1
|
Hacking J, Gwenin VV, Baird MS, Rizwan M, Gwenin CD. A novel flow through assay and smartphone application based prototype for point-of-care diagnosis of tuberculosis. Diagn Microbiol Infect Dis 2025; 112:116766. [PMID: 40049786 DOI: 10.1016/j.diagmicrobio.2025.116766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 05/13/2025]
Abstract
Affordable point-of-care test sensors with automated result recording are essential for reducing undetected tuberculosis cases in remote, resource-limited areas. Therefore, this study addresses this need with three key aims. First, we aimed to lower the costs of a patented flow-through assay (Kit and method: WO2016/024116A1) by developing an in-house method for producing antibody-coated gold nanoparticles (anti-IgG-AuNPs). These anti-IgG-AuNPs demonstrated specific binding with performance comparable to existing antibody-capped gold nanoparticles. The second aim was to transform the flow-through assay into a multi-disease screening tool by incorporating multiple antigen test spots. A newly designed wax-printed background allows for simultaneous testing of up to five antigens, delivering results within 15 min at the point-of-care, while also reducing assay costs by 70 %. Lastly, we developed a smartphone application (RAP-TBS) to provide quantitative analysis of the flow-through assay results. This user-friendly app requires no additional hardware and addresses the limitations of subjective visual interpretation.
Collapse
Affiliation(s)
- Joanne Hacking
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, Wales LL57 2UW, UK
| | | | - Mark Stephen Baird
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, Wales LL57 2UW, UK
| | - Mohmmad Rizwan
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, Wales LL57 2UW, UK; Electrochemistry@Soft Interfaces (E@SI) Group, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, Lodz 91-403, Poland.
| | - Christopher David Gwenin
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, Wales LL57 2UW, UK; School of Social and Applied Sciences, Abertay University, Bell Street, Dundee DD1 1HG, United Kingdom.
| |
Collapse
|
2
|
Fu X, Gao S, Zhang H, Ma W, Chen Y, Luo J, Ye B. Multiple signal amplification strategy for ultrasensitive sensing of Mycobacterium bovis based on 8-17 DNAzyme and CRISPR-Cas13a. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1825-1833. [PMID: 39898503 DOI: 10.1039/d4ay02141j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Bovine tuberculosis caused by Mycobacterium bovis is not only responsible for economic losses but can also seriously jeopardize human health. Therefore, for the ultra-sensitive detection of M. bovis, a novel triple-cycle amplification system was developed based on 8-17 deoxyribozyme (DNAzyme), clustered regularly interspaced short palindromic repeats-associated protein 13a (CRISPR-Cas13a)-mediated cleavage cycles and the catalytic hairpin assembly (CHA) reaction (termed as DzCCR). In the presence of the target, the A-sequence containing 8-17 DNAzyme fragments was released from A-B using a strand displacement reaction, which could specifically cleave the HX-gRNA probe, releasing the sequence of gRNA and H and realizing the first signal amplification. Then, the released gRNA could bind to the Cas13a-g complex and activate the trans-cutting ability of Cas13a to re-cut RNA bulge sequences in HX-gRNAs, achieving the second signal amplification. Moreover, the H-sequence generated by the upstream 8-17 DNAzyme and Cas13a cleavage reaction further triggered the CHA, allowing the G-quadruplex dimer to be exposed, realizing signal output by adding thioflavin T (THT), and thereby achieving the third signal amplification. Benefiting from the triple signal amplification, the DzCCR system could quantitatively detect the M. bovis target down to a concentration of 0.5 fM with a linear calibration range from 1 to 500 fM. Furthermore, we investigated the ability of this system to detect M. bovis in real samples by standard addition method, the recovery ranged from 92.6% to 107.5%, and the relative standard deviations (RSD) ranged from 1.9% to 4.1%. Owing to the constant temperature and high sensitivity, the proposed strategy could be used as a new approach for the detection of M. bovis.
Collapse
Affiliation(s)
- Xin Fu
- State Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Sainan Gao
- State Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - He Zhang
- State Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Wenjie Ma
- State Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Yong Chen
- State Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Jiamei Luo
- State Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Bin Ye
- State Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| |
Collapse
|
3
|
Eivazzadeh-Keihan R, Saadatidizaji Z, Mahdavi M, Maleki A, Irani M, Zare I. Recent advances in gold nanoparticles-based biosensors for tuberculosis determination. Talanta 2024; 275:126099. [PMID: 38640517 DOI: 10.1016/j.talanta.2024.126099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/16/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Tuberculosis (TB) is one of the major killer diseases affecting lung parenchymal tissues. Mycobacterium tuberculosis (Mtb) is the bacterium that causes it. It most commonly affects the lungs, although it can affect any part of the body, including the stomach, glands, bones, and nervous system. Although anti-mycobacterial drugs are available, it remains a major threat to public health due to the rise of drug-resistant strains, and early and accurate diagnosis is very important. Currently, research science and medical communities are focusing on the use of cost-effective biosensors to manage human biological processes and assess accurate health diagnostics. Due to their high sensitivity in chemical and biological assays, nanomaterials have been considered in the field of biosensors for better diagnosis, and among them, gold nanoparticles (AuNPs) can play an important role in accelerating the diagnosis of TB. Superior biocompatibility, conductivity, catalytic properties, high surface-to-volume ratio, and high density enable their widespread use in the fabrication of biosensors. This review evaluates the diagnostic accuracy of AuNP-based biosensors for the detection of Mtb. According to different transducers of biosensors, their structure, performance, advantages and limitations are summarized and compared. Moreover, the upcoming challenges in their analytical performance have been highlighted and the strategies to overcome those challenges have been briefly discussed.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Zahra Saadatidizaji
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mohammad Irani
- Department of Pharmaceutics, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd., Shiraz, 7178795844, Iran.
| |
Collapse
|
4
|
Jain R, Gupta G, Mitra DK, Guleria R. Diagnosis of extra pulmonary tuberculosis: An update on novel diagnostic approaches. Respir Med 2024; 225:107601. [PMID: 38513873 DOI: 10.1016/j.rmed.2024.107601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
Tuberculosis (TB) remains a major global public health problem worldwide. Though Pulmonary TB (PTB) is mostly discussed, one in five cases of TB present are extrapulmonary TB (EPTB) that manifests conspicuous diagnostic and management challenges with respect to the site of infection. The diagnosis of EPTB is often delayed or even missed due to insidious clinical presentation, pauci-bacillary nature of the disease, and lack of laboratory facilities in the resource limited settings. Culture, the classical gold standard for the diagnosis of tuberculosis, suffers from increased technical and logistical constraints in EPTB cases. Other than culture, several other tests are available but their feasibility and effciacy for the detection of EPTB is still the matter of interest. We need more specific and precise test/s for the various forms of EPTB diagnosis which can easily be applied in the routine TB control program is required. A test that can contribute remarkably towards improving EPTB case detection reducing the morbidity and mortality is the utmost requirement. In this review we described the scenario of molecular and other noval methods available for laboratory diagnosis of EPTB, and also discussed the challenges linked with each diagnostic method. This review will make the readers aware of new emerging diagnostic techniques in the field of EPTB diagnosis. They can make an informed decision to choose the appropriate one according to the test availability, their clinical settings and financial considerations.
Collapse
Affiliation(s)
- Rashi Jain
- Department of Pulmonary Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India; Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Gopika Gupta
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - D K Mitra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Randeep Guleria
- Department of Pulmonary Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India; Institute of Internal Medicine & Respiratory and Sleep Medicine, Medanta-The Medicity, Gurugram, Haryana, 122033, India.
| |
Collapse
|
5
|
Mishra P, Navariya S, Gupta P, Singh BP, Chopra S, Shrivastava S, Agrawal VV. A novel approach to low-cost, rapid and simultaneous colorimetric detection of multiple analytes using 3D printed microfluidic channels. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231168. [PMID: 38234445 PMCID: PMC10791535 DOI: 10.1098/rsos.231168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024]
Abstract
This research paper presents an inventive technique to swiftly create microfluidic channels on distinct membrane papers, enabling colorimetric drug detection. Using a modified DIY RepRap 3D printer with a syringe pump, microfluidic channels (µPADs) are crafted on a flexible nylon-based substrate. This allows simultaneous detection of four common drugs with a single reagent. An optimized blend of polydimethylsiloxane (PDMS) dissolved in hexane is used to create hydrophobic channels on various filter papers. The PDMS-hexane mixture infiltrates the paper's pores, forming hydrophobic barriers that confine liquids within the channels. These barriers are cured on the printer's hot plate, controlling channel width and preventing spreading. Capillary action drives fluid along these paths without spreading. This novel approach provides a versatile solution for rapid microfluidic channel creation on membrane papers. The DIY RepRap 3D printer integration offers precise control and faster curing. The PDMS-hexane solution accurately forms hydrophobic barriers, containing liquids within desired channels. The resulting microfluidic system holds potential for portable, cost-effective drug detection and various sensing applications.
Collapse
Affiliation(s)
- Piyush Mishra
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sagar Navariya
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyanshi Gupta
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
| | - Bhupendra Pratap Singh
- Liquid Crystal Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, India
- Department of Electro-Optical Engineering, National United University, Miao-Li-360, Taiwan
| | - Samridhi Chopra
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Swapnil Shrivastava
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
| | - Ved Varun Agrawal
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
| |
Collapse
|
6
|
Ko A, Liao C. Paper-based colorimetric sensors for point-of-care testing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4377-4404. [PMID: 37641934 DOI: 10.1039/d3ay00943b] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
By eliminating the need for sample transportation and centralized laboratory analysis, point-of-care testing (POCT) enables on-the-spot testing, with results available within minutes, leading to improved patient management and overall healthcare efficiency. Motivated by the rapid development of POCT, paper-based colorimetric sensing, a powerful analytical technique that exploits the changes in color or absorbance of a chemical species to detect and quantify analytes of interest, has garnered increasing attention. In this review, we strive to provide a bird's eye view of the development landscape of paper-based colorimetric sensors that harness the unique properties of paper to create low-cost, easy-to-use, and disposable analytical devices, thematically covering both fundamental aspects and categorized applications. In the end, we authors summarized the review with the remaining challenges and emerging opportunities. Hopefully, this review will ignite new research endeavors in the realm of paper-based colorimetric sensors.
Collapse
Affiliation(s)
- Anthony Ko
- Renaissance Bio, New Territories, Hong Kong SAR, China.
- Medical School, Sun Yat-Sen University, Guangzhou, China
| | - Caizhi Liao
- Renaissance Bio, New Territories, Hong Kong SAR, China.
| |
Collapse
|
7
|
Kadivarian S, Rostamian M, Kooti S, Abiri R, Alvandi A. Diagnostic accuracy of gold nanoparticle combined with molecular method for detection of Mycobacterium tuberculosis: A systematic review and meta-analysis study. SENSING AND BIO-SENSING RESEARCH 2023. [DOI: 10.1016/j.sbsr.2023.100559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
8
|
Hoyo J, Bassegoda A, Ferreres G, Hinojosa-Caballero D, Gutiérrez-Capitán M, Baldi A, Fernández-Sánchez C, Tzanov T. Rapid Colorimetric Detection of Wound Infection with a Fluidic Paper Device. Int J Mol Sci 2022; 23:ijms23169129. [PMID: 36012396 PMCID: PMC9408953 DOI: 10.3390/ijms23169129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
Current procedures for the assessment of chronic wound infection are time-consuming and require complex instruments and trained personnel. The incidence of chronic wounds worldwide, and the associated economic burden, urge for simple and cheap point-of-care testing (PoCT) devices for fast on-site diagnosis to enable appropriate early treatment. The enzyme myeloperoxidase (MPO), whose activity in infected wounds is about ten times higher than in non-infected wounds, appears to be a suitable biomarker for wound infection diagnosis. Herein, we develop a single-component foldable paper-based device for the detection of MPO in wound fluids. The analyte detection is achieved in two steps: (i) selective immunocapture of MPO, and (ii) reaction of a specific dye with the captured MPO, yielding a purple color with increasing intensity as a function of the MPO activity in infected wounds in the range of 20–85 U/mL. Ex vivo experiments with wound fluids validated the analytic efficiency of the paper-based device, and the results strongly correlate with a spectrophotometric assay.
Collapse
Affiliation(s)
- Javier Hoyo
- Grup de Biotecnologia Molecular i Industrial, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, 08222 Terrasa, Spain
| | - Arnau Bassegoda
- Grup de Biotecnologia Molecular i Industrial, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, 08222 Terrasa, Spain
| | - Guillem Ferreres
- Grup de Biotecnologia Molecular i Industrial, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, 08222 Terrasa, Spain
| | - Dolores Hinojosa-Caballero
- Unitat de Ferides Complexes, Consorci Sanitari de Terrassa, Hospital de Terrassa, Ctra. Torrebonica, s/n, 08227 Terrassa, Spain
| | | | - Antoni Baldi
- Instituto de Microelectrónica de Barcelona (IMB-CNM), CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - César Fernández-Sánchez
- Instituto de Microelectrónica de Barcelona (IMB-CNM), CSIC, Campus UAB, 08193 Bellaterra, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, 08222 Terrasa, Spain
- Correspondence:
| |
Collapse
|
9
|
Wu ZY, Zhang F, Kuang Z, Fang F, Song YY. Fast and sensitive colorimetric detection of pigments from beverages by gradient zone electrophoresis on a paper based analytical device. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
León-Janampa N, Shinkaruk S, Gilman RH, Kirwan DE, Fouquet E, Szlosek M, Sheen P, Zimic M. Biorecognition and detection of antigens from Mycobacterium tuberculosis using a sandwich ELISA associated with magnetic nanoparticles. J Pharm Biomed Anal 2022; 215:114749. [PMID: 35447489 DOI: 10.1016/j.jpba.2022.114749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is one of the 10 leading causes of death worldwide, especially in low-income areas. A rapid, low-cost diagnostic assay for TB with high sensitivity and specificity is not currently available. Bio-functionalized magnetic nanoparticles (MNPs) which are able to efficiently detect and concentrate biomolecules from complex biological samples, allows improving the diagnostic immunoassays. In this way, a proof-of-concept of MNP-based sandwich immunoassay was developed to detect various MTB protein antigens. The superficial and secretory antigenic proteins considered in this research were: CFP10, ESAT6, MTC28, MPT64, 38 kDa protein, Ag85B, and MoeX. The proteins were cloned and expressed in an E. coli system. Polyclonal antibodies (ab) against the recombinant antigens were elicited in rabbits and mice. Antibodies were immobilized on the surface of amine-silanized nanoparticles (MNP@Si). The functionalized MNP@Si@ab were tested in a colorimetric sandwich enzyme-linked immunosorbent assay (sELISA-MNP@Si@ab) to recognize the selected antigens in sputum samples. The selected MTB antigens were successfully detected in sputum from TB patients in a shorter time (~ 4 h) using the sELISA-MNP@Si@ab, compared to the conventional sELISA (~15 h) standardized in home. Moreover, the sELISA-MNP@Si@ab showed the higher sensitivity in the real biological samples from infected patients.
Collapse
Affiliation(s)
- Nancy León-Janampa
- Laboratorio de Bioinformática y Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru; Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33400 Talence, France.
| | - Svitlana Shinkaruk
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33400 Talence, France.
| | - Robert H Gilman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
| | - Daniela E Kirwan
- Institute for Infection & Immunity, St. George's, University of London, London, United Kingdom.
| | - Eric Fouquet
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33400 Talence, France.
| | - Magali Szlosek
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33400 Talence, France.
| | - Patricia Sheen
- Laboratorio de Bioinformática y Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Mirko Zimic
- Laboratorio de Bioinformática y Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.
| |
Collapse
|
11
|
Sun C, Zhang X, Wang J, Chen Y, Meng C. Novel mesoporous silica nanocarriers containing gold; a rapid diagnostic tool for tuberculosis. BMC Complement Med Ther 2021; 21:277. [PMID: 34740364 PMCID: PMC8569953 DOI: 10.1186/s12906-021-03451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/22/2021] [Indexed: 11/10/2022] Open
Abstract
Tuberculosis (TB) is major health concern and reason of deaths from decades to current date. Even though with a lot of advancements, diagnostic techniques, and discovery of standard antibiotics TB remains crucial challenge and can create worst scenario for human health in near future. Nanoparticles play emerging role in diagnosis and treatment of TB. In this study, we developed mesoporous silica nanoparticles containing gold (MSNs@GNPs) for rapid diagnosis and treatment of TB. The physicochemical characterization revealed effective surface morphology and particles diameter, that is applicable for in vitro applications. The in vitro antimicrobial analysis revealed that the designed MSNs@GNPs has retained significantly lower minimal inhibitory concentration (MIC) values and can effectively demolish mycobacterium tuberculosis (Mtb). Furthermore, the diagnosis efficiency of the MSNs@GNPs was evaluated by calorimetric analysis. Which demonstrates that MSNs@GNPs can be used for rapid diagnosis of the tuberculosis when applied on in vitro culture of the Mtb. The current study needs further verification on human's clinical samples from tuberculosis patients. However, MSNs@GNPs can be a versatile clinical approach for the rapid diagnosis and clinical treatment of the tuberculosis.
Collapse
Affiliation(s)
- Chang Sun
- Xinjiang Medical University First Affiliated Hospital Urumqi, Xinjiang, 830011, China
| | - Xiaoying Zhang
- Xinjiang Medical University First Affiliated Hospital Urumqi, Xinjiang, 830011, China
| | - Jialu Wang
- Xinjiang Medical University First Affiliated Hospital Urumqi, Xinjiang, 830011, China
| | - Yahao Chen
- Xinjiang Medical University First Affiliated Hospital Urumqi, Xinjiang, 830011, China
| | - Cunren Meng
- Xinjiang Medical University First Affiliated Hospital Urumqi, Xinjiang, 830011, China.
| |
Collapse
|
12
|
Multidrug resistant tuberculosis - Diagnostic challenges and its conquering by nanotechnology approach - An overview. Chem Biol Interact 2021; 337:109397. [PMID: 33508305 DOI: 10.1016/j.cbi.2021.109397] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/27/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022]
Abstract
One of the leading killer diseases that target the parenchymal tissues of lungs is Tuberculosis. Although antimycobacterial drugs are available, there are increased incidences of drug resistance encountered in Mycobacterium sp. They have been categorized into MDR (Multidrug resistant) and XDR (Extensively drug-resistant) strains exhibiting resistance toward successive treatment regimen. This situation threatens the futuristic containment of TB with the dearth of anti-TB drugs. Nanotechnology, the emerging multidisciplinary science has presented an excellent opportunity for timely and accurate diagnosis and discrimination of Mycobacteria via its unique physio-chemical and optical characteristics. The delayed and misdiagnosis of TB and lack of sensitive diagnostic method(s) has seen a paradigm shift toward nanoparticulate system for improved diagnosis, drug delivery and reduced treatment frequency. This review article highlights the evolution of tuberculosis and its transformation to multidrug resistant strain. Further, the conventional methods for diagnosing TB and the challenges encountered in their analytical performance have been highlighted and the strategies to overcome those challenges have been briefly discussed. Smart approaches encompassing metal nanoparticles, Quantum Dots (QDs) and Field Effect Transistors (FET) based biosensor for accurate diagnosis have been critically reviewed. A decade long state-of-the-art knowledge on TB nanodiagnostics, fabrication concepts and performance characteristics has been reviewed.
Collapse
|
13
|
Zhao Y, Zuo X, Li Q, Chen F, Chen YR, Deng J, Han D, Hao C, Huang F, Huang Y, Ke G, Kuang H, Li F, Li J, Li M, Li N, Lin Z, Liu D, Liu J, Liu L, Liu X, Lu C, Luo F, Mao X, Sun J, Tang B, Wang F, Wang J, Wang L, Wang S, Wu L, Wu ZS, Xia F, Xu C, Yang Y, Yuan BF, Yuan Q, Zhang C, Zhu Z, Yang C, Zhang XB, Yang H, Tan W, Fan C. Nucleic Acids Analysis. Sci China Chem 2020; 64:171-203. [PMID: 33293939 PMCID: PMC7716629 DOI: 10.1007/s11426-020-9864-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Nucleic acids are natural biopolymers of nucleotides that store, encode, transmit and express genetic information, which play central roles in diverse cellular events and diseases in living things. The analysis of nucleic acids and nucleic acids-based analysis have been widely applied in biological studies, clinical diagnosis, environmental analysis, food safety and forensic analysis. During the past decades, the field of nucleic acids analysis has been rapidly advancing with many technological breakthroughs. In this review, we focus on the methods developed for analyzing nucleic acids, nucleic acids-based analysis, device for nucleic acids analysis, and applications of nucleic acids analysis. The representative strategies for the development of new nucleic acids analysis in this field are summarized, and key advantages and possible limitations are discussed. Finally, a brief perspective on existing challenges and further research development is provided.
Collapse
Affiliation(s)
- Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Yan-Ru Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
| | - Jinqi Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Da Han
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Changlong Hao
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Fujian Huang
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074 China
| | - Yanyi Huang
- College of Chemistry and Molecular Engineering, Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin, 300071 China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Libing Liu
- Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Chunhua Lu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology (ICSB), Chinese Institute for Brain Research (CIBR), Tsinghua University, Beijing, 100084 China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Shu Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Lingling Wu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
| | - Fan Xia
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074 China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Yang Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Bi-Feng Yuan
- Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Quan Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Chao Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Huanghao Yang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Weihong Tan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
14
|
Chu ZJ, Xiao SJ, Yuan MY, Wang LZ, Wang SP, Zhang GM, Zhang ZB. Rapid and sensitive detection of Mycobacterium tuberculosis based on strand displacement amplification and magnetic beads. LUMINESCENCE 2020; 36:66-72. [PMID: 32706457 DOI: 10.1002/bio.3918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/06/2020] [Accepted: 07/16/2020] [Indexed: 11/10/2022]
Abstract
Tuberculosis is one of the main infectious diseases threatening public health, and the development of simple, rapid, and cost-saving methods for tuberculosis diagnosis is of profound importance for tuberculosis prevention and treatment. The bacterium Mycobacterium tuberculosis (MTB) is the pathogen that causes tuberculosis, and assaying for MTB is the only criterion for tuberculosis diagnosis. A new enzyme-free method based on strand displacement amplification and magnetic beads was developed for simple, rapid, and cost-saving MTB detection. Under optimum conditions, a good linear relationship could be observed between fluorescence and MTB specific DNA concentration ranging from 0.05 to 150 nM with a correlation coefficient of 0.993 (n = 8) and a detection limit of 47 pM (3σ/K). The present method also distinguished a one base mismatch from MTB specific DNA, showing great promise for MTB genome single base polymorphism analysis. MTB specific DNA content in polymerase chain reaction samples was successfully detected using the new method, and recoveries were 97.8-100.8%, indicating that the present method had high accuracy and shows good potential for the early diagnosis of tuberculosis.
Collapse
Affiliation(s)
- Zhao Jun Chu
- Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang, China
| | - Sai Jin Xiao
- Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang, China.,School of Chemistry, Biology and Material Science, ECUT, Nanchang, China
| | - Ming Yue Yuan
- School of Chemistry, Biology and Material Science, ECUT, Nanchang, China
| | - Li Zhi Wang
- School of Chemistry, Biology and Material Science, ECUT, Nanchang, China
| | - Shan Ping Wang
- School of Chemistry, Biology and Material Science, ECUT, Nanchang, China
| | - Guang Mei Zhang
- School of Chemistry, Biology and Material Science, ECUT, Nanchang, China
| | - Zhi Bin Zhang
- School of Chemistry, Biology and Material Science, ECUT, Nanchang, China
| |
Collapse
|
15
|
Zhou W, Hu K, Kwee S, Tang L, Wang Z, Xia J, Li X. Gold Nanoparticle Aggregation-Induced Quantitative Photothermal Biosensing Using a Thermometer: A Simple and Universal Biosensing Platform. Anal Chem 2020; 92:2739-2747. [PMID: 31977184 DOI: 10.1021/acs.analchem.9b04996] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wan Zhou
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Kaiqiang Hu
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Sharon Kwee
- Department of Biomedical and Chemical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Liang Tang
- Department of Biomedical and Chemical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - XiuJun Li
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
- Biomedical Engineering, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
- Environmental Science and Engineering, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| |
Collapse
|
16
|
Ghorbanzadeh N, Peymani A, Ahmadpour-Yazdi H. Colorimetric-based detection of Ureaplasma urealyticum using gold nanoparticles. IET Nanobiotechnol 2020; 14:19-24. [PMID: 31935673 DOI: 10.1049/iet-nbt.2019.0088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ureaplasma urealyticum (uu) is one of the most common agents of urogenital infections and is associated with complications such as infertility, spontaneous abortion and other sexually transmitted diseases. Here, a DNA sensor based on oligonucleotide target-specific gold nanoparticles (AuNPs) was developed, in which the dispersed and aggregated states of oligonucleotide-functionalised AuNPs were optimised for the colorimetric detection of a polymerase chain reaction (PCR) amplicon of U. urealyticum DNA. A non-cross-linking approach utilising a single Au-nanoprobe specific of the urease gene was utilised and the effect of a PCR product concentration gradient evaluated. Results from both visual and spectral analyses showed that target-Au-nanoprobe hybrids were stable against aggregation after adding the inducer. Furthermore, when a non-target PCR product was used, the peak position shifted and salt-induced aggregation occurred. The assay's limit of detection of the assay was 10 ng with a dynamic range of 10-60 ng. This procedure provides a rapid, facile and low-cost detection format, compared to methods currently used for the identification of U. urealyticum.
Collapse
Affiliation(s)
- Nahid Ghorbanzadeh
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amir Peymani
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | | |
Collapse
|
17
|
Boonpoempoon T, Wonsawat W, Kaneta T. Long-term stabilization of hydrogen peroxide by poly(vinyl alcohol) on paper-based analytical devices. Sci Rep 2019; 9:12951. [PMID: 31506489 PMCID: PMC6736875 DOI: 10.1038/s41598-019-49393-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/23/2019] [Indexed: 11/29/2022] Open
Abstract
Stabilizing reagents that can be deposited onto paper is an important issue for researchers who depend on paper-based analytical devices (PADs), because long-term stability of the devices is essential in point-of-care testing. Here, we found that poly(vinyl alcohol) (PVA) would stabilize hydrogen peroxide placed on a paper substrate following exposure to air. Horseradish peroxidase was employed as a sample in colorimetric measurements of PADs after hydrogen peroxide and 3,3',5,5'-tetramethylbenzidine were deposited as substrates in an enzymatic reaction. The addition of PVA to hydrogen peroxide significantly suppressed its degradation. Concentrations of PVA that ranged from 0.5 to 2%, increased the duration of the stability of hydrogen peroxide, and the results for a PVA concentration of 1% approximated those of 2% PVA. Storage of the PADs at 4 °C in a refrigerator extended the stability of the hydrogen peroxide containing 2% PVA by as much as 30 days. The stability of hydrogen peroxide without PVA was degraded after one day under room temperature.
Collapse
Affiliation(s)
- Tuchpongpuch Boonpoempoon
- Department of Chemistry, Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, Thailand
| | - Wanida Wonsawat
- Department of Chemistry, Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, Thailand
| | - Takashi Kaneta
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
| |
Collapse
|
18
|
Plasmonic-based platforms for diagnosis of infectious diseases at the point-of-care. Biotechnol Adv 2019; 37:107440. [PMID: 31476421 DOI: 10.1016/j.biotechadv.2019.107440] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/21/2019] [Indexed: 12/17/2022]
Abstract
Infectious diseases such as HIV-1/AIDS, tuberculosis (TB), hepatitis B (HBV), and malaria still exert a tremendous health burden on the developing world, requiring rapid, simple and inexpensive diagnostics for on-site diagnosis and treatment monitoring. However, traditional diagnostic methods such as nucleic acid tests (NATs) and enzyme linked immunosorbent assays (ELISA) cannot be readily implemented in point-of-care (POC) settings. Recently, plasmonic-based biosensors have emerged, offering an attractive solution to manage infectious diseases in the developing world since they can achieve rapid, real-time and label-free detection of various pathogenic biomarkers. Via the principle of plasmonic-based optical detection, a variety of biosensing technologies such as surface plasmon resonance (SPR), localized surface plasmon resonance (LSPR), colorimetric plasmonic assays, and surface enhanced Raman spectroscopy (SERS) have emerged for early diagnosis of HIV-1, TB, HBV and malaria. Similarly, plasmonic-based colorimetric assays have also been developed with the capability of multiplexing and cellphone integration, which is well suited for POC testing in the developing world. Herein, we present a comprehensive review on recent advances in surface chemistry, substrate fabrication, and microfluidic integration for the development of plasmonic-based biosensors, aiming at rapid management of infectious diseases at the POC, and thus improving global health.
Collapse
|
19
|
Adewale OB, Davids H, Cairncross L, Roux S. Toxicological Behavior of Gold Nanoparticles on Various Models: Influence of Physicochemical Properties and Other Factors. Int J Toxicol 2019; 38:357-384. [PMID: 31462100 DOI: 10.1177/1091581819863130] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Potential applications of gold nanoparticles in biomedicine have increasingly been reported on account of the ease of synthesis, bioinert characteristics, optical properties, chemical stability, high biocompatibility, and specificity. The safety of these particles remains a great concern, as there are differences among toxicity study protocols used. This article focuses on integrating results of research on the toxicological behavior of gold nanoparticles. This can be influenced by the physicochemical properties, including size, shape, surface charge, and other factors, such as methods used in the synthesis of gold nanoparticles, models used, dose, in vivo route of administration, and interference of gold nanoparticles with in vitro toxicity assay systems. Several researchers have reported toxicological studies with regard to gold nanoparticles, using various in vitro, in vivo, and in ovo models. The conflicting results concerning the toxicity of gold nanoparticles should thus be addressed to justify the safe use of gold nanoparticles in biomedicine.
Collapse
Affiliation(s)
- Olusola B Adewale
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, South Africa.,Department of Chemical Sciences, Biochemistry program, Afe Babalola University, Ado Ekiti, Nigeria
| | - Hajierah Davids
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Lynn Cairncross
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Saartjie Roux
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, South Africa
| |
Collapse
|
20
|
|
21
|
Citartan M, Tang TH. Recent developments of aptasensors expedient for point-of-care (POC) diagnostics. Talanta 2019; 199:556-566. [PMID: 30952298 DOI: 10.1016/j.talanta.2019.02.066] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 12/12/2022]
Abstract
Aptamers are nucleic acid-based molecular recognition elements that are specific and have high binding affinity against their respective targets. On account of their target recognition capacity, aptamers are widely utilized in a number of applications including diagnostics. This review aims to highlight the recent developments of aptasensors expedient for point-of-care (POC) diagnostics. Significant focus is given on the primary assay formats of aptamers such as fluorescence, electrochemical, surface plasmon resonance (SPR) and colorimetric assays. A potpourri of platforms such as paper-based device, lateral flow assay, portable electrodes, portable SPR and smart phones expedient for point-of-care (POC) diagnostics are discussed. Emphasis is also given on the technicalities and assay configurations associated with the sensors.
Collapse
Affiliation(s)
- Marimuthu Citartan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang 13200, Malaysia.
| | - Thean-Hock Tang
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang 13200, Malaysia
| |
Collapse
|
22
|
Nishat S, Awan FR, Bajwa SZ. Nanoparticle-based Point of Care Immunoassays for in vitro Biomedical Diagnostics. ANAL SCI 2019; 35:123-131. [PMID: 30224569 DOI: 10.2116/analsci.18r001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In resource-limited settings, the availability of medical practitioners and early diagnostic facilities are inadequate relative to the population size and disease burden. To address cost and delayed time issues in diagnostics, strip-based immunoassays, e.g. dipstick, lateral flow assay (LFA) and microfluidic paper-based analytical devices (microPADs), have emerged as promising alternatives to conventional diagnostic approaches. These assays rely on chromogenic agents to detect disease biomarkers. However, limited specificity and sensitivity have motivated scientists to improve the efficiency of these assays by conjugating chromogenic agents with nanoparticles for enhanced qualitative and quantitative output. Various nanomaterials, which include metallic, magnetic and luminescent nanoparticles, are being used in the fabrication of biosensors to detect and quantify biomolecules and disease biomarkers. This review discusses some of the principles and applications of such nanoparticle-based point of care biosensors in biomedical diagnosis.
Collapse
Affiliation(s)
- Sumaira Nishat
- National Institute for Biotechnology and Genetic Engineering (NIBGE).,akistan Institute of Engineering and Applied Sciences (PIEAS).,Department of Computer Science, University of Agriculture
| | - Fazli Rabbi Awan
- National Institute for Biotechnology and Genetic Engineering (NIBGE).,akistan Institute of Engineering and Applied Sciences (PIEAS)
| | - Sadia Zafar Bajwa
- National Institute for Biotechnology and Genetic Engineering (NIBGE).,akistan Institute of Engineering and Applied Sciences (PIEAS)
| |
Collapse
|
23
|
Theillet G, Grard G, Galla M, Maisse C, Enguehard M, Cresson M, Dalbon P, Leparc-Goffart IL, Bedin F. Detection of chikungunya virus-specific IgM on laser-cut paper-based device using pseudo-particles as capture antigen. J Med Virol 2019; 91:899-910. [PMID: 30734316 DOI: 10.1002/jmv.25420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/11/2023]
Abstract
The incidence of arbovirus infections has increased dramatically in recent decades, affecting hundreds of millions of people each year. The Togaviridae family includes the chikungunya virus (CHIKV), which is typically transmitted by Aedes mosquitoes and causes a wide range of symptoms from flu-like fever to severe arthralgia. Although conventional diagnostic tests can provide early diagnosis of CHIKV infections, access to these tests is often limited in developing countries. Consequently, there is an urgent need to develop efficient, affordable, simple, rapid, and robust diagnostic tools that can be used in point-of-care settings. Early diagnosis is crucial to improve patient management and to reduce the risk of complications. A glass-fiber laser-cut microfluidic device (paper-based analytical device [PAD]) was designed and evaluated in a proof of principle context, for the analysis of 30 µL of patient serum. Biological raw materials used for the functionalization of the PAD were first screened by MAC-ELISA (IgM capture enzyme-linked immunosorbent assay) for CHIKV Immunoglobulin M (IgM) capture and then evaluated on the PAD using various human samples. Compared with viral lysate traditionally used for chikungunya (CHIK) serology, CHIKV pseudo-particles (PPs) have proven to be powerful antigens for specific IgM capture. The PAD was able to detect CHIKV IgM in human sera in less than 10 minutes. Results obtained in patient sera showed a sensitivity of 70.6% and a specificity of around 98%. The PAD showed few cross-reactions with other tropical viral diseases. The PAD could help health workers in the early diagnosis of tropical diseases such as CHIK, which require specific management protocols in at-risk populations.
Collapse
Affiliation(s)
- Gerald Theillet
- bioMérieux, Innovations New Immuno-Concepts department, Chemin de l'Orme, Marcy-l'Etoile, France.,Unité des Virus Emergents (UVE: Aix-Marseille Univ, IRD 190, Inserm 1207, IHU Méditerranée Infection), Marseille, France
| | - Gilda Grard
- Unité des Virus Emergents (UVE: Aix-Marseille Univ, IRD 190, Inserm 1207, IHU Méditerranée Infection), Marseille, France.,IRBA, Unité de virologie, CNR des Arbovirus, HIA Laveran, Marseille, France
| | - Mathilde Galla
- Unité des Virus Emergents (UVE: Aix-Marseille Univ, IRD 190, Inserm 1207, IHU Méditerranée Infection), Marseille, France.,IRBA, Unité de virologie, CNR des Arbovirus, HIA Laveran, Marseille, France
| | - Carine Maisse
- Infections Virales et Pathologie Comparée, UMR754, INRA, Univ Claude Bernard Lyon1, Lyon, France
| | - Margot Enguehard
- Ecologie Microbienne CNRS UMR 5557, INRA UMR1418, Villeurbanne, France.,CAS Key Laboratory of Molecular Virology and Immunology, Unit of Interspecies transmission of arboviruses and antivirals, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Marie Cresson
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of Interspecies transmission of arboviruses and antivirals, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,IVPC UMR754, INRA, Univ Lyon, Université Claude Bernard Lyon 1, EPHE, PSL Research University, Lyon, France
| | - Pascal Dalbon
- bioMérieux, Innovations New Immuno-Concepts department, Chemin de l'Orme, Marcy-l'Etoile, France
| | - Isabelle Leparc Leparc-Goffart
- Unité des Virus Emergents (UVE: Aix-Marseille Univ, IRD 190, Inserm 1207, IHU Méditerranée Infection), Marseille, France.,IRBA, Unité de virologie, CNR des Arbovirus, HIA Laveran, Marseille, France
| | - Frederic Bedin
- bioMérieux, Innovations New Immuno-Concepts department, Chemin de l'Orme, Marcy-l'Etoile, France
| |
Collapse
|
24
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
25
|
Aydindogan E, Guler Celik E, Timur S. Paper-Based Analytical Methods for Smartphone Sensing with Functional Nanoparticles: Bridges from Smart Surfaces to Global Health. Anal Chem 2018; 90:12325-12333. [PMID: 30222319 DOI: 10.1021/acs.analchem.8b03120] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this Feature, the most recent developments as well as "pros and cons" in smartphone sensing, which have been developed using various functional nanoparticles in paper-based sensing systems, will be discussed. Additionally, smart phone sensing and POC combination as a potential tool that opens a gate for knowledge flow "from lab scale data to public use" will be evaluated.
Collapse
Affiliation(s)
- Eda Aydindogan
- Ege University , Faculty of Science, Biochemistry Department , 35100 , Bornova, Izmir , Turkey
| | - Emine Guler Celik
- Ege University , Faculty of Science, Biochemistry Department , 35100 , Bornova, Izmir , Turkey
| | - Suna Timur
- Ege University , Faculty of Science, Biochemistry Department , 35100 , Bornova, Izmir , Turkey.,Central Research Testing and Analysis Laboratory Research and Application Center , Ege University , 35100 , Bornova, Izmir , Turkey
| |
Collapse
|
26
|
Singh AT, Lantigua D, Meka A, Taing S, Pandher M, Camci-Unal G. Paper-Based Sensors: Emerging Themes and Applications. SENSORS (BASEL, SWITZERLAND) 2018; 18:E2838. [PMID: 30154323 PMCID: PMC6164297 DOI: 10.3390/s18092838] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 02/06/2023]
Abstract
Paper is a versatile, flexible, porous, and eco-friendly substrate that is utilized in the fabrication of low-cost devices and biosensors for rapid detection of analytes of interest. Paper-based sensors provide affordable platforms for simple, accurate, and rapid detection of diseases, in addition to monitoring food quality, environmental and sun exposure, and detection of pathogens. Paper-based devices provide an inexpensive technology for fabrication of simple and portable diagnostic systems that can be immensely useful in resource-limited settings, such as in developing countries or austere environments, where fully-equipped facilities and highly trained medical staff are absent. In this work, we present the different types of paper that are currently utilized in fabrication of paper-based sensors, and common fabrication techniques ranging from wax printing to origami- and kirigami-based approaches. In addition, we present different detection techniques that are employed in paper-based sensors such as colorimetric, electrochemical, and fluorescence detection, chemiluminescence, and electrochemiluminescence, as well as their applications including disease diagnostics, cell cultures, monitoring sun exposure, and analysis of environmental reagents including pollutants. Furthermore, main advantages and disadvantages of different types of paper and future trends for paper-based sensors are discussed.
Collapse
Affiliation(s)
- Amrita Tribhuwan Singh
- Department of Biological Sciences, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
| | - Darlin Lantigua
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
| | - Akhil Meka
- Department of Biological Sciences, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
| | - Shainlee Taing
- Department of Biological Sciences, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
| | - Manjot Pandher
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
| |
Collapse
|
27
|
A Simple Imaging Device for Fluorescence-Relevant Applications. MICROMACHINES 2018; 9:mi9080418. [PMID: 30424351 PMCID: PMC6211139 DOI: 10.3390/mi9080418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/13/2018] [Accepted: 08/18/2018] [Indexed: 12/12/2022]
Abstract
This article unveiled the development of an inexpensive, lightweight, easy-to-use, and portable fluorescence imaging device for paper-based analytical applications. We used commercial fluorescent dyes, as proof of concept, to verify the feasibility of our fluorescence imaging device for bioanalysis. This approach may provide an alternative method for nucleotide detection and semen analysis, using a miniaturized fluorescence reader that is more compact and portable than conventional analytical equipment.
Collapse
|
28
|
Golichenari B, Velonia K, Nosrati R, Nezami A, Farokhi-Fard A, Abnous K, Behravan J, Tsatsakis AM. Label-free nano-biosensing on the road to tuberculosis detection. Biosens Bioelectron 2018; 113:124-135. [DOI: 10.1016/j.bios.2018.04.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/14/2018] [Accepted: 04/28/2018] [Indexed: 12/16/2022]
|
29
|
Kim S, Sikes HD. Phenolphthalein-Conjugated Hydrogel Formation under Visible-Light Irradiation for Reducing Variability of Colorimetric Biodetection. ACS APPLIED BIO MATERIALS 2018; 1:216-220. [DOI: 10.1021/acsabm.8b00148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
30
|
Abstract
Meeting policy requirements is essential for advancing molecular diagnostic devices from the laboratory to real-world applications and commercialization. Considering policy as a starting point in the design of new technology is a winning strategy. Rapid developments have put mobile biosensors at the frontier of molecular diagnostics, at times outpacing policymakers, and therefore offering new opportunities for breakthroughs in global health. In this Perspective we survey influential global health policies and recent developments in mobile biosensing in order to gain a new perspective for the future of the field. We summarize the main requirements for mobile diagnostics outlined by policy makers such as the World Health Organization (WHO), the World Bank, the European Union (EU), and the Food and Drug Administration (FDA). We then classify current mobile diagnostic technologies according to the manner in which the biosensor interfaces with a smartphone. We observe a trend in reducing hardware components and substituting instruments and laborious data processing steps for user-friendly apps. From this perspective we see software application developers as key collaborators for bridging the gap between policy and practice.
Collapse
Affiliation(s)
- Steven M. Russell
- Department of Chemistry, University of the Balearic Islands, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Roberto de la Rica
- Department of Chemistry, University of the Balearic Islands, 07122 Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
31
|
AbuHassan KJ, Bakhori NM, Kusnin N, Azmi UZM, Tania MH, Evans BA, Yusof NA, Hossain MA. Automatic diagnosis of tuberculosis disease based on Plasmonic ELISA and color-based image classification. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2017:4512-4515. [PMID: 29060900 DOI: 10.1109/embc.2017.8037859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tuberculosis (TB) remains one of the most devastating infectious diseases and its treatment efficiency is majorly influenced by the stage at which infection with the TB bacterium is diagnosed. The available methods for TB diagnosis are either time consuming, costly or not efficient. This study employs a signal generation mechanism for biosensing, known as Plasmonic ELISA, and computational intelligence to facilitate automatic diagnosis of TB. Plasmonic ELISA enables the detection of a few molecules of analyte by the incorporation of smart nanomaterials for better sensitivity of the developed detection system. The computational system uses k-means clustering and thresholding for image segmentation. This paper presents the results of the classification performance of the Plasmonic ELISA imaging data by using various types of classifiers. The five-fold cross-validation results show high accuracy rate (>97%) in classifying TB images using the entire data set. Future work will focus on developing an intelligent mobile-enabled expert system to diagnose TB in real-time. The intelligent system will be clinically validated and tested in collaboration with healthcare providers in Malaysia.
Collapse
|
32
|
Kerry RG, Gouda S, Sil B, Das G, Shin HS, Ghodake G, Patra JK. Cure of tuberculosis using nanotechnology: An overview. J Microbiol 2018; 56:287-299. [PMID: 29721825 DOI: 10.1007/s12275-018-7414-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 02/03/2023]
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis (TB), a major health issue of the present era. The bacterium inhabits the host macrophage and other immune cells where it modulates the lysosome trafficking protein, hinders the formation of phagolysosome, and blocks the TNF receptor-dependent apoptosis of host macrophage/monocytes. Other limitations such as resistance to and low bioavailability and bio-distribution of conventional drugs aid to their high virulence and human mortality. This review highlights the use of nanotechnology-based approaches for drug formulation and delivery which could open new avenues to limit the pathogenicity of tuberculosis. Moreover phytochemicals, such as alkaloids, phenols, saponins, steroids, tannins, and terpenoids, extracted from terrestrial plants and mangroves seem promising against M. tuberculosis through different molecular mechanisms. Further understanding of the genomics and proteomics of this pathogenic microbe could also help overcome various research gaps in the path of developing a suitable therapy against tuberculosis.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, AMIT College, Khurda, 752057, Odisha, India
| | - Sushanto Gouda
- Amity Institute of Wildlife Science, Amity University, Noida, 201313, Uttar Pradesh, India
| | - Bikram Sil
- Department of Biotechnology, AMIT College, Khurda, 752057, Odisha, India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| | - Gajanan Ghodake
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| |
Collapse
|
33
|
Huang JY, Lin HT, Chen TH, Chen CA, Chang HT, Chen CF. Signal Amplified Gold Nanoparticles for Cancer Diagnosis on Paper-Based Analytical Devices. ACS Sens 2018; 3:174-182. [PMID: 29282979 DOI: 10.1021/acssensors.7b00823] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, we report a highly sensitive colorimetric sensing strategy for cancer biomarker diagnosis using gold nanoparticles (AuNPs) labeled with biotinylated poly(adenine) ssDNA sequences and streptavidin-horseradish peroxidase for enzymatic signal enhancement. By adopting this DNA-AuNP nanoconjugate sensing strategy, we were able to eliminate the complicated and costly thiol-binding process typically used to modify AuNP surfaces with ssDNA. In addition, different antibodies can be introduced to the AuNP surfaced via electrostatic interactions to provide highly specific recognition sites for biomolecular sensing. Moreover, multiple, simultaneous tests can be rapidly performed with low sample consumption by incorporating these surface-modified AuNPs into a paper-based analytical device that can be read using just a smartphone. As a result of these innovations, we were able to achieve a detection limit of 10 pg/mL for a prostate specific antigen in a test that could be completed in as little as 15 min. These results suggest that the proposed paper platform possesses the capability for sensitive, high-throughput, and on-site prognosis in resource-limited settings.
Collapse
Affiliation(s)
- Jia-Yu Huang
- Department of Chemistry, ‡Institute of Applied Mechanics, and §Center for Emerging Material and Advanced
Devices, National Taiwan University, Taipei 106, Taiwan
| | - Hong-Ting Lin
- Department of Chemistry, ‡Institute of Applied Mechanics, and §Center for Emerging Material and Advanced
Devices, National Taiwan University, Taipei 106, Taiwan
| | - Tzu-Heng Chen
- Department of Chemistry, ‡Institute of Applied Mechanics, and §Center for Emerging Material and Advanced
Devices, National Taiwan University, Taipei 106, Taiwan
| | - Chung-An Chen
- Department of Chemistry, ‡Institute of Applied Mechanics, and §Center for Emerging Material and Advanced
Devices, National Taiwan University, Taipei 106, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, ‡Institute of Applied Mechanics, and §Center for Emerging Material and Advanced
Devices, National Taiwan University, Taipei 106, Taiwan
| | - Chien-Fu Chen
- Department of Chemistry, ‡Institute of Applied Mechanics, and §Center for Emerging Material and Advanced
Devices, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
34
|
KIRK KA, OTHMAN A, ANDREESCU S. Nanomaterial-functionalized Cellulose: Design, Characterization and Analytical Applications. ANAL SCI 2018; 34:19-31. [DOI: 10.2116/analsci.34.19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Kevin A. KIRK
- Department of Chemistry and Biomolecular Science, Clarkson University
| | - Ali OTHMAN
- Department of Chemistry and Biomolecular Science, Clarkson University
| | - Silvana ANDREESCU
- Department of Chemistry and Biomolecular Science, Clarkson University
| |
Collapse
|
35
|
Yang J, Wang B, You Y, Chang WJ, Tang K, Wang YC, Zhang W, Ding F, Gunasekaran S. Probing the modulated formation of gold nanoparticles-beta-lactoglobulin corona complexes and their applications. NANOSCALE 2017; 9:17758-17769. [PMID: 28869274 PMCID: PMC5901966 DOI: 10.1039/c7nr02999c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Understanding the interactions between proteins and nanoparticles (NPs) along with the underlying structural and dynamic information is of utmost importance to exploit nanotechnology for biomedical applications. Upon adsorption onto a NP surface, proteins form a well-organized layer, termed the corona, that dictates the identity of the NP-protein complex and governs its biological pathways. Given its high biological relevance, in-depth molecular investigations and applications of NPs-protein corona complexes are still scarce, especially since different proteins form unique corona patterns, making identification of the biomolecular motifs at the interface critical. In this work, we provide molecular insights and structural characterizations of the bio-nano interface of a popular food-based protein, namely bovine beta-lactoglobulin (β-LG), with gold nanoparticles (AuNPs) and report on our investigations of the formation of corona complexes by combined molecular simulations and complementary experiments. Two major binding sites in β-LG were identified as being driven by citrate-mediated electrostatic interactions, while the associated binding kinetics and conformational changes in the secondary structures were also characterized. More importantly, the superior stability of the corona led us to further explore its biomedical applications, such as in the smartphone-based point-of-care biosensing of Escherichia coli (E. coli) and in the computed tomography (CT) of the gastrointestinal (GI) tract through oral administration to probe GI tolerance and functions. Considering their biocompatibility, edible nature, and efficient excretion through defecation, AuNPs-β-LG corona complexes have shown promising perspectives for future in vitro and in vivo clinical settings.
Collapse
Affiliation(s)
- Jiang Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI 53706, USA
- Corresponding authors at (J.Y.), (F.D.) and (S.G.)
| | - Bo Wang
- Department of Physics and Astronomy, Clemson University, 118 Kinard Laboratory, Clemson, SC 29634, USA
| | - Youngsang You
- Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI 53706, USA
| | - Woo-jin Chang
- Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53211, USA
| | - Ke Tang
- Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607, USA
| | - Yi-Cheng Wang
- Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI 53706, USA
| | - Wenzhao Zhang
- Department of Engineering Professional Development, University of Wisconsin-Madison, 432 North Lake Street, Madison, WI 53706, USA
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, 118 Kinard Laboratory, Clemson, SC 29634, USA
- Corresponding authors at (J.Y.), (F.D.) and (S.G.)
| | - Sundaram Gunasekaran
- Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI 53706, USA
- Corresponding authors at (J.Y.), (F.D.) and (S.G.)
| |
Collapse
|
36
|
Wei TY, Cheng CM. Synthetic Biology-Based Point-of-Care Diagnostics for Infectious Disease. Cell Chem Biol 2017; 23:1056-1066. [PMID: 27662252 DOI: 10.1016/j.chembiol.2016.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/15/2016] [Accepted: 07/08/2016] [Indexed: 02/09/2023]
Abstract
Infectious diseases outpace all other causes of death in low-income countries, posing global health risks, laying stress on healthcare systems and societies, and taking an avoidable human toll. One solution to this crisis is early diagnosis of infectious disease, which represents a powerful way to optimize treatment, increase patient survival rate, and decrease healthcare costs. However, conventional early diagnosis methods take a long time to generate results, lack accuracy, and are known to seriously underperform with regard to fungal and viral infections. Synthetic biology offers a fast and highly accurate alternative to conventional infectious disease diagnosis. In this review, we outline obstacles to infectious disease diagnostics and discuss two emerging alternatives: synthetic viral diagnostic systems and biosensors. We argue that these synthetic biology-based approaches may overcome diagnostic obstacles in infectious disease and improve health outcomes.
Collapse
Affiliation(s)
- Ting-Yen Wei
- Interdisciplinary Program of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
37
|
Lantigua D, Kelly YN, Unal B, Camci-Unal G. Engineered Paper-Based Cell Culture Platforms. Adv Healthc Mater 2017; 6. [PMID: 29076283 DOI: 10.1002/adhm.201700619] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/28/2017] [Indexed: 12/16/2022]
Abstract
Paper is used in various applications in biomedical research including diagnostics, separations, and cell cultures. Paper can be conveniently engineered due to its tunable and flexible nature, and is amenable to high-throughput sample preparation and analysis. Paper-based platforms are used to culture primary cells, tumor cells, patient biopsies, stem cells, fibroblasts, osteoblasts, immune cells, bacteria, fungi, and plant cells. These platforms are compatible with standard analytical assays that are typically used to monitor cell behavior. Due to its thickness and porous nature, there are no mass transport limitations to/from the cells in paper scaffolds. It is possible to pattern paper in different scales (micrometer to centimeter), generate modular configurations in 3D, fabricate multicellular and compartmentalized tissue mimetics for clinical applications, and recover cells from the scaffolds for further analysis. 3D paper constructs can provide physiologically relevant tissue models for personalized medicine. Layer-by layer strategies to assemble tissue-like structures from low-cost and biocompatible paper-based materials offer unique opportunities that include understanding fundamental biology, developing disease models, and assembling different tissues for organ-on-paper applications. Paper-based platforms can also be used for origami-inspired tissue engineering. This work provides an overview of recent progress in engineered paper-based biomaterials and platforms to culture and analyze cells.
Collapse
Affiliation(s)
- Darlin Lantigua
- Department of Biological Sciences; University of Massachusetts Lowell; One University Avenue Lowell MA 01854 USA
| | - Yan Ni Kelly
- Department of Biomedical Engineering; University of Massachusetts Lowell; One University Avenue Lowell MA 01854 USA
| | - Baris Unal
- Triton Systems, Inc.; 200 Turnpike Road Chelmsford MA 01824 USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering; University of Massachusetts Lowell; One University Avenue Lowell MA 01854 USA
| |
Collapse
|
38
|
Ali MM, Brown CL, Jahanshahi-Anbuhi S, Kannan B, Li Y, Filipe CDM, Brennan JD. A Printed Multicomponent Paper Sensor for Bacterial Detection. Sci Rep 2017; 7:12335. [PMID: 28951563 PMCID: PMC5615064 DOI: 10.1038/s41598-017-12549-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/12/2017] [Indexed: 12/14/2022] Open
Abstract
We present a simple all-in-one paper-based sensor for E. coli detection using a composite ink made of a fluorogenic DNAzyme probe for bacterial recognition and signal generation, lysozyme that lyses whole bacterial cells, and pullulan/trehalose sugars that stabilize printed bioactive molecules. The paper sensor is capable of producing a fluorescence signal as a readout within 5 minutes upon contacting E. coli, can achieve a limit of detection of 100 cells/mL, in a variety of sample matrixes, without sample enrichment, and remains stable for at least 6 months when stored at ambient temperature. Therefore, this simple paper sensor provides rapid bacterial testing on site, and can be shipped and stored under ambient conditions to benefit users living in resource-limited regions.
Collapse
Affiliation(s)
- M Monsur Ali
- Biointerfaces Institute, McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 0A3, Canada
| | - Christine L Brown
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 4L7, Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 4L7, Canada
| | - Balamurali Kannan
- Biointerfaces Institute, McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 0A3, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W, Hamilton, ON L8S 4K1, Canada
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 4L7, Canada.
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 0A3, Canada.
| |
Collapse
|
39
|
Altundemir S, Uguz AK, Ulgen K. A review on wax printed microfluidic paper-based devices for international health. BIOMICROFLUIDICS 2017; 11:041501. [PMID: 28936274 PMCID: PMC5577007 DOI: 10.1063/1.4991504] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/21/2017] [Indexed: 05/17/2023]
Abstract
Paper-based microfluidics has attracted attention for the last ten years due to its advantages such as low sample volume requirement, ease of use, portability, high sensitivity, and no necessity to well-equipped laboratory equipment and well-trained manpower. These characteristics have made paper platforms a promising alternative for a variety of applications such as clinical diagnosis and quantitative analysis of chemical and biological substances. Among the wide range of fabrication methods for microfluidic paper-based analytical devices (μPADs), the wax printing method is suitable for high throughput production and requires only a commercial printer and a heating source to fabricate complex two or three-dimensional structures for multipurpose systems. μPADs can be used by anyone for in situ diagnosis and analysis; therefore, wax printed μPADs are promising especially in resource limited environments where people cannot get sensitive and fast diagnosis of their serious health problems and where food, water, and related products are not able to be screened for toxic elements. This review paper is focused on the applications of paper-based microfluidic devices fabricated by the wax printing technique and used for international health. Besides presenting the current limitations and advantages, the future directions of this technology including the commercial aspects are discussed. As a conclusion, the wax printing technology continues to overcome the current limitations and to be one of the promising fabrication techniques. In the near future, with the increase of the current interest of the industrial companies on the paper-based technology, the wax-printed paper-based platforms are expected to take place especially in the healthcare industry.
Collapse
Affiliation(s)
- S Altundemir
- Department of Chemical Engineering, Boğaziçi University, 34342 Bebek, Istanbul, Turkey
| | - A K Uguz
- Department of Chemical Engineering, Boğaziçi University, 34342 Bebek, Istanbul, Turkey
| | - K Ulgen
- Department of Chemical Engineering, Boğaziçi University, 34342 Bebek, Istanbul, Turkey
| |
Collapse
|
40
|
|
41
|
El-Samadony H, Althani A, Tageldin MA, Azzazy HME. Nanodiagnostics for tuberculosis detection. Expert Rev Mol Diagn 2017; 17:427-443. [PMID: 28317400 DOI: 10.1080/14737159.2017.1308825] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Tuberculosis (TB) is a leading killer worldwide. End TB strategy aims at ending the TB epidemic by 2030. Early, accurate, and affordable diagnosis represents a cornerstone to achieve this goal. Innovative strategies for TB diagnostics have been introduced. However, the ideal assay is yet unavailable and conventional methods remain necessary for diagnosis. Unique properties of nanoparticles (NPs) have allowed their utilization in TB detection via targeting disease biomarkers. Area covered: Until now, around thirty-five TB NP-based assays have been partially or fully characterized. Accuracy, low-cost, and short time-to-result represent the common properties of proposed platforms. TB nanodiagnostics now encompass almost all clinical aspects of the disease including active TB, non-tuberculous mycobacteria, rifampicin resistant TB, TB/HIV co-infection, latent TB, and extra-pulmonary TB. This review summarizes state-of-the-art knowledge of TB nanodiagnostics for the last 10 years. Special consideration is given for fabrication concepts, detection strategies, and clinical performance using various clinical specimens. The potential of TB nanodiagnostics to fulfill the need for ideal MTB testing is assessed. Expert commentary: TB nanodiagnostics show promise to be ideal detection tools that can meet the rigorous demands to end the TB epidemic by 2030.
Collapse
Affiliation(s)
| | - Asma Althani
- b Health Sciences Department, College of Arts and Sciences , Qatar University , Doha , Qatar
| | - Mohamed Awad Tageldin
- c Department of Chest Diseases, Faculty of Medicine , Ain Shams University , Cairo , Egypt
| | - Hassan M E Azzazy
- d Department of Chemistry, School of Sciences & Engineering , the American University in Cairo , New Cairo , Egypt
| |
Collapse
|
42
|
Morbioli GG, Mazzu-Nascimento T, Stockton AM, Carrilho E. Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs) - A review. Anal Chim Acta 2017; 970:1-22. [PMID: 28433054 DOI: 10.1016/j.aca.2017.03.037] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/14/2017] [Accepted: 03/17/2017] [Indexed: 12/29/2022]
Abstract
Paper-based devices are a leading alternative among the main analytical tools for point-of-care testing, due to their portability, low-cost, and ease-of-use. Colorimetric readouts are the most common method of detection in these microfluidic devices, enabling qualitative, semi-quantitative and fully quantitative analysis of multiple analytes. There is a multitude of ways to obtain a colorimetric output in such devices, including nanoparticles, dyes, redox and pH indicators, and each has unique drawbacks and benefits. There are also multiple variables that impact the analysis of colorimetric reactions in microfluidic paper-based systems, including color homogeneity, image capture methods, and the data handling itself. Here, we present a critical review of recent developments and challenges of colorimetric detection on microfluidic paper-based analytical devices (μPADs), and present thoughts and insights towards future perspectives in the area to improve the use of colorimetric readouts in conjunction with μPADs.
Collapse
Affiliation(s)
- Giorgio Gianini Morbioli
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400, 13566-590 São Carlos, SP, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13083-970 Campinas, SP, Brazil; School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Thiago Mazzu-Nascimento
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400, 13566-590 São Carlos, SP, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13083-970 Campinas, SP, Brazil
| | - Amanda M Stockton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400, 13566-590 São Carlos, SP, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
43
|
Kuan CM, Lin ST, Yen TH, Wang YL, Cheng CM. Paper-based diagnostic devices for clinical paraquat poisoning diagnosis. BIOMICROFLUIDICS 2016; 10:034118. [PMID: 27462379 PMCID: PMC4920809 DOI: 10.1063/1.4953257] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/24/2016] [Indexed: 05/16/2023]
Abstract
This article unveils the development of a paper-based analytical device designed to rapidly detect and clinically diagnose paraquat (PQ) poisoning. Using wax printing technology, we fabricated a PQ detection device by pattering hydrophobic boundaries on paper. This PQ detection device employs a colorimetric sodium dithionite assay or an ascorbic acid assay to indicate the PQ level in a buffer system or in a human serum system in 10 min. In this test, colorimetric changes, blue in color, were observable with the naked eye. By curve fitting models of sodium dithionite and ascorbic acid assays in normal human serum, we evaluated serum PQ levels for five PQ-poisoned patients before hemoperfusion (HP) treatment and one PQ-poisoned patient after HP treatment. As evidenced by similar detection outcomes, the analytical performance of our device can compete with that of the highest clinical standard, i.e., spectrophotometry, with less complicated sample preparation and with more rapid results. Accordingly, we believe that our rapid PQ detection can benefit physicians determining timely treatment strategies for PQ-poisoned patients once they are taken to hospitals, and that this approach will increase survival rates.
Collapse
Affiliation(s)
- Chen-Meng Kuan
- Institute of Nanoengineering and Microsystems, National Tsing Hua University , Hsinchu 300, Taiwan
| | - Szu-Ting Lin
- Department of Nephrology and Division of Clinical Toxicology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University and School of Medicine , Taoyuan 333, Taiwan
| | - Tzung-Hai Yen
- Department of Nephrology and Division of Clinical Toxicology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University and School of Medicine , Taoyuan 333, Taiwan
| | - Yu-Lin Wang
- Institute of Nanoengineering and Microsystems, National Tsing Hua University , Hsinchu 300, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University , Hsinchu 300, Taiwan
| |
Collapse
|
44
|
Boken J, Soni SK, Kumar D. Microfluidic Synthesis of Nanoparticles and their Biosensing Applications. Crit Rev Anal Chem 2016; 46:538-61. [DOI: 10.1080/10408347.2016.1169912] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Xia Y, Si J, Li Z. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review. Biosens Bioelectron 2016; 77:774-89. [DOI: 10.1016/j.bios.2015.10.032] [Citation(s) in RCA: 322] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/27/2015] [Accepted: 10/10/2015] [Indexed: 01/06/2023]
|
46
|
Zhang Y, McKelvie ID, Cattrall RW, Kolev SD. Colorimetric detection based on localised surface plasmon resonance of gold nanoparticles: Merits, inherent shortcomings and future prospects. Talanta 2016; 152:410-22. [PMID: 26992537 DOI: 10.1016/j.talanta.2016.02.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 11/30/2022]
Abstract
Localised surface plasmon resonance (LSPR) of gold nanoparticles (AuNPs) has been exploited for two decades in analytical science and has proven to be a powerful tool for the detection of various kinds of substances including small molecules, ions, macro biomolecules and microbes. Detection can be performed by visual colour change observations, photometry or resonance light scattering. A wide range of applications have been studied in the areas of environmental, pharmaceutical and biological analysis and clinical diagnosis. In this article, some fundamental aspects and important applications involving LSPR of AuNPs are reviewed. Several inherent shortcomings of these techniques and possible strategies to circumvent them are discussed.
Collapse
Affiliation(s)
- Yanlin Zhang
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Ian D McKelvie
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia; School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL4 8AA, United Kingdom.
| | - Robert W Cattrall
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Spas D Kolev
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia; Centre for Aquatic Pollution Identification and Management (CAPIM), The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
47
|
Figueredo F, Garcia PT, Cortón E, Coltro WKT. Enhanced Analytical Performance of Paper Microfluidic Devices by Using Fe3O4 Nanoparticles, MWCNT, and Graphene Oxide. ACS APPLIED MATERIALS & INTERFACES 2016; 8:11-15. [PMID: 26693736 DOI: 10.1021/acsami.5b10027] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Spheres, tubes, and planar-shaped nanomaterials as Fe3O4 nanoparticles (MNPs), multiwalled carbon nanotubes (MWCNT), and graphene oxide (GO) were used for the first time to treat microfluidic paper-based analytical devices (μPADs) and create a biocompatible layer with high catalytic surface. Once glucose measurements are critical for diabetes or glycosuria detection and monitoring, the analytical performance of the proposed devices was studied by using bienzymatic colorimetric detection of this carbohydrate. The limit of detection values achieved for glucose with μPADs treated with MNPs, MWCNT, and GO were 43, 62, and 18 μM, respectively. The paper surface modification solves problems associated with the lack of homogeneity on color measurements that compromise the sensitivity and detectability levels in clinical diagnosis.
Collapse
Affiliation(s)
- Federico Figueredo
- Instituto de Química, Universidade Federal de Goiás , Goiânia, GO 74690-900, Brazil
- Laboratorio de Biosensores y Bioanálisis (LABB), Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA) , Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| | - Paulo T Garcia
- Instituto de Química, Universidade Federal de Goiás , Goiânia, GO 74690-900, Brazil
| | - Eduardo Cortón
- Laboratorio de Biosensores y Bioanálisis (LABB), Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA) , Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás , Goiânia, GO 74690-900, Brazil
| |
Collapse
|
48
|
Dharanivasan G, Mohammed Riyaz SU, Michael Immanuel Jesse D, Raja Muthuramalingam T, Rajendran G, Kathiravan K. DNA templated self-assembly of gold nanoparticle clusters in the colorimetric detection of plant viral DNA using a gold nanoparticle conjugated bifunctional oligonucleotide probe. RSC Adv 2016. [DOI: 10.1039/c5ra25559g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The DNA templated self-assembly of gold nanoparticles clustered in different configurations (nn = 2–∞) was investigated in the colorimetric detection of ToLCNDV DNA using a gold nanoparticle conjugated bifunctional oligonucleotide probe.
Collapse
Affiliation(s)
- G. Dharanivasan
- Department of Biotechnology
- University of Madras
- Chennai 600 025
- India
| | | | | | | | - G. Rajendran
- Department of Biotechnology
- University of Madras
- Chennai 600 025
- India
| | - K. Kathiravan
- Department of Biotechnology
- University of Madras
- Chennai 600 025
- India
| |
Collapse
|
49
|
An approach to enhance self-compensation capability in paper-based devices for chemical sensing. Talanta 2015; 145:29-34. [PMID: 26459440 DOI: 10.1016/j.talanta.2015.04.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 11/21/2022]
Abstract
This paper describes a simple design for increasing the tolerance of reagent dislocation on a paper-based platform using a combination of wax-treated paper and a vortex mixer. To date, massive budgetary funds are required in the biotechnological industry to develop new applications; a large part of that cost is attributable to the screening of specific chemical compounds. Here, we propose using a liquid-handling robot to automatically deposit selected reagents on a paper-based platform. We also present a preliminary concept approach for developing a reagent placing device with simple and inexpensive features. A defect of inaccuracy was observed between droplet location and test well location after viewing the performance of the liquid-handling robot on our paper-based platform. Because of dislocation error resulting from robotic reagent placement, we decided to apply an external, rotational force following droplet placement in order to compensate for the distance of reagent dislocation. Note, the largest distance of reagent dislocation was determined by examining the results of altering applied reagent volume, but not concentration, in volumes from 5 µL to 30 µL in a series of experiments. As a result of these experiments, we observed that dislocation was positively affected by an increase in applied volume. A colorimetric assay for nitrite detection was also performed to confirm the feasibility of this method. This work, we believe, can minimize the cost of chemical compound screening for the biotechnological industry.
Collapse
|
50
|
Yen TH, Chen KH, Hsu MY, Fan ST, Huang YF, Chang CL, Wang YP, Cheng CM. Reprint of 'Evaluating organophosphate poisoning in human serum with paper'. Talanta 2015; 145:66-72. [PMID: 26459445 DOI: 10.1016/j.talanta.2015.09.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/14/2015] [Accepted: 05/22/2015] [Indexed: 11/21/2022]
Abstract
This manuscript describes the development and clinical testing of a paper-based, metabolic assay designed for rapid, semi-quantitative measurement of organophosphate poisoning. Paper-based platforms, including point-of-care devices and 96-well plates, provided semi-quantitative information regarding the concentration of AchE (a biomarker for organophosphate poisoning). The paper-based 96-well-plate developed and implemented in this study was used to measure the level of organophosphate poisoning in three different clinical patients. Results were comparable to those obtained using conventional hospital methods currently considered the "gold standard". This diagnostic device offers several advantages over conventional methods, including short operating time (twice as fast as conventional methods), procedure simplicity, and reduced fabrication cost. With further commercialization efforts, the methods described in this manuscript could be applied to a wide range of potential diagnostic applications in the field.
Collapse
Affiliation(s)
- Tzung-Hai Yen
- Department of Nephrology and Division of Clinical Toxicology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University and School of Medicine, Taipei, Taiwan
| | - Kuan-Hung Chen
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan
| | - Min-Yen Hsu
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan; Department of Ophthalmology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shu-Ting Fan
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Fen Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Ling Chang
- Department of Nephrology, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Yu-Ping Wang
- Department of Medical Education, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chao-Min Cheng
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|