1
|
Ye G, Guan L, Zhang M. Research progress on processing and nutritional properties of fermented cereals. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:197-212. [PMID: 39868384 PMCID: PMC11757653 DOI: 10.1007/s13197-024-06099-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 01/28/2025]
Abstract
Fermented foods, especially those derived from cereals, are significant contributors to the diversification of global diets. As people pay increasing attention to food taste, flavor, and nutritional balance, conducting a comprehensive and integrated evaluation of the role of fermentation technology in cereals has become a top priority. This article reviews relevant research conducted in recent years, summarizing the fermentation conditions of cereals and focusing on the effects of fermentation on the nutritional value and health benefits of cereals, including its impact on basic components such as starch and dietary fiber. Fermentation can enhance the content of bioactive substances in cereals, playing a positive role in preventing chronic diseases such as type 2 diabetes, cancer, and hypertension. Finally, the article summarizes prospects for future market development of fermented cereal products, aiming to provide insights for improving the edible quality of fermented cereal-based products and developing functional fermented cereal products. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-06099-6.
Collapse
Affiliation(s)
- Guodong Ye
- Present Address: School of Food and Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048 China
| | - Lina Guan
- Present Address: School of Food and Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048 China
| | - Min Zhang
- Present Address: School of Food and Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048 China
| |
Collapse
|
2
|
Arjmand S, Sadrabad EK, Ramroudi F, Mollakhalili‐meybodi N. Cold Plasma Treatment of Quinoa Grains: Changes in Phytic Acid, Saponin, Content, and Antioxidant Capacity. Food Sci Nutr 2025; 13:e4691. [PMID: 39803298 PMCID: PMC11716995 DOI: 10.1002/fsn3.4691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/30/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
The impact of atmospheric cold plasma (ACP) treatment (at 50 and 60 kV for 5 and 10 min) on nutritional (total phenolic and flavonoids contents, antioxidant capacity, and TBARs) and antinutritional (saponin and phytic acid) characteristics of quinoa grains has been investigated at this study. Results indicated that ACP treatment is significantly effective to reduce the antinutritional compounds compared with the control sample (p ≤ 0.05), among which S4 (i.e., treated at 60 kV for 10 min) and S2 (i.e., treated at 50 kV for 10 min) samples showed the highest decrease in saponin and phytic acid content, respectively. Also, total phenolic content and antioxidant capacity (DPPH and FRAP) of ACP-treated samples have decreased compared with the control sample. The flavonoid content of ACP-treated samples has been increased compared with the control sample (p ≤ 0.05). In general, the S4 (at 60 kV for 10 min) samples had the highest amount of flavonoid and phenolic content compared with the other samples. A significant reduction in TBAR values has been observed by ACP treatment with the maximum reduction at S4 (i.e., treated at 60 kV for 10 min) samples. Results indicated that ACP treatment at 60 KV for 10 min is effective to reduce the antinutritional compounds and maintain the antioxidant compounds of quinoa grains as well. Considering the necessity of keeping the nutritional characteristics of grains through processing, it needs to be monitored and optimized the condition in a way that nutritional characteristics are preserved.
Collapse
Affiliation(s)
- Sanaz Arjmand
- Research Center for Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Department of Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Elham Khalili Sadrabad
- Research Center for Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Department of Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Fereshteh Ramroudi
- Research Center for Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Department of Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Neda Mollakhalili‐meybodi
- Research Center for Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Department of Food Science and Technology, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| |
Collapse
|
3
|
Sarıtaş S, Portocarrero ACM, Miranda López JM, Lombardo M, Koch W, Raposo A, El-Seedi HR, de Brito Alves JL, Esatbeyoglu T, Karav S, Witkowska AM. The Impact of Fermentation on the Antioxidant Activity of Food Products. Molecules 2024; 29:3941. [PMID: 39203019 PMCID: PMC11357363 DOI: 10.3390/molecules29163941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
From ancient times to the present day, fermentation has been utilized not only for food preservation but also for enhancing the nutritional and functional properties of foods. This process is influenced by numerous factors, including the type of microorganisms used, substrate composition, pH, time, and temperature, all of which can significantly alter the characteristics of the final product. Depending on the parameters, fermentation enhances the bioactive content of the products and imparts the necessary properties, such as antioxidant characteristics, for the products to be considered functional. The enhancement of these properties, particularly antioxidant activity, enriches foods with bioactive compounds and functional attributes, contributing to improved health benefits. Through a review of recent research, this study elucidates how different fermentation processes can enhance the bioavailability and efficacy of antioxidants, thereby improving the nutritional and functional qualities of foods. This study investigated the multifaceted effects of fermentation on antioxidant properties by exploring various types and conditions of fermentation. It highlights specific examples from dairy products and other food categories as well as the valorization of food waste and byproducts. The findings underscore the potential of fermentation as a sustainable method to produce health-promoting foods with elevated antioxidant activities, offering new perspectives for food science and technology.
Collapse
Affiliation(s)
- Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye;
| | - Alicia C. Mondragon Portocarrero
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición Bromatología, Universidade de Santiago de Compostela, Campus Terra, 27002 Lugo, Spain; (A.C.M.P.); (J.M.M.L.)
| | - Jose M. Miranda López
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición Bromatología, Universidade de Santiago de Compostela, Campus Terra, 27002 Lugo, Spain; (A.C.M.P.); (J.M.M.L.)
| | - Mauro Lombardo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di 11 Val Cannuta 247, 00166 Rome, Italy;
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland;
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal;
| | - Hesham R. El-Seedi
- Chemistry Department, Faculty of Science, Islamic University of Madinah, P.O. Box 170, Madinah 42351, Saudi Arabia;
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Science Center, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil;
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfired Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany;
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye;
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Bialystok Medical University, 15-089 Bialystok, Poland
| |
Collapse
|
4
|
Abdel-Nasser A, Badr AN, Fathy HM, Ghareeb MA, Barakat OS, Hathout AS. Antifungal, antiaflatoxigenic, and cytotoxic properties of bioactive secondary metabolites derived from Bacillus species. Sci Rep 2024; 14:16590. [PMID: 39025896 PMCID: PMC11258281 DOI: 10.1038/s41598-024-66700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
Aflatoxins (AFs) are hazardous carcinogens and mutagens produced by some molds, particularly Aspergillus spp. Therefore, the purpose of this study was to isolate and identify endophytic bacteria, extract and characterize their bioactive metabolites, and evaluate their antifungal, antiaflatoxigenic, and cytotoxic efficacy against brine shrimp (Artemia salina) and hepatocellular carcinoma (HepG2). Among the 36 bacterial strains isolated, ten bacterial isolates showed high antifungal activity, and thus were identified using biochemical parameters and MALDI-TOF MS. Bioactive metabolites were extracted from two bacterial isolates, and studied for their antifungal activity. The bioactive metabolites (No. 4, and 5) extracted from Bacillus cereus DSM 31T DSM, exhibited strong antifungal capabilities, and generated volatile organic compounds (VOCs) and polyphenols. The major VOCs were butanoic acid, 2-methyl, and 9,12-Octadecadienoic acid (Z,Z) in extracts No. 4, and 5 respectively. Cinnamic acid and 3,4-dihydroxybenzoic acid were the most abundant phenolic acids in extracts No. 4, and 5 respectively. These bioactive metabolites had antifungal efficiency against A. flavus and caused morphological alterations in fungal conidiophores and conidiospores. Data also indicated that both extracts No. 4, and 5 reduced AFB1 production by 99.98%. On assessing the toxicity of bioactive metabolites on A. salina the IC50 recorded 275 and 300 µg/mL, for extracts No. 4, and 5 respectively. Meanwhile, the effect of these extracts on HepG2 revealed that the IC50 of extract No. 5 recorded 79.4 µg/mL, whereas No. 4 showed no cytotoxic activity. It could be concluded that bioactive metabolites derived from Bacillus species showed antifungal and anti-aflatoxigenic activities, indicating their potential use in food safety.
Collapse
Affiliation(s)
- Aya Abdel-Nasser
- Food Toxicology and Contaminants Department, Food Industry and Nutrition Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Ahmed N Badr
- Food Toxicology and Contaminants Department, Food Industry and Nutrition Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Hayam M Fathy
- Agricultural Microbiology Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mosad A Ghareeb
- Medicinal Chemistry Department, Theodor Bilharz Research Institute, Kornaish El Nile, Warrak El-Haddar, Imbaba, (P.O. 30), Giza, 12411, Egypt
| | - Olfat S Barakat
- Agricultural Microbiology Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Amal S Hathout
- Food Toxicology and Contaminants Department, Food Industry and Nutrition Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
5
|
Arjmand S, Mollakhalili‐Meybodi N, Akrami Mohajeri F, Madadizadeh F, Khalili Sadrabad E. Quinoa dough fermentation by Saccharomyces cerevisiae and lactic acid bacteria: Changes in saponin, phytic acid content, and antioxidant capacity. Food Sci Nutr 2023; 11:7594-7604. [PMID: 38107108 PMCID: PMC10724584 DOI: 10.1002/fsn3.3679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 12/19/2023] Open
Abstract
The effects of two fermentation processes (common fermentation with Saccharomyces cerevisiae and fermentation by Lacticaseibacillus casei subsp. casei PTCC 1608 and Lactiplantibacillus plantarum subsp. plantarum PTCC 1745) on pH, titratable acidity, total phenolic and flavonoid contents, antioxidant capacity, saponin content, as well as phytic acid content of quinoa dough were investigated during the 24-h fermentation (4-h interval). According to the results, the highest titratable acidity was observed in the samples fermented by L. casei subsp. casei. Moreover, the highest antioxidant capacity was observed after 12 h of fermentation by L. plantarum subsp. plantarum (31.22% for DPPH, 104.67% for FRAP) due to a higher concentration of phenolic compounds produced (170.5% for total phenolic content). Also, all samples have been able to reduce saponin by 67% on average. Furthermore, the samples fermented by L. plantarum subsp. plantarum showed the most significant decrease in phytic acid content (64.64%) during 24-h fermentation. By considering the reduction of the antinutritional compounds and improvement in the antioxidant properties of quinoa flour, the Lactiplantibacillus plantarum strain was recommended.
Collapse
Affiliation(s)
- Sanaz Arjmand
- Research Center for Food Hygiene and SafetyDepartment of Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Neda Mollakhalili‐Meybodi
- Research Center for Food Hygiene and SafetyDepartment of Food Science and Technology, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Fateme Akrami Mohajeri
- Research Center for Food Hygiene and SafetyDepartment of Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Infectious Diseases Research CenterShahid Sadoughi HospitalShahid Sadoughi University of Medical SciencesYazdIran
| | - Farzan Madadizadeh
- Center for Healthcare Data modelingDepartments of Biostatistics and Epidemiology, School of public healthShahid Sadoughi University of Medical SciencesYazdIran
| | - Elham Khalili Sadrabad
- Research Center for Food Hygiene and SafetyDepartment of Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Infectious Diseases Research CenterShahid Sadoughi HospitalShahid Sadoughi University of Medical SciencesYazdIran
| |
Collapse
|
6
|
Kalinowska M, Gołebiewska E, Zawadzka M, Choińska R, Koronkiewicz K, Piasecka-Jóźwiak K, Bujak M. Sustainable extraction of bioactive compound from apple pomace through lactic acid bacteria (LAB) fermentation. Sci Rep 2023; 13:19310. [PMID: 37935832 PMCID: PMC10630348 DOI: 10.1038/s41598-023-46584-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
Apple pomace (AP), a by-product of the juice industry, is a rich and inexpensive source of natural bioactive substances, including phenolic compounds, that exhibit health-promoting effects. The recovery of these compounds from plant material using only classical extraction techniques and environmentally friendly solvents is often ineffective due to the entrapment of some compounds in the complex structures of plant cell walls. Lactic Acid Bacteria (LAB) fermentation can be a simple technology to increase the content of phenolic compounds, as well as the antioxidant activity of plant material. In this study, pomace from conventionally grown apples (Malus Domestica) of the Ligol cultivar were fermented with selected LAB strains (Lpb. plantarum KKP 3182, Lpb. plantarum KKP 1527, Lpb. plantarum ZFB 200), commercial starter cultures of Lpb. plantarum, and spontaneously. The fermented material was then subjected to ultrasound-assisted extraction, and the resulting extracts were analysed for their composition (phenolic compounds, triterpenoids, simple organic acids), and antioxidant activity. We found that: (1) the total phenolic content of AP extracts fermented with Lpb. plantarum KKP 1527 was about 30% higher than that of non-fermented AP extracts, (2) extracts of AP fermented with Lpb. plantarum KKP 1527 characterized a higher value of the antioxidant activity, (3) an increase in gallic acid procyanidin A2, protocatechuic acid, and procyanidin B2, while a decrease in rutin and quercetin was observed. The results indicated that AP fermented with Lpb. plantarum KKP 1527 may be a powerful and low-cost source of natural antioxidants which have applications in many industries.
Collapse
Affiliation(s)
- Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Science, Institute of Civil Engineering and Energetics, Bialystok University of Technology, Wiejska 45E Street, 15-351, Bialystok, Poland.
| | - Ewelina Gołebiewska
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Science, Institute of Civil Engineering and Energetics, Bialystok University of Technology, Wiejska 45E Street, 15-351, Bialystok, Poland
| | - Małgorzata Zawadzka
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Science, Institute of Civil Engineering and Energetics, Bialystok University of Technology, Wiejska 45E Street, 15-351, Bialystok, Poland
| | - Renata Choińska
- Department of Fermentation Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute (IBPRS-PIB), Rakowiecka 36 Street, 02-532, Warsaw, Poland
| | - Kamila Koronkiewicz
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Science, Institute of Civil Engineering and Energetics, Bialystok University of Technology, Wiejska 45E Street, 15-351, Bialystok, Poland
| | - Katarzyna Piasecka-Jóźwiak
- Department of Fermentation Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute (IBPRS-PIB), Rakowiecka 36 Street, 02-532, Warsaw, Poland
| | - Marzena Bujak
- Department of Fermentation Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute (IBPRS-PIB), Rakowiecka 36 Street, 02-532, Warsaw, Poland
| |
Collapse
|
7
|
Liu Y, Huang K, Zhang Y, Cao H, Luo DK, Yi C, Guan X. Manufacture and characterization of a novel dairy-free quinoa yogurt fermented by modified commercial starter with Weissella confusa. Food Chem X 2023; 19:100823. [PMID: 37780240 PMCID: PMC10534153 DOI: 10.1016/j.fochx.2023.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 10/03/2023] Open
Abstract
Non-dairy yogurt is increasingly thought to be healthy food. However, no suitable starters limit its development. This study aimed to develop a novel and functional quinoa yogurt with a modified commercial starter. Compared with the other lactic acid bacteria (LAB), Weissella confusa showed a better fermentation performance of quinoa utilization. The synergistic effect of W. confusa and the commercial starter promoted the growth of LAB. It increased the fermentation rate of quinoa yogurt, further improving its texture, rheological properties, and storage stability. The modified starter significantly increased the nutritional qualities of the quinoa yogurt, including polyphenol content, antioxidant activity, digestive enzyme inhibition, and reduced postprandial blood glucose ability. Additionally, the modified starter enhanced the digestibility and bioaccessibility of polyphenols, protein, and fat in fermented quinoa yogurt. Overall, the commercial starter with W. confusa showed great potential for possible application in quinoa yogurt development.
Collapse
Affiliation(s)
- Yongyong Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Da-ke Luo
- Liuyanghe Group Co., Ltd., Hunan, PR China
| | - Cuiping Yi
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Hunan, PR China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| |
Collapse
|
8
|
Hyun YJ, Park SY, Kim JY. The effect of fermented rice germ extracts on the inhibition of glucose uptake in the gastrointestinal tract in vitro and in vivo. Food Sci Biotechnol 2023; 32:371-379. [PMID: 36778085 PMCID: PMC9905455 DOI: 10.1007/s10068-022-01198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/04/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
This study aimed to evaluate the effect of fermented rice germ extracts on the inhibition of glucose uptake in the gastrointestinal (GI) tract. Samples were prepared by extracting rice germ fermented with Lactobacillus plantarum with 30% ethanol (RG_30E) or 50% ethanol (RG_50E). Ferulic acid was determined as the active component in the samples. RG_30E significantly inhibited glucose uptake and mRNA expression of GLUT2 and SGLT1 to a larger extent than RG_50E in Caco-2 cells. A single oral administration was performed on C57BL/6 mice to confirm which substrate (glucose, sucrose, or maltose) the sample inhibited absorption of, improving postprandial blood glucose elevation. As a result, RG_30E resulted in significantly lower blood glucose levels and AUC after glucose and sucrose administration. Therefore, fermented rice germ extracted with 30% ethanol regulates glucose uptake through glucose transporters and can be expected to alleviate postprandial hyperglycemia in the GI tract. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01198-6.
Collapse
Affiliation(s)
- Ye Ji Hyun
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
| | - Soo-yeon Park
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
| |
Collapse
|
9
|
Zhang D, Liu H, Wang S, Liu Y, Ji H. Wheat bran fermented by Lactobacillus regulated the bacteria-fungi composition and reduced fecal heavy metals concentrations in growing pigs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159828. [PMID: 36368386 DOI: 10.1016/j.scitotenv.2022.159828] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/05/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Lactobacillus fermentation can increase the value of wheat bran, but the benefits of fermented wheat bran for pig production are poorly understood. We evaluated the phenolic acid content of wheat bran fermented with Lactobacillus. The bacterial and fungal compositions, short-chain fatty acids, and heavy metals concentrations in the feces of growing pigs were determined, and the correlations between the bacterial and fungal compositions and short-chain fatty acid and heavy metals concentrations were also assessed. The concentrations of phenolic acids (caffeic acid, catechinic acid, and gallic acid) were higher in fermented bran than in control wheat bran. The diversity of feces bacterial species was significantly higher, whereas the diversity of fungi was lower in fermented wheat bran treatment than those in the control group, and pigs consuming fermented and control wheat bran with different bacterial and fungal compositions had different growth rates. The abundance of genera in fungi that were less abundant in the fermented group samples than in the control samples (including Wallemia, Trichosporon, Candida, Aspergillus, and unclassified_f__Microascaceae) was positively correlated with heavy metals concentrations in pig feces, and the abundances of these fungi were negatively correlated with caffeic acid, catechinic acid, and gallic acid concentrations. Metagenomic function predictions indicated that larger amounts of secondary metabolites were synthesized in the fermented group than in the control group. The results provide new insights into the roles of bacterial-fungal interactions in the growth and decreasing environmental pollution of pigs consuming fermented wheat bran.
Collapse
Affiliation(s)
- Dongyan Zhang
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hui Liu
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Sixin Wang
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yajuan Liu
- Mountainous Area Research Institute of Hebei Province, Hebei Agricultural University, China
| | - Haifeng Ji
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
10
|
Optimization of Solid-Phase Lactobacillus Fermentation Conditions to Increase γ-Aminobutyric Acid (GABA) Content in Selected Substrates. FERMENTATION 2022. [DOI: 10.3390/fermentation9010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The purpose of this study was to optimize conditions of solid-phase fermentation of lactic acid bacteria to enhance GABA contents in grains. Optimal solid-phase fermentation conditions that could enhance the GABA content after fermenting Oryza sativa (brown rice) were investigated by changing the Lactobacillus strain, fermentation temperature, fermentation time, and inoculated bacteria number. Avena sativa, Cicer arietinum, and red and brown Lens culinaris were then fermented using the optimal solid-phase fermentation conditions to measure changes in GABA content and antioxidant activity. As a result of the experiment, the optimal solid-phase fermentation conditions to enhance the GABA contents in grains were: fermentation time, 48 h; amounts of bacteria, inoculating 5% of 1 × 107 CFU/mL of lactic acid bacteria; and fermentation temperature, 36 °C. When fermented under this condition, the GABA content increased from 4.64 mg/g to 6.93 mg/g (49.0%) compared to unfermented raw material. The results of the DPPH and ABTS radical scavenging activity assays confirmed that both the GABA content and radical scavenging activity were increased after fermentation. Such solid fermentation conditions developed in this study can be used to support the development of health functional food materials with enhanced GABA content and antioxidant activity.
Collapse
|
11
|
Fermentation as a Promising Tool to Valorize Rice-Milling Waste into Bio-Products Active against Root-Rot-Associated Pathogens for Improved Horticultural Plant Growth. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, water extracts from fermented (F), ultrasonicated (US), and enzyme-hydrolyzed (E) rice bran (RB) were evaluated against sixteen fungal plant stem and root-rot-associated pathogens. The effects of pre-treated RB additives on plant growth substrate (PGS) on bean and tomato seed germination, stem height and root length of seedlings, and chlorophyll concentration in plants were analyzed. The results showed that US-assisted pre-treatments did not affect protein content in RB, while 36 h semi-solid fermentation (SSF) reduced protein content by 10.3–14.8%. US initiated a 2.9- and 2-fold increase in total sugar and total phenolics (TPC) contents compared to the untreated RB (3.89 g/100 g dw and 0.61 mg GAE/g dw, respectively). Lactic acid (19.66–23.42 g/100 g dw), acetic acid (10.54–14.24 g/100g dw), propionic acid (0.40–1.72 g/100 g dw), phenolic compounds (0.82–1.04 mg GAE/g dw), among which phenolic acids, such as p-coumaric, cinnamic, sinapic, vanillic, and ferulic, were detected in the fermented RB. The RBF extracts showed the greatest growth-inhibition effect against soil-born plant pathogens, such as Fusarium, Pythium, Sclerotinia, Aspergillus, Pseudomonas, and Verticillium. Beans and tomatoes grown in RBUS+E- and RBF-supplemented PGS increased the germination rate (14–75%), root length (21–44%), and stem height (25–47%) compared to seedlings grown in PGS. The RB additives increased up to 44.6–48.8% of the chlorophyll content in both plants grown under greenhouse conditions. The results indicate that the biological potential of rice-milling waste as a plant-growth-promoting substrate component can be enhanced using solid-state fermentation with antimicrobial LABs and US processing.
Collapse
|
12
|
Andriani R, Subroto T, Ishmayana S, Kurnia D. Enhancement Methods of Antioxidant Capacity in Rice Bran: A Review. Foods 2022; 11:foods11192994. [PMID: 36230070 PMCID: PMC9564381 DOI: 10.3390/foods11192994] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Rice (Oryza sativa L.) is a primary food that is widely consumed throughout the world, especially in Asian countries. The two main subspecies of rice are japonica and indica which are different in physical characteristics. In general, both indica and japonica rice consist of three types of grain colors, namely white, red, and black. Furthermore, rice and rice by-products contain secondary metabolites such as phenolic compounds, flavonoids, and tocopherols that have bioactivities such as antioxidants, antimicrobial, cancer chemopreventive, antidiabetic, and hypolipidemic agents. The existence of health benefits in rice bran, especially as antioxidants, gives rice bran the opportunity to be used as a functional food. Most of the bioactive compounds in plants are found in bound form with cell wall components such as cellulose and lignin. The process of releasing bonds between bioactive components and cell wall components in rice bran can increase the antioxidant capacity. Fermentation and treatment with enzymes were able to increase the total phenolic content, total flavonoids, tocotrienols, tocopherols, and γ-oryzanol in rice bran.
Collapse
|
13
|
Ghamry M, Ghazal AF, Al-Maqtqri QA, Li L, Zhao W. Impact of a novel probiotic Lactobacillus strain isolated from the bee gut on GABA content, antioxidant activity, and potential cytotoxic activity against HT-29 cell line of rice bran. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3031-3042. [PMID: 35872742 PMCID: PMC9304478 DOI: 10.1007/s13197-022-05512-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Rice bran was fermented with Lactobacillus apis, isolated from the bee gut as a novel probiotic strain, and Saccharomyces cerevisiae to investigate the relationship between its metabolites and antioxidant activity, nutraceutical value, and cytotoxic activity against the HT-29 cell line. The findings showed that L. apis improved the antioxidant activity (DPPH of 37.73%) and antioxidant capacity (ABTS of 37.62 mg Trolox/g,), as well as, hydroxyl radical-scavenging activity (91.55%) of rice bran compared to S. cerevisiae. The metabolic analysis of volatile compounds revealed an increase of alcohols and lactones in the samples fermented with S. cerevisiae. While the samples fermented with L. apis displayed an increase of ketones, esters, and thiazoles. On the other hand, L. apis and S. cerevisiae exhibited a significant ability to increase γ-aminobutyric acid during different fermentation times. Compared with non-fermented samples (18.54%), L. apis increased the cytotoxic activity of rice bran against the HT-29 cell line to 34.17%, and S. cerevisiae to 31.34%. These results suggest that the fermentation of rice bran with S. cerevisiae and L. apis provides a promising strategy to improve the antioxidant activity and nutraceuticals of rice bran, and a potential source for plant-based pharmaceutical products. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13197-022-05512-2.
Collapse
Affiliation(s)
- Mohamed Ghamry
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, 13736 Egypt
| | - Ahmed Fathy Ghazal
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Qais Ali Al-Maqtqri
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Li Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| |
Collapse
|
14
|
Effect of Fungal Fermentation on Enhancement of Nutritional Value and Antioxidant Activity of Defatted Oilseed Meals. Appl Biochem Biotechnol 2022; 195:2172-2195. [PMID: 35819688 DOI: 10.1007/s12010-022-04059-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
Abstract
Agro-industrial residues contain high nutritive value. Nowadays, various advanced researches have been done for the production of various value-added products, using these wastes as substrates in the fermentation media. Flaxseed, mustard, and rice bran meal, residues of oil industry, were used as substrates for fermentation. Submerged fermentation with soil-isolated fungal species of the genus Aspergillus sp. was done for oil production by using these substrates in the fermentation media. Effect of fermentation by the oleaginous species of Aspergillus on the nutritive value and functional properties of flaxseed, mustard, and rice bran meal has been discussed for the first time in the present study. After fermentation, the seed meals showed substantial increase in the protein and ash content. The fungal strains utilized the carbohydrate present in the seed meals for the production of highly nutritional metabolites, which decrease the sugar contents of the meals. The fungi also showed extracellular amylase and cellulase activities which helped to hydrolyze the carbohydrates present in these meals, to utilize them for their metabolism. The enhancement was also observed in terms of antioxidant activity of the meals. Increase in the total phenolic and flavonoid contents was observed after fermentation along with radical scavenging activity of 1,1-diphenyl-2-picrylhydrazyl and 2,2-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid reagents and ferric reduction potential. These effects of fermentation modify these cheap waste materials into nutrient dense substrates, which could be further used in the formulation of value-added products.
Collapse
|
15
|
Zavistanaviciute P, Zokaityte E, Starkute V, Ruzauskas M, Viskelis P, Bartkiene E. Berry By-Products in Combination with Antimicrobial Lactic Acid Bacteria Strains for the Sustainable Formulation of Chewing Candies. Foods 2022; 11:foods11091177. [PMID: 35563900 PMCID: PMC9102268 DOI: 10.3390/foods11091177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this research was to develop formulations of chewing candies (CCs) in a sustainable manner by using berry by-products in combination with antimicrobial lactic acid bacteria (LAB) strains. To implement this aim, the optimal quantities of by-products from lyophilised raspberry (Rasp) and blackcurrant (Bcur) from the juice production industry were selected. Prior to use, Lactiplantibacillus plantarum LUHS135, Liquorilactobacillusuvarum LUHS245, Lacticaseibacillusparacasei LUHS244, and Pediococcus acidilactici LUHS29 strains were multiplied in a dairy industry by-product-milk permeate (MP). The antimicrobial activity of the selected ingredients (berry by-products and LAB) was evaluated. Two texture-forming agents were tested for the CC formulations: gelatin (Gl) and agar (Ag). In addition, sugar was replaced with xylitol. The most appropriate formulation of the developed CCs according to the product's texture, colour, total phenolic compound (TPC) content, antioxidant activity, viable LAB count during storage, overall acceptability (OA), and emotions (EMs) induced in consumers was selected. It was established that the tested LAB inhibited three pathogens out of the 11 tested, while the blackcurrant by-products inhibited all 11 tested pathogens. The highest OA was shown for the CC prepared with gelatin in addition to 5 g of Rasp and 5 g of Bcur by-products. The Rasp and LUHS135 formulation showed the highest TPC content (147.16 mg 100 g-1 d.m.), antioxidant activity (88.2%), and LAB count after 24 days of storage (6.79 log10 CFU g-1). Finally, it was concluded that Gl, Rasp and Bcur by-products, and L. plantarum LUHS135 multiplied in MP are promising ingredients for preparing CCs in a sustainable manner; the best CC formula consisted of Gl, Rasp by-products, and LUHS135 and showed the highest OA (score 9.52) and induced the highest intensity of the EM 'happy' (0.231).
Collapse
Affiliation(s)
- Paulina Zavistanaviciute
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (E.Z.); (V.S.); (E.B.)
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-655-06461
| | - Egle Zokaityte
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (E.Z.); (V.S.); (E.B.)
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Vytaute Starkute
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (E.Z.); (V.S.); (E.B.)
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Modestas Ruzauskas
- Department of Anatomy and Physiology, Faculty of Veterinary, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania;
- Institute of Microbiology and Virology, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Pranas Viskelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno Str. 30, LT-54333 Babtai, Lithuania;
| | - Elena Bartkiene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (E.Z.); (V.S.); (E.B.)
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
16
|
Dębińska A, Sozańska B. Fermented Food in Asthma and Respiratory Allergies—Chance or Failure? Nutrients 2022; 14:nu14071420. [PMID: 35406034 PMCID: PMC9002914 DOI: 10.3390/nu14071420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
In the last few decades, a dramatic increase in the global prevalence of allergic diseases and asthma was observed. It was hypothesized that diet may be an important immunomodulatory factor influencing susceptibility to allergic diseases. Fermented food, a natural source of living microorganisms and bioactive compounds, has been demonstrated to possess health-promoting potentials and seems to be a promising strategy to reduce the risk of various immune-related diseases, such as allergic diseases and asthma. The exact mechanisms by which allergic diseases and asthma can be alleviated or prevented by fermented food are not well understood; however, its potential to exert an effect through modulating the immune response and influencing the gut microbiota has been recently studied. In this review, we provide the current knowledge on the role of diet, including fermented foods, in preventing or treating allergic diseases and asthma.
Collapse
|
17
|
Dhong KR, Park HJ. Pediococcus Pentosaceus from the Sweet Potato Fermented Ger-Minated Brown Rice Can Inhibit Type I Hypersensitivity in RBL-2H3 Cell and BALB/c Mice Models. Microorganisms 2021; 9:microorganisms9091855. [PMID: 34576749 PMCID: PMC8469544 DOI: 10.3390/microorganisms9091855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 12/20/2022] Open
Abstract
In this study, the effect of GBR fermented with the Pediococcus pentosaceus SP024 strain on IgE/Ag mediated passive cutaneous anaphylaxis (PCA) was investigated. Protocatechuic acid and trans-ferulic acid levels in GBR-SP024 increased more than those in unfermented GBR, respec-tively. The inhibitory activity of GBR-SP024 on β-hexosaminidase release and the level of proin-flammatory cytokine mRNA expression (tumor necrosis factor-α (TNF-α) and interleukin 4 (IL-4)) was observed in IgE/Ag-stimulated RBL-2H3 cells. Western blot analysis showed that GBR-SP024 significantly inhibited the phosphorylation of the linker for activation of T cell (LAT) and nuclear factor-κB (NF-κB) in IgE/Ag-stimulated RBL-2H3 cells. Further, we investigated the anti-allergic effect of GBR-SP024 using PCA murine model. The number of infiltrated immune cells and degranulated mast cells in GBR-SP024 treated dermis was lower than that in the GBR-treated mice. In addition, mRNA expression of 5-lipoxygenase (5-LOX) in the dermis of ear tissue declined in the GBR-SP024–treated group, compared to that in the GBR group. GBR-SP024 was also more effective than GBR at reducing the levels of IL-33 protein expression in IgE/Ag-stimulated BALB/c mice. Our study suggests the potential usage of GBR-SP024 as a dietary supplement or an adjuvant for treating IgE-dependent-allergic diseases.
Collapse
Affiliation(s)
- Kyu-Ree Dhong
- Department of Life Science, College of BioNano, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea;
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea
- Correspondence: ; Tel.: +82-31-750-5382
| |
Collapse
|
18
|
Park S, Chang HC, Lee JJ. Rice Bran Fermented with Kimchi-Derived Lactic Acid Bacteria Prevents Metabolic Complications in Mice on a High-Fat and -Cholesterol Diet. Foods 2021; 10:foods10071501. [PMID: 34203398 PMCID: PMC8303271 DOI: 10.3390/foods10071501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/10/2021] [Accepted: 06/23/2021] [Indexed: 01/03/2023] Open
Abstract
This aim of this study was to investigate the potential beneficial effects of rice bran powder, fermented by Weissella koreensis DB1 isolated from kimchi, to protect against obesity and dyslipidemia induced by a high-fat and high-cholesterol diet, in a mouse model. Male mice were fed a modified AIN-93M diet containing high fat/high-cholesterol (HFCD), or same diet supplemented with non-fermented rice bran powder (HFCD-RB) or fermented rice bran powder (HFCD-FRB) for 10 weeks. In the HFCD-FRB group, body weight, liver and white fat pads weights, triglyceride (TG), total cholesterol (TC), non-high-density lipopreotein cholesterol (non-HDL-C), insulin, glucose and leptine levels in serum, TG levels and the ratio of fat droplets in the liver, TG levels and fat cell size in adipose tissue were decreased, and (high-density lipopreotein cholesterol) HDL-C and adiponectin levels in serum were increased, compared with the HFCD group. The HFCD-FRB group had significantly lower CCAAT-enhancer-binding potein α (C/EBPα), sterol regulatory element-binding transcription protein-1c (SREBP-1c), fatty acid synthase (FAS), and acetyl CoA carboxylase (ACC) gene expression when compared to the HFCD group. The anti-obesity and hypolipidemic effects were marginally greater in the HFCD-FRB group than in the HFCD-RB group. These results suggest that fermented rice bran powder by Weissella koreensis DB1 may have potential beneficial effects on the obesity-related abnormalities and the dysfunction of lipid metabolism.
Collapse
|
19
|
Mao M, Wang P, Shi K, Lu Z, Bie X, Zhao H, Zhang C, Lv F. Effect of solid state fermentation by Enterococcus faecalis M2 on antioxidant and nutritional properties of wheat bran. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.102997] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Li SC, Lin HP, Chang JS, Shih CK. Lactobacillus acidophilus-Fermented Germinated Brown Rice Suppresses Preneoplastic Lesions of the Colon in Rats. Nutrients 2019; 11:2718. [PMID: 31717536 PMCID: PMC6893647 DOI: 10.3390/nu11112718] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/03/2019] [Accepted: 11/07/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a cancer associated with chronic inflammation. Whole grains and probiotics play a protective role against CRC. Fermented grains are receiving increased attention due to their anti-inflammatory and anti-cancer activities. Our previous study found that a combination of germinated brown rice (GBR) with probiotics suppressed colorectal carcinogenesis in rats. However, the cancer-preventive effect of probiotic-fermented GBR has not been reported. This study investigated the preventive effect and possible mechanism of GBR fermented by Lactobacillus acidophilus (FGBR) on colorectal carcinogenesis in rats induced by 1,2-dimethylhydrazine (DMH) and dextran sulfate sodium (DSS). DMH/DSS treatment induced preneoplastic aberrant crypt foci (ACF), elevated serum levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β, as well as decreased pro-apoptotic Bax expression. GBR and FGBR reduced the primary ACF number and decreased TNF-α, IL-6 and IL-1β levels. GBR and FGBR at the 2.5% level increased pro-apoptotic cleaved caspase-3 and decreased anti-apoptotic B-cell lymphoma 2 (Bcl-2) expressions. FGBR at the 2.5% level further reduced the number of sialomucin-producing ACF (SIM-ACF) and increased Bax expression. These results suggest that FGBR may inhibit preneoplastic lesions of the colon via activating the apoptotic pathway. This fermented rice product may have the potential to be developed as a novel dietary supplement for CRC chemoprevention.
Collapse
Affiliation(s)
- Sing-Chung Li
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (S.-C.L.); (H.-P.L.); (J.-S.C.)
| | - Han-Pei Lin
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (S.-C.L.); (H.-P.L.); (J.-S.C.)
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (S.-C.L.); (H.-P.L.); (J.-S.C.)
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Kuang Shih
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (S.-C.L.); (H.-P.L.); (J.-S.C.)
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|