1
|
Wistner SC, Rashad L, Slaughter G. Advances in tissue engineering and biofabrication for in vitro skin modeling. BIOPRINTING (AMSTERDAM, NETHERLANDS) 2023; 35:e00306. [PMID: 38645432 PMCID: PMC11031264 DOI: 10.1016/j.bprint.2023.e00306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The global prevalence of skin disease and injury is continually increasing, yet conventional cell-based models used to study these conditions do not accurately reflect the complexity of human skin. The lack of inadequate in vitro modeling has resulted in reliance on animal-based models to test pharmaceuticals, biomedical devices, and industrial and environmental toxins to address clinical needs. These in vivo models are monetarily and morally expensive and are poor predictors of human tissue responses and clinical trial outcomes. The onset of three-dimensional (3D) culture techniques, such as cell-embedded and decellularized approaches, has offered accessible in vitro alternatives, using innovative scaffolds to improve cell-based models' structural and histological authenticity. However, these models lack adequate organizational control and complexity, resulting in variations between structures and the exclusion of physiologically relevant vascular and immunological features. Recently, biofabrication strategies, which combine biology, engineering, and manufacturing capabilities, have emerged as instrumental tools to recreate the heterogeneity of human skin precisely. Bioprinting uses computer-aided design (CAD) to yield robust and reproducible skin prototypes with unprecedented control over tissue design and assembly. As the interdisciplinary nature of biofabrication grows, we look to the promise of next-generation biofabrication technologies, such as organ-on-a-chip (OOAC) and 4D modeling, to simulate human tissue behaviors more reliably for research, pharmaceutical, and regenerative medicine purposes. This review aims to discuss the barriers to developing clinically relevant skin models, describe the evolution of skin-inspired in vitro structures, analyze the current approaches to biofabricating 3D human skin mimetics, and define the opportunities and challenges in biofabricating skin tissue for preclinical and clinical uses.
Collapse
Affiliation(s)
- Sarah C. Wistner
- Center for Bioelectronics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Layla Rashad
- Center for Bioelectronics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Gymama Slaughter
- Center for Bioelectronics, Old Dominion University, Norfolk, VA, 23508, USA
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, 23508, USA
| |
Collapse
|
2
|
Rotondi C. How the informed relations between physical, digital and biological dimensions are changing the design practice, as well as the sustainability paradigm. Front Bioeng Biotechnol 2023; 11:1193353. [PMID: 37324418 PMCID: PMC10267733 DOI: 10.3389/fbioe.2023.1193353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
In the "century of biotechnology", a new form of "bio-digital industry" is emerging in which, thanks to increasingly sophisticated and digitized technologies that allow engineering and production on a biological quantum scale, it is possible to analyze and reproduce the generative, chemical, physical, and molecular processes underlying natural mechanisms. Inheriting methodologies and technologies from biological fabrication, bio-digital practices foster a new material-based biological paradigm that, bringing biomimicry to a material level, allows designers to observe substances and logic used by nature for assembling and structuring its materials, developing more sustainable and strategic ways for artifice manufacturing, as well as replicating complex, tailored, and emergent biological qualities. The paper aims to describe the new hybrid manufacturing techniques, demonstrating how the transition from form-based to material-based approaches also leads to the change of logic and conceptual frameworks in design practices, allowing greater alignment with the paradigms of biological growth. In particular, the focus is on informed relations between physical, digital, and biological dimensions, allowing interaction, development, and mutual empowerment between entities and disciplines belonging to them. Such a correlative strategy can help design to apply systemic thinking, from the scale of the material to that of the product and the process, paving the way to sustainable scenarios, not simply to reduce the human impact on the ecosystem but to enhance nature through original cooperation and integration forms between humans, biology, and machines.
Collapse
|
3
|
Liu Y, Kim E, Lei M, Wu S, Yan K, Shen J, Bentley WE, Shi X, Qu X, Payne GF. Electro-Biofabrication. Coupling Electrochemical and Biomolecular Methods to Create Functional Bio-Based Hydrogels. Biomacromolecules 2023. [PMID: 37155361 DOI: 10.1021/acs.biomac.3c00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Twenty years ago, this journal published a review entitled "Biofabrication with Chitosan" based on the observations that (i) chitosan could be electrodeposited using low voltage electrical inputs (typically less than 5 V) and (ii) the enzyme tyrosinase could be used to graft proteins (via accessible tyrosine residues) to chitosan. Here, we provide a progress report on the coupling of electronic inputs with advanced biological methods for the fabrication of biopolymer-based hydrogel films. In many cases, the initial observations of chitosan's electrodeposition have been extended and generalized: mechanisms have been established for the electrodeposition of various other biological polymers (proteins and polysaccharides), and electrodeposition has been shown to allow the precise control of the hydrogel's emergent microstructure. In addition, the use of biotechnological methods to confer function has been extended from tyrosinase conjugation to the use of protein engineering to create genetically fused assembly tags (short sequences of accessible amino acid residues) that facilitate the attachment of function-conferring proteins to electrodeposited films using alternative enzymes (e.g., transglutaminase), metal chelation, and electrochemically induced oxidative mechanisms. Over these 20 years, the contributions from numerous groups have also identified exciting opportunities. First, electrochemistry provides unique capabilities to impose chemical and electrical cues that can induce assembly while controlling the emergent microstructure. Second, it is clear that the detailed mechanisms of biopolymer self-assembly (i.e., chitosan gel formation) are far more complex than anticipated, and this provides a rich opportunity both for fundamental inquiry and for the creation of high performance and sustainable material systems. Third, the mild conditions used for electrodeposition allow cells to be co-deposited for the fabrication of living materials. Finally, the applications have been expanded from biosensing and lab-on-a-chip systems to bioelectronic and medical materials. We suggest that electro-biofabrication is poised to emerge as an enabling additive manufacturing method especially suited for life science applications and to bridge communication between our biological and technological worlds.
Collapse
Affiliation(s)
- Yi Liu
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Si Wu
- College of Resources and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Kun Yan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
4
|
Liu Q, Yang J, Wang Y, Wu T, Liang Y, Deng K, Luan G, Chen Y, Huang Z, Yue K. Direct 3D Bioprinting of Tough and Antifatigue Cell-Laden Constructs Enabled by a Self-Healing Hydrogel Bioink. Biomacromolecules 2023. [PMID: 37115848 DOI: 10.1021/acs.biomac.3c00057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Three-dimensional (3D) extrusion bioprinting has emerged as one of the most promising biofabrication technologies for preparing biomimetic tissue-like constructs. The successful construction of cell-laden constructs majorly relies on the development of proper bioinks with excellent printability and cytocompatibility. Bioinks based on gelatin methacryloyl (GelMA) have been widely explored due to the excellent biocompatibility and biodegradability and the presence of the arginine-glycine-aspartic acid (RGD) sequences for cell adhesion. However, such bioinks usually require low-temperature or ionic cross-linking systems to solidify the extruded hydrogel structures, which results in complex processes and limitations to certain applications. Moreover, many current hydrogel-based bioinks, even after chemical cross-linking, hardly possess the required strength to resist the mechanical loads during the implantation procedure. Herein, we report a self-healing hydrogel bioink based on GelMA and oxidized dextran (OD) for the direct printing of tough and fatigue-resistant cell-laden constructs at room temperature without any template or cross-linking agents. Enabled by dynamic Schiff base chemistry, the mixed GelMA/OD solution showed the characteristics of a dynamic hydrogel with shear-thinning and self-supporting behavior, which allows bridging the 5 mm gap and efficient direct bioprinting of complex constructs with high shape fidelity. After photo-cross-linking, the resulting tissue constructs exhibited excellent low cell damage, high cell viability, and enhanced mechanical strength. Moreover, the GelMA/OD construct could resist up to 95% compressive deformation without any breakage and was able to maintain 80% of the original Young's modulus during long-term loading (50 cycles). It is believed that our GelMA/OD bioink would expand the potential of GelMA-based bioinks in applications such as tissue engineering and pharmaceutical screening.
Collapse
Affiliation(s)
- Qi Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Jingzhou Yang
- Shenzhen Dazhou Medical Technology Co., Ltd., Shenzhen, Guangdong 518000, China
| | - Yingjie Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tianhao Wu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Yuting Liang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Keqi Deng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Guifang Luan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Yutong Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Zhenkai Huang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Kan Yue
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Shenzhen Dazhou Medical Technology Co., Ltd., Shenzhen, Guangdong 518000, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
5
|
Guimarães CF, Soto F, Wang J, Akin D, Reis RL, Demirci U. Engineered living bioassemblies for biomedical and functional material applications. Curr Opin Biotechnol 2022; 77:102756. [PMID: 35930844 DOI: 10.1016/j.copbio.2022.102756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/03/2022]
Abstract
Recent breakthroughs in biofabrication of bioasemblies, consisting of the engineered structures composed of biological or biosynthetic components into a single construct, have found a wide range of practical applications in medicine and engineering. This review presents an overview of how the bottom-up assembly of living entities could drive advances in medicine, by developing tunable biological models and more precise methods for quantifying biological events. Moreover, we delve into advances beyond biomedical applications, where bioassemblies can be manipulated as functional robots and construction materials. Finally, we address the potential challenges and opportunities in the field of engineering living bioassemblies, toward building new design principles for the next generation of bioengineering applications.
Collapse
Affiliation(s)
- Carlos F Guimarães
- 3B's Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal; ICVS/3B's, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal; Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, CA 94304-5427, USA
| | - Fernando Soto
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, CA 94304-5427, USA
| | - Jie Wang
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, CA 94304-5427, USA
| | - Demir Akin
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, CA 94304-5427, USA; Center for Cancer Nanotechnology Excellence for Translational Diagnostics, Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Rui L Reis
- 3B's Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal; ICVS/3B's, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal.
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, CA 94304-5427, USA
| |
Collapse
|
6
|
Oliveira DA, Althawab S, McLamore ES, Gomes CL. One-Step Fabrication of Stimuli-Responsive Chitosan-Platinum Brushes for Listeria monocytogenes Detection. BIOSENSORS 2021; 11:bios11120511. [PMID: 34940268 PMCID: PMC8699315 DOI: 10.3390/bios11120511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Bacterial contamination in food-processing facilities is a critical issue that leads to outbreaks compromising the integrity of the food supply and public health. We developed a label-free and rapid electrochemical biosensor for Listeria monocytogenes detection using a new one-step simultaneous sonoelectrodeposition of platinum and chitosan (CHI/Pt) to create a biomimetic nanostructure that actuates under pH changes. The XPS analysis shows the effective co-deposition of chitosan and platinum on the electrode surface. This deposition was optimized to enhance the electroactive surface area by 11 times compared with a bare platinum-iridium electrode (p < 0.05). Electrochemical behavior during chitosan actuation (pH-stimulated osmotic swelling) was characterized with three different redox probes (positive, neutral, and negative charge) above and below the isoelectric point of chitosan. These results showed that using a negatively charged redox probe led to the highest electroactive surface area, corroborating previous studies of stimulus-response polymers on metal electrodes. Following this material characterization, CHI/Pt brushes were functionalized with aptamers selective for L. monocytogenes capture. These aptasensors were functional at concentrations up to 106 CFU/mL with no preconcentration nor extraneous reagent addition. Selectivity was assessed in the presence of other Gram-positive bacteria (Staphylococcus aureus) and with a food product (chicken broth). Actuation led to improved L. monocytogenes detection with a low limit of detection (33 CFU/10 mL in chicken broth). The aptasensor developed herein offers a simple fabrication procedure with only one-step deposition followed by functionalization and rapid L. monocytogenes detection, with 15 min bacteria capture and 2 min sensing.
Collapse
Affiliation(s)
- Daniela A. Oliveira
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA; (D.A.O.); (S.A.)
| | - Suleiman Althawab
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA; (D.A.O.); (S.A.)
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Eric S. McLamore
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Carmen L. Gomes
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA; (D.A.O.); (S.A.)
- Department of Agricultural Sciences, Clemson University, Clemson, SC 26631, USA
| |
Collapse
|
7
|
Dellaquila A, Le Bao C, Letourneur D, Simon‐Yarza T. In Vitro Strategies to Vascularize 3D Physiologically Relevant Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100798. [PMID: 34351702 PMCID: PMC8498873 DOI: 10.1002/advs.202100798] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/23/2021] [Indexed: 05/04/2023]
Abstract
Vascularization of 3D models represents a major challenge of tissue engineering and a key prerequisite for their clinical and industrial application. The use of prevascularized models built from dedicated materials could solve some of the actual limitations, such as suboptimal integration of the bioconstructs within the host tissue, and would provide more in vivo-like perfusable tissue and organ-specific platforms. In the last decade, the fabrication of vascularized physiologically relevant 3D constructs has been attempted by numerous tissue engineering strategies, which are classified here in microfluidic technology, 3D coculture models, namely, spheroids and organoids, and biofabrication. In this review, the recent advancements in prevascularization techniques and the increasing use of natural and synthetic materials to build physiological organ-specific models are discussed. Current drawbacks of each technology, future perspectives, and translation of vascularized tissue constructs toward clinics, pharmaceutical field, and industry are also presented. By combining complementary strategies, these models are envisioned to be successfully used for regenerative medicine and drug development in a near future.
Collapse
Affiliation(s)
- Alessandra Dellaquila
- Université de ParisINSERM U1148X Bichat HospitalParisF‐75018France
- Elvesys Microfluidics Innovation CenterParis75011France
- Biomolecular PhotonicsDepartment of PhysicsUniversity of BielefeldBielefeld33615Germany
| | - Chau Le Bao
- Université de ParisINSERM U1148X Bichat HospitalParisF‐75018France
- Université Sorbonne Paris NordGalilée InstituteVilletaneuseF‐93430France
| | | | | |
Collapse
|
8
|
Fruncillo S, Su X, Liu H, Wong LS. Lithographic Processes for the Scalable Fabrication of Micro- and Nanostructures for Biochips and Biosensors. ACS Sens 2021; 6:2002-2024. [PMID: 33829765 PMCID: PMC8240091 DOI: 10.1021/acssensors.0c02704] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since the early 2000s, extensive research has been performed to address numerous challenges in biochip and biosensor fabrication in order to use them for various biomedical applications. These biochips and biosensor devices either integrate biological elements (e.g., DNA, proteins or cells) in the fabrication processes or experience post fabrication of biofunctionalization for different downstream applications, including sensing, diagnostics, drug screening, and therapy. Scalable lithographic techniques that are well established in the semiconductor industry are now being harnessed for large-scale production of such devices, with additional development to meet the demand of precise deposition of various biological elements on device substrates with retained biological activities and precisely specified topography. In this review, the lithographic methods that are capable of large-scale and mass fabrication of biochips and biosensors will be discussed. In particular, those allowing patterning of large areas from 10 cm2 to m2, maintaining cost effectiveness, high throughput (>100 cm2 h-1), high resolution (from micrometer down to nanometer scale), accuracy, and reproducibility. This review will compare various fabrication technologies and comment on their resolution limit and throughput, and how they can be related to the device performance, including sensitivity, detection limit, reproducibility, and robustness.
Collapse
Affiliation(s)
- Silvia Fruncillo
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| | - Xiaodi Su
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
- Department of Chemistry, National University of Singapore, Block S8, Level 3, 3 Science Drive, Singapore 117543, Singapore
| | - Hong Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| | - Lu Shin Wong
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
9
|
Kharitonov DS, Kasach AA, Gibala A, Zimowska M, Kurilo II, Wrzesińska A, Szyk-Warszyńska L, Warszyński P. Anodic Electrodeposition of Chitosan-AgNP Composites Using In Situ Coordination with Copper Ions. MATERIALS 2021; 14:ma14112754. [PMID: 34071001 PMCID: PMC8197130 DOI: 10.3390/ma14112754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022]
Abstract
Chitosan is an attractive material for biomedical applications. A novel approach for the anodic electrodeposition of chitosan–AgNP composites using in situ coordination with copper ions is proposed in this work. The surface and cross-section morphology of the obtained coating with varying concentrations of AgNPs were evaluated by SEM, and surface functional groups were analyzed with FT-IR spectroscopy. The mechanism of the formation of the coating based on the chelation of Cu(II) ions with chitosan was discussed. The antibacterial activity of the coatings towards Staphylococcus epidermidis ATCC 35984/RP62A bacteria was analyzed using the live–dead approach. The presented results indicate that the obtained chitosan–AgNP-based films possess some limited anti-biofilm-forming properties and exhibit moderate antibacterial efficiency at high AgNP loads.
Collapse
Affiliation(s)
- Dmitry S. Kharitonov
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (A.G.); (M.Z.); (L.S.-W.); (P.W.)
- Correspondence: (D.S.K.); (A.A.K.)
| | - Aliaksandr A. Kasach
- Department of Chemistry, Electrochemical Production Technology and Materials for Electronic Equipment, Chemical Technology and Engineering Faculty, Belarusian State Technological University, Sverdlova 13a, 220006 Minsk, Belarus
- Correspondence: (D.S.K.); (A.A.K.)
| | - Agnieszka Gibala
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (A.G.); (M.Z.); (L.S.-W.); (P.W.)
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| | - Małgorzata Zimowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (A.G.); (M.Z.); (L.S.-W.); (P.W.)
| | - Irina I. Kurilo
- Department of Physical, Colloid and Analytical Chemistry, Organic Substances Technology Faculty, Belarusian State Technological University, Sverdlova 13a, 220006 Minsk, Belarus;
| | - Angelika Wrzesińska
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland;
| | - Lilianna Szyk-Warszyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (A.G.); (M.Z.); (L.S.-W.); (P.W.)
| | - Piotr Warszyński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (A.G.); (M.Z.); (L.S.-W.); (P.W.)
| |
Collapse
|
10
|
Motabar D, Li J, Wang S, Tsao CY, Tong X, Wang LX, Payne GF, Bentley WE. Simple, rapidly electroassembled thiolated PEG-based sensor interfaces enable rapid interrogation of antibody titer and glycosylation. Biotechnol Bioeng 2021; 118:2744-2758. [PMID: 33851726 DOI: 10.1002/bit.27793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/26/2021] [Accepted: 04/04/2021] [Indexed: 12/20/2022]
Abstract
Process conditions established during the development and manufacture of recombinant protein therapeutics dramatically impacts their quality and clinical efficacy. Technologies that enable rapid assessment of product quality are critically important. Here, we describe the development of sensor interfaces that directly connect to electronics and enable near real-time assessment of antibody titer and N-linked galactosylation. We make use of a spatially resolved electroassembled thiolated polyethylene glycol hydrogel that enables electroactivated disulfide linkages. For titer assessment, we constructed a cysteinylated protein G that can be linked to the thiolated hydrogel allowing for robust capture and assessment of antibody concentration. For detecting galactosylation, the hydrogel is linked with thiolated sugars and their corresponding lectins, which enables antibody capture based on glycan pattern. Importantly, we demonstrate linear assessment of total antibody concentration over an industrially relevant range and the selective capture and quantification of antibodies with terminal β-galactose glycans. We also show that the interfaces can be reused after surface regeneration using a low pH buffer. Our functionalized interfaces offer advantages in their simplicity, rapid assembly, connectivity to electronics, and reusability. As they assemble directly onto electrodes that also serve as I/O registers, we envision incorporation into diagnostic platforms including those in manufacturing settings.
Collapse
Affiliation(s)
- Dana Motabar
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Jinyang Li
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Sally Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Chen-Yu Tsao
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Xin Tong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
11
|
Abstract
Silk fibroin produced from silkworms has been intensively utilized as a scaffold material for a variety of biotechnological applications owing to its remarkable mechanical strength, extensibility, biocompatibility, and ease of biofunctionalization. In this research, we engineered silk as a novel trap platform capable of capturing microorganisms. Specifically, we first fabricated the silk material into a silk sponge by lyophilization, yielding a 3D scaffold with porous microstructures. The sponge stability in water was significantly improved by ethanol treatment with elevated β-sheet content and crystallinity of silk. Next, we biofunctionalized the silk sponge with a poly-specific microbial targeting molecule, ApoH (apolipoprotein H), to enable a novel silk-based microbial trap. The recombinant ApoH engineered with an additional penta-tyrosine was assembled onto the silk sponge through the horseradish peroxidase (HRP) mediated dityrosine cross-linking. Last, the ApoH-decorated silk sponge was demonstrated to be functional in capturing our model microorganism targets, E. coli and norovirus-like particles. We envision that this biofabricated silk platform, capable of trapping a variety of microbial entities, could serve as a versatile scaffold for rapid isolation and enrichment of microbial samples toward future diagnostics and therapeutics. This strategy, in turn, can expedite advancing future biodevices with functionality and sustainability.
Collapse
Affiliation(s)
- Shan-Ru Wu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Jheng-Liang Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsuan-Chen Wu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
12
|
VanArsdale E, Pitzer J, Payne GF, Bentley WE. Redox Electrochemistry to Interrogate and Control Biomolecular Communication. iScience 2020; 23:101545. [PMID: 33083771 PMCID: PMC7516135 DOI: 10.1016/j.isci.2020.101545] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cells often communicate by the secretion, transport, and perception of molecules. Information conveyed by molecules is encoded, transmitted, and decoded by cells within the context of the prevailing microenvironments. Conversely, in electronics, transmission reliability and message validation are predictable, robust, and less context dependent. In turn, many transformative advances have resulted by the formal consideration of information transfer. One way to explore this potential for biological systems is to create bio-device interfaces that facilitate bidirectional information transfer between biology and electronics. Redox reactions enable this linkage because reduction and oxidation mediate communication within biology and can be coupled with electronics. By manipulating redox reactions, one is able to combine the programmable features of electronics with the ability to interrogate and modulate biological function. In this review, we examine methods to electrochemically interrogate the various components of molecular communication using redox chemistry and to electronically control cell communication using redox electrogenetics.
Collapse
Affiliation(s)
- Eric VanArsdale
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall 8278 Paint Branch Drive, College Park, MD 20742, USA.,Institute of Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, MD 20742, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, Room 5102, A. James Clark Hall, College Park, MD 20742, USA
| | - Juliana Pitzer
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Gregory F Payne
- Institute of Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, MD 20742, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, Room 5102, A. James Clark Hall, College Park, MD 20742, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall 8278 Paint Branch Drive, College Park, MD 20742, USA.,Institute of Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, MD 20742, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, Room 5102, A. James Clark Hall, College Park, MD 20742, USA
| |
Collapse
|
13
|
Mahinthichaichan P, Tsai CC, Payne GF, Shen J. Polyelectrolyte in Electric Field: Disparate Conformational Behavior along an Aminopolysaccharide Chain. ACS OMEGA 2020; 5:12016-12026. [PMID: 32548380 PMCID: PMC7271050 DOI: 10.1021/acsomega.0c00164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/11/2020] [Indexed: 05/12/2023]
Abstract
Electrical signals are increasingly used in fabrication of hydrogels (e.g., based on aminopolysaccharide chitosan) to guide the emergence of complex and anisotropic structure; however, how an imposed electric field affects the polymer chain conformation and orientation during the self-assembly process is not understood. Here, we applied nonequilibrium all-atom molecular dynamics simulations to explore the response of a charged chitosan chain comprising 5- or 20-monomer units to a constant uniform electric field in water and salt solution. While no conformational or orientational response was observed for the polyelectrolyte (PE) chains under the small electric fields within the simulation time, a field strength of 400 mV/nm induced significant changes. In water, a 5-mer chain is found to be slightly bent and oriented parallel to the field; however, surprisingly, a 20-mer chain displays candy-cane-like conformations whereby one half of the chain is collapsed and flexible, while the other half of the chain is stretched along the electric field. In salt solution, the disparity remains between the two halves of the 20-mer chain, although the backbone is extremely flexible with multiple bent regions and non-native conformations occur near the chain center in one of the three trajectories. The disparate conformational response along the polyelectrolyte chain may be attributed to the balancing forces between chain dynamics, electric polarization, counterion binding, and hydrodynamic pressure as well as friction. These findings reconcile existing experiments and theoretical studies and represent an important step toward understanding the complex roles of electric field and salt in controlling the structure and properties of soft matter.
Collapse
Affiliation(s)
- Paween Mahinthichaichan
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Cheng-Chieh Tsai
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Gregory F. Payne
- Institute
for Bioscience and Biotechnology Research, University of Maryland, College
Park, Massachusetts 20742, United States
| | - Jana Shen
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
14
|
Pan J, Zhang Z, Zhan Z, Xiong Y, Wang Y, Cao K, Chen Y. In situ generation of silver nanoparticles and nanocomposite films based on electrodeposition of carboxylated chitosan. Carbohydr Polym 2020; 242:116391. [PMID: 32564861 DOI: 10.1016/j.carbpol.2020.116391] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 12/20/2022]
Abstract
Herein, for the first time the electrodeposition of carboxylated chitosan is studied and utilized for the synthesis of silver nanoparticles (AgNPs) and generation of AgNPs/carboxylated chitosan nanocomposite films. Particularly, AgNPs are in situ synthesized on electrodes or substrates during the electrodeposition. Carboxylated chitosan not only acts as the green reducing agent and stabilizing agent for preparing AgNPs, but also serves as the main component in the electrodeposited nanocomposite film. The experimental results indicate that a smooth and homogeneous film is formed on the silver plate after electrodeposition, and the electrodeposited film can be detached from the silver plate as an independent film. The TEM observation and spectroscopic analysis results confirm the existence of AgNPs (the average size of 10 nm) in the nanocomposite film. The nanocomposite films with various shapes can be fabricated by the spatial selectivity of electrodeposition. In addition, the nanocomposite film containing AgNPs shows favorable antibacterial properties.
Collapse
Affiliation(s)
- Jie Pan
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Zheng Zhang
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Ziyao Zhan
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Yanfei Xiong
- Department of Biological Science and Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Yifeng Wang
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China.
| | - Kaiyuan Cao
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Yanjun Chen
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| |
Collapse
|
15
|
Li J, Wu S, Kim E, Yan K, Liu H, Liu C, Dong H, Qu X, Shi X, Shen J, Bentley WE, Payne GF. Electrobiofabrication: electrically based fabrication with biologically derived materials. Biofabrication 2019; 11:032002. [PMID: 30759423 PMCID: PMC7025432 DOI: 10.1088/1758-5090/ab06ea] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
While conventional material fabrication methods focus on form and strength to achieve function, the fabrication of material systems for emerging life science applications will need to satisfy a more subtle set of requirements. A common goal for biofabrication is to recapitulate complex biological contexts (e.g. tissue) for applications that range from animal-on-a-chip to regenerative medicine. In these cases, the material systems will need to: (i) present appropriate surface functionalities over a hierarchy of length scales (e.g. molecular features that enable cell adhesion and topographical features that guide differentiation); (ii) provide a suite of mechanobiological cues that promote the emergence of native-like tissue form and function; and (iii) organize structure to control cellular ingress and molecular transport, to enable the development of an interconnected cellular community that is engaged in cell signaling. And these requirements are not likely to be static but will vary over time and space, which will require capabilities of the material systems to dynamically respond, adapt, heal and reconfigure. Here, we review recent advances in the use of electrically based fabrication methods to build material systems from biological macromolecules (e.g. chitosan, alginate, collagen and silk). Electrical signals are especially convenient for fabrication because they can be controllably imposed to promote the electrophoresis, alignment, self-assembly and functionalization of macromolecules to generate hierarchically organized material systems. Importantly, this electrically based fabrication with biologically derived materials (i.e. electrobiofabrication) is complementary to existing methods (photolithographic and printing), and enables access to the biotechnology toolbox (e.g. enzymatic-assembly and protein engineering, and gene expression) to offer exquisite control of structure and function. We envision that electrobiofabrication will emerge as an important platform technology for organizing soft matter into dynamic material systems that mimic biology's complexity of structure and versatility of function.
Collapse
Affiliation(s)
- Jinyang Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Qin C, Zhou J, Zhang Z, Chen W, Hu Q, Wang Y. Convenient one-step approach based on stimuli-responsive sol-gel transition properties to directly build chitosan-alginate core-shell beads. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Nordin N, Bordonali L, Badilita V, MacKinnon N. Spatial and Temporal Control Over Multilayer Bio‐Polymer Film Assembly and Composition. Macromol Biosci 2019; 19:e1800372. [DOI: 10.1002/mabi.201800372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/30/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Nurdiana Nordin
- NMR Spectroscopy for Metabolomics and Signalling GroupInstitute of Microstructure TechnologyKarlsruhe Institute of Technology Eggenstein‐Leopoldshafen 76344 Germany
| | - Lorenzo Bordonali
- NMR Spectroscopy for Metabolomics and Signalling GroupInstitute of Microstructure TechnologyKarlsruhe Institute of Technology Eggenstein‐Leopoldshafen 76344 Germany
| | - Vlad Badilita
- Spin & Photon Applications LabInstitute of Microstructure TechnologyKarlsruhe Institute of Technology Eggenstein‐Leopoldshafen 76344 Germany
| | - Neil MacKinnon
- Spin & Photon Applications LabInstitute of Microstructure TechnologyKarlsruhe Institute of Technology Eggenstein‐Leopoldshafen 76344 Germany
| |
Collapse
|
18
|
Shang W, Liu Y, Kim E, Tsao CY, Payne GF, Bentley WE. Selective assembly and functionalization of miniaturized redox capacitor inside microdevices for microbial toxin and mammalian cell cytotoxicity analyses. LAB ON A CHIP 2018; 18:3578-3587. [PMID: 30351330 PMCID: PMC7046091 DOI: 10.1039/c8lc00583d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We report a novel strategy for bridging information transfer between electronics and biological systems within microdevices. This strategy relies on our "electrobiofabrication" toolbox that uses electrode-induced signals to assemble biopolymer films at spatially defined sites and then electrochemically "activates" the films for signal processing capabilities. Compared to conventional electrode surface modification approaches, our signal-guided assembly and activation strategy provides on-demand electrode functionalization, and greatly simplifies microfluidic sensor design and fabrication. Specifically, a chitosan film is selectively localized in a microdevice and is covalently modified with phenolic species. The redox active properties of the phenolic species enable the film to transduce molecular to electronic signals (i.e., "molectronic"). The resulting "molectronic" sensors are shown to facilitate the electrochemical analysis in real time of biomolecules, including small molecules and enzymes, to cell-based measurements such as cytotoxicity. We believe this strategy provides an alternative, simple, and promising avenue for connecting electronics to biological systems within microfluidic platforms, and eventually will enrich our abilities to study biology in a variety of contexts.
Collapse
Affiliation(s)
- Wu Shang
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA.
| | - Yi Liu
- Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Eunkyoung Kim
- Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Chen-Yu Tsao
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA. and Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Gregory F Payne
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA. and Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA. and Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
19
|
Controlled network structures of chitosan-poly(ethylene glycol) hydrogel microspheres and their impact on protein conjugation. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Liu Y, Wu HC, Bhokisham N, Li J, Hong KL, Quan DN, Tsao CY, Bentley WE, Payne GF. Biofabricating Functional Soft Matter Using Protein Engineering to Enable Enzymatic Assembly. Bioconjug Chem 2018; 29:1809-1822. [PMID: 29745651 PMCID: PMC7045599 DOI: 10.1021/acs.bioconjchem.8b00197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Biology often provides the inspiration for functional soft matter, but biology can do more: it can provide the raw materials and mechanisms for hierarchical assembly. Biology uses polymers to perform various functions, and biologically derived polymers can serve as sustainable, self-assembling, and high-performance materials platforms for life-science applications. Biology employs enzymes for site-specific reactions that are used to both disassemble and assemble biopolymers both to and from component parts. By exploiting protein engineering methodologies, proteins can be modified to make them more susceptible to biology's native enzymatic activities. They can be engineered with fusion tags that provide (short sequences of amino acids at the C- and/or N- termini) that provide the accessible residues for the assembling enzymes to recognize and react with. This "biobased" fabrication not only allows biology's nanoscale components (i.e., proteins) to be engineered, but also provides the means to organize these components into the hierarchical structures that are prevalent in life.
Collapse
Affiliation(s)
| | - Hsuan-Chen Wu
- Department of Biochemical Science and Technology , National Taiwan University , Taipei City , Taiwan
| | | | | | - Kai-Lin Hong
- Department of Biochemical Science and Technology , National Taiwan University , Taipei City , Taiwan
| | | | | | | | | |
Collapse
|
21
|
Yan K, Liu Y, Guan Y, Bhokisham N, Tsao CY, Kim E, Shi XW, Wang Q, Bentley WE, Payne GF. Catechol-chitosan redox capacitor for added amplification in electrochemical immunoanalysis. Colloids Surf B Biointerfaces 2018; 169:470-477. [PMID: 29852436 DOI: 10.1016/j.colsurfb.2018.05.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 02/08/2023]
Abstract
Antibodies are common recognition elements for molecular detection but often the signals generated by their stoichiometric binding must be amplified to enhance sensitivity. Here, we report that an electrode coated with a catechol-chitosan redox capacitor can amplify the electrochemical signal generated from an alkaline phosphatase (AP) linked immunoassay. Specifically, the AP product p-aminophenol (PAP) undergoes redox-cycling in the redox capacitor to generate amplified oxidation currents. We estimate an 8-fold amplification associated with this redox-cycling in the capacitor (compared to detection by a bare electrode). Importantly, this capacitor-based amplification is generic and can be coupled to existing amplification approaches based on enzyme-linked catalysis or magnetic nanoparticle-based collection/concentration. Thus, the capacitor should enhance sensitivities in conventional immunoassays and also provide chemical to electrical signal transduction for emerging applications in molecular communication.
Collapse
Affiliation(s)
- Kun Yan
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Yi Liu
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Yongguang Guan
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Narendranath Bhokisham
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Chen-Yu Tsao
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Xiao-Wen Shi
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China.
| | - Qin Wang
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
22
|
Bio-inspired redox-cycling antimicrobial film for sustained generation of reactive oxygen species. Biomaterials 2018; 162:109-122. [DOI: 10.1016/j.biomaterials.2017.12.027] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 12/20/2017] [Accepted: 12/31/2017] [Indexed: 02/07/2023]
|
23
|
Nano-gold assisted highly conducting and biocompatible bacterial cellulose-PEDOT:PSS films for biology-device interface applications. Int J Biol Macromol 2018; 107:865-873. [DOI: 10.1016/j.ijbiomac.2017.09.064] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/07/2017] [Accepted: 09/17/2017] [Indexed: 12/19/2022]
|
24
|
Chu S, Winkler TE, Brown AD, Culver JN, Ghodssi R. Localized Three-Dimensional Functionalization of Bionanoreceptors on High-Density Micropillar Arrays via Electrowetting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1725-1732. [PMID: 29301087 DOI: 10.1021/acs.langmuir.7b02920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this work, we introduce an electrowetting-assisted 3-D biofabrication process allowing both complete and localized functionalization of bionanoreceptors onto densely arranged 3-D microstructures. The integration of biomaterials with 3-D microdevice components offers exciting opportunities for communities developing miniature bioelectronics with enhanced performance and advanced modes of operation. However, most biological materials are stable only in properly conditioned aqueous solutions, thus the water-repellent properties exhibited by densely arranged micro/nanostructures (widely known as the Cassie-Baxter state) represent a significant challenge to biomaterial integration. Here, we first investigate such potential limitations using cysteine-modified tobacco mosaic virus (TMV1cys) as a model bionanoreceptor and a set of Au-coated Si-micropillar arrays (μPAs) of varying densities. Furthermore, we introduce a novel biofabrication system adopting electrowetting principles for the controlled localization of TMV1cys bionanoreptors on densely arranged μPAs. Contact angle analysis and SEM characterizations provide clear evidence to indicate structural hydrophobicity as a key limiting factor for 3-D biofunctionalization and for electrowetting as an effective method to overcome this limitation. The successful 3-D biofabrication is confirmed using SEM and fluorescence microscopy that show spatially controlled and uniform assemblies of TMV1cys on μPAs. The increased density of TMV1cys per device footprint produces a 7-fold increase in fluorescence intensity attributed to the μPAs when compared to similar assemblies on planar substrates. Combined, this work demonstrates the potential of electrowetting as a unique enabling solution for the controlled and efficient biofabrication of 3-D-patterned micro/nanodomains.
Collapse
Affiliation(s)
- Sangwook Chu
- Department of Electrical and Computer Engineering, ‡Institute for Systems Research, §Fischell Department of Bioengineering, ∥Institute for Bioscience and Biotechnology Research, and ⊥Department of Plant Science and Landscape Architecture, University of Maryland , College Park, Maryland 20742, United States
| | - Thomas E Winkler
- Department of Electrical and Computer Engineering, ‡Institute for Systems Research, §Fischell Department of Bioengineering, ∥Institute for Bioscience and Biotechnology Research, and ⊥Department of Plant Science and Landscape Architecture, University of Maryland , College Park, Maryland 20742, United States
| | - Adam D Brown
- Department of Electrical and Computer Engineering, ‡Institute for Systems Research, §Fischell Department of Bioengineering, ∥Institute for Bioscience and Biotechnology Research, and ⊥Department of Plant Science and Landscape Architecture, University of Maryland , College Park, Maryland 20742, United States
| | - James N Culver
- Department of Electrical and Computer Engineering, ‡Institute for Systems Research, §Fischell Department of Bioengineering, ∥Institute for Bioscience and Biotechnology Research, and ⊥Department of Plant Science and Landscape Architecture, University of Maryland , College Park, Maryland 20742, United States
| | - Reza Ghodssi
- Department of Electrical and Computer Engineering, ‡Institute for Systems Research, §Fischell Department of Bioengineering, ∥Institute for Bioscience and Biotechnology Research, and ⊥Department of Plant Science and Landscape Architecture, University of Maryland , College Park, Maryland 20742, United States
| |
Collapse
|
25
|
Liu M, Chen Y, Qin C, Zhang Z, Ma S, Cai X, Li X, Wang Y. Electrodeposition of reduced graphene oxide with chitosan based on the coordination deposition method. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:1200-1210. [PMID: 29765797 PMCID: PMC5942374 DOI: 10.3762/bjnano.9.111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/16/2018] [Indexed: 05/03/2023]
Abstract
The electrodeposition of graphene has drawn considerable attention due to its appealing applications for sensors, supercapacitors and lithium-ion batteries. However, there are still some limitations in the current electrodeposition methods for graphene. Here, we present a novel electrodeposition method for the direct deposition of reduced graphene oxide (rGO) with chitosan. In this method, a 2-hydroxypropyltrimethylammonium chloride-based chitosan-modified rGO material was prepared. This material disperses homogenously in the chitosan solution, forming a deposition solution with good dispersion stability. Subsequently, the modified rGO material was deposited on an electrode through codeposition with chitosan, based on the coordination deposition method. After electrodeposition, the homogeneous, deposited rGO/chitosan films can be generated on copper or silver electrodes or substrates. The electrodeposition method allows for the convenient and controlled creation of rGO/chitosan nanocomposite coatings and films of different shapes and thickness. It also introduces a new method of creating films, as they can be peeled completely from the electrodes. Moreover, this method allows for a rGO/chitosan film to be deposited directly onto an electrode, which can then be used for electrochemical detection.
Collapse
Affiliation(s)
- Mingyang Liu
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Yanjun Chen
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Chaoran Qin
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zheng Zhang
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Shuai Ma
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Xiuru Cai
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Xueqian Li
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Yifeng Wang
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
26
|
Yan K, Liu Y, Zhang J, Correa SO, Shang W, Tsai CC, Bentley WE, Shen J, Scarcelli G, Raub CB, Shi XW, Payne GF. Electrical Programming of Soft Matter: Using Temporally Varying Electrical Inputs To Spatially Control Self Assembly. Biomacromolecules 2017; 19:364-373. [PMID: 29244943 DOI: 10.1021/acs.biomac.7b01464] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The growing importance of hydrogels in translational medicine has stimulated the development of top-down fabrication methods, yet often these methods lack the capabilities to generate the complex matrix architectures observed in biology. Here we show that temporally varying electrical signals can cue a self-assembling polysaccharide to controllably form a hydrogel with complex internal patterns. Evidence from theory and experiment indicate that internal structure emerges through a subtle interplay between the electrical current that triggers self-assembly and the electrical potential (or electric field) that recruits and appears to orient the polysaccharide chains at the growing gel front. These studies demonstrate that short sequences (minutes) of low-power (∼1 V) electrical inputs can provide the program to guide self-assembly that yields hydrogels with stable, complex, and spatially varying structure and properties.
Collapse
Affiliation(s)
- Kun Yan
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University , Wuhan 430079, China
| | - Yi Liu
- Institute for Bioscience and Biotechnology Research, University of Maryland College Park , College Park, Maryland 20742, United States.,Fischell Department of Bioengineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Jitao Zhang
- Fischell Department of Bioengineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Santiago O Correa
- Department of Biomedical Engineering, The Catholic University of America , Washington, D.C. 20064, United States
| | - Wu Shang
- Fischell Department of Bioengineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Cheng-Chieh Tsai
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy , Baltimore, Maryland 21201, United States
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research, University of Maryland College Park , College Park, Maryland 20742, United States.,Fischell Department of Bioengineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy , Baltimore, Maryland 21201, United States
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Christopher B Raub
- Department of Biomedical Engineering, The Catholic University of America , Washington, D.C. 20064, United States
| | - Xiao-Wen Shi
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University , Wuhan 430079, China
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland College Park , College Park, Maryland 20742, United States.,Fischell Department of Bioengineering, University of Maryland College Park , College Park, Maryland 20742, United States
| |
Collapse
|
27
|
Liu Y, Li J, Tschirhart T, Terrell JL, Kim E, Tsao C, Kelly DL, Bentley WE, Payne GF. Connecting Biology to Electronics: Molecular Communication via Redox Modality. Adv Healthc Mater 2017; 6. [PMID: 29045017 DOI: 10.1002/adhm.201700789] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/18/2017] [Indexed: 12/13/2022]
Abstract
Biology and electronics are both expert at for accessing, analyzing, and responding to information. Biology uses ions, small molecules, and macromolecules to receive, analyze, store, and transmit information, whereas electronic devices receive input in the form of electromagnetic radiation, process the information using electrons, and then transmit output as electromagnetic waves. Generating the capabilities to connect biology-electronic modalities offers exciting opportunities to shape the future of biosensors, point-of-care medicine, and wearable/implantable devices. Redox reactions offer unique opportunities for bio-device communication that spans the molecular modalities of biology and electrical modality of devices. Here, an approach to search for redox information through an interactive electrochemical probing that is analogous to sonar is adopted. The capabilities of this approach to access global chemical information as well as information of specific redox-active chemical entities are illustrated using recent examples. An example of the use of synthetic biology to recognize external molecular information, process this information through intracellular signal transduction pathways, and generate output responses that can be detected by electrical modalities is also provided. Finally, exciting results in the use of redox reactions to actuate biology are provided to illustrate that synthetic biology offers the potential to guide biological response through electrical cues.
Collapse
Affiliation(s)
- Yi Liu
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Jinyang Li
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Tanya Tschirhart
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Jessica L. Terrell
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Chen‐Yu Tsao
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Deanna L. Kelly
- Maryland Psychiatric Research Center University of Maryland School of Medicine Baltimore MD 21228 USA
| | - William E. Bentley
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| |
Collapse
|
28
|
Tsai CC, Morrow BH, Chen W, Payne GF, Shen J. Toward Understanding the Environmental Control of Hydrogel Film Properties: How Salt Modulates the Flexibility of Chitosan Chains. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01116] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Cheng-Chieh Tsai
- Department
of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Brian H. Morrow
- Department
of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Wei Chen
- Department
of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Gregory F. Payne
- Fischell
Department of Bioengineering and Institute for Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
| | - Jana Shen
- Department
of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
29
|
Catechol-Based Hydrogel for Chemical Information Processing. Biomimetics (Basel) 2017; 2:biomimetics2030011. [PMID: 31105174 PMCID: PMC6352696 DOI: 10.3390/biomimetics2030011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 01/23/2023] Open
Abstract
Catechols offer diverse properties and are used in biology to perform various functions that range from adhesion (e.g., mussel proteins) to neurotransmission (e.g., dopamine), and mimicking the capabilities of biological catechols have yielded important new materials (e.g., polydopamine). It is well known that catechols are also redox-active and we have observed that biomimetic catechol-modified chitosan films are redox-active and possess interesting molecular electronic properties. In particular, these films can accept, store and donate electrons, and thus offer redox-capacitor capabilities. We are enlisting these capabilities to bridge communication between biology and electronics. Specifically, we are investigating an interactive redox-probing approach to access redox-based chemical information and convert this information into an electrical modality that facilitates analysis by methods from signal processing. In this review, we describe the broad vision and then cite recent examples in which the catechol–chitosan redox-capacitor can assist in accessing and understanding chemical information. Further, this redox-capacitor can be coupled with synthetic biology to enhance the power of chemical information processing. Potentially, the progress with this biomimetic catechol–chitosan film may even help in understanding how biology uses the redox properties of catechols for redox signaling.
Collapse
|
30
|
Bhokisham N, Liu Y, Pakhchanian H, Payne GF, Bentley WE. A Facile Two-Step Enzymatic Approach for Conjugating Proteins to Polysaccharide Chitosan at an Electrode Interface. Cell Mol Bioeng 2016; 10:134-142. [PMID: 31719855 DOI: 10.1007/s12195-016-0472-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/26/2016] [Indexed: 11/30/2022] Open
Abstract
Biological components are integrated with electronic devices to create microsystems with novel functions and chitosan, a naturally occurring biopolymer, can play a significant role as an interface material. Chitosan can be electrodeposited within confined geometries by cathodic charge and appropriate electrode design and proteins can be conjugated to chitosan. However, conjugation chemistries can be slow and chitosan, a polycationic polysaccharide, enables non-specific binding in biofabrication processes. There is a need to speed up the assembly process and reduce non-specific binding. Here, we have developed a two-step methodology that accelerates protein assembly, reduces background and increases specificity. We first "coated" the surface of chitosan with a Lys-Tyr-Lys (KYK) tripeptide in a slow step using tyrosinase-mediated conjugation chemistry and then conjugated proteins with C-terminal glutamine-tags to the saturating KYK tripeptide via transglutaminase. As a demonstration, we assembled a functioning two-enzyme bacterial metabolic pathway on an electrode chip. Results indicated a fivefold decrease in non-specific binding and an improvement in signal to noise ratio from 0.3 to 20. This transglutaminase-mediated approach is simple and quick, it requires no chemical reagents, no printing or stamping devices; it employs biological components and is biologically benign to the component parts-all characteristics of biofabricated devices.
Collapse
Affiliation(s)
- Narendranath Bhokisham
- 1Biological Sciences Graduate Program - College of Computer, Mathematical and Natural Sciences, University of Maryland, College Park, 4066 Campus Drive, College Park, MD 20742 USA
- 2Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, 5115 Plant Science and Landscape Architecture Building, College Park, MD 20742 USA
| | - Yi Liu
- 2Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, 5115 Plant Science and Landscape Architecture Building, College Park, MD 20742 USA
| | - Haig Pakhchanian
- 3Fischell Department of Bioengineering, University of Maryland, College Park, Room 3122, Jeong H. Kim Engineering Building (Bldg. #225), College Park, MD 20742 USA
| | - Gregory F Payne
- 2Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, 5115 Plant Science and Landscape Architecture Building, College Park, MD 20742 USA
- 3Fischell Department of Bioengineering, University of Maryland, College Park, Room 3122, Jeong H. Kim Engineering Building (Bldg. #225), College Park, MD 20742 USA
| | - William E Bentley
- 2Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, 5115 Plant Science and Landscape Architecture Building, College Park, MD 20742 USA
- 3Fischell Department of Bioengineering, University of Maryland, College Park, Room 3122, Jeong H. Kim Engineering Building (Bldg. #225), College Park, MD 20742 USA
| |
Collapse
|
31
|
Kim E, Liu Y, Ben-Yoav H, Winkler TE, Yan K, Shi X, Shen J, Kelly DL, Ghodssi R, Bentley WE, Payne GF. Fusing Sensor Paradigms to Acquire Chemical Information: An Integrative Role for Smart Biopolymeric Hydrogels. Adv Healthc Mater 2016; 5:2595-2616. [PMID: 27616350 PMCID: PMC5485850 DOI: 10.1002/adhm.201600516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/26/2016] [Indexed: 12/14/2022]
Abstract
The Information Age transformed our lives but it has had surprisingly little impact on the way chemical information (e.g., from our biological world) is acquired, analyzed and communicated. Sensor systems are poised to change this situation by providing rapid access to chemical information. This access will be enabled by technological advances from various fields: biology enables the synthesis, design and discovery of molecular recognition elements as well as the generation of cell-based signal processors; physics and chemistry are providing nano-components that facilitate the transmission and transduction of signals rich with chemical information; microfabrication is yielding sensors capable of receiving these signals through various modalities; and signal processing analysis enhances the extraction of chemical information. The authors contend that integral to the development of functional sensor systems will be materials that (i) enable the integrative and hierarchical assembly of various sensing components (for chemical recognition and signal transduction) and (ii) facilitate meaningful communication across modalities. It is suggested that stimuli-responsive self-assembling biopolymers can perform such integrative functions, and redox provides modality-spanning communication capabilities. Recent progress toward the development of electrochemical sensors to manage schizophrenia is used to illustrate the opportunities and challenges for enlisting sensors for chemical information processing.
Collapse
Affiliation(s)
- Eunkyoung Kim
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Yi Liu
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Hadar Ben-Yoav
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Thomas E Winkler
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Kun Yan
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China
| | - Jana Shen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Deanna L Kelly
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, 21228, USA
| | - Reza Ghodssi
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA
| | - William E Bentley
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Gregory F Payne
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
32
|
Terrell JL, Payne GF, Bentley WE. Networking biofabricated systems through molecular communication. Nanomedicine (Lond) 2016; 11:1503-6. [DOI: 10.2217/nnm-2016-0126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Jessica L Terrell
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Gregory F Payne
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - William E Bentley
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
33
|
Geng Z, Wang X, Guo X, Zhang Z, Chen Y, Wang Y. Electrodeposition of chitosan based on coordination with metal ions in situ-generated by electrochemical oxidation. J Mater Chem B 2016; 4:3331-3338. [PMID: 32263268 DOI: 10.1039/c6tb00336b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Electrodeposition is an attractive technique that provides a controllable and programmable means to trigger the assembly of stimuli-responsive biopolymers (e.g., chitosan) for a diverse range of applications. Here, we report a new electrodeposition method for chitosan based on the coordination of chitosan to the metal ions in situ-generated by simultaneous electrochemical oxidation. In particular, we typically construct a deposited hydrogel on the copper electrode through this coordinated electrodeposition method, and the obtained hydrogel is smooth, transparent and homogeneous, as well as it has stability under acidic conditions and enough strength to be readily peeled from the electrode. This coordinated electrodeposition can be conveniently employed to build coatings (on the electrodes) or hydrogel films (peeled from the electrodes) with various shapes, and it also enables nanoparticles (e.g., fluorescent carbon dots) to be codeposited with chitosan. Furthermore, by enlisting the special benefits of the coordinated electrodeposition, the diverse hydrogel patterns can be constructed on the electrodes. Interestingly, this coordinated electrodeposition can be employed to directly build the complex hydrogel on the electrode to perform electrochemical detection. Therefore, it can be expected that this coordinated electrodeposition of chitosan has promising applications in biomedical devices, surface coating, and metallic biomaterials.
Collapse
Affiliation(s)
- Zenghua Geng
- School of Material Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | | | | | | | | | | |
Collapse
|
34
|
Zargar A, Payne GF, Bentley WE. A 'bioproduction breadboard': programming, assembling, and actuating cellular networks. Curr Opin Biotechnol 2015; 36:154-60. [PMID: 26342587 DOI: 10.1016/j.copbio.2015.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/07/2015] [Accepted: 08/14/2015] [Indexed: 10/23/2022]
Abstract
With advances in synthetic biology and biofabrication, cellular networks can be functionalized and connected with unprecedented sophistication. We describe a platform for the creation of a 'bioproduction breadboard'. This would consist of physically isolated product-producing cell populations, product capture devices, and other unit operations that function as programmed in place, using unique, orthogonal inputs. For product synthesis, customized cell populations would be connected through standardized, generic inputs allowing 'plug and play' functionality and primary, user-mediated regulation. In addition, through autonomous pathway redirection and balancing, the cells themselves would provide secondary, self-directed regulation to optimize bioproduction. By leveraging specialization and division of labor, we envision diverse cell populations linked to create new pathway designs.
Collapse
Affiliation(s)
- Amin Zargar
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
35
|
Electrodeposition of chitosan/gelatin/nanosilver: A new method for constructing biopolymer/nanoparticle composite films with conductivity and antibacterial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 53:222-8. [DOI: 10.1016/j.msec.2015.04.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/19/2015] [Accepted: 04/21/2015] [Indexed: 12/18/2022]
|
36
|
Plant virus directed fabrication of nanoscale materials and devices. Virology 2015; 479-480:200-12. [DOI: 10.1016/j.virol.2015.03.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/24/2015] [Accepted: 03/02/2015] [Indexed: 11/21/2022]
|
37
|
Liu Y, Wu HC, Chhuan M, Terrell JL, Tsao CY, Bentley WE, Payne GF. Functionalizing Soft Matter for Molecular Communication. ACS Biomater Sci Eng 2015; 1:320-328. [PMID: 26501127 PMCID: PMC4603720 DOI: 10.1021/ab500160e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/26/2015] [Indexed: 11/28/2022]
Abstract
![]()
The
information age was enabled by advances in microfabrication
and communication theory that allowed information to be processed
by electrons and transmitted by electromagnetic radiation. Despite
immense capabilities, microelectronics has limited abilities to access
and participate in the molecular-based communication that characterizes
our biological world. Here, we use biological materials and methods
to create components and fabricate devices to perform simple molecular
communication functions based on bacterial quorum sensing (QS). Components
were created by protein engineering to generate a multidomain fusion
protein capable of sending a molecular QS signal, and by synthetic
biology to engineer E. coli to receive and report
this QS signal. The device matrix was formed using stimuli-responsive
hydrogel-forming biopolymers (alginate and gelatin). Assembly of the
components within the device matrix was achieved by physically entrapping
the cell-based components, and covalently conjugating the protein-based
components using the enzyme microbial transglutaminase. We demonstrate
simple devices that can send or receive a molecular QS signal to/from
the surrounding medium, and a two-component device in which one component
generates the signal (i.e., issues a command) that is acted upon by
the second component. These studies illustrate the broad potential
of biofabrication to generate molecular communication devices.
Collapse
Affiliation(s)
- Yi Liu
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - Hsuan-Chen Wu
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - Melanie Chhuan
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - Jessica L Terrell
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - Chen-Yu Tsao
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| |
Collapse
|
38
|
Paleček E, Tkáč J, Bartošík M, Bertók T, Ostatná V, Paleček J. Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chem Rev 2015; 115:2045-108. [PMID: 25659975 PMCID: PMC4360380 DOI: 10.1021/cr500279h] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Emil Paleček
- Institute
of Biophysics Academy of Science of the Czech Republic, v.v.i., Královopolská
135, 612 65 Brno, Czech Republic
| | - Jan Tkáč
- Institute
of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Martin Bartošík
- Regional
Centre for Applied Molecular Oncology, Masaryk
Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| | - Tomáš Bertók
- Institute
of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Veronika Ostatná
- Institute
of Biophysics Academy of Science of the Czech Republic, v.v.i., Královopolská
135, 612 65 Brno, Czech Republic
| | - Jan Paleček
- Central
European Institute of Technology, Masaryk
University, Kamenice
5, 625 00 Brno, Czech Republic
| |
Collapse
|
39
|
Wang Y, Wang X, Geng Z, Xiong Y, Wu W, Chen Y. Electrodeposition of a carbon dots/chitosan composite produced by a simple in situ method and electrically controlled release of carbon dots. J Mater Chem B 2015; 3:7511-7517. [DOI: 10.1039/c5tb01051a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A carbon dots/chitosan composite that can be straightforwardly used for electrodeposition and controlled release was produced by a one-step microwave method.
Collapse
Affiliation(s)
- Yifeng Wang
- School of Material Science and Engineering
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Xia Wang
- School of Material Science and Engineering
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Zenghua Geng
- School of Material Science and Engineering
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Yanfei Xiong
- Department of Biological Science and Technology
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Wencheng Wu
- School of Material Science and Engineering
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Yanjun Chen
- School of Material Science and Engineering
- Wuhan University of Technology
- Wuhan 430070
- China
| |
Collapse
|
40
|
Chitosan to Connect Biology to Electronics: Fabricating the Bio-Device Interface and Communicating Across This Interface. Polymers (Basel) 2014. [DOI: 10.3390/polym7010001] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
Wang Y, Geng Z, Guo M, Chen Y, Guo X, Wang X. Electroaddressing of ZnS quantum dots by codeposition with chitosan to construct fluorescent and patterned device surface. ACS APPLIED MATERIALS & INTERFACES 2014; 6:15510-15515. [PMID: 25133925 DOI: 10.1021/am5042077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Electroaddressing is an attractive method for triggering assembly of stimuli-responsive biopolymers with exquisite spatiotemporal control, and it also offers a controllable means to concurrently assemble biological materials and nanoparticles for a diverse range of applications. Here, we demonstrate a novel method to construct fluorescent and patterned device surfaces by electroaddressing of quantum dots (QDs)/chitosan composite. First, the surfaces of ZnS QDs/chitosan composite on the electrodes are built by electrodeposition method. It is shown that the deposited surface displays clear fluorescence under UV light, and the fluorescence intensity of the surface can be controlled by electrodeposition conditions (e.g., deposition time). Furthermore, a variety of fluorescent patterns can be constructed by employing electrodes or substrates with various shapes. Specifically, taking advantage of the spatiotemporal selectivity of electroaddressing and the pH-responsive property of chitosan, we construct diverse fluorescent patterns by electroaddressing QDs/chitosan composite at the localized region. It is also found that the fluorescent patterns of QDs/chitosan composite have reproducibility. Thus, this work presents a convenient, versatile, and controllable method to construct fluorescent and patterned device surface by electroaddressing, which has promising applications in photoluminescence device, fluorescent and patterned coating, and nanocomposite biodevice.
Collapse
Affiliation(s)
- Yifeng Wang
- School of Material Science and Engineering, Wuhan University of Technology , Wuhan 430070, China
| | | | | | | | | | | |
Collapse
|
42
|
Liu Y, Zhang B, Javvaji V, Kim E, Lee ME, Raghavan SR, Wang Q, Payne GF. Tyrosinase-mediated grafting and crosslinking of natural phenols confers functional properties to chitosan. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2013.11.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Bentley W, Payne G, Chen W. Biofabrication – Enlisting nature's components and designs for assembly. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Gordonov T, Kim E, Cheng Y, Ben-Yoav H, Ghodssi R, Rubloff G, Yin JJ, Payne GF, Bentley WE. Electronic modulation of biochemical signal generation. NATURE NANOTECHNOLOGY 2014; 9:605-10. [PMID: 25064394 DOI: 10.1038/nnano.2014.151] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 06/25/2014] [Indexed: 05/03/2023]
Abstract
Microelectronic devices that contain biological components are typically used to interrogate biology rather than control biological function. Patterned assemblies of proteins and cells have, however, been used for in vitro metabolic engineering, where coordinated biochemical pathways allow cell metabolism to be characterized and potentially controlled on a chip. Such devices form part of technologies that attempt to recreate animal and human physiological functions on a chip and could be used to revolutionize drug development. These ambitious goals will, however, require new biofabrication methodologies that help connect microelectronics and biological systems and yield new approaches to device assembly and communication. Here, we report the electrically mediated assembly, interrogation and control of a multi-domain fusion protein that produces a bacterial signalling molecule. The biological system can be electrically tuned using a natural redox molecule, and its biochemical response is shown to provide the signalling cues to drive bacterial population behaviour. We show that the biochemical output of the system correlates with the electrical input charge, which suggests that electrical inputs could be used to control complex on-chip biological processes.
Collapse
Affiliation(s)
- Tanya Gordonov
- 1] Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA [2] Institute for Bioscience &Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA
| | - Eunkyoung Kim
- Institute for Bioscience &Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA
| | - Yi Cheng
- 1] Institute for Systems Research, University of Maryland, College Park, Maryland 20742, USA [2] Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Hadar Ben-Yoav
- 1] Institute for Systems Research, University of Maryland, College Park, Maryland 20742, USA [2] Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Reza Ghodssi
- 1] Institute for Systems Research, University of Maryland, College Park, Maryland 20742, USA [2] Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Gary Rubloff
- 1] Institute for Systems Research, University of Maryland, College Park, Maryland 20742, USA [2] Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Jun-Jie Yin
- Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland 20740, USA
| | - Gregory F Payne
- 1] Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA [2] Institute for Bioscience &Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA
| | - William E Bentley
- 1] Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA [2] Institute for Bioscience &Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
45
|
Bressner JE, Marelli B, Qin G, Klinker LE, Zhang Y, Kaplan DL, Omenetto FG. Rapid fabrication of silk films with controlled architectures via electrogelation. J Mater Chem B 2014; 2:4983-4987. [DOI: 10.1039/c4tb00833b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Shi Z, Li Y, Chen X, Han H, Yang G. Double network bacterial cellulose hydrogel to build a biology-device interface. NANOSCALE 2014; 6:970-977. [PMID: 24288113 DOI: 10.1039/c3nr05214a] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Establishing a biology-device interface might enable the interaction between microelectronics and biotechnology. In this study, electroactive hydrogels have been produced using bacterial cellulose (BC) and conducting polymer (CP) deposited on the BC hydrogel surface to cover the BC fibers. The structures of these composites thus have double networks, one of which is a layer of electroactive hydrogels combined with BC and CP. The electroconductivity provides the composites with capabilities for voltage and current response, and the BC hydrogel layer provides good biocompatibility, biodegradability, bioadhesion and mass transport properties. Such a system might allow selective biological functions such as molecular recognition and specific catalysis and also for probing the detailed genetic and molecular mechanisms of life. A BC-CP composite hydrogel could then lead to a biology-device interface. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) are used here to study the composite hydrogels' electroactive property. BC-PAni and BC-PPy respond to voltage changes. This provides a mechanism to amplify electrochemical signals for analysis or detection. BC hydrogels were found to be able to support the growth, spreading and migration of human normal skin fibroblasts without causing any cytotoxic effect on the cells in the cell culture. These double network BC-CP hydrogels are biphasic Janus hydrogels which integrate electroactivity with biocompatibility, and might provide a biology-device interface to produce implantable devices for personalized and regenerative medicine.
Collapse
Affiliation(s)
- Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | | | | | | | | |
Collapse
|
47
|
Huang SH, Wei LS, Chu HT, Jiang YL. Light-addressed electrodeposition of enzyme-entrapped chitosan membranes for multiplexed enzyme-based bioassays using a digital micromirror device. SENSORS 2013; 13:10711-24. [PMID: 23959236 PMCID: PMC3812624 DOI: 10.3390/s130810711] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/05/2013] [Accepted: 08/14/2013] [Indexed: 12/02/2022]
Abstract
This paper describes a light-addressed electrolytic system used to perform an electrodeposition of enzyme-entrapped chitosan membranes for multiplexed enzyme-based bioassays using a digital micromirror device (DMD). In this system, a patterned light illumination is projected onto a photoconductive substrate serving as a photo-cathode to electrolytically produce hydroxide ions, which leads to an increased pH gradient. The high pH generated at the cathode can cause a local gelation of chitosan through sol-gel transition. By controlling the illumination pattern on the DMD, a light-addressed electrodeposition of chitosan membranes with different shapes and sizes, as well as multiplexed micropatterning, was performed. The effect of the illumination time of the light pattern on the dimensional resolution of chitosan membrane formation was examined experimentally. Moreover, multiplexed enzyme-based bioassay of enzyme-entrapped chitosan membranes was also successfully demonstrated through the electrodeposition of the chitosan membranes with various shapes/sizes and entrapping different enzymes. As a model experiment, glucose and ethanol were simultaneously detected in a single detection chamber without cross-talk using shape-coded chitosan membranes entrapped with glucose oxidase (GOX), peroxidase (POD), and Amplex Red (AmR) or alcohol oxidase (AOX), POD, and AmR by using same fluorescence indicator (AmR).
Collapse
Affiliation(s)
- Shih-Hao Huang
- Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung 202-24, Taiwan; E-Mails: (L.-S.W.); (H.-T.C.)
- Center for Marine Mechatronic Systems, CMMS, National Taiwan Ocean University, Keelung 202-24, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-2-246-22-192 (ext. 3209); Fax: +886-2-246-20-836
| | - Lu-Shiuan Wei
- Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung 202-24, Taiwan; E-Mails: (L.-S.W.); (H.-T.C.)
| | - Hsiao-Tzu Chu
- Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung 202-24, Taiwan; E-Mails: (L.-S.W.); (H.-T.C.)
| | - Yeu-Long Jiang
- Graduate Institute of Optoelectronic Engineering, Department of Electrical Engineering, National Chung Hsing University, Taichung 402-27, Taiwan; E-Mail:
| |
Collapse
|
48
|
Plug and Play? Interconnected multifunctional chips for enhancing efficiency of biopharmaceutical R&D. ACTA ACUST UNITED AC 2013. [DOI: 10.4155/pbp.13.29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
Ding F, Nie Z, Deng H, Xiao L, Du Y, Shi X. Antibacterial hydrogel coating by electrophoretic co-deposition of chitosan/alkynyl chitosan. Carbohydr Polym 2013; 98:1547-52. [PMID: 24053838 DOI: 10.1016/j.carbpol.2013.07.042] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 01/12/2023]
Abstract
Despite much effort has been paid to develop aseptic implant devices, the infection associated with medical implant still remains a significant problem. Here, we report a potential coating material derived from a natural biopolymer chitosan. Firstly, chitosan functionalized with alkynyl moiety (ACS) was prepared by reaction between chitosan and 3-bromopropyne. The structure of the alkynyl chitosan was characterized by FT-IR, (1)H NMR, XRD, TGA and element analysis. The minimum inhibitory concentration (MIC) of ACS with a degree of substitution (DS) of 0.40 was 0.03% against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Subsequently, the alkynyl chitosan was co-deposited with chitosan on stainless steel wire to fabricate a composite hydrogel. The composite hydrogel exhibited better antibacterial activities than pure chitosan hydrogel.
Collapse
Affiliation(s)
- Fuyuan Ding
- School of Resource and Environmental Science and Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | | | | | | | | | | |
Collapse
|
50
|
Suginta W, Khunkaewla P, Schulte A. Electrochemical Biosensor Applications of Polysaccharides Chitin and Chitosan. Chem Rev 2013; 113:5458-79. [DOI: 10.1021/cr300325r] [Citation(s) in RCA: 341] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wipa Suginta
- Biochemistry and Electrochemistry
Research Unit, Schools
of Chemistry and Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima
30000, Thailand
| | - Panida Khunkaewla
- Biochemistry and Electrochemistry
Research Unit, Schools
of Chemistry and Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima
30000, Thailand
| | - Albert Schulte
- Biochemistry and Electrochemistry
Research Unit, Schools
of Chemistry and Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima
30000, Thailand
| |
Collapse
|