dynamic phonon vibrations, instead of the thermal-expansion strain. The method can be applied to different color centers and provides a theoretical tool for designing high-precision quantum sensors.
Collapse
Affiliation(s)
- Hao Tang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ariel Rebekah Barr
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Guoqing Wang
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Paola Cappellaro
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ju Li
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
20
|
Chen Y, Li C, Yang T, Ekimov EA, Bradac C, Ha ST, Toth M, Aharonovich I, Tran TT. Real-Time Ratiometric Optical Nanoscale Thermometry. ACS NANO 2023; 17:2725-2736. [PMID: 36661346 DOI: 10.1021/acsnano.2c10974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
All-optical nanothermometry has become a powerful, remote tool for measuring nanoscale temperatures in applications ranging from medicine to nano-optics and solid-state nanodevices. The key features of any candidate nanothermometer are brightness, sensitivity, and (signal, spatial, and temporal) resolution. Here, we demonstrate a real-time, diamond-based nanothermometry technique with excellent sensitivity (1.8% K-1) and record-high resolution (5.8 × 104 K Hz-1/2 W cm-2) based on codoped nanodiamonds. The distinct performance of our approach stems from two factors: (i) temperature sensors─nanodiamonds cohosting two group IV color centers─engineered to emit spectrally separated Stokes and anti-Stokes fluorescence signals under excitation by a single laser source and (ii) a parallel detection scheme based on filtering optics and high-sensitivity photon counters for fast readout. We demonstrate the performance of our method by monitoring temporal changes in the local temperature of a microcircuit and a MoTe2 field-effect transistor. Our work advances a powerful, alternative strategy for time-resolved temperature monitoring and mapping of micro-/nanoscale devices such as microfluidic channels, nanophotonic circuits, and nanoelectronic devices, as well as complex biological environments such as tissues and cells.
Collapse
Affiliation(s)
| | | | | | - Evgeny A Ekimov
- Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk142190, Russia
- Lebedev Physics Institute, Russian Academy of Sciences, Moscow117924, Russia
| | - Carlo Bradac
- Department of Physics & Astronomy, Trent University, 1600 West Bank Drive, Peterborough, OntarioK9L 0G2, Canada
| | - Son Tung Ha
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03 Innovis, 138634, Singapore, Singapore
| | | | | | | |
Collapse
|
21
|
Yang T, Azuma T, Huang Y, Hui YY, Chiang C, Chang H. Stimulated emission cross sections and
temperature‐dependent
spectral shifts of neutral
nitrogen‐vacancy
centers in diamonds. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Teng‐I Yang
- Institute of Atomic and Molecular Sciences Academia Sinica Taipei Taiwan
| | - Terumitsu Azuma
- Institute of Atomic and Molecular Sciences Academia Sinica Taipei Taiwan
| | - Yu‐Wen Huang
- Institute of Atomic and Molecular Sciences Academia Sinica Taipei Taiwan
| | - Yuen Yung Hui
- Institute of Atomic and Molecular Sciences Academia Sinica Taipei Taiwan
| | - Cheng‐Tien Chiang
- Institute of Atomic and Molecular Sciences Academia Sinica Taipei Taiwan
- Department of Physics National Taiwan University Taipei Taiwan
| | - Huan‐Cheng Chang
- Institute of Atomic and Molecular Sciences Academia Sinica Taipei Taiwan
- Department of Chemical Engineering National Taiwan University of Science and Technology Taipei Taiwan
- Department of Chemistry National Taiwan Normal University Taipei Taiwan
| |
Collapse
|
22
|
Petrini G, Tomagra G, Bernardi E, Moreva E, Traina P, Marcantoni A, Picollo F, Kvaková K, Cígler P, Degiovanni IP, Carabelli V, Genovese M. Nanodiamond-Quantum Sensors Reveal Temperature Variation Associated to Hippocampal Neurons Firing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202014. [PMID: 35876403 PMCID: PMC9534962 DOI: 10.1002/advs.202202014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Indexed: 05/17/2023]
Abstract
Temperature is one of the most relevant parameters for the regulation of intracellular processes. Measuring localized subcellular temperature gradients is fundamental for a deeper understanding of cell function, such as the genesis of action potentials, and cell metabolism. Notwithstanding several proposed techniques, at the moment detection of temperature fluctuations at the subcellular level still represents an ongoing challenge. Here, for the first time, temperature variations (1 °C) associated with potentiation and inhibition of neuronal firing is detected, by exploiting a nanoscale thermometer based on optically detected magnetic resonance in nanodiamonds. The results demonstrate that nitrogen-vacancy centers in nanodiamonds provide a tool for assessing various levels of neuronal spiking activity, since they are suitable for monitoring different temperature variations, respectively, associated with the spontaneous firing of hippocampal neurons, the disinhibition of GABAergic transmission and the silencing of the network. Conjugated with the high sensitivity of this technique (in perspective sensitive to < 0.1 °C variations), nanodiamonds pave the way to a systematic study of the generation of localized temperature gradients under physiological and pathological conditions. Furthermore, they prompt further studies explaining in detail the physiological mechanism originating this effect.
Collapse
Affiliation(s)
- Giulia Petrini
- Istituto Nazionale di Ricerca MetrologicaStrada delle cacce 91Torino10135Italy
- Physics Department, University of Torinovia P. Giuria 1Torino10125Italy
- Department of Drug and Science Technology, University of TorinoCorso Raffaello 30Torino10125Italy
| | - Giulia Tomagra
- Department of Drug and Science Technology, University of TorinoCorso Raffaello 30Torino10125Italy
- NIS Inter‐departmental Centrevia G. Quarello 15Torino10135Italy
| | - Ettore Bernardi
- Istituto Nazionale di Ricerca MetrologicaStrada delle cacce 91Torino10135Italy
| | - Ekaterina Moreva
- Istituto Nazionale di Ricerca MetrologicaStrada delle cacce 91Torino10135Italy
| | - Paolo Traina
- Istituto Nazionale di Ricerca MetrologicaStrada delle cacce 91Torino10135Italy
| | - Andrea Marcantoni
- Department of Drug and Science Technology, University of TorinoCorso Raffaello 30Torino10125Italy
- NIS Inter‐departmental Centrevia G. Quarello 15Torino10135Italy
| | - Federico Picollo
- Physics Department, University of Torinovia P. Giuria 1Torino10125Italy
- Istituto Nazionale di Fisica Nucleare (INFN) Sez. Torinovia P. Giuria 1Torino10125Italy
| | - Klaudia Kvaková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nam. 2Prague 6166 10Czechia
- Institute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of MedicineCharles University
Katerinska 1660/32Prague 2121 08Czechia
| | - Petr Cígler
- Institute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of MedicineCharles University
Katerinska 1660/32Prague 2121 08Czechia
| | - Ivo Pietro Degiovanni
- Istituto Nazionale di Ricerca MetrologicaStrada delle cacce 91Torino10135Italy
- Istituto Nazionale di Fisica Nucleare (INFN) Sez. Torinovia P. Giuria 1Torino10125Italy
| | - Valentina Carabelli
- Department of Drug and Science Technology, University of TorinoCorso Raffaello 30Torino10125Italy
- NIS Inter‐departmental Centrevia G. Quarello 15Torino10135Italy
| | - Marco Genovese
- Istituto Nazionale di Ricerca MetrologicaStrada delle cacce 91Torino10135Italy
- Istituto Nazionale di Fisica Nucleare (INFN) Sez. Torinovia P. Giuria 1Torino10125Italy
| |
Collapse
|
23
|
Tan Y, Hu X, Hou Y, Chu Z. Emerging Diamond Quantum Sensing in Bio-Membranes. MEMBRANES 2022; 12:957. [PMID: 36295716 PMCID: PMC9609316 DOI: 10.3390/membranes12100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Bio-membranes exhibit complex but unique mechanical properties as communicative regulators in various physiological and pathological processes. Exposed to a dynamic micro-environment, bio-membranes can be seen as an intricate and delicate system. The systematical modeling and detection of their local physical properties are often difficult to achieve, both quantitatively and precisely. The recent emerging diamonds hosting quantum defects (i.e., nitrogen-vacancy (NV) center) demonstrate intriguing optical and spin properties, together with their outstanding photostability and biocompatibility, rendering them ideal candidates for biological applications. Notably, the extraordinary spin-based sensing enable the measurements of localized nanoscale physical quantities such as magnetic fields, electrical fields, temperature, and strain. These nanoscale signals can be optically read out precisely by simple optical microscopy systems. Given these exclusive properties, NV-center-based quantum sensors can be widely applied in exploring bio-membrane-related features and the communicative chemical reaction processes. This review mainly focuses on NV-based quantum sensing in bio-membrane fields. The attempts of applying NV-based quantum sensors in bio-membranes to investigate diverse physical and chemical events such as membrane elasticity, phase change, nanoscale bio-physical signals, and free radical formation are fully overviewed. We also discuss the challenges and future directions of this novel technology to be utilized in bio-membranes.
Collapse
Affiliation(s)
- Yayin Tan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Xinhao Hu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Yong Hou
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China
- Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
24
|
Oshimi K, Nishimura Y, Matsubara T, Tanaka M, Shikoh E, Zhao L, Zou Y, Komatsu N, Ikado Y, Takezawa Y, Kage-Nakadai E, Izutsu Y, Yoshizato K, Morita S, Tokunaga M, Yukawa H, Baba Y, Teki Y, Fujiwara M. Glass-patternable notch-shaped microwave architecture for on-chip spin detection in biological samples. LAB ON A CHIP 2022; 22:2519-2530. [PMID: 35510631 DOI: 10.1039/d2lc00112h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report a notch-shaped coplanar microwave waveguide antenna on a glass plate designed for on-chip detection of optically detected magnetic resonance (ODMR) of fluorescent nanodiamonds (NDs). A lithographically patterned thin wire at the center of the notch area in the coplanar waveguide realizes a millimeter-scale ODMR detection area (1.5 × 2.0 mm2) and gigahertz-broadband characteristics with low reflection (∼8%). The ODMR signal intensity in the detection area is quantitatively predictable by numerical simulation. Using this chip device, we demonstrate a uniform ODMR signal intensity over the detection area for cells, tissue, and worms. The present demonstration of a chip-based microwave architecture will enable scalable chip integration of ODMR-based quantum sensing technology into various bioassay platforms.
Collapse
Affiliation(s)
- Keisuke Oshimi
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Yushi Nishimura
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
- Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Masuaki Tanaka
- Department of Electrical and Information Engineering, Graduate School of Engineering, Osaka City University, Osaka 558-8585, Japan
| | - Eiji Shikoh
- Department of Electrical and Information Engineering, Graduate School of Engineering, Osaka City University, Osaka 558-8585, Japan
| | - Li Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Yajuan Zou
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Naoki Komatsu
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Yuta Ikado
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Yuka Takezawa
- Department of Human Life Science, Graduate School of Food and Human Life Science, Osaka City University, Osaka 558-8585, Japan
| | - Eriko Kage-Nakadai
- Department of Human Life Science, Graduate School of Food and Human Life Science, Osaka City University, Osaka 558-8585, Japan
| | - Yumi Izutsu
- Department of Biology, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Katsutoshi Yoshizato
- Synthetic biology laboratory, Graduate school of medicine, Osaka City University, Osaka 545-8585, Japan
| | - Saho Morita
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Masato Tokunaga
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Hiroshi Yukawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8603, Japan
- Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8603, Japan
- Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Yoshio Teki
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Masazumi Fujiwara
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| |
Collapse
|