1
|
Garrido-Miranda KA, Pesenti H, Contreras A, Vergara-Figueroa J, Recio-Sánchez G, Chumpitaz D, Ponce S, Hernandez-Montelongo J. Nanocellulose/Nanoporous Silicon Composite Films as a Drug Delivery System. Polymers (Basel) 2024; 16:2055. [PMID: 39065372 PMCID: PMC11280883 DOI: 10.3390/polym16142055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Nanocellulose (NC) is a promising material for drug delivery due to its high surface area-to-volume ratio, biocompatibility, biodegradability, and versatility in various formats (nanoparticles, hydrogels, microspheres, membranes, and films). In this study, nanocellulose films were derived from "Bolaina blanca" (Guazuma crinita) and combined with nanoporous silicon microparticles (nPSi) in concentrations ranging from 0.1% to 1.0% (w/v), using polyvinyl alcohol (PVA) as a binding agent to create NC/nPSi composite films for drug delivery systems. The physicochemical properties of the samples were characterized using UV-Vis spectroscopy, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The mechanical properties and drug release capabilities were also evaluated using methylene blue (MB) as an antibacterial drug model. Antibacterial assays were conducted against S. aureus and E. coli bacteria. The results show that NC/nPSi composites with 1% nPSi increased the T50% by 10 °C and enhanced mechanical properties, such as a 70% increase in the elastic modulus and a 372% increase in elongation, compared to NC films. Additionally, MB released from NC/nPSi composites effectively inhibited the growth of both bacteria. It was also observed that the diffusion coefficients were inversely proportional to the % nPSi. These findings suggest that this novel NC/nPSi-based material can serve as an effective controlled drug release system.
Collapse
Affiliation(s)
- Karla A. Garrido-Miranda
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile
| | - Héctor Pesenti
- Núcleo de Investigación en Bioproductos y Materiales Avanzados (BioMA), Universidad Católica de Temuco, Temuco 4813302, Chile;
| | - Angel Contreras
- Departamento de Ciencias Biológicas y Químicas, Universidad Católica de Temuco, Temuco 4813302, Chile;
| | - Judith Vergara-Figueroa
- Departamento de Ingeniería en Madera, Centro Biomateriales y Nanotecnología (CBN), Facultad de Ingeniería, Universidad del Bío-Bío, Concepción 4030000, Chile;
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad del Bío-Bío, Concepción 4030000, Chile
- Grupo de Investigación en Materiales Avanzados (GIMAF), Universidad del Bío-Bío, Concepción 4030000, Chile
| | - Gonzalo Recio-Sánchez
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad de San Sebastián, Concepción 4080871, Chile;
| | - Dalton Chumpitaz
- Facultad de Ciencias, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima 15333, Peru;
| | - Silvia Ponce
- Facultad de Ingeniería, Universidad de Lima, Av. Javier Prado Este 4600, Lima 15023, Peru;
| | - Jacobo Hernandez-Montelongo
- Núcleo de Investigación en Bioproductos y Materiales Avanzados (BioMA), Universidad Católica de Temuco, Temuco 4813302, Chile;
- Departamento de Bioingeniería Traslacional, Universidad de Guadalajara, Guadalajara 44430, Mexico
| |
Collapse
|
2
|
Naveas N, Pulido R, Torres-Costa V, Agulló-Rueda F, Santibáñez M, Malano F, Recio-Sánchez G, Garrido-Miranda KA, Manso-Silván M, Hernández-Montelongo J. Antibacterial Films of Silver Nanoparticles Embedded into Carboxymethylcellulose/Chitosan Multilayers on Nanoporous Silicon: A Layer-by-Layer Assembly Approach Comparing Dip and Spin Coating. Int J Mol Sci 2023; 24:10595. [PMID: 37445773 DOI: 10.3390/ijms241310595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The design and engineering of antibacterial materials are key for preventing bacterial adherence and proliferation in biomedical and household instruments. Silver nanoparticles (AgNPs) and chitosan (CHI) are broad-spectrum antibacterial materials with different properties whose combined application is currently under optimization. This study proposes the formation of antibacterial films with AgNPs embedded in carboxymethylcellulose/chitosan multilayers by the layer-by-layer (LbL) method. The films were deposited onto nanoporous silicon (nPSi), an ideal platform for bioengineering applications due to its biocompatibility, biodegradability, and bioresorbability. We focused on two alternative multilayer deposition processes: cyclic dip coating (CDC) and cyclic spin coating (CSC). The physicochemical properties of the films were the subject of microscopic, microstructural, and surface-interface analyses. The antibacterial activity of each film was investigated against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria strains as model microorganisms. According to the findings, the CDC technique produced multilayer films with higher antibacterial activity for both bacteria compared to the CSC method. Bacteria adhesion inhibition was observed from only three cycles. The developed AgNPs-multilayer composite film offers advantageous antibacterial properties for biomedical applications.
Collapse
Affiliation(s)
- Nelson Naveas
- Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Departamento de Ingeniería Química y Procesos de Minerales, Universidad de Antofagasta, Antofagasta 1270300, Chile
| | - Ruth Pulido
- Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Departamento de Química, Universidad de Antofagasta, Avda. Universidad de Antofagasta 02800, Antofagasta 1240000, Chile
| | - Vicente Torres-Costa
- Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Agulló-Rueda
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | - Mauricio Santibáñez
- Departamento de Ciencias Físicas, Universidad de la Frontera, Temuco 4811230, Chile
| | - Francisco Malano
- Departamento de Ciencias Físicas, Universidad de la Frontera, Temuco 4811230, Chile
- Centro de Excelencia en Física e Ingeniería en Salud (CFIS), Universidad de La Frontera, Temuco 4811230, Chile
| | - Gonzalo Recio-Sánchez
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad de San Sebastián, Concepción 4080871, Chile
| | - Karla A Garrido-Miranda
- Núcleo Científico y Tecnológico de Biorecursos (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- Centro de Genómica Nutricional Agroacuícola (CGNA), Temuco 4780000, Chile
| | - Miguel Manso-Silván
- Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jacobo Hernández-Montelongo
- Departamento de Ciencias Matemáticas y Físicas, Universidad Católica de Temuco, Temuco 4813302, Chile
- Departamento de Bioingeniería Traslacional, Universidad de Guadalajara, Guadalajara 44430, Mexico
| |
Collapse
|
3
|
Coatings of Cyclodextrin/Citric-Acid Biopolymer as Drug Delivery Systems: A Review. Pharmaceutics 2023; 15:pharmaceutics15010296. [PMID: 36678924 PMCID: PMC9865107 DOI: 10.3390/pharmaceutics15010296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
In the early 2000s, a method for cross-linking cyclodextrins (CDs) with citric acid (CTR) was developed. This method was nontoxic, environmentally friendly, and inexpensive compared to the others previously proposed in the literature. Since then, the CD/CTR biopolymers have been widely used as a coating on implants and other materials for biomedical applications. The present review aims to cover the chemical properties of CDs, the synthesis routes of CD/CTR, and their applications as drug-delivery systems when coated on different substrates. Likewise, the molecules released and other pharmaceutical aspects involved are addressed. Moreover, the different methods of pretreatment applied on the substrates before the in situ polymerization of CD/CTR are also reviewed as a key element in the final functionality. This process is not trivial because it depends on the surface chemistry, geometry, and physical properties of the material to be coated. The biocompatibility of the polymer was also highlighted. Finally, the mechanisms of release generated in the CD/CTR coatings were analyzed, including the mathematical model of Korsmeyer-Peppas, which has been dominantly used to explain the release kinetics of drug-delivery systems based on these biopolymers. The flexibility of CD/CTR to host a wide variety of drugs, of the in situ polymerization to integrate with diverse implantable materials, and the controllable release kinetics provide a set of advantages, thereby ensuring a wide range of future uses.
Collapse
|
4
|
Baraket A, Alcaraz JP, Gondran C, Costa G, Nonglaton G, Gaillard F, Cinquin P, Cosnier ML, Martin DK. Long duration stabilization of porous silicon membranes in physiological media: Application for implantable reactors. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110359. [PMID: 31923938 DOI: 10.1016/j.msec.2019.110359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 10/01/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
Abstract
The natural biodegradabilty of porous silicon (pSi) in physiological media limits its wider usage for implantable systems. We report the stabilization of porous silicon (pSi) membranes by chemical surface oxidation using RCA1 and RCA2 protocols, which was followed by a PEGylation process using a silane-PEG. These surface modifications stabilized the pSi to allow a long period of immersion in PBS, while leaving the pSi surface sufficiently hydrophilic for good filtration and diffusion of several biomolecules of different sizes without any blockage of the pSi structure. The pore sizes of the pSi membranes were between 5 and 20 nm, with the membrane thickness around 70 μm. The diffusion coefficient for fluorescein through the membrane was 2 × 10-10 cm2 s-1, and for glucose was 2.2 × 10-9 cm2 s-1. The pSi membrane maintained that level of glucose diffusion for one month of immersion in PBS. After 2 months immersion in PBS the pSi membrane continued to operate, but with a reduced glucose diffusion coefficient. The chemical stabilization of pSi membranes provided almost 1 week stable and functional biomolecule transport in blood plasma and opens the possibility for its short-term implantation as a diffusion membrane in biocompatible systems.
Collapse
Affiliation(s)
- Abdoullatif Baraket
- ISA, Institut des Sciences Analytiques, Département LSA, 5, rue de la Doua, 69100, Villeurbanne, France
| | - Jean-Pierre Alcaraz
- Université Grenoble Alpes / CNRS / TIMC-IMAG UMR 5525 (SyNaBi), Grenoble, France, Faculté de Médecine, 38706, La Tronche cedex, France
| | - Chantal Gondran
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F 38000, Grenoble, France
| | - Guillaume Costa
- CEA LETI Grenoble - DRT/DTBS, 17 avenue des martyrs, 38054, Grenoble cedex 9, France
| | - Guillaume Nonglaton
- CEA LETI Grenoble - DRT/DTBS, 17 avenue des martyrs, 38054, Grenoble cedex 9, France
| | - Frédéric Gaillard
- CEA LETI Grenoble - DRT/DTBS, 17 avenue des martyrs, 38054, Grenoble cedex 9, France
| | - Philippe Cinquin
- Université Grenoble Alpes / CNRS / TIMC-IMAG UMR 5525 (SyNaBi), Grenoble, France, Faculté de Médecine, 38706, La Tronche cedex, France
| | - Marie-Line Cosnier
- CEA LETI Grenoble - DRT/DTBS, 17 avenue des martyrs, 38054, Grenoble cedex 9, France
| | - Donald K Martin
- Université Grenoble Alpes / CNRS / TIMC-IMAG UMR 5525 (SyNaBi), Grenoble, France, Faculté de Médecine, 38706, La Tronche cedex, France.
| |
Collapse
|
5
|
Makiyan F, Rahimi F, Hajati M, Shafiekhani A, Rezayan AH, Ansari-Pour N. Label-free discrimination of single nucleotide changes in DNA by reflectometric interference Fourier transform spectroscopy. Colloids Surf B Biointerfaces 2019; 181:714-720. [PMID: 31228854 DOI: 10.1016/j.colsurfb.2019.05.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/12/2019] [Accepted: 05/26/2019] [Indexed: 10/26/2022]
Abstract
Phenotypic variation - such as disease susceptibility and differential drug response - has a strong genetic component. Substantial effort has therefore been made to identify causal genomic variants explaining such variation among humans. Point mutations (PMs), which are single nucleotide changes in the genome, have been identified to be the most abundant form of causal genomic variants, making them useful, reliable diagnostic markers. Methods developed to genotype PMs have moved towards solid-phase assays, which not only show greater sensitivity and specificity, but also enable scalability and faster processing time. Most current assays are, however, based on fluorescent probes, which makes them relatively expensive. To develop a more cost-effective label-free genotyping method, we used a porous silicon (PSi) base as an efficient support for DNA biosensing and coupled it with reflectometric interference Fourier transform spectroscopy (RIFTS). To assess the versatility of this approach, we tested both a single nucleotide substitution in VKORC1 (-1639G > A; rs9923231) and a single nucleotide insertion in BRCA1 (5382insC; rs80357906). We demonstrate that the PSi-RIFTS method can efficiently detect both PM types with high sensitivity where hybridization of complementary DNA can be quantifiably differentiated from mismatch and non-complementary hybridization events. In addition, we show that the PSi base with immobilized DNA not only can be re-used to type further samples, but it also remains stable for 14 days, suggesting its potential for high-throughput applications.
Collapse
Affiliation(s)
- Farideh Makiyan
- Division of Nanobiotechnology, Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Fereshteh Rahimi
- Division of Nanobiotechnology, Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Marziyeh Hajati
- Division of Nanobiotechnology, Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Azizollah Shafiekhani
- Physics Department, Alzahra University, Tehran, Iran; School of Physics, Institute for Research in Fundamental Sciences, Tehran, Iran
| | - Ali Hossein Rezayan
- Division of Nanobiotechnology, Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Naser Ansari-Pour
- Division of Biotechnology, Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran; Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Rodriguez C, Muñoz Noval A, Torres-Costa V, Ceccone G, Manso Silván M. Visible Light Assisted Organosilane Assembly on Mesoporous Silicon Films and Particles. MATERIALS 2019; 12:ma12010131. [PMID: 30609796 PMCID: PMC6337525 DOI: 10.3390/ma12010131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/17/2018] [Accepted: 12/25/2018] [Indexed: 12/13/2022]
Abstract
Porous silicon (PSi) is a versatile matrix with tailorable surface reactivity, which allows the processing of a range of multifunctional films and particles. The biomedical applications of PSi often require a surface capping with organic functionalities. This work shows that visible light can be used to catalyze the assembly of organosilanes on the PSi, as demonstrated with two organosilanes: aminopropyl-triethoxy-silane and perfluorodecyl-triethoxy-silane. We studied the process related to PSi films (PSiFs), which were characterized by X-ray photoelectron spectroscopy (XPS), time of flight secondary ion mass spectroscopy (ToF-SIMS) and field emission scanning electron microscopy (FESEM) before and after a plasma patterning process. The analyses confirmed the surface oxidation and the anchorage of the organosilane backbone. We further highlighted the surface analytical potential of 13C, 19F and 29Si solid-state NMR (SS-NMR) as compared to Fourier transformed infrared spectroscopy (FTIR) in the characterization of functionalized PSi particles (PSiPs). The reduced invasiveness of the organosilanization regarding the PSiPs morphology was confirmed using transmission electron microscopy (TEM) and FESEM. Relevantly, the results obtained on PSiPs complemented those obtained on PSiFs. SS-NMR suggests a number of siloxane bonds between the organosilane and the PSiPs, which does not reach levels of maximum heterogeneous condensation, while ToF-SIMS suggested a certain degree of organosilane polymerization. Additionally, differences among the carbons in the organic (non-hydrolyzable) functionalizing groups are identified, especially in the case of the perfluorodecyl group. The spectroscopic characterization was used to propose a mechanism for the visible light activation of the organosilane assembly, which is based on the initial photoactivated oxidation of the PSi matrix.
Collapse
Affiliation(s)
- Chloé Rodriguez
- Departamento de Física Aplicada and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Alvaro Muñoz Noval
- Departamento de Física Aplicada and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Vicente Torres-Costa
- Departamento de Física Aplicada and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Centro de Microanálisis de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Giacomo Ceccone
- European Commission, Joint Research Center, 21020 Ispra (Va), Italy.
| | - Miguel Manso Silván
- Departamento de Física Aplicada and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
7
|
Rahimi F, Fardindoost S, Ansari-Pour N, Sepehri F, Makiyan F, Shafiekhani A, Rezayan AH. Optimization of Porous Silicon Conditions for DNA-based Biosensing via Reflectometric Interference Spectroscopy. CELL JOURNAL 2018; 20:584-591. [PMID: 30124007 PMCID: PMC6099142 DOI: 10.22074/cellj.2019.5598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/12/2018] [Indexed: 11/15/2022]
Abstract
Objective Substantial effort has been put into designing DNA-based biosensors, which are commonly used to detect presence
of known sequences including the quantification of gene expression. Porous silicon (PSi), as a nanostructured base, has been
commonly used in the fabrication of optimally transducing biosensors. Given that the function of any PSi-based biosensor is
highly dependent on its nanomorphology, we systematically optimized a PSi biosensor based on reflectometric interference
spectroscopy (RIS) detecting the high penetrance breast cancer susceptibility gene, BRCA1.
Materials and Methods In this experimental study, PSi pore sizes on the PSi surface were controlled for optimum filling
with DNA oligonucleotides and surface roughness was optimized for obtaining higher resolution RIS patterns. In addition, the
influence of two different organic electrolyte mixtures on the formation and morphology of the pores, based on various current
densities and etching times on doped p-type silicon, were examined. Moreover, we introduce two cleaning processes which
can efficiently remove the undesirable outer parasitic layer created during PSi formation. Results of all the optimization steps
were observed by field emission scanning electron microscopy (FE-SEM).
Results DNA sensing reached its optimum when PSi was formed in a two-step process in the ethanol electrolyte
accompanied by removal of the parasitic layer in NaOH solution. These optimal conditions, which result in pore sizes
of approximately 20 nm as well as a low surface roughness, provide a considerable RIS shift upon complementary
sequence hybridization, suggesting efficient detectability.
Conclusion We demonstrate that the optimal conditions identified here makes PSi an attractive solid-phase DNA-based
biosensing method and may be used to not only detect full complementary DNA sequences, but it may also be used for
detecting point mutations such as single nucleotide substitutions and indels.
Collapse
Affiliation(s)
- Fereshteh Rahimi
- Division of Nanobiotechnoloy, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran. Electronic Affress:
| | | | - Naser Ansari-Pour
- Biotechnology Group, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran. Electronic Address:
| | - Fatemeh Sepehri
- Division of Nanobiotechnoloy, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Farideh Makiyan
- Division of Nanobiotechnoloy, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Azizollah Shafiekhani
- Department of Physics, Alzahra University, Tehran, Iran.,School of Physics, Institute for Research in Fundamental Sciences, Tehran, Iran
| | - Ali Hossein Rezayan
- Division of Nanobiotechnoloy, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
8
|
Hernandez-Montelongo J, Corrales Ureña Y, Machado D, Lancelloti M, Pinheiro M, Rischka K, Lisboa-Filho P, Cotta M. Electrostatic immobilization of antimicrobial peptides on polyethylenimine and their antibacterial effect against Staphylococcus epidermidis. Colloids Surf B Biointerfaces 2018; 164:370-378. [DOI: 10.1016/j.colsurfb.2018.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/29/2018] [Accepted: 02/02/2018] [Indexed: 12/22/2022]
|
9
|
Hernandez-Montelongo J, Lucchesi E, Nascimento V, França C, Gonzalez I, Macedo W, Machado D, Lancellotti M, Moraes A, Beppu M, Cotta M. Antibacterial and non-cytotoxic ultra-thin polyethylenimine film. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:718-724. [DOI: 10.1016/j.msec.2016.10.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/28/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
|
10
|
Hernandez-Montelongo J, Lucchesi E, Gonzalez I, Macedo W, Nascimento V, Moraes A, Beppu M, Cotta M. Hyaluronan/chitosan nanofilms assembled layer-by-layer and their antibacterial effect: A study using Staphylococcus aureus and Pseudomonas aeruginosa. Colloids Surf B Biointerfaces 2016; 141:499-506. [DOI: 10.1016/j.colsurfb.2016.02.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 02/01/2016] [Accepted: 02/10/2016] [Indexed: 10/22/2022]
|
11
|
Hernández-Montelongo J, Muñoz-Noval A, García-Ruíz JP, Torres-Costa V, Martín-Palma RJ, Manso-Silván M. Nanostructured porous silicon: the winding road from photonics to cell scaffolds - a review. Front Bioeng Biotechnol 2015; 3:60. [PMID: 26029688 PMCID: PMC4426817 DOI: 10.3389/fbioe.2015.00060] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/17/2015] [Indexed: 11/21/2022] Open
Abstract
For over 20 years, nanostructured porous silicon (nanoPS) has found a vast number of applications in the broad fields of photonics and optoelectronics, triggered by the discovery of its photoluminescent behavior in 1990. Besides, its biocompatibility, biodegradability, and bioresorbability make porous silicon (PSi) an appealing biomaterial. These properties are largely a consequence of its particular susceptibility to oxidation, leading to the formation of silicon oxide, which is readily dissolved by body fluids. This paper reviews the evolution of the applications of PSi and nanoPS from photonics through biophotonics, to their use as cell scaffolds, whether as an implantable substitute biomaterial, mainly for bony and ophthalmological tissues, or as an in vitro cell conditioning support, especially for pluripotent cells. For any of these applications, PSi/nanoPS can be used directly after synthesis from Si wafers, upon appropriate surface modification processes, or as a composite biomaterial. Unedited studies of fluorescently active PSi structures for cell culture are brought to evidence the margin for new developments.
Collapse
Affiliation(s)
- Jacobo Hernández-Montelongo
- Departamento de Física Aplicada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Física Aplicada, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alvaro Muñoz-Noval
- Instituto de Ciencia de Materiales de Madrid-CSIC, Spanish CRG Beamline at ESRF, Grenoble, France
| | | | - Vicente Torres-Costa
- Departamento de Física Aplicada, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Micro-Análisis de Materiales, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Miguel Manso-Silván
- Departamento de Física Aplicada, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
12
|
McInnes SJP, Turner CT, Al-Bataineh SA, Airaghi Leccardi MJI, Irani Y, Williams KA, Cowin AJ, Voelcker NH. Surface engineering of porous silicon to optimise therapeutic antibody loading and release. J Mater Chem B 2015; 3:4123-4133. [DOI: 10.1039/c5tb00397k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infliximab antibodies released from porous silicon microparticles can sequester the proinflammatory cytokine, tumor necrosis factor-α (TNF-α), which is elevated in uveitis and non-healing chronic wounds.
Collapse
Affiliation(s)
- Steven J. P. McInnes
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Mawson Institute
- University of South Australia
- Adelaide
- Australia
| | - Chris T. Turner
- Mawson Institute
- University of South Australia
- Adelaide
- Australia
| | | | - Marta J. I. Airaghi Leccardi
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Mawson Institute
- University of South Australia
- Adelaide
- Australia
| | - Yazad Irani
- Department of Ophthalmology
- Flinders University
- Bedford Park
- Australia
| | | | | | - Nicolas H. Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Mawson Institute
- University of South Australia
- Adelaide
- Australia
| |
Collapse
|
13
|
Hernandez-Montelongo J, Naveas N, Degoutin S, Tabary N, Chai F, Spampinato V, Ceccone G, Rossi F, Torres-Costa V, Manso-Silvan M, Martel B. Porous silicon-cyclodextrin based polymer composites for drug delivery applications. Carbohydr Polym 2014; 110:238-52. [DOI: 10.1016/j.carbpol.2014.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/19/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
|
14
|
Martín-Palma RJ, Hernández-Montelongo J, Torres-Costa V, Manso-Silván M, Muñoz-Noval Á. Nanostructured porous silicon-mediated drug delivery. Expert Opin Drug Deliv 2014; 11:1273-83. [PMID: 24941438 DOI: 10.1517/17425247.2014.919254] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The particular properties of nanostructured porous silicon (nanoPS) make it an attractive material for controlled and localized release of therapeutics within the body, aiming at increased efficacy and reduced risks of potential side effects. Since this is a rapidly evolving field as a consequence of the number of research groups involved, a critical review of the state of the art is necessary. AREAS COVERED In this work, the most promising and successful applications of nanoPS in the field of drug delivery are reviewed and discussed. Two key issues such as drug loading and release are also analyzed in detail. The development of multifunctional (hybrid) systems, aiming at imparting additional functionalities to the nanoPS particles such as luminescence, magnetic response and/or plasmonic effects (allowing simultaneous tracking and guiding), is also examined. EXPERT OPINION Nanostructured materials based on silicon are promising platforms for pharmaceutical applications given their ability to degrade and low toxicity. However, a very limited number of clinical applications have been demonstrated so far.
Collapse
Affiliation(s)
- Raúl J Martín-Palma
- Universidad Autónoma de Madrid, Departamento de Física Aplicada, Campus de Cantoblanco , 28049 Madrid , Spain
| | | | | | | | | |
Collapse
|
15
|
Naveas N, Hernandez-Montelongo J, Pulido R, Torres-Costa V, Villanueva-Guerrero R, García Ruiz JP, Manso-Silván M. Fabrication and characterization of a chemically oxidized-nanostructured porous silicon based biosensor implementing orienting protein A. Colloids Surf B Biointerfaces 2014; 115:310-6. [DOI: 10.1016/j.colsurfb.2013.11.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 11/26/2022]
|
16
|
Collart-Dutilleul PY, Secret E, Panayotov I, Deville de Périère D, Martín-Palma RJ, Torres-Costa V, Martin M, Gergely C, Durand JO, Cunin F, Cuisinier FJ. Adhesion and proliferation of human mesenchymal stem cells from dental pulp on porous silicon scaffolds. ACS APPLIED MATERIALS & INTERFACES 2014; 6:1719-1728. [PMID: 24428409 DOI: 10.1021/am4046316] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In regenerative medicine, stem-cell-based therapy often requires a scaffold to deliver cells and/or growth factors to the injured site. Porous silicon (pSi) is a promising biomaterial for tissue engineering as it is both nontoxic and bioresorbable. Moreover, surface modification can offer control over the degradation rate of pSi and can also promote cell adhesion. Dental pulp stem cells (DPSC) are pluripotent mesenchymal stem cells found within the teeth and constitute a readily source of stem cells. Thus, coupling the good proliferation and differentiation capacities of DPSC with the textural and chemical properties of the pSi substrates provides an interesting approach for therapeutic use. In this study, the behavior of human DPSC is analyzed on pSi substrates presenting pores of various sizes, 10 ± 2 nm, 36 ± 4 nm, and 1.0 ± 0.1 μm, and undergoing different chemical treatments, thermal oxidation, silanization with aminopropyltriethoxysilane (APTES), and hydrosilylation with undecenoic acid or semicarbazide. DPSC adhesion and proliferation were followed for up to 72 h by fluorescence microscopy, scanning electron microscopy (SEM), enzymatic activity assay, and BrdU assay for mitotic activity. Porous silicon with 36 nm pore size was found to offer the best adhesion and the fastest growth rate for DPSC compared to pSi comporting smaller pore size (10 nm) or larger pore size (1 μm), especially after silanization with APTES. Hydrosilylation with semicarbazide favored cell adhesion and proliferation, especially mitosis after cell adhesion, but such chemical modification has been found to led to a scaffold that is stable for only 24-48 h in culture medium. Thus, semicarbazide-treated pSi appeared to be an appropriate scaffold for stem cell adhesion and immediate in vivo transplantation, whereas APTES-treated pSi was found to be more suitable for long-term in vitro culture, for stem cell proliferation and differentiation.
Collapse
|
17
|
Hernandez-Montelongo J, Gallach D, Naveas N, Torres-Costa V, Climent-Font A, García-Ruiz JP, Manso-Silvan M. Calcium phosphate/porous silicon biocomposites prepared by cyclic deposition methods: spin coating vs electrochemical activation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 34:245-51. [PMID: 24268256 DOI: 10.1016/j.msec.2013.09.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/09/2013] [Accepted: 09/18/2013] [Indexed: 01/31/2023]
Abstract
Porous silicon (PSi) provides an excellent platform for bioengineering applications due to its biocompatibility, biodegradability, and bioresorbability. However, to promote its application as bone engineering scaffold, deposition of calcium phosphate (CaP) ceramics in its hydroxyapatite (HAP) phase is in progress. In that sense, this work focuses on the synthesis of CaP/PSi composites by means of two different techniques for CaP deposition on PSi: Cyclic Spin Coating (CSC) and Cyclic Electrochemical Activation (CEA). Both techniques CSC and CEA consisted on alternate Ca and P deposition steps on PSi. Each technique produced specific morphologies and CaP phases using the same independent Ca and P stem-solutions at neutral pH and at room temperature. The brushite (BRU) phase was favored with the CSC technique and the hydroxyapatite (HAP) phase was better synthesized using the CEA technique. Analyses by elastic backscattering spectroscopy (EBS) on CaP/PSi structures synthesized by CEA supported that, by controlling the CEA parameters, an HAP coating with the required Ca/P atomic ratio of 1.67 can be promoted. Biocompatibility was evaluated by bone-derived progenitor cells, which grew onto CaP/PSi prepared by CSC technique with a long-shaped actin cytoskeleton. The density of adhered cells was higher on CaP/PSi prepared by CEA, where cells presented a normal morphological appearance and active mitosis. These results can be used for the design and optimization of CaP/PSi composites with enhanced biocompatibility for bone-tissue engineering.
Collapse
|